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Diskussionsbeiträge der Fakultät für Wirtschaftswissenschaft

der FernUniversität in Hagen

Herausgegeben vom Dekan der Fakultät

Alle Rechte liegen bei dem Verfasser

Abstract: The standard error of Monte Carlo estimators for derivatives typically

decreases at a rate ∝ 1/
√
N where N is the sample size. To reduce empirical

variance for estimators of several in-the-money options an application of the put-

call-parity is analyzed. Instead of directly simulating a call option, first the corre-

sponding put option is simulated. By employing the put-call-parity the desired call

price is calculated. Of course, the approach can also be applied vice versa. By em-

ploying this approach for in-the-money options, significant variance reductions are

observed.

1FernUniversität in Hagen, Lehrstuhl fur angewandte Statistik und Methoden der empirischen

Sozialforschung, D-58084 Hagen, Germany, armin.mueller@fernuni-hagen.de



1 Introduction

It is a well known-property of certain options that under the assumption of arbitrage

free markets a put-call-parity holds, relating the price of a put option to a call op-

tion. The put-call-parity can be derived based on the assumption that two financial

products with the same pay-off and the same risk-profile must have the same fair

market value. Otherwise, arbitrage would be possible [1, 2].

As described by Reider (1994) [3], put-call-parities can be applied to reduce the

variance of Monte-Carlo estimators for option prices. E.g., when pricing an in-the-

money call, one can instead simulate the price of a put option with same parameters

and independent variables. The put-call-parity then yields the price of the in-the-

money call, while the variance of the estimator can be dramatically reduced.

This paper is organized as follows: Monte-Carlo simulations of the Feynman-

Kac formula as an approach to option pricing are introduced in section 2. In section

3 put-call-parities for European, Arithmetic Asian, Digital and Basket options are

derived. Results for variance reduced Monte-Carlo simulations of these options are

presented in section 4 and subsequently discussed in section 5. Section 6 concludes

this paper.

2 Monte-Carlo simulation of the Feynman-Kac

formula

Black-Scholes PDE In 1973, Fischer Black and Myron Scholes published an

important contribution to option pricing theory [4]. Their option pricing model had

tremendous impact on the further development of the trading of financial deriva-

tives. Their work was honored with a noble price in economics later [1]. To derive

the central constituent of their model, Black and Scholes derived a partial differen-

tial equation resulting from a no-arbitrage argument 2.

The hedge portfolio

V = C + τS (1)

consists of one call and τ units of the underlying with C ≡ C (S (t) , t). The

2The representation follows Singer (1999) [5].
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differential dV can be calculated by applying Itō’s formula3:

dV = dC + τdS

= CSdS + Ctdt+
1

2
CSSdS2 +

1

2
Cttdt

2 + CStdSdt+ τdS

= (CS + τ) dS +

(

Ct +
1

2
CSSg

2

)

dt+O
(

dt3/2
)

(2)

Here, the differential equation

dS = fdt+ gdW (3)

and dW 2 ∝ dt were used. Terms of the order dt3/2 or higher were suppressed.

By choosing τ = −CS the hedge portfolio V becomes riskless: The differential

dV then depends only on deterministic terms as the first bracket term in the last row

of equation (2) vanishes. In consequence, V must earn the risk-free rate r:

dV =

(

Ct +
1

2
CSSg

2

)

dt

!
= rV dt

= (rC − rCSS) dt

(4)

In the first row the term (2) was repeated and in the third row definition (1) was

inserted. Rearranging elements and choosing a Geometric Brownian Motion (f =

rS and g = σS) yields the well known Black-Scholes equation

Ct + rSCS +
1

2
σ2S2CSS − rC = 0. (5)

Black and Scholes (1973) [4] presented a closed form solution for an European

call with boundary condition CT = (ST −K)+:

C(S(0), 0) = S(0)Φ (d1)−Ke−rTΦ (d2) (6)

with

d1,2 =
ln S(0)

K
+
(

r ± σ2

2

)

T

σ
√
T

.

Feynman-Kac formula An alternative approach to option pricing was intro-

duced by Cox and Ross in 1976 [6]. The authors state that in a risk-neutral world

3In this paper, the abbreviation ∂C

∂S
≡ CS is frequently used.
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the expected rates on the underlying and on the option must equal the risk-free rate:

IE [S(T )/S(0)|S(0) = S0] = erT

IE [C(S(T ), T )/C(S(0), 0)|S(0) = S0] = C(S(0), 0)−1IE [C(S(T ), T )|S(0) = S0]

= erT

(7)

Setting C(S(T ), T ) = h (S(T )) and rearranging yields the Feynman-Kac for-

mula for option pricing4:

C(S(0), 0) = e−rT IE [h (S(T ))|S(0) = S0]

= e−rT

∫

h (S ′(T )) p (S ′(T ), T |S(0), 0) dS ′(T )
(8)

The advantage of this representation is that for more difficult boundary condi-

tions h (S(T )), where no analytical solution to the Black-Scholes PDE (5) exists,

option prices can be approximated by Monte-Carlo simulations. To obtain a Monte-

Carlo estimator, N i.i.d. random numbers are drawn from the transition density

p (S ′(T ), T |S(0), 0) yielding

Ĉ ≡ Ĉ(S(0), 0) =
1

N

N
∑

i=1

Ĉi (9)

with standard error

δĈ =

√

√

√

√

1

N (N − 1)

(

N
∑

i=1

Ĉ2
i −NĈ2

)

. (10)

Path-dependent options A similar approach can be applied to path-dependent

options [8]. Here, we consider an Arithmetic Asian option depending on the entire

path of the underlying:

h (S(T ), Y (T ), T ) ≡ C (S(T ), Y (T ), T ) =

(

Y (T )

T
−K

)+

(11)

with

Y (t) :=

∫ t

0

S(u)du, for t ∈ [0, T ]. (12)

4This representation follows Singer (1999) [5]. It can be shown that this intuitive representation of

the option price as discounted expected value of the pay-off function solves the partial differential

equation 5. For further details on the Feynman-Kac formula see [2, 7].
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Differentiating equation (12) yields

dY = S(t)dt. (13)

A partial differential equation for the option price can be derived as above apply-

ing Itō’s formula:

dV = dC + τdS

= CSdS + CY dY + Ctdt+
1

2
CSSdS2 +

1

2
CY Y dY 2 +

1

2
Cttdt

2

+ CSY dSdY + CStdSdt+ CY tdY dt+ τdS

= (CS + τ) dS +

(

Ct + CY S +
1

2
CSSg

2

)

dt+O
(

dt3/2
)

(14)

Choosing again τ = −CS yields an equation similar to (5) including the addi-

tional term CY S:

0 = Ct + rSCS + CY S +
1

2
σ2S2CSS − rC (15)

For this type of option no explicit analytical solution is available [9]. However,

the option can be replicated by a portfolio (the replicating portfolio) X(t) consisting

of −τ = CS units of the underlying and a risk-free position [8, 10]. It can be

shown that the discounted replicating portfolio e−rtX(t) is a martingale [8] and

that therefore

X(t) = IE
[

e−r(T−t)X(T )
∣

∣S(t) = St, Y (t) = Yt

]

(16)

holds. This implies

C(S(t), Y (t), t) = IE
[

e−r(T−t)h (S(T ), Y (T ), T )
∣

∣S(t) = St, Y (t) = Yt

]

= e−r(T−t)IE

[

(

1

T

∫ T

0

S(u)du−K

)+
∣

∣

∣

∣

∣

S(t) = St, Y (t) = Yt

]

(17)

and

C(S(0), Y (0), 0) = e−rT IE

[

(

1

T

∫ T

0

S(u)du−K

)+
∣

∣

∣

∣

∣

S(0) = S0, Y (0) = Y0

]

.

(18)

As a consequence, also prices of path-dependent Arithmetic Asian options can
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be estimated by Monte-Carlo simulations.

3 Put-call-parities for several options

European options In the case of a European option with pay-off function

CT = (ST −K)+ (19)

the put call parity can be derived as follows5:

Value at expiration

Transaction Current Value ST ≤ K ST > K

European call

Buy call C0 0 ST −K

Synthetic European call

Buy put P0 K − ST 0
Buy underlying asset S0 ST ST

Issue bond −Ke−rT −K −K
Total P0 + S0 −Ke−rT 0 ST −K

Table 1: European call and synthetic European call

The pay-off function of a European long call position with strike K is the same

as the pay-off function of a portfolio containing a European long put position with

the same strike K, a long position of the underlying asset S0 and a short position of

a bond with nominal value K. In an arbirage-free market, this portfolio (a so called

“synthetic call”) must therefore have the same price yielding the put-call-parity for

European options:

C0 = P0 + S0 −Ke−rT (20)

Arithmetic Asian options For Arithmetic Asian options similar relations hold

both in the fixed- and in the floating-strike case [12, 13]. Here, in the same manner

as above, a put-call-parity is derived for a Asian call option with the following pay-

off function:

CT =
(

S̄T −K
)+

with S̄T =
1

m

m
∑

i=1

Si. (21)

It is assumed that Sm = ST and that all Si are equidistant. Otherwise the follow-

ing parameter µ would have to be adjusted accordingly.

5The derivation follows Chance (2015) [11].

6



In the following table, the pay-offs for several transactions are given setting

µ =
(

e−
rT (m−1)

m + . . .+ e−
rT

m + 1
)

: (22)

Value at expiration

Transaction Current Value S̄T ≤ K S̄T > K

Asian call

Buy m calls mC0 0
∑m

i=1 Si −mK

Synthetic Asian call

Buy m puts mP0 mK −
∑n

i=1 Si 0
Buy µ underlying µS0

∑m
i=1 Si

∑m
i=1 Si

assets and sell

assets for Sie
−

rT (m−i)
m

at each i = 1, . . . ,m
Issue m bonds −mKe−rT −mK −mK
Total mP0 + µS0 0

∑m
i=1 Si −mK

−mKe−rT

Table 2: Asian call and synthetic Asian call

As the pay-off of the synthetic Asian call is the same as the pay-off of the Asian

call, the current prices must equal. Dividing by m yields a put-call-parity slightly

different from the European case (20):

C0 = P0 +
µ

m
S0 −Ke−rT (23)

Alziary et al. (1997) [13] discuss the case of Arithmetic Asian options with

integral pay-off function of the type of equation (11), i.e. the case where m → ∞.

Basket options The approach of constructing a synthetic portfolio that exactly

replicates the option to be priced can be extended to Basket options depending on

more than one underlying asset. In the case of a linear dependence of the option

value on the underlying assets, in principle put-call-parities for Basket options with

an infinite amount of underlyings can be derived. For simplicity, in this paper only

the two-asset-case is considered.

We examine a Basket option depending on the terminal value at T of two under-

lying assets S1 and S2 with pay-off function

CT = (S1,T + S2,T −K)+ . (24)
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Again, we construct a synthetic portfolio that perfectly replicates the Basket call.

Value at expiration

Transaction Current Value S1,T + S2,T ≤ K S1,T + S2,T > K

Basket call

Buy call C0 0 S1,T + S2,T −K

Synthetic Basket call

Buy put P0 K − S1,T − S2,T 0
Buy underlying assets S1,0 + S2,0 S1,T + S2,T S1,T + S2,T

Issue bond −Ke−rT −K −K
Total P0 + S1,0 + S2,0 0 S1,T + S2,T −K

−Ke−rT

Table 3: Basket call and synthetic Basket call

This yields a put-call-parity of the following form similar to the European case

(20):

C0 = P0 + S1,0 + S2,0 −Ke−rT (25)

Note that no assumption on the correlation of the two assets S1,t and S2,t has been

made.

Digital options Let’s now consider a Digital call option with pay-off function

CT = θ (S −K) (26)

where θ (x) is the Heaviside step function.

Here the approach of constructing a synthetic replicating portfolio for a call is

slightly different. Instead of buying the put, buying the underlying and selling a

bond in this case it is necessary to sell a put and to buy a bond with nominal value

1 (not K!):

Thus, a put-call-parity relation of the form

C0 = −P0 + e−rT (27)

results.

In the next chapters the put-call-parities (20), (23), (25) and (27) will be applied

to analyze variance reduced option price estimators. The deterministic relation be-

tween put and call prices will be exploited to price in-the-money calls.
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Value at expiration

Transaction Current Value ST ≤ K ST > K

Digital call

Buy call C0 0 1

Synthetic Digital call

Sell put −P0 −1 0
Buy bond e−rT 1 1
Total −P0 + e−rT 0 1

Table 4: Digital call and synthetic Digital call

4 Numerical Results

Introductory remarks Several Monte-Carlo simulation of option prices were

conducted to investigate the variance reduction effect of applying the put-call-pari-

ties (20), (23), (25) and (27) derived in section 3.

For all options investigated the Black-Scholes stock price model [4] involving a

Geometric Brownian Motion as introduced in section 2 was employed for reasons

of simplicity. However, as the put-call-parities presented in section 3 do not depend

on a particular stock price model, other models like the CEV model as discussed

by Cox in 1975 [14] and by Cox and Ross in 1976 [6], the CIR model introduced

by Cox, Ingersoll and Ross in 1985 [15] or Scott’s stochastic volatility model intro-

duced in 1987 [16] could have been used as well.

To simulate sample paths, the differential equation (3) for the special case of a

Geometric Brownian Motion with f = rS and g = σS was discretized using the

Euler-Maruyama approximation [17]:

Si+1 = Si + rSi∆t+ σSiǫi
√
∆t (28)

where ǫi is a standard normal random number. For all options, T = 1 and n = 1.000

was selected, involving ∆t = 0.001. In all four examples presented subsequently,

option prices were estimated based on a sample size of N = 100 both for the

simulation of call options and for the simulation of put options. This rather small

sample size was used mainly to make standard errors visible in figures 1, 2 and 4.

In all cases, first a straight forward Monte-Carlo simulation of the call option

(named “Direct MC” subsequently) was conducted. In a second step, a Monte-

Carlo simulation of the corresponding put option with same parameters was carried

out (named “Put-Call-Parity MC”). Call values were then calculated by applying the

put-call-parities (20), (23), (25) and (27). In order to compare the performance of

9



6 8 10 12 14

0
1

2
3

4
5

6

(a) Direct MC

S(0)

C
(S

(0
),

0
)

6 8 10 12 14
0

1
2

3
4

5
6

(b) Put−Call−Parity MC

S(0)

C
(S

(0
),

0
)

European Call

8 10 12 14

1
e
−

0
4

1
e
+

0
0

1
e
+

0
4

(c) Variance reduction

S(0)

V
a
ri

a
n
c
e
 r

e
d
u
c
ti
o
n
 f
a
c
to

r

Figure 1: (a) Direct MC: Black dots: direct Monte-Carlo simulation of European

call with pay-off function (19) with r = 0.05, σ = 0.2, T = 1, K = 10,

n = 1.000 discretization steps and N = 100 trajectories simulated. Red bars:

Standard error of simulated option value. Blue line: Analytic option price cal-

culated with Black-Scholes formula (6). (b) Put-Call-Parity MC: Black dots:

Call prices calculated employing equation (20). Required put prices were esti-

mated by Monte-Carlo simulation with same parameters as in (a). Red bars: as

in (a). Blue line: as in (a). (c) Variance reduction: Black line: Variance reduc-

tion achieved by employing put-call-parity (20). The variance reduction factor

is calculated as ratio between the empirical variances of the two Monte-Carlo

estimators presented in (a) and (b). Red line: Line where the variance reduc-

tion factor equals one, i.e. empirical variance of estimators is not influenced by

employing the put-call-parity. Green line: Line where S(0) = Ke−rT .
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Figure 2: (a) Direct MC: Black dots: direct Monte-Carlo simulation of Arithmetic

Asian call with pay-off function (21) with r = 0.05, σ = 0.2, T = 1, K = 10,

n = 1.000 discretization steps, N = 100 trajectories simulated and m = 10, i.e.

the course trajectory was divided in m equal parts and the final S value of each

interval was taken to calculate S̄. Red bars: Standard error of simulated option

value. Blue line: Option price simulated with same parameters as before, but with

increased number of trajectories Nreference = 10, 000. (b) Put-Call-Parity MC:

Black dots: Call prices calculated employing equation (23). Required put prices

were estimated by Monte-Carlo simulation with same parameters as in (a). Red

bars: as in (a). Blue line: as in (a). (c) Variance reduction: Black line: Variance

reduction achieved by employing put-call-parity (23). The variance reduction

factor is calculated as ratio between the empirical variances of the two Monte-

Carlo estimators presented in (a) and (b). Due to low sample size (n = 100) for

low (Direct MC) and high (Put-Call-Parity MC) S0 values variances could not be

calculated as all trajectories yielded a terminal value of 0. Red line: Line where

the variance reduction factor equals one, i.e. empirical variance of estimators is

not influenced by employing the put-call-parity. Green line: Line where S(0) =
Ke−rT .
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Figure 3: (a) Direct MC: Black dots: direct Monte-Carlo simulation of Basket call

with pay-off function (24) with r = 0.05, σ = 0.2, T = 1, K = 10, n = 1.000
discretization steps and N = 100 trajectories simulated. Blue surface: Option

price simulated with same parameters as before, but with increased number of

trajectories Nreference = 10, 000. For reasons of clarity error bars where omitted.

However, also a visual inspection yields that the black dots fit more smoothly

to the blue surface for low underlying values. (b) Put-Call-Parity MC: Black

dots: Call prices calculated employing equation (25). Required put prices were

estimated by Monte-Carlo simulation with same parameters as in (a). Blue sur-

face: as in (a). Here, black dots fit more smoothly to the blue surface for high

underlying values. (c) Variance reduction: Black surface: Variance reduction

achieved by employing put-call-parity (25). The log variance reduction factor is

calculated as logarithm of the ratio between the empirical variances of the two

Monte-Carlo estimators presented in (a) and (b). Red dots: Plane where the log

variance reduction factor equals zero, i.e. empirical variance of estimators is not

influenced by employing the put-call-parity.

12



6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

(a) Direct MC

S(0)

C
(S

(0
),

0
)

6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

(b) Put−Call−Parity MC

S(0)

C
(S

(0
),

0
)

Digital Call

8 10 12 14

1
e
−

0
4

1
e
+

0
0

1
e
+

0
4

(c) Variance reduction

S(0)

V
a
ri

a
n
c
e
 r

e
d
u
c
ti
o
n
 f
a
c
to

r

Figure 4: (a) Direct MC: Black dots: direct Monte-Carlo simulation of Digital call

with pay-off function (26) with r = 0.05, σ = 0.2, T = 1, K = 10, n = 1.000
discretization steps and N = 100 trajectories simulated. Red bars: Standard error

of simulated option value. Blue line: Option price simulated with same param-

eters as before, but with increased number of trajectories Nreference = 10, 000.

(b) Put-Call-Parity MC: Black dots: Call prices calculated employing equation

(27). Required put prices were estimated by Monte-Carlo simulation with same

parameters as in (a). Red bars: as in (a). Blue line: as in (a). (c) Variance re-

duction: Black line: Variance reduction achieved by employing put-call-parity

(27). The variance reduction factor is calculated as ratio between the empirical

variances of the two Monte-Carlo estimators presented in (a) and (b). Red line:

Line where the variance reduction factor equals one, i.e. empirical variance of

estimators is not influenced by employing the put-call-parity. Green line: Line

where S(0) = Ke−rT .
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both approaches, variance reduction factors were calculated dividing the empirical

variance of the Direct MC estimator by the empirical variance of the Put-Call-Parity

MC estimator.

European call For the case of a European call option with pay-off function (19)

the results for the two Monte-Carlo simulation approaches are shown in figure 1.

Monte-Carlo estimators including standard errors are shown in subfigures (a) and

(b). To examine possible biases the analytically exact option price calculated us-

ing the Black-Scholes formula 6 is depicted as well. Most Monte-Carlo estimators

range within one standard deviation or less from the analytical value. Positive vari-

ance reduction results have been achieved by applying the put-call-parity to Monte-

Carlo simulations of in-the-money calls. Reduction factors up to 104 have been

achieved.

Arithmetic Asian call Similar results have been achieved for an Arithmetic A-

sian call option with pay-off function (21) (see figure 2). The exact option price

curve here could not be calculated analytically as no closed form solution to the

PDE (15) exists [18] which makes Monte-Carlo simulations even more interesting.

Therefore, the blue reference curve was simulated employing a bigger sample size

Nreference = 10, 000. Again, significant variance reduction was achieved for in-the-

money calls.

Basket call Also for the analyzed Basket call with pay-off function (24) the ap-

proach works well yielding variance reduction for in-the-money calls (see figure 3).

Again, the reference surface has been simulated employing a bigger sample size

Nreference = 10, 000.

Digital call For the analyzed Digital call with pay-off function (26) results are

presented in figure 4. The main result differs from the other options: no variance

reduction could be achieved by applying the put-call-parity to in-the-money calls.

Also here the blue reference curve has been simulated employing a bigger sample

size Nreference = 10, 000.

5 Discussion

Variance reduction by applying put-call-parities The results presented in

section 4 indicate that considerable variance reduction can be achieved by applying
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put-call-parities to the valuation of several in-the-money options by Monte-Carlo

simulation. It appears useful to apply put-call-parities whenever they allow to rep-

resent a stochastic quantity by deterministic components and a residual stochastic

quantity reduced in absolute size. The standard error of a deterministic component

equals zero per definition. The absolute size of the standard error of a stochastic

quantity tends to decrease with decreased quantity size. Consequently, Gaussian

propagation of uncertainty leads to variance reduced Monte-Carlo estimators. This

is the case for the analyzed European, Asian and Basket calls. However, the profile

of the Digital call’s pay-off function involves that uncertainty does not decrease by

applying the put-call-parity. This is not surprising as the relative size of the stochas-

tic component compared with the deterministic component remains approximately

the same. In contrast to other put-call-parities, the deterministic amount in equation

(27) for all underlying values S0 is low. As a consequence no variance reduction

can be achieved.

In the three cases where variance reduction was achieved, the put-call-parity came

in handy for in-the-money options. For practical purposes, as a rule of thumb the

put-call-parity can be applied as soon as the current value of the underlying S0

exceeds the discounted strike price Ke−rT .

Setting the stage for more efficient importance sampling Another interest-

ing consequence from the presented results is that by applying the put-call-parity

the valuation of an in-the-money (call/put) option can be transformed to the valua-

tion of an out-of-the-money (put/call) option. This sets the stage for the application

of efficient importance sampling techniques.

Importance sampling implies the consideration of an additional drift terms in

the differential equation of the underlying stock. As shown in several publications

[5, 18, 19, 20] this approach can lead to considerable variance reduction and may

be more powerful in the case of out-of-the-money options. The high suitability

of this approach for the pricing of out-of-the-money options follows from the fact

that without importance sampling many trajectories end below the strike price (in

the case of call options) or above the strike price (in the case of put options). The

additional drift term then has the effect of pushing an increased amount of trajec-

tories above strike price for call options or below the strike price for put options.

As a result more trajectories contribute to the Monte-Carlo simulation leading to

an unbiased estimator with reduced variance6. For in-the-money options the ef-

fect generally is smaller as already without importance sampling most trajectories

6For details see Singer (2014) [20].
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contribute to the Monte-Carlo estimator.

As a consequence, applying the put-call-parity Monte-Carlo approach when pric-

ing an in-the-money option not only reduces the estimator variance per se. It also

transforms the Monte-Carlo simulation into a regime where importance sampling

works especially well. The joint impact of applying the put-call-parity and impor-

tance sampling techniques will be studied in a subsequent paper.

6 Conclusion

Put-call-parities for different types of options have been derived. For in-the-money

call options it has been shown that the simulation of the corresponding put options

and subsequent calculation of the call price by applying put-call-parities can lead

to considerable variance reduction. So, the application of put-call-parities can con-

tribute to the acceleration of derivative pricing and portfolio valuation by Monte-

Carlo simulations.
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