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Abstract

The unscented Kalman filter (UKF) is formulated for the conti-
nuous-discrete state space model. The exact moment equations are
solved approximately by using the unscented transform (UT) and the
measurement update is obtained by computing the normal correlation,
again using the UT. In contrast to the usual treatment, the system
and measurement noise sequences are included from the start and are
not treated later by extension of the state vector. The performance
of the UKF is compared to Taylor expansions (extended Kalman fil-
ter EKF, second and higher order nonlinear filter SNF, HNF), the
Gaussian filter, and simulated Monte Carlo filters using a bimodal
Ginzburg-Landau model and the chaotic Lorenz model.
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Discrete measurements; Continuous-discrete state space model; Un-
scented Kalman filter; Extended Kalman filter; Gaussian filter; Monte
Carlo filter.

1 Introduction

The nonlinear continuous-discrete state space model is most suitable for ap-
plications where the system is defined in continuous time, but the measure-
ments are available only at certain time points (sampling). This fact has been
leading to a strong prevalence of discrete time modeling. However, if the true
dynamics are continuous, the sampled (discrete time) dynamics are very com-
plicated because of the accumulated interactions between the measurement
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times. The continuous-discrete state space model (Jazwinski, 1970), which
first appeared in the engineering literature, treats the dynamics between the
measurements in continuous time, either by considering the conditional dis-
tribution or by using moment equations. At the measurements, the Bayes
formula incorporates the new information leading to an updated a posteriori
density. In the linear case, one only needs two moments and the involved den-
sities are Gaussian. For nonlinear systems, the equations can be solved only
approximately. A classical approach is the extended Kalman filter (EKF)
and the second order nonlinear filter (SNF), where the linear formulas are
kept by Taylor expansion of the drift and measurement functions around the
estimates. On the other hand, the EKF is known to exhibit problems such as
filter divergencies and suboptimal performance. The EKF and higher order
nonlinear filters (HNF) have the drawback that the usual assumptions of the
linear filter get lost (correlation of the error terms with the state and with
each other; error terms are nongaussian and have nonzero expectations).
Another approach directs the focus on the approximation of the nongaussian
filter densities (see, e.g. Tanizaki and Mariano, 1995). In the Monte Carlo
approaches, density approximations are obtained by simulation, whereas the
unscented Kalman filter (UKF) utilizes a singular density, concentrated at
certain so called sigma points, chosen such, that the density reproduces ex-
actly the first and second moment of the true density. Nonlinear expectation
values as required in the filter equations are computed by weighted averaging
over the sigma points, so Taylor expansions can be avoided. Alternatively, if
the density is approximated by a Gauss distribution, one obtains the Gaus-
sian filter (GF), which can be computed numerically by using Gauss-Hermite
quadrature (GHF; cf. Ito and Xiong, 2000).
In the literature (cf. Julier and Uhlmann, 1997, 2004, Julier et al., 2000, Sitz
et al., 2002a, b), the UKF is usually developed for deterministic systems and
the noise sequences are added by extension of the state vector. However,
since the noise cannot be influenced by the measurements, the measurement
update must be changed in an ad hoc way. In this paper it is shown that
the noise can be included from the start by using stochastic equations and
no extension of the state is necessary.
In section 2 the continuous-discrete state space model is defined and the gen-
eral nonlinear filter equations are stated. Furthermore, the exact moment
equations are derived. Section 3 defines the density and the sigma points
used in computing expectation values by the unscented transform (UT). The
results are compared to Taylor expansions of the nonlinear functions as uti-
lized in the EKF. Section 4 derives the UKF equations and the corresponding
EKF formulae. In section 5 the UKF is compared with several other filter
algorithms (EKF, SNF, HNF, GF, functional integral filter FIF). The per-
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formance is evaluated by computing the distribution of the filtering error in
a simulation study. Furthermore, Bayesian estimates of the parameters of
the Lorenz model are computed.

2 State Space Model and Filter Equations

2.1 Nonlinear Continuous-Discrete State Space Model

The nonlinear continuous-discrete state space model is defined as (Jazwinski,
1970)

dy(t) = f(y(t), t, ψ)dt+ g(y(t), t, ψ)dW (t) (1)

where discrete measurements zi are taken at times {t0, t1, . . . , tT} and t0 ≤
t ≤ tT according to the measurement equation

zi = h(y(ti), ti, ψ) + εi. (2)

In state equation (1), W (t) denotes an r-dimensional Wiener process and
the state is described by the p-dimensional state vector y(t). It fulfils a sys-
tem of stochastic differential equations in the sense of Itô (cf. Arnold, 1974)
with fixed initial condition y(t0). The functions f : R

p × R × R
u → R

p and
g : R

p×R×R
u → R

p×R
r are called drift and diffusion coefficients, respectively.

In measurement equation (2), εi ∼ N(0, R(ti, ψ))i.d. is a k-dimensional dis-
crete time white noise process (measurement error). Parametric estimation
is based on the u-dimensional parameter vector ψ. For notational simplicity,
deterministic control variables x(t) are absorbed in the time argument t.

2.2 Exact Continuous-Discrete Filter

The exact time and measurement updates of the continuous-discrete filter are
given by the recursive scheme (Jazwinski, 1970) for the conditional density
p(y, t|Z i):

Time update:

∂p(y, t|Z i)

∂t
= F (y, t)p(y, t|Z i) ; t ∈ [ti, ti+1] (3)

p(y, ti|Z i) := pi|i

Measurement update:

p(yi+1|Z i+1) =
p(zi+1|yi+1, Z

i)p(yi+1|Z i)

p(zi+1|Z i)
(4)
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:= pi+1|i+1

p(zi+1|Z i) =
∫
p(zi+1|yi+1, Z

i)p(yi+1|Z i)dyi+1, (5)

i = 0, . . . , T − 1, where

Fp = −∑
i

∂

∂yi

[fi(y, t, ψ)p(y, t|x, s)]

+1
2

∑
ij

∂2

∂yi∂yj
[Ωij(y, t, ψ)p(y, t|x, s)] (6)

is the Fokker-Planck operator, Z i = {z(t)|t ≤ ti} are the observations up to
time ti and p(zi+1|Z i) is the likelihood function of observation zi+1. The first
equation describes the time evolution of the conditional density p(y, t|Z i)
given information up to the last measurement and the measurement update
is a discontinuous change due to new information using the Bayes formula.
The above scheme is exact, but can be solved explicitly only for the linear
case where the filter density is Gaussian with conditional moments

µ(t|ti) = E[y(t)|Z i] (7)

Σ(t|ti) = Var[y(t)|Z i]. (8)

2.3 Moment Equations

In the EKF and UKF algorithms, instead of solving the time update for the
conditional density, the moment equations for the first and second moments
are solved approximately. Using the Euler approximation for the SDE (1),
one obtains in a short time interval δt (δW (t) := W (t+ δt) −W (t))

y(t+ δt) = y(t) + f(y(t), t, ψ)δt+ g(y(t), t, ψ)δW (t). (9)

Taking the expectation E[...|Z i] one gets the moment equation

µ(t+ δt|ti) = µ(t|ti) + E[f(y(t), t, ψ)|Z i]δt (10)

or in the limit δt→ 0

µ̇(t|ti) = E[f(y(t), t, ψ)|Z i]. (11)

The conditional variance fulfils

Var[y(t+ δt)|Z i] = Var[y(t) + f(y(t), t, ψ)δt|Z i] +

+ E[Ω(y(t), t, ψ)|Z i]δt, (12)
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since y(t) is independent of δW (t). In the limit δt→ 0 one obtains 1

Σ̇(t|ti) = Cov[f, y|Z i] + Cov[y, f |Z i] + E[Ω|Z i]. (13)

The moment equations (11, 13) are not differential equations, since they
depend on the conditional density p(y, t|Z i). Expansion of the drift and
diffusion functions leads to approximate differential equations (EKF, SNF),
whereas an approximation of the density is used in the UKF (see section 4).

3 The Unscented Transform (UT)

The moment equations of the last section require the computation of expec-
tations of the type E[f(X)], where X is random variable with distribution
p(x). If p(x) is known, the expectation can be computed using (numerical)
integration. On the other hand, if we only know the moments µ and Σ,
Taylor expansion of f yields

E[f(X)] ≈ E[f(µ) + f ′(µ)(X − µ) + (1/2)f ′′(µ)(X − µ)2] (14)

= f(µ) + (1/2)f ′′(µ)σ2. (15)

This formula is the key tool in deriving the EKF and SNF.
In the UT method, the unknown density p(x) is approximated by the singular
density

pUT (x) =
n∑

l=−n

αlδ(x− xl) (16)

where δ(x) is the Dirac delta function and xl are so called sigma points, chosen
such, that the first and second moment of pUT (x) is correct. According to
Julier et al. (2000) one can take the 2n+ 1 points

x0 = µ (17)

xl = µ+
√
n + κΓ.l, l = 1, ..., n (18)

x−l = µ−√
n+ κΓ.l, l = 1, ..., n (19)

with weights

α0 = κ/(n+ κ) (20)

αl = 1/(2(n+ κ)) = α−l, (21)

1The update (12) is positive semidefinite and numerically more stable than a Euler
version of (13). However, it contains terms of order O(δt)2.
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where Γ.l is the lth column of the Cholesky rootΣ = ΓΓ ′, κ is a scaling factor
and n is the dimension of vector X. In the filter, to display the dependence
on the moments, the notation xl = xl(µ,Σ) will be used.
For example, in the univariate case n = 1 one obtains the three points
µ, µ±√

1 + κ σ. Generally, the expectation EUT [X] =
∫
xpUT (x)dx = µ and

VarUT (X) =
∫

(x− µ)(x− µ)′pUT (x)dx (22)

=
n∑

l=−n

(xl − µ)(xl − µ)αl (23)

=
n∑

l=1

Γ.l(Γ.l)
′ = ΓΓ ′ = Σ (24)

yields the correct first and second moment. Nonlinear expectations are easily
evaluated as sums

EUT [f(X)] =
∫
f(x)pUT (x)dx (25)

=
∑

l

f(xl)αl (26)

=
κ

n+ κ
f(µ) +

1

2(n+ κ)

n∑
l=−n,n �=0

f(xl) (27)

Thus, for large κ, the Taylor formula E[f(X)] ≈ f(µ) is retained. Indeed, for
large κ, the UKF shows similar behavior as the EKF. The terms outside the
mean approximate the higher order corrections in E[f(X)]. For example, in
the case n = 1, κ = 0 one obtains

EUT (f(X)) = 1/2[f(µ+ σ) + f(µ− σ)] ≈ f(µ) + 1/2f ′′(µ)σ2, (28)

which coincides with the approximation used in the SNF. It is important,
that the UT method does not require the computation of derivatives and the
integration over the density is simplified by the delta functions into simple
sums. The quality of the approximation depends on the nonlinear function
and the unknown density p(x), which may be skewed. The parameter κ also
controls the 4th moment of the UT density.
Alternatively, one may assume that the true p(x) is approximated by a Gaus-
sian distribution φ(x;µ, σ2) with the same mean µ and variance σ2. Then,
the Gaussian integral

Eφ[f(X)] =
∫
f(x)φ(x;µ, σ2)dx (29)

≈
m∑

l=1

f(xl)wl (30)
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may be approximated by Gauss-Hermite quadrature (cf. Ito and Xiong,
2000). If such an approximation is used, one obtains the Gauss-Hermite
filter (GHF). The authors show, that the choice κ = 2, n = 1 in the UT
corresponds to a Gauss-Hermite rule with m = 3 sample points. Generally,
filters using Gaussian densities are called Gaussian filters (GF). Simulation of
the Gaussian integral leads to the simulated moments Kalman filter (SMKF).
Alternatively, one may expand f to higher orders L (higher order nonlinear
filter HNF(2, L)) and factorize the moments according to the Gaussian as-
sumption ml := E[X − µ]l = (l − 1)!!σ2l (l even) and ml = 0 (l odd). This
leads to an exact computation of (29) for L → ∞. In this limit, the HNF
and GF coincide. In the EKF=HNF(2,1) and SNF=HNF(2,2), the higher
order corrections are neglected. Also, third and higher order moments could
be used (HNF(K,L); cf. Singer, 2004).

4 The Unscented Kalman Filter UKF

4.1 Time Update

Using the moment equations and the formulas for nonlinear expectations of
section 3, the time update can be computed step by step in the interval
[ti, ti+1]. Chosing a discretization interval of δt and dividing into J = (ti+1 −
ti)/δt steps, one computes the time updates (dropping ψ)

µ(t+ δt|ti) = µ(t|ti) + E[f(y(t), t)|Z i]δt (31)

Σ(t+ δt|ti) = Σ(t|ti) +

+ {Cov[f(y(t), t), y(t)|Z i] +

+ Cov[y(t), f(y(t), t)|Z i] +

+ E[Ω(y(t), t)|Z i]}δt. (32)

The expectation values are evaluated using the UT transform with the sigma
points computed from the conditional moments µ(t|ti), Σ(t|ti). In the next
step, the new moments µ(t + δt|ti), Σ(t + δt|ti) are utilized for new sigma
points. The iteration starts at τ0 = ti with the a posteriori moments µ(ti|ti),
Σ(ti|ti) and ends at τJ = ti+1 with the a priori moments µ(τJ |ti), Σ(τJ |ti)
where τj = ti + jδt; j = 0, ..., J . Since the sigma points are given by µ(τj|ti)
and the Cholesky roots of Σ(τj |ti), the equations (31–32) are a system of
nonlinear differential equations for the sigma points.
In contrast, the EKF and SNF utilize a Taylor expansion of the functions
f and Ω around the estimate µ(t|ti) yielding another system of nonlinear
differential equations. Alternatively, the expectation values could be evalu-
ated by assuming that the filter density is approximately N(µ(t|ti), Σ(t|ti)).

7



The resulting Gaussian integrals can be computed by numerical integration
(Gauss-Hermite filter; Ito and Xiong, 2000), or approximately by simula-
tion, drawing data yl from this normal distribution. The resulting den-
sity pSMKF (y) = 1/N

∑
δ(y − yl) leads to the formula ESMKF [f(Y )] =

1/N
∑
f(yl). In contrast to the UT method, the weights are equal and the

first two moments do not exactly coincide with the moments of the nor-
mal distribution. Since the moments are calculated by simulation, I call the
approach simulated moments Kalman filter (SMKF).

4.2 Measurement Update

At time ti+1 with a priori moments µ(ti+1|ti), Σ(ti+1|ti), new measurement
information zi+1 = z(ti+1) comes in. Exact incorporation uses the Bayes
formula (2.2), which is difficult to implement. The optimal linear estimate
of µ(ti+1|ti+1), Σ(ti+1|ti+1) is given by the theorem on normal correlation
(Liptser and Shiryayev, 1978, ch. 13–14, theorem 13.1, lemma 14.1)

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, zi+1|Z i)Var(zi+1|Z i)− ×
× (zi+1 − E[zi+1|Z i]) (33)

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, zi+1|Z i)Var(zi+1|Z i)− ×
× Cov(zi+1, yi+1|Z i). (34)

Inserting the measurement equation (2) one obtains the a posteriori mo-
ments and the likelihood function of measurement zi+1 (abbreviating yi+1 :=
y(ti+1), hi+1 := h(yi+1, ti+1) etc.)

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) + R(ti+1))

−(zi+1 −E[hi+1|Z i]) (35)

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) + R(ti+1))

−Cov(hi+1, yi+1|Z i) (36)

Li+1 = p(zi+1|Z i)

= φ(zi+1;E[hi+1|Z i],Var(hi+1|Z i) +R(ti+1)) (37)

where φ(.) is the Gaussian density. The expectations and covariances can
again be computed using the unscented transform with sigma points from
µ(ti+1|ti), Σ(ti+1|ti). Alternatively, Taylor expansion of h around µ(ti+1|ti)
yields the usual EKF update. The GHF utilizes Gauss-Hermite integration
with the a priori gaussian density as weight function. In the SMKF approach,
the expectations are computed by simulation.
The likelihood Li+1 can be expressed by the innovation (prediction error)
νi+1 = zi+1 − E[zi+1|Z i] = zi+1 − E[hi+1|Z i] and the prediction error covari-
ance Γi+1 = Var[zi+1|Z i] = Var[hi+1|Z i] +R(ti+1).
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4.3 Continuous-discrete UKF

Summarizing, we obtain the UKF algorithm:

Initial condition: t = t0

µ(t0|t0) = µ+ Cov(y0, h0) ×
× (Var(h0) +R(t0))

−(z0 − E[h0])

Σ(t0|t0) = Σ − Cov(y0, h0) ×
× (Var(h0) +R(t0))

−Cov(h0, y0)

L0 = φ(z0;E[h0],Var(h0) +R(t0))

sigma points : yl = yl(µ,Σ);µ = E[y0], Σ = Var(y0).

i = 0, . . . , T − 1:
Time update: t ∈ [ti, ti+1]

τj = ti + jδt; j = 0, ..., Ji − 1 = (ti+1 − ti)/δt− 1

µ(τj+1|ti) = µ(τj|ti) + E[f(y(τj), τj)|Z i]δt

Σ(τj+1|ti) = Σ(τj |ti) +

+ {Cov[f(y(τj), τj), y(τj)|Z i] +

+ Cov[y(τj), f(y(τj), τj)|Z i] +

+ E[Ω(y(τj), τj)|Z i]}δt
sigma points : yl = yl(µ(τj |ti), Σ(τj|ti))

Measurement update: t = ti+1

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−(zi+1 −E[hi+1|Z i])

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−Cov(hi+1, yi+1|Z i)

Li+1 = φ(zi+1;E[hi+1|Z i],Var(hi+1|Z i) +R(ti+1))

sigma points : yl = yl(µ(ti+1|ti), Σ(ti+1|ti)).
The discretization interval δt is a small value controlling the accuracy of the
Euler scheme implicit in the time update. Since the sigma points are func-
tions of the mean and variance, the moment equations (31–32) are a cou-
pled system of nonlinear differential equations for the sigma points. There-
fore, other approximation methods such as the Heun scheme or higher order
Runge-Kutta schemes could be used.
The several expectation and filtering schemes are summarized in table 1.
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Table 1: Overview of filtering schemes and abbreviations. g(y) is an arbitrary
function (e.g. f(y)(y − µ) etc.

Exact moment
equations

µ̇ = E[f(y)]
Σ̇ = 2Cov[f, y] + E[Ω]

scalar notation

method expectation E[g(y)] remarks

extended Kalman
filter EKF

g(µ) = HNF(2,1)

second order nonlinear
filter SNF

g(µ) + (1/2)g′′(µ)Σ = HNF(2,2)

higher order nonlinear
filter HNF(K,L)

∑L
l=0(1/l!)g

(l)(µ)ml

ml := E[y − µ]l
Gaussian
factorization

Gaussian filter GF
∫
g(y)φ(y;µ,Σ)dy Gauss density

GF=HNF(2,∞)

Gauss-Hermite
filter GHF

∑
wlg(yl) Gauss-Hermite

quadrature

simulated moments
Kalman filter SMKF

(1/N)
∑
g(yl) Monte Carlo

unscented Kalman
filter UKF

∑
αlg(yl) sigma points

yl(µ,Σ)

local linearization
filter LLF

f ≈ fi + f ′
i(y − µi|i)

+(1/2)f ′′
i Ωi(t− ti)

Ito formula for
drift f
fi := f(µi|i)

Gaussian sum
filter GSF

p(y) =
∑
αlφ(y;µl, Σl) Gaussian

mixture density

Functional integral
filter FIF

p(y) =
∑
αlφ(y; yl, Σl) simulated

trajectories yl
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4.4 Discussion

It is important to note that no sigma points for the error sequences
g(y(t), t, ψ) ∗ δW (t) and εi are necessary, since their statistics are already
included in the time and measurement update. This is only required if these
errors are treated by extension of the state vector in a deterministic system.
More seriously, the error sequences of the extended state are assumed to fulfil
the equations (discrete time) εk = εk−1, ηk = ηk−1 (Sitz, et al., 2002b, equ.
(9), Sitz, et al., 2002a, equ. (27)) This is correct for a constant parameter,
but not for the error sequences which are white noise processes.
In this paper it is argued that the state extension is not necessary and avoids
ad hoc assumptions regarding the measurement update (cf. Sitz et al., 2002a,
sect. III D, Julier and Uhlmann, 1997). The time and measurement updates
can be computed recursively using only the moments µ(ti|ti), Σ(ti|ti) and
µ(ti+1|ti), Σ(ti+1|ti) of the original state. Since no sigma points for the noises
must be computed, the algorithm is more efficient.

5 Example: Ginzburg-Landau Model

The several algorithms are compared using a nonlinear system which strongly
deviates from Gaussian behavior (cf. Miller et al., 1994, Singer, 2002). The
Ginzburg-Landau model is a diffusion process in a double well potential
Φ(y, {α, β}) = α

2
y2 + β

4
y4 with vector field f = −∂Φ/∂y and state indepen-

dent diffusion coefficient g = σ. The SDE reads explicitly (Ginzburg-Landau
equation)

dy = −[αy + βy3]dt+ σdW (t) (38)

with measurement equation

zi = yi + εi, (39)

Var(εi) = R. A physical picture is the strongly damped random move-
ment of a sphere in a landscape defined by the potential Φ. The potential
Φ can exhibit a Hopf bifurcation when α becomes negative (β > 0). In
the double wells, the transition density is Gaussian for short times, but
for long time intervals a bimodal shape tending to the stationary density
p0(y) = limt→∞ p(t, y|x, s) ∝ exp(− 2

σ2Φ(y)) occurs. Thus filters with condi-
tional Gaussian densities will have degraded performance if the measurement
intervals are large. Fig. 1 compares several approximate filter algorithms.
The parameters are chosen as ψ = {α, β, σ, R} = {−1, 0.1, 2, 1}. Best known
is the EKF (first row, left). The predicted state tends to stay in the potential
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Figure 1: Diffusion process in a bimodal potential. Filtered estimates of y(t)
and 67% highest posterior density (HPD) confidence intervals using the EKF,
SNF, GSF, LLF, UKF, HNF(2,3), GHF(3) and Monte Carlo filters (SMKF, FIF)
(true parameters inserted, irregular sampling interval). See text.
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wells, but the true a priori distribution is bimodal with two maxima at the

points ys = ±
√
−α/β = ±√

10 = ±3.16228. The EKF is based on lineariza-
tion, so the state is either located in one of the wells. If the measurement
is in the other well, the filter reacts only slowly, since this domain in state
space has low weight in the predicted density. In contrast, the UKF predic-
tion always tends to zero, which is the mean of the stationary distribution.
Thus the reaction to the measurements is much better. The SNF also tends
in prediction to the mean 0, but in the long first sampling interval a filter
divergence occurs which is due to the second order correction (1/2)f ′′(µ)σ2.
Higher order expansion in the variance equation avoids this divergence. For
example, the HNF(2,3) uses Taylor expansion of f up to 3rd order, which is
exact for the drift −[αy+βy3]. Thus the result is equal to the Gaussian filter
(GF). It was implemented using numerical integration (Gauss-Hermite). The
GF(3) is identical with the UKF, κ = 2, since as noted by Ito and Xiong
(2000), the unscented transform coincides with the Gauss-Hermite formula
using 3 sample points. Similar in performance to the EKF is the Gaussian
sum filter GSF (Sorenson and Alspach, 1971, Anderson and Moore, 1979),
where n EKFs run simultanously. 2 In the LLF (local linearization filter),
as proposed by Shoji and Ozaki (1997, 1998), the linearization is made in
the system equation by expanding the drift, using Ito’s lemma (for a de-
tailed comparision see Singer, 2002). The resulting equations are similar to
the SNF, but in the present example no divergence occurs. The simulated
moments Kalman filter (SMKF) is a variant of the GF, where the expecta-
tion values are computed by Monte Carlo samples drawn from N(µ,Σ) using
the conditional moments from the filter recursion. Its performance is similar
to the GF and the Monte Carlo filter FIF (functional integral filter), where
the conditional densities are approximated by simulation of trajectories (cf.
Singer, 2002, 2003). From fig. 1 it seems that UKF, HNF(2,3), GF, SMKF
and FIF perform better than EKF, SNF, LLF and Gaussian sum filter. This
was tested in a simulation study where M = 100 trajectories were simulated
and the filter errors were compared. The results are shown in table 2 and
figure 2 In table 2, the entries are defined as:

• filter error: νt = y(t) − ŷ(t)

• squared filter error: A =
∑

t ν
2
t

• error mean : B = 1/T
∑

t νt

• error standard deviation: C = (1/T
∑

t(νt − B)2)0.5

2Ito and Xiong (2000) use a variant of the GSF where the updates are computed using
Gaussian densities; the idea of the Gaussian filter is applied to Gaussian sums.
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Figure 2: Distribution of squared filter error in M = 100 samples.
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Table 2: Distribution of filter error in M = 100 samples. The SNF was omitted
because of overflows. Ā, std(A): mean and standard deviation of squared filter
error; B̄, std(B): mean and standard deviation of averaged filter error (bias);
C̄, std(C): mean and standard deviation of filter error standard deviation;

method Ā std(A) B̄ std(B) C̄ std(C)

EKF 30.4303 9.29225 -0.0172362 0.851867 1.98594 0.605503

GSF, n = 50 29.2217 8.68137 -0.0199376 0.702071 1.94666 0.5835

LLF 30.8888 6.28692 0.0708409 0.844412 2.00486 0.45385

HNF(2,3) 24.4653 4.49457 0.0171205 0.628488 1.60677 0.318386

UKF, κ = 0 24.3465 3.62642 0.0228194 0.643741 1.58941 0.270704

UKF, κ = 1 24.3543 4.01249 0.0197056 0.632016 1.59548 0.292646

UKF, κ = 2 24.4874 4.56068 0.0168696 0.629528 1.60828 0.321831

UKF, κ = 3 24.7165 5.12368 0.0144765 0.635766 1.62544 0.351386

GHF, m = 3 24.4874 4.56068 0.0168696 0.629528 1.60828 0.321831

GHF, m = 4 24.4653 4.49457 0.0171205 0.628488 1.60677 0.318386

SMKF, n = 1000 24.4115 4.02016 0.0221391 0.651349 1.59226 0.291811

FIF, n = 50 24.6415 5.18325 0.126057 0.588081 1.63375 0.351731

FIF, n = 100 24.5591 5.03571 0.102591 0.591924 1.62759 0.341957

FIF, n = 5000 24.4935 5.14068 0.0172752 0.604748 1.6216 0.347258

• mean and standard deviation in M samples:
X̄ = 1/M

∑
m Xm; std(X) = (1/M

∑
m(Xm − X̄)2)0.5; X = (A,B,C)

The smallest squared filter error Ā is given by the UKF with κ = 0. Larger
κ values lead to higher errors. The UKF(2) exactly coincides with GHF(3)
(cf. sect. 3). The HNF(2,3) coincides with GHF(4) 3 and is comparable
to the UKF(2), but has smaller standard error in the error distribution.
Generally, UKF, HNF(2,3) and GHF are much better than the EKF, LLF
and the Gaussian sum filter. The simulated filters are comparable to the UKF
performance. Inspection of the distributions in fig. 2 shows, that the EKF,
GSF and LLF yield a bimodal error distribution corresponding to cases with

3HNF(2,3) contains derivatives up to f ′′′ which is exact for the model. The GHF(4) is
correct up to O(y7). Note that Var(y + fdt) contains terms O(y6). The UKF(2)=GHF(3)
is only of order y5.
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low errors (trajectories stay in potential wells) and high errors (trajectories
with frequent change). The UKFs, HNF(2,3), GHF and the Monte Carlo
filters give error distributions similar to Gaussian shape.

6 Parameter estimation: the Lorenz model

In most applications, the models contain unknown parameters to be esti-
mated from the available sampled data. The likelihood function, which is
computed recursively by the filter, yields maximum likelihood (ML) estimates
and asymptotic standard errors by numerically maximizing the likelihood
and evaluting the negative Hessian matrix (observed Fisher information). In
the context of nonlinear filter theory, a more convenient approach can be
taken by considering the (fixed) parameters as latent states with trivial dy-
namics dψ = 0, i.e. constant. Thus the filter runs with the extended state
η(t) = {y(t), ψ(t)} and yields conditional distributions p(y(t), ψ(t)|Z i). The
filters considered in this paper produce approximate conditional expectations
E(y(t), ψ(t)|Z i) and variances Var(y(t), ψ(t)|Z i). Thus we obtain recursive
estimates ψ̂(t) = E(ψ(t)|Z i) of the parameter vector which is updated at the
times of measurement. Also, recursive standard errors are obtained. The
Bayesian estimates may be called expected a posteriori estimates (EAP).
Maximization of the marginal conditional density p(ψ(t)|Z i) with diffuse a
priori distribution p(ψ(t0)) would give the ML estimator.
In this example the chaotic Lorenz model (Lorenz, 1963) is considered. It is
the best known simple system exhibiting chaos and has been used for many
purposes. Among them are the Navier-Stokes equations in meteorology (the
original application), laser theory (Haken, 1977, Graham, 1989), psychol-
ogy (Singer, 1992) and sociology (Troitsch, 1990). ML estimation has been
considered by Ozaki et al. (2000) We assume that a vector of variables
Y (t) = [x, y, z](t) evolves according to the system of nonlinear stochastic
differential equations

d



x(t)
y(t)
z(t)


 =




−σx(t) + σy(t)
−x(t)z(t) + rx(t) − y(t)

x(t)y(t) − bz(t)


 dt+



g1dW1(t)
g2dW2(t)
g3dW3(t)


 (40)

The usual choice of parameters {σ0, r0, b0} = {10, 28, 8/3} leading to chaotic
trajectories was taken. The system error matrix is G = diag(4, 4, 4) and the
measurement error covariance was taken as R = diag(0.1, 0.1, 0.1). The data
were simulated using a discretization interval of δt = 0.01 using an Euler-
Maruyama scheme and afterwards measured at regular sampling intervals
∆t = 0.2, 0.5. In order to estimate the parameters, the state was extended
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Figure 3: Filtered estimates of the Lorenz model. Comparision of several filtering
algorithms. Components 4–6 are the unobserved parameters σ, r, b. Sampling
interval ∆t = 0.5.
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FIF, n=10000
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GHF, m=3
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Figure 4: Filtered estimates of the Lorenz model. Comparision of several filtering
algorithms. Components 4–6 are the unobserved parameters σ, r, b. Sampling
interval ∆t = 0.5.
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Table 3: Lorenz model: mean and standard deviation of squared filter error
A =

∑
t ν

2
t in M = 100 samples (∆t = 0.2).

method x y z σ r b

EKF 34.4278 49.0568 46.4022 15.968 12.9247 8.18301
(std) 2.35341 4.8163 4.38871 6.61447 4.10521 0.979441
SNF 34.4433 49.2547 46.4675 16.0031 13.7448 8.50263
(std) 2.36142 4.81487 4.41146 6.61724 4.56789 1.1919

HNF(2,2) 34.4388 49.2483 46.4605 15.9944 13.7155 8.50246
(std) 2.35904 4.80811 4.41011 6.59141 4.48563 1.17291

UKF, κ = 0 34.4355 49.2436 46.4566 15.9841 13.6924 8.50225
(std) 2.35775 4.80203 4.411 6.57232 4.41997 1.15926

FIF, n = 10000 35.3055 50.9326 48.7735 22.2944 20.5525 9.43772
(std) 2.81775 5.70727 7.53299 11.3771 10.4972 2.41376

with ψ(t) = {σ, r, b} using the dynamics dψ = 0 (constant parameters). The
initial state η(0) = {Y (0), ψ(0)} was assumed to be distributed as N(µ,Σ)
with E[η(0)] = {0, 0, 0, σ, r, b} and Var(η(0)) = diag(10, 10, 10, 1, 1, 1), which
reflects moderate a priori knowledge of the unknown parameters. In the filter
solutions (figs. 3–4), the initial value E[η(0)] = {0, 0, 0, σ0 + 1, r0 + 1, b0 + 1}
was used. As is shown in the figures, the filtered parameters converge to a
vicinity of the true value {σ0, r0, b0} = {10, 28, 8/3} and the approximate 95%
HPD confidence intervals E(ψ(t)|Z i)±1.96[Var(ψ(t)|Z i)]0.5; ti ≤ t get smaller
with increasing sample size. The behavior of the several algorithms is similar.
The simulated filter FIF needs many trajectories to fill the 6-dimensional
phase space with enough sample points. The performance can be expressed
by the squared filtering error A =

∑
t ν

2
t , νt = y(t) − ŷ(t). Table 3 reports

the means and standard deviations of the squared filter error in a simulation
study with M = 100 samples (∆t = 0.2). Surprisingly, the performance of
the EKF is better than the UKF (κ = 0) and the SNF. The UKF and the SNF
are very similar, which corresponds to the discussion at the end of section 3.
The FIF (n = 1000) shows degraded performance due to simulation errors.
Using n = 10000 trajectories leads to better results, but still a larger sample
size would be necessary. The quality of the parameter estimates for ψ was
investigated by comparing their mean and standard deviation as well as bias
and root mean square error (RMSE) inM = 100 samples. The final estimates
ψ̂(T ) = E[ψ(T )|ZT ];T = 1000 were extracted from the filter solution and
ψ̄ = 1/M

∑
ψm, s

2 = 1/M
∑

(ψm − ψ̄)2, bias = ψ̄−ψ; RMSE = [s2 +bias2]1/2
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was computed. Table 4 shows the results. In terms of RMSE, SNF, HNF(2,2)
and UKF are very similar and slightly better than the EKF. Also, the bias of
the estimates is very small. The empirical distributions of the estimates only
slightly deviate from normality. The FIF with n = 1000 contains considerable
statistical error and needs much larger sample size. Using n = 60000, 100000
does improve the results, but at huge computational costs.
In the preceeding example the sampling interval ∆t = 0.2 was fairly small. In
this case the deviation of the transition density from the normal distribution
is only slight and the performance of the filters is similar. In contrast, table 5
displays results for a larger interval ∆t = 0.5. In this case, filter divergencies
occured, especially for the EKF, where only M∗ = 3 trajectories could be
filtered without tuning. In case of very large values (KMAX = 5000) in
either the filtered state or covariance, these were reset to 0. In contrast,
for the SNF M∗ = 97 4 and for the HNF(2,2), UKF and FIF all M =
100 trajectories worked without divergencies. Since the vector field is of
quadratic order, the HNF(2,2) is equivalent to the GHF. Since the state
space is 6-dimensional, the GHF(3) is much slower than HNF(2,2) or UKF.
For example, the UKF takes 2p+ 1 = 13 points, whereas the GHF(3) needs
mp = 36 = 729 sample points. In table 5, the results are compared. For
the EKF and SNF, the estimates are strongly biased with large RMSE. In
contrast, the HNF(2,2)=GHF(3), UKF and the FIF are well behaved in all
cases and show the best results. For the FIF, a sample size of n = 60000
or more is necessary to compete with the HNF(2,2) or UKF. However, the
algorithm needs much more computing resources.

7 Stochastic Volatility

From the preceeding examples it seems, that UKF, HNF or GHF are always
the best algorithms, with the FIF as the only competitor (but with high
computational demand). The stochastic volatility model is interesting in
this respect, since it contains a latent variable acting on the diffusion term.
It is an alternative to the well known ARCH specification, where the volatility
can be expressed in terms of measured states. Here, the state space model

dS(t) = µS(t)dt+ σ(t)S(t)dW (t) (41)

dσ(t) = λ[σ(t) − σ̄]dt+ γdV (t) (42)

zi = S(ti), (43)

4A version without second order terms O(δt2) in (12) was used, so SNF and HNF(2,2)
do not exactly coincide.
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Table 4: Lorenz model: conditional mean parameter estimation in M = 100
samples. Mean, standard deviation, bias and root mean square error (RMSE) of
the final estimate ψ̂(T ) = E[ψ(T )|ZT ];T = 1000. Sampling interval ∆t = 0.2.

parameter true value mean std bias RMSE

EKF
r 10. 10.0985 0.341217 0.0984689 0.355141
σ 28. 27.924 0.185297 -0.0759964 0.200276
b 2.66667 2.63736 0.0553276 -0.0293024 0.0626082

SNF
r 10. 10.1073 0.342805 0.107307 0.359208
σ 28. 28.0051 0.185974 0.00505853 0.186042
b 2.66667 2.67788 0.0551185 0.0112098 0.0562469

HNF(2,2)
r 10. 10.1069 0.342334 0.106884 0.358632
σ 28. 28.0049 0.18567 0.00487781 0.185734
b 2.66667 2.67796 0.0551133 0.0112907 0.0562579

UKF, κ = 0
r 10. 10.1063 0.342057 0.106319 0.358199
σ 28. 28.0047 0.185489 0.00473882 0.18555
b 2.66667 2.67796 0.05511 0.0112894 0.0562544

FIF, n = 10000
r 10. 10.5086 0.647432 0.508642 0.823337
σ 28. 28.4093 0.532197 0.409264 0.671364
b 2.66667 2.70047 0.168087 0.0338062 0.171453

FIF, n = 60000
r 10. 10.1958 0.531189 0.195756 0.566112
σ 28. 28.1318 0.281452 0.131808 0.310787
b 2.66667 2.68683 0.0959574 0.020163 0.0980529

FIF, n = 100000
r 10., 10.1569 0.472255 0.156942 0.497651
σ 28. 28.0895 0.280081 0.0895371 0.294045
b 2.66667 2.68317 0.0910559 0.0165082 0.0925402
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Table 5: Lorenz model: conditional mean parameter estimation in M = 100
samples. Mean, standard deviation, bias and root mean square error (RMSE) of
the final estimate ψ̂(T ) = E[ψ(T )|ZT ];T = 1000. Sampling interval ∆t = 0.5.
Last column: Number M∗ of used samples without divergencies.

parameter true value mean std bias RMSE M∗

EKF
r 10. 9.5079 3.95473 -0.492102 3.98523
σ 28. 26.0415 0.665537 -1.95845 2.06845 3
b 2.66667 1.67255 0.573535 -0.994121 1.1477

SNF
r 10. 11.2398 3.62334 1.23982 3.82958
σ 28. 28.1427 1.90359 0.142697 1.90893 97
b 2.66667 2.82491 0.964601 0.158248 0.977495

HNF(2,2)
r 10. 10.3772 0.643647 0.377195 0.746028
σ 28. 28.2142 0.543558 0.214183 0.584235 100
b 2.66667 2.74046 0.19355 0.0737935 0.207141

UKF, κ = 0
r 10. 10.3315 0.725237 0.331523 0.797419
σ 28. 28.2332 0.531429 0.233211 0.580349 100
b 2.66667 2.73632 0.181055 0.0696499 0.19399

FIF, n = 10000
r 10. 10.6329 0.844636 0.632905 1.05545
σ 28. 28.4276 0.706537 0.427564 0.825836 100
b 2.66667 2.81738 0.318927 0.150716 0.352746

FIF, n = 60000
r 10. 10.4855 0.645767 0.485523 0.807928
σ 28. 28.2869 0.530557 0.286886 0.603154 100
b 2.66667 2.74084 0.169687 0.074177 0.185192

FIF, n = 100000
r 10. 10.4142 0.582437 0.41418 0.714687
σ 28. 28.1789 0.468461 0.178907 0.501462 100
b 2.66667 2.7399 0.156482 0.0732379 0.172772
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Var(dW, dV ) = 0 (Scott, 1987, Hull and White, 1987) contains an unobserv-
able volatility process σ(t). The data are simulated daily (365 days), but
measured on a weekly sampling interval. {µ, λ, σ̄, γ} = {.07,−1., .2, .2}. The
model accounts for the fact, that the returns

r(t) = dS/S = µdt+ σ(t)dW (t) (44)

on financial time series can exhibit a time dependent variance and leptokur-
tosis of the return distribution, as is found empirically (cf. Kim et al., 1998,
Fridman and Harris, 1998). Fig. 5 shows a comparision of the EKF, SNF,
UKF and FIF (n = 5000). The SNF uses a second order correction to the
diffusion term in the moment equation (13), i.e. E[Ω|Z i] is expanded to order
Ω(y) = Ω(µ)+ 1

2
Ω(µ)′′∗(y−µ)(y−µ)′; y = [S, σ]′ (cf. Singer, 2002). Despite

the correction, the SNF (and EKF and UKF) are not able to filter the latent
volatility correctly, whereas the FIF tracks the volatility fluctuations.

8 Conclusion

For models with parameters in the drift term the unscented Kalman filter
UKF is a stable and efficient algorithm both for state and parameter esti-
mation. The Gaussian filter GHF shows similar performance, but is compu-
tationally more demanding for higher state space dimensions, since the UKF
uses 2p+ 1 sample points, whereas the GHF utilizes mp points. The higher
order nonlinear filter HNF(2, L) is equivalent to the GHF, if the order L of
the Taylor series is high enough. The SNF may suffer from filter divergen-
cies, especially if the sampling intervals get large or for strongly nonlinear
models. This also applies to the EKF, which diverged for the Lorenz model
in most cases (∆t = 0.5). The FIF is computationally much more demanding
with about equal or better performance for large sample size n, but for the
stochastic volatility model, it shows clear advantages over EKF, SNF, GHF
and UKF.
In conclusion, for the models investigated, the UKF was a well behaved,
efficient algorithm but did not always work satisfactorily.
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FIF, n=5000
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Figure 5: Stochastic volatility model. Left: True and filtered log stock price and
HPD confidence interval. Right: True and filtered volatility and HPD interval.
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Appendix: Discrete Time UKF

For reference, the formulas for the discrete time UKF are summarized. Again,
the system and measurement error sequences are considered from the start
and are not appended later (cf. section 4.4). xi are deterministic control
variables (xi = i for explicit time dependence).
State space model:

yi+1 = f(yi, xi, ψ) + g(yi, xi, ψ)ui (45)

zi = h(yi, xi, ψ) + εi, (46)

ui ∼ N(0, 1) i.i.d., εi ∼ N(0, Ri) i.d. and independent of uj.
The UKF is given by the iteration (abbreviation hi = h(yi, xi, ψ);µi|i =
E[yi|Z i],Σi|i = Var[yi|Z i], etc.):

Unscented Kalman Filter (discrete time)
Initial condition: i = 0

µ0|0 = µ+ Cov(y0, h0)(Var(h0) +R0)
−(z0 − E[h0])

Σ0|0 = Σ − Cov(y0, h0)(Var(h0) +R0)
−Cov(h0, y0)

L0 = φ(z0;E[h0],Var(h0) +R0)

sigma points : yl = yl(µ,Σ);µ = E[y0], Σ = Var(y0).

i = 0, . . . , T − 1:
Time update:

µi+1|i = E[f(yi, xi)|Z i]

Σi+1|i = Var(f(yi, xi)|Z i) + E[Ω(yi, xi)|Z i]

sigma points : yl = yl(µi|i, Σi|i)

Measurement update:

µi+1|i+1 = µi+1|i + Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +Ri+1)

−(zi+1 −E[hi+1|Z i])

Σi+1|i+1 = Σi+1|i − Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +Ri+1)

−Cov(hi+1, yi+1|Z i)

Li+1 = φ(zi+1;E[hi+1|Z i],Var(hi+1|Z i) +Ri+1)

sigma points : yl = yl(µi+1|i, Σi+1|i).

Setting f → y+ fδt, g → g
√
δt and dropping measurement updates without

measurement one obtains the continuous-discrete filter (Euler approxima-
tion).
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