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Abstract

We discuss Generalized Least Squares (GLS) and Maximum Likeli-
hood (ML) estimation for structural equations models (SEM), when
the sample moment matrices are possibly singular. This occurs, e.g.,
for panel data when there are more panel waves than independent
replications, or for time series data, where the number of time points
is large, but only one unit is observed. In preceeding papers, it was
shown that ML estimation of the SEM is possible by using a correct
gaussian likelihood function. In this article, the usual GLS fit function
is modified so that it is defined for singular sample moment matrices.

Key Words: Structural Equation Models (SEM); Panel Data;
Generalized Least Squares (GLS) Estimation; Maximum Likelihood
(ML) Estimation. Pseudo Maximum Likelihood (PML) Estimation.

1 Introduction

Structural equations models (SEM) are usually estimated using cross sec-
tional or panel data with many independent replications N. Then, the sam-
ple moment matrices of the observed data are nonsingular and their inverses
can be computed. This is necessary when using the ML or GLS fit functions
of well known program packages (e.g.|Joreskog and Soérbom; 2001). In former
articles (Singer; 2010, 2012)) it was shown that
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1. ML estimation is also possible for singular sample moment matrices
occuring in small samples, and

2. that the results coincide with recursive Kalman filter methods well
known in control engineering and econometrics (cf., e.g., [Watson and
Engle; [1983; |Caines; 1988)).

In this case, the asymptotics of the estimators (consistency, asymptotic nor-
mality etc.) are not considered over the cross sectional sample size N but as
a function of the number of time points or panel waves 7.

More generally, one can consider the parameter estimators as a function
of the dimension K of the indicators y,,n = 1,...,N for fixed N and a
fixed number u of different parameters. For example, one may formulate
idiographic models for a single person, which are estimated on several time
points, but without the regular structure of an ARIMAX time series model.
Such individual causal structures may be used, for example, in psychotherapy
research or homeopathy, where standard models are not flexible enough.

In this paper, the problem is discussed in the context of least squares esti-
mation (cf. |[Browne; |1974)). Here, a positive definite weight matrix is used
in the fit function, usually the sample covariance matrix. Since this may be
singular when using too less cross sectional units (for example time series
data where N = 1), it is proposed to use as weight the theoretical covariance
matrix of the manifest variables, evaluated at the current estimate of the
parameter vector or at some reference point in parameter space.

GLS estimation is an alternative to Gaussian ML estimation, when the dis-
tribution of the data strongly deviates from normality. Alternatively, one
can consider pseudo maximum likelihood (PML) estimation (cf. |Gourieroux
et al.; [1984; |Arminger and Schoenberg; [1989)), where a pseudo-likelihood is
used which does not coincide with the true density function of the data. In
this context, the gaussian pseudo-likelihood function can be considered as a
member of the quadratic exponential family.

In section 2, the SEM model is defined and the likelihood function is given
in several forms. Then, in section 3, the objective function for generalized
least squares is derived. We obtain well known results and a generalization
for varying intercepts. Then, the aymptotic standard errors for ML, pseudo-
ML and GLS estimation are contrasted (section 4). Finally, the different
estimation procedures are compared in simulation study for several sample
sizes, using gaussian and nongaussian data with leptokurtic error terms.



2 SEM modeling

In the following the SEM model

Yn = Ay + T35+ 6 (2)
n =1,...,N, will be considered. The structural matrices have dimensions

B:PxP I' : PxQ, A: KxP, 7:KxQ@ and ¢, ~ N(0,%),
€n ~ N(0,%,) are mutually independent normally distributed error terms
e Px P, X.: K x K. We assume that all structural matrices depend on
a parameter vector ¢ : u x 1, i.e. X¢(¢) etc. For example one can specify
Ye() = Ge(¢)Gi(1) to obtain a positive semidefinite matrix. The true
parameter vector will be denoted as .

In the structural and the measurement model, the variables x,, are determin-
istic control variables. They can be used to model intercepts and for dummy
coding. Stochastic exogenous variables &, are already included by extending
the latent variables n, — {n,,&,}. For example, the LISREL model with

intercepts is obtained as
I} 1 o Gn
o fe] + [+ e
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Since the error vectors are normally distributed, the indicators g, in the
measurement model are distributed as N (u,, Y), where

'omm"o *S”o@>”o o

Emn,) = Bilz,
Var(n,) = BiX:B
Ely,] = pa() = AE[n] + 725 = [ABI + 7], := C(¢) 3,

Var(yn,) = X(¢) = /War(nn)/l’ + X = AB12<Bi/1’ + 2.

In the equations above, it is assumed that B; := (I — B)~! exists. In short



form one can write the SEM as a regression equation]|

Yn = (V) +vn=C()x, + vy (3)
v~ N, Z(0) (W

Thus, the log likelihood function for the N observations {y,, z,} is

W(y)=-% <10g | Y| +tr

z % Z(yn - Mn)(yn - Nn)i) . (5>

Inserting u, (eqn. 3) and using the data matrices Y = [y1,...,yn] : K X N,
X' =[x1,...,xn] : Q X N, the log likelihood can be written as

= _% (1og | X+ tr [2_1(My + CM,C" — M,,C" — Osz)D J (6)

with the empirical moment matrices M, = N~'Y'Y : KxK, M, = N'X'X :
QxQ, My,=N1'YX:KxQ.
In order to find the relation to GLS estimation, one can insert the sample

covariance matrix S = &>, (Un — ¥)(yn — §)' in which yields the form
(for the case p, = p)

l=—5 (log ||+t {Z7 [S+ (T~ )7 —nl})- (7)

More generally one finds

| = —%(log 12|+ tr{Z7'[S + % D= )G = )

n

W= DG~ 1) + G )= D}) )

For p, = p, the mixed product terms in the second line are null and one
recovers (7).

In contrast to ML estimation, in least squares estimation no probability
distribution of the data is assumed. Thus one may define the equation errors
as (, ~ (0, %¢), €, ~ (0,%,) without normality assumption but retains the
correct specification of the first and second moments pu, and Y. As will
be shown in the next section, the GLS fit function for the model without
intercepts is given in the usual form as

F=Yu[(¥-9S)V]P, (9)

!The dependence of 1, (1)) and (1)) will be displayed only when necessary.



where the weight matrix V' = S~! is the inverse sample covariance matrix
of y,. The so defined GLS fitting function requires the positive definiteness
(and thus nonsingularity) of S.

In cases of singular (or nearly singular) S, it is proposed to use the variable
V = X71(4) or other nonsingular constant matrices as weight function.

In contrast, the likelihood function ([7]) is well defined for singular S (N < K),
since no log determinants of the sample moment matrices are involved, as
is suggested by the ML fitting function of LISREL (cf. LISREL 8 reference
guide, p. 21, eqns. 1.14, 1.15, p. 298, eqn. 10.8; |Joreskog and Sorbom:
2001). In Browne, (1974), this is called a Wishart likelihood function. The
covariance matrix X'(¢) (eqn. 3) of the indicators y, must be nonsingular,
however

In the case of small N, in extreme form N = 1, the asymptotics of the
estimators must be considered as a function of dimension K = dim(y,,). For
example, in time series analysis, we have v, = {yno, ..., Ynr},n = N = 1, so
that K =T + 1 is the number of time points or panel waves.

If the error terms are not normally distributed, the likelihood can be
considered as a pseudo likelihood (cf. |Gourieroux et al.; [1984; |Arminger and
Schoenberg; [1989) with correct first and second moments. It yields consistent
estimates, but requires corrections in the asymptotic standard errors (see
section 4).

3 Least Squares Estimation

We propose the general least squares criterion

F) = (s=o)W ' (s—0)+ N (7~ p) W' (@ —pn)  (10)
= [+ 1, '

where 5 = rows(S) = s;;,1 < j < K : K x 1,K = sK(K + 1) is the
vectorized upper triangle of matrix S : K x K and () = rows(X'(¢)). One
can write rows(S) = DTrow(S) with the duplication matrix D : K? x K
defined as row(S) = D rows(S) and with D* : K x K? as its pseudoinverse
(Magnus and Neudecker} 1999, ch. 3). Furthermore, row(S) = s;5,¢,7 < K
is the row-wise vectorized matrix S : K x K.

Usually, the weight matrix W is chosen as the covariance matrix of the sample
covariances s;;, i.e. Wi = Cov(s;j, sk);4 < j, k <. This choice is called a
correct weight matrixz by |Joreskog (1990).

2Otherwise the singular normal distribution can be used (Mardia et al.; (1979, p. 41).
This case occurs in the presence of restrictions between the components of y,,.



One can write
W = Cov(s,s) = DF Cov(row(S),row(S)) D*'. (11)
Inserting the sample covariance matrix

sij =N Z YniYnj — YilJj = Myj — My (12)

one obtains

Cov(sij, sm) = Cov(mij, mg) — Cov(m;, memy)

Cov(mp, mym;) + Cov(mm;, mgmy). (13)
The first term is given by

Cov(mgj, mp) = N~ Z CovV(YniYnj, YnkYni)

n

and inserting vy, = p, + v, (equation |3) one gets (setting finik = fnifink)

CoV(YniYnj, YnkYni) =  HnikOjt + HnitOjk + fnjk0il + njiOik
+ O0ik0ji + 0410 jk-

In deriving this equation, it was assumed that the 4th moments can be writ-
ten using gaussian error terms as

EVniVnjVnkVnl] = 0i0j1+ 040ji + 0:j0k.

Otherwise, one has to insert Cov(VpiVnj, VnkVni) = ElVniVnjVnkVni| — 0ijok
(see Browne; |1984)).

Computing the other terms in (13| in an analogous way, the desired weight
matrix in is obtained in symbolic form as

Cov(row(S), row(S)) = c- [(4)(u' ® £) + (2)(X @ X)) (14)
where the number in parantheses denotes the possible permutationﬂ of the

indices i, j, k,l and pp/ = CM,C', M, = N7 3" z,z!. The factor c is given
by c=N"1(1—-2N"!+ N72) ~ N~! in large samples.

3 for example Oik0j1 + 0405, = (2)(2 (39 E)



Now, the covariance matrix ([14)) is multiplied in from left and right by
the pseudoinverse of the duplication matrix, which leads to the simplification

W = c¢Dt 4 @ %) +2(X ® X)) DY (15)
2¢ DY [(2u + £) @ %] DV,

There is an inversion theorem of the form
(DY (A® A) DT '=D (A'®@A YD (16)

(Browne; 1974; Magnus and Neudecker} |1999] see also appendix), so that the
weight matrix can be written as (setting X' to the true value X))

wt=4Dp (Xt exyh) D (17)

in the special case of vanishing intercepts juu’ = 0. This is much more efficient
than the direct inversion of the matrix W : K x K. Then, one can write

Fy (X)) — o)W (s — o)
(s—0) D' (%' ®@%5") D (s—0)
row'(S — X) (X7t @ X5 row(S — %)

tr[(S — )55 (18)

|z |z ez

Here we used the formula tr[ABCD] = row'(A)(D’ @ B)row(C") (see ap-
pendix). Usually, the unknown Yy in the weight matrix is replaced by the
estimate S and one obtains

F(S) = Yul(s-2@)sP (19)

Thus we have derived the familiar GLS fit function @D In this paper it is
proposed to consider the alternative form with variable weight X' (1))

R(X) = § (S —Z()Z ()P, (20)

since X(v) is always nonsingular (cf. Browne; |1974 p. 7, and footnote 2).

In the case with intercepts, i.e. pu/ # 0, one cannot simplify the inverse of
weight matrix W (eqn. . Alternatively, one could use the form

W= 2 D* [(a i + 5o) @ (@ il + o)) D* (21)
with a free parameter «. This leads to the GLS criterion
Fy(a, X)) = 5 tr[(S — Z(W)) (e + Zo) 7' (22)

7



The weight matrix is nonsingular, since | up’ + Xo| > |2o| > 0 (Magnus
and Neudecker; 1999, p. 21).

Finally, the weight matrix W of the criterion F; for the means j, (eqn.
is given by Cov(y,7) = N~1X,, since § = N~ y,. In the case ju, = u, one
obtains the familiar form (Browne; 1974} Joreskog and Sorbom; 2001}, p. 298
f.)

Fi(Z0)=@—mWi (g —p) = NG — )25 (5 — ). (23)

Again one can replace the unknown X by S or X(¢). This form coincides
with the last term in the likelihood function ([7)).

4 Standard errors in
GLS and PML estimation

4.1 PML estimation

If the likelihood [ is maximized, one can write by Taylor expansion around
the true parameter value 1)

s(¥) = s(vo) + H(%)(lﬁ — o) + O(H@E — ol?),

where the gradient (score) s(¢)) = (81/81)(¥)) = 0 at the maximum and the
Hessian matrix is H () = (0%1/9v3¢")(1by). Thus one obtains

b=y~ —H() s(¥o). (24)

Now, the score is a sum of independent random variables (see [5))
SWO) = Zaln/a% = an(w0)7 (25)

so by the central limit theorem we have the asymptotic distribution

s(to) ~ N(0,F(i0)), (26)

where F(1g) = FEo[s(vo)s'(10)] is the Fisher information matrix and the
expectation Ej is taken with respect to the true distribution. Under the
assumption H(vhg) — Eo[H (1)) <= 0 and using , @, the asymptotic
standard errors of 1& are given by the 'sandwich’ form (Rao||1973, pp. 122,
350, |White |1982)

~

Var(v) ~ H(tho) " F(vo)H (o) . (27)

8



The necessity of such a procedure in the SEM context under misspecification
was stressed by Arminger and Schoenberg| (1989). From one obtains the
outer product of gradients (OPG) estimate

Els(d0)s(0)] = Y Elsa(v0)s,(¢0)] (28)
~ ) salto)s, (o) (29)

of the Fisher information matrix. This estimate requires the so called indi-
vidual likelihood approach (see eqn. |5)) and cannot be computed with the mo-
ment matrices. If only few cross sectional units are present, the OPG estimate
may be singular (N < dim(t)y)). To avoid such problems, one can use the
Kalman filter to obtain an additional sum over the time points ¢ of the panel
waves stacked in the SEM state. This also works for pure time series (N = 1).
In this case, the conditional scores s; = sy4—1 = 0/0¢ l(y¢|ys—1, ..., Yo) are un-
correlated martingale differences (for details and references, cf. Singerj [2010).

Now, if the model is correctly specified, one has the information matrix
identity

F(v) = —Eo[H (10)]

and the asymptotic variance is of the familiar form

~

Var(v) ~ F(ig) ™" = —Eo[H (1)) "

4.2 GLS estimation

In the case of GLS estimation, the criterion F; is (see [18))
F, = (s—o)Wl(s—o0)

with gradient
gi(¥) = 200 W (o —s),

and Hessian
Hi;(¢) = 20, W (o —s)+ 20, W0y,

0; = 00 /i, 05 = %0 /O;01;. In large samples, one has the asymptotic
result

Hy;(tho) = 204, Wy, s = g = o (1),

9



00; := (00 /0;) (o). Since the covariance matrix of the gradient g; is

F,;() = Cov(gi,g;) = 4o, W 'Cov(s,s)W o,
= 4o, W0y,

one obtains the asymptotic standard errors (see

~

Var(1)) H (o)™ F (o) H(tho) ™

= 2H(¢0>_17

Q

where H (1) can be written as (Browne; (1974, proposition 2, V = X;1)
Hy; = 200, W log; = N tr[ X625 Xo; 20 ] (30)

(see eqns. [I7THLS).

5 Simulation study:
Continuous time AR(2) panel data

The behaviour of ML and GLS estimators will now be explored for varying
sample size N, especially for N < K, where the usual weight V = S~ is
singular. We use panel data z,;,n =1,...,N;i =0, ..., T, which are generated
by a vector autoregression with observation error.

5.1 Model specification

The discrete time dynamical state space panel model (vector autoregression
VAR(1) with measurement model) is defined by

Unjitl = Qilni + BniTni + Un; 1=0,...,T =1 (31)
Zni = Hiypi + Ditp; +€ni; 0 =0,...,T, (32)
n = 1,..., N, with independent Gaussian errors E[u,;] = 0, Var(u,;) = w;,

Elen) = 0, Var(e,;) = R;. The dimensions of the dynamic structural matrices
are a; P Xp, Bi i pXq,wi i pxp, Hy i kxp, D;:kxgq, Ri : kxk. The
initial distribution is assumed to be y,o ~ N (19, 00) independent of u,g and
T,; are deterministic control variables.

This model is very general and permits the treatment of ARIMAX models,
dynamic factor analysis, colored noise models etc. (Akaike; 1974; Watson and
Engle; 1983; (Caines; [1988). All structural matrices depend on a parameter
vector 1.

10



It can be treated recursively by the Kalman filter or simultaneously by the

matrix equation (1H2) where 1/, = [y, - - -
SEM state, ¢,

errors, Yy, = [2ho, .-+, 20y © 1 X (T + 1)k are the measurements and x/,
1,200, ... xhp] - 1 x (14 (T + 1)q) are (deterministic) exogenous variables.

The structural matrices are given explicitly as

[0 0 o0 0 oo 0 0 0
a 0 0 0 0 wy O 0
B=10 o 0 0f, %, =0 0 0 0
S0 0 0 S0 0 0
0 0 ar_q 0_ 0 0 0 wT_l_

!/

(7

n0?» “n0>

yUhr] o 1 x (T + 1)p is the latent
oty ] 0 1 x (T + 1)p is a vector of process

(for the other matrices, cf. |Singer; 2010). Solving for 7 one obtains the
solution of the VAR(1)-equation for the time points ¢;,i =0, ..., T
(I — B) YTz, + ).

Th = (33)

In this equation, the initial condition is represented by 7,0 = Yno = o+ Cno ~
N (:U’O’ UO)'
We now define a continuous time model which can be written as an exact
discrete time model of the form . The random oscillator or mathemati-
cal pendulum (for details, see [Singer; [2012) is defined by the second order
stochastic differential equation (SDE)
§+ 7y + why = ba(t) + g¢(t) (34)
with the parameters v = friction, wy = 27/Ty = angular frequency, Ty =
period of oscillation, g = strength of random force (white noise) ((¢) and
exogenous controls z(t). The time derivative is denoted as y = dy/dt.

The pendulum has a continuous-discrete state space representation at the

sampling points to, ..., tr
d{zgﬂ - [_&8 _ﬂ [ggg]dH{g}x(t)dtJr[g}dW(t)

Zi =

[10%ﬁgl+%izm“wn

dW = (dt, where W is the Wiener process. Thus, the SDE of second order
can be represented by a first order vector autoregression at the sampling
times. Therefore the so called exact discrete model (EDM; Bergstrom|/1988)
for the sampled states y,; = [yn(t;), Un(t;)]’ (a panel of n = 1, ...N oscillators)

11



has the form

Zni = [1 O]yni+€n; i =0,...,T, (36)
i.e. ((31H32) with the identification A} = «; etc. In this example only constant

controls x,(t) = 1 are considered. The parameter matrices of the EDM are
explicitly given as functions of the original model as

Af = exp(AAL) (37)
Bf = A7N(A7-I)B (38)
At;
Var(u,;) = / exp(As)2exp(A’s)ds, (39)
0
where
0 1 0 0 O
L ekl e

Note that the discrete time error covariance Var(u,;) depends on both the
drift and diffusion matrix of (35).

5.2 Simulation study

In the simulation study, the true numerical values were set to ¢y = {w3,~,b, g,
M1, U2,011, 012, 0'22} = {16, 4, 1, 2, O, O, 1, 0, 1} where M = E[ynk(to)], Okl =
Cov(Ynk(to), yni(to)) are the parameters of the initial condition. The mea-
surement error variance was set to R = Var(e,;) = 0.01. The states y,(t)
are assumed to be measured at times ¢ € {0,0.5,1,...,5.5,6}, i.e. one has
T + 1 = 13 time points and a regular sampling interval of At = 0.5.

In the simulation study, we consider sample sizes of different order, ranging
from N = 500, to N = 1. The estimation procedure was repeated M = 100
times. Since the measured SEM state vy, = [z], ..., 2.p] has dimension 13,
there may result singular moment matrices M, = N~' > y,y/,. As shown in
former work (Singer; 2010, [2012), the maximum likelihood estimator for the
SEM is well defined even for N = 1 and coincides with the recursive Kalman
filter approach. The usual GLS estimator @D with V' = S7! is not defined
for N < K = 13 and will be replaced by the choice V = X~1(¢)) and other
nonsingular weight matrices.

Maximization of the likelihood function or minimization of the GLS criterion
was achieved using a quasi Newton algorithm with BFGS secant updates
(Dennis Jr. and Schnabel; [1983)). The iterations in the BFGS algorithm
were stopped if both the gradient ||sx|| < € and the step ||[¢k+1 — Yxl| < €
with e = 1074

12



5.2.1 (Gaussian errors

In this section we consider gaussian errors u,; and €,;, so that the likelihood
function @ is correctly specified. In this case, the ML method is expected
to give the best results and the GLS method should be equivalent in large
samples N — oo.

Indeed, table [1] indicates the equivalence of ML and GLS in large samples
(N = 500). Both standard deviations (sd) and bias are small and the meth-
ods perform similarly.

Using smaller sample sizes N = 50 and N = 15, the performance of GLS,
especially with weight matrix V' = S™! is degraded (tables , . At N =15,
the sample covariance matrix S : 13 x 13 is almost singular, and only in
M’ = 15 of M = 100 samples the optimization algorithm converged. In
contrast, modified GLS with V' = X~! performs only slightly worse than
ML.

Using just one panel unit (N = 1), only maximum likelihood (and GLS
with weights X (@ZA)ML), see below) leads to satisfying results (table . As
shown in [Singer| (2010), one gets the same likelihood as in the Kalman fil-
tering approach. Note that the parameters of the initial condition y,, =
[Yn(to), Un(to)]” cannot be estimated with N = 1, thus they were set to the
true values. The modified GLS procedure with V' = ¥ ~!(¢) did not converge
and was stopped after 200 iterations.

The problems occur, because the proposed weight matrix depends on the
parameter vector, so that the modified GLS criterion

FB(Y) = 1a[(S—2)27 " = -1 tr[I] = const. (41)

is constant for N = 1, S = 0 and the modified mean criterion

HE) = y—pEZ'(y—p), (42)

is only part of (—2x) the likelihood function

l=—% (log|Z|+tr [ (y—p)(y—m)]), (43)

but without jacobian term. This leads to incorrect inferences, however, since
the gradients of the GLS and the ML criterion do not coincide. One should
use, as shown below, a constant weight matrix in Fy, e.g. V = X 1(1),) where
1, is an appropriate value. In the simulation, we used the true parameter
vector thy. The results are displayed in table [4

According to the derivation in [Browne (1974, Proposition 6, p. 13), the
ML and the GLS criterion are equivalent, if the weight matrix is chosen

13



as V = X (@ML)_1 and Z/A}ML is the maximum likelihood estimator. This
corresponds to using v, = 1y;,. More precisely, the gradient

OF (V) /oy = 3 0/ow; tr[(S — X)WV
= [V(Z =SV (44)

;= (0X/00;), evaluated at V = X(¢p) "' coincides with the gradient
(score function) of likelihood (7)), since

/00 (log|X| +tr[X71S)) = t[Y 18] —tr[ X 12219
tr[ XX - S) X1 5. (45)

This establishes the equivalence of ML and GLS in large samples. On the
other hand, the gradient of the modified criterion

OF(X) /0y = 0/ tr[(S — X)X~
tr[(S — D)X 1S(2))
tr[ XN (X — S) TSy Y] (46)

is different, since here V' = X~1(¢) is an explicit function of ¥. For N =
1 (S =0), this gradient is even zero. Ounly in large samples, the expressions
are equivalent, because S — Xy and X (¢grs) — Xo.

Since the expressions Fp(V) = 1tr[(S — X)V]? and log |X| + tr[X~1S] are

2
equivalent one must consider the criterion

Fi(2) = [y — p@)] 7 (@) — n()] (47)

for the mean part, as suggested by equation . Using a parameter inde-
pendent X ~1(¢,) in F} instead leads to incorrect inferences.

Example A simple example will clarify the issue. Assume that N = 1 and
consider the AR(1)-time series y;41 = ¢y +0e;t =0,...,T—1;90 ~ N(0, 03).
This can be represented by the SEM model n = Bn + (;n = [vo, ..., 1/,
E[n] = 0 with structural matrices

00 0 ...0 o2 0 0 0
6 0 0 0 0 o> 0 0
B=|0 ¢ 0 0, 2,=|0 0 o 0
L0 0 0 L0 0 0
0 0 ¢ 0 0 0 0 o2

14



Thus, the precision matrix of the indicators is X~ = (I — B)’Egl(f — B)
and the mean p = 0. Therefore, since S = 0, the likelihood function is

I = —1(log|Z| +tr [Z'yy])
3 (Tlogo® +tr [y (I — BY X' (I - By])

T-1
= -1 <Tlogor2 +Z(yt+1 — gyp)? /o +yo/00> ‘

t=0

The GLS criterion with weight ' reads

F(Y) = 1a[(S—X)27 ") = -1 tr[I] = const.
R = - w'E "y — )

= (ye41 — Pw)* /0% + y5 /o3,
=0

and the gradient w.r.t. ¢ and o2 is

T-1 ZT—ly 1Y
—0 Yt+1Yt
F(X)y =0= (Yer — by )ye/ o = ¢ = t7%71+2
t=0 t=0 Yi
T—1
Fi(2)o: =0= = (Y1 — ¢y)?/o?

~~
Il

0

The second equation cannot be fulfilled (an iterative algorithm yields very
large values of 02 and does not converge). In contrast, the likelihood function
gives the ML equation

le = 0=

l\DIH

-1
<T/ 0% — Z(?/Hl — dyr)?/ O'4> with the familiar solution

t=0

N
-

62 = T (Z/t+1 —¢yt) .

t

Il
o

Therefore, the criterion F5(X) must be modified to F>(X,) = —1 tr[ T X1
(see (44) with V = X! and S = 0). In an iterative minimization procedure,
one could insert X, = X(¢;) in the kth iteration (see table [4).

In summary, the maximum likelihood procedure is preferable, since it is
well defined for all sample sizes N. In contrast, the GLS procedure does
not work, if V=! = S is singular. Using V = X ~!(¢) instead, one obtains
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a criterion which is not equivalent to ML in small samples, unless one sub-
stitutes into Fy the constant matrix V = X1 (¢y.) or V = 271(3,) for an
approprietly chosen vector. Alternatively, one can insert V = X(¢;)~!. The
weight in Fy must be the variable ¥ ~!(1)), however, in order to retain the
consistency property of the GLS estimate. These observations are supported
by a look at tables [4] and [§]

5.2.2 Student-t¢ errors

In the case of misspecification, e.g. using nongaussian errors, the likelihood
function @ does not have the correct form. Therefore, GLS estimation
should have a better performance in this case. For the simulation, we used
equation errors which are Student-t-distributed in order to model leptokur-
tosis. Random numbers with v = 5 degrees of freedom were used, leading to
a kurtosis of k = my/m3 = 3(v—2)/(v—4) = 9. This occurs in applications,
for example, in modeling returns of financial data, e.g. stock prices.

In contrast to the expectation, GLS did not perform better than ML. Again,
for large samples, the methods perform about the same, but in smaller sam-
ples, GLS shows degraded performance.

As already mentioned, the ML estimator under misspecification is called a
pseudo-ML (PML) estimator, which is still consistent, but displays different
asympotic standard errors (cf. White; [1982; |Gourieroux et al.;|1984; Arminger
and Schoenberg; [1989; Wefelmeyer; 1996). As explained in section , one
must use a ’sandwich’ form in this case, which reflects the difference in the
expected Hessian —H = —FE[0%1/0vd'] and the Fisher information matrix
F = E[0l/0y 0l/0¢'] under mispecification.

5.3 Discussion

Generally, the parameter estimates using misspecified models display larger
root mean square errors in comparison to the gaussian data. The differences
between pseudo maximimum likelihood and GLS are not very pronounced,
however. In large to small samples (N = 500,50, 15) the GLS estimator
with variable weight V' = X(3)~! performs better than the conventional
estimator with constant weight ¥V = S~!. This is due to the fact that X (1))
is positive semidefinite, but S may become nearly singular. However, in
N = 1 estimation, where S = 0, the proposed modified GLS estimator
with V' = Y()~! also displays problems. In section m, it was shown
that F»(X(¢)) = str[(S — )X '] of the GLS criterion is constant, and
the remaining part Fy = (§ — p)' X~ (y — p) yields biased estimates. Still,
the ML estimator works well, since it coincides with the recursive prediction
error decomposition computed by the Kalman filter. The GLS criterion must
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be taken as Fy(V) =
p() 2N W)y — w(v)

tr[(§ = L)V, V = L7 () and Fi(Y) = [g -

N

6 Conclusion

In large samples, GLS and ML estimation perform similarly, but the modi-
fied GLS approach with variable weight matrix X(¢) instead of S is a good
alternative when S becomes nearly singular. Both GLS approaches do not
work for N = 1, since here S = 0 and the modified GLS approach yields
biased estimates. As a remedy, one can insert weight matrices depending on
a reference point in parameter space. A further alternative is ULS estimation
(weight V' = I). In any case, ML estimation (and pseudo ML under misspec-
ification) works well, coincides with the recursive Kalman filter estimates,
and is thus recommended.

Appendix

There is an inversion theorem for Kronecker products of the form (Browne;
1974; [Magnus and Neudeckerj |1999))

(DY (A® A) DJF']_1 =D (A'®A™Y) D, (48)
where D is the so called duplication matrix with the property

row(S) = D rows(S5), (49)
and rows(S) = s;5,1 < j < k: kx1,k:= %k‘(k‘ + 1) is the vectorized upper

triangle of matrix S : k x k and row(S) = s;,4,7 < k : k* x 1 is the row wise
vectorized matrix S [

One can solve for
rows(S) = DFrow(S) (50)

where Dt = (D'D)™'D’ : k x k? is the pseudoinverse of D (Magnus and
Neudecker; (1999, ch. 3). Equation can be proved by the property

DDY (A® A) = (A® A)DD* (51)

4In the main text, we used k = K, but here the dimension could be confounded with
the commutation matrix K.
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of the projection matrix N = DD = D(D'D)~'D’, N* = N, since
N=1(I+K) (52)
(see below) and K is the so called commutation matrix with the properties

K row(A") = row(A) (53)
K(A®B) = (B AK. (54)

The last formula follows from
row(ABC) = (A ® C")row(B) (55)

and K row(ABC) = K(A®C")row(B) = row(C'B'A’) = (C"® A)K row(B).
Furthermore, one has K = K’ = K~!. This implies K? = KK~ = 1I.

This shows, that N = 1(I 4+ K) fulfils
N (4% B) = (A% B) + (B® A)K] (56)

and thus N(A® A) = (A® A)N.

It remains to show that N = %(I +K). First, we have the projection property
N? = 1(I+2K+K?) = N, since K* = I. Furthermore ND = 3(D+ KD) =
D, since KD = D. We also have rank(N) = tr[N] = $(tr[I] + tr[K]) =
T(k* + k) = Lk(k + 1) = rank[D], since N is projection matrix and D :
k?* x 3k(k +1). Then, theorem 2.8 of Magnus and Neudecker (1999, p. 35)
implies the factorization

N =LYI+K)=DD". (57)

1
2
Finally, we have

tr[AB] = Z a;;bj; = row'(A) row(B'), (58)

tr[ABC'D] = row'(A) row(D'C'B') = row'(A)(D' ® B)row(C").  (59)
and

2’ Ax = tr[a’ Az] = tr[Aza']. (60)
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true  mean sd bias RMSE ‘

ML
16. 16.0182 0.5163 0.0182 0.5166
4. 40065 01232 0.0065 0.1234
1. 1.0002 0.0512 0.0002 0.0512
2. 2.0007 0.0666 0.0007 0.0666
0. —0.0001 0.0475 —0.0001 0.0475
0. 0.0055 0.0856 0.0055 0.0858
1. 09952 0.0335 —0.0048 0.0338
0. —0.0015 0.1419 —0.0015 0.1419
1. 09968 0.1378 —0.0032 0.1379
GLS,V =5 (1)
16. 16.0725 0.5241 0.0725 0.5201
4. 40162 01271 0.0162 0.1282
1. 10033 0.052 0.0033 0.0521
9. 20416 0.0693 0.0416 0.0808
0. —0.0002 0.0479 —0.0002 0.0479
0.  0.0015 0.0847 0.0015 0.0847
1. 10046 0.0345 0.0046 0.0348
0. 00106 0.148 0.0106 0.1484
1. 1.004 0.1449 0.004  0.145
GLS,V = 51
16. 159141 0.5515 —0.0859 0.5582
4. 3.9911  0.1256 —0.0089 0.1259
1. 09948 0.0511 —0.0052 0.0514
2. 1.9166 0.0676 —0.0834 0.1074
0. —0.0004 0.049 —0.0004 0.049
0. 0007 00871 0.007 0.0874
1. 09769 0.0338 —0.0231 0.041
0. —0.019 01421 —0.019 0.1433
1. 09818 0.1363 —0.0182 0.1375

Table 1: ML and GLS estimates for sample size N = 500 in M = 100 replica-
tions.
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true  mean sd bias RMSE ‘

ML
16.0464 1.6226 0.0464 1.6233
40069 0.4138 0.0069 0.4138
0.9876 0.1808 —0.0124 0.1812
1.9905 0.1986 —0.0095 0.1988
0.0162 0.1413  0.0162  0.1422
0.0011 0.301  0.0011 0.301
0.9821 0.1013 —0.0179 0.1029
0.0184 0532  0.0184 0.5324
0.8687 0.466 —0.1313 0.4842
GLS,V =5 (¢
16.4227 1.6019 0.4227 1.7439
40799 0.4427  0.0799  0.4499
1.0107 0.1892 0.0107 0.1895
2.3693  0.2465 0.3693  0.444
0.0151 0.1425 0.0151 0.1433
0. 03139 0.  0.3139
1.0728  0.1221  0.0728  0.1422
0.0783 0.6485 0.0783 0.6532
0.9087 0.5733 —0.0913 0.5805
GLS,V = 51
14.4569 27156 —1.5431 3.1234
3.7141 0.6861 —0.2859 0.7433
0.8967 0.2479 —0.1033 0.2686
1.1099  0.2375 —0.8901 0.9213
0.0112 0.1659 0.0112 0.1663
0.0594 0.3157 0.0594 0.3212
0.692  0.3823 —0.308 0.4909
~0.151 0.6563 —0.151 0.6734
0.5239 0.6302 —0.4761 0.7898

—_
B

S R

—
SR

s S

—_
&

S S R

Table 2: ML and GLS estimates for N = 50.
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true  mean sd bias RMSE ‘

ML
16. 15.9613 3.4995 —0.0387 3.4997
4. 4083 07584 0.083  0.763
1. 0969 0323 —0.031 0.3245
2. 1.9653 0.3823 —0.0347 0.3838
0. —0.0367 0.2499 —0.0367 0.2525
0. —0.0216 0.6107 —0.0216 0.6111
1. 09411 0.1771 —0.0589 0.1867
0. 00765 12136 0.0765 1.2161
1. 0.6612 0.7255 —0.3388 0.8007
GLS,V =5 (¢
16. 16.6881 4.3273 0.6881 4.3816
4. 4.0854 09078 0.0854 0.9118
1. 10167 0.3469 0.0167 0.3473
2. 3.049 0.6645 1.049 1.2418
0. —0.0355 0.2546 —0.0355 0.2571
0. —0.0232 0.6899 —0.0232 0.6903
1. 1.2896 0.3896 0.2896 0.4854
0. 05239 22053 0.5239 2.2667
1. 0.6759 1.037 —0.3241 1.0864
GLS,V =51

16. 14.0127 7.6897 —1.0873 7.9423
4. 1.4276 1.3894 —2.5724 2.9237
1. 09725 0.4985 —0.0275 0.4992
2. 0. 0. —2. 2.

0. 00781 02942 0.0781 0.3044
0. —0.3707 0.681 —0.3707 0.7753
1. 0.0161 0.1433 —0.9839 0.9943
0.  0.0507 0201 0.0507 0.2073
1. 0. 0. —1. 1.

Table 3: ML and GLS estimates for N = 15. Only M = 15 converged samples
for GLS,V = S
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Table 4: ML and GLS estimates for N = 1.
T().

’ true mean sd bias RMSE ‘
ML
16. 18.6439 11.0433 2.6439 11.3553
4. 3.8959 5.6667 —0.1041 5.6677
1. 1.0225 1.4178 0.0225 1.4179
2. 14648 1.3966 —0.5352 1.4957
GLS,V = X71(¢)
16. 19.2996 21.925 3.2996 22.1719
4. 29023 2.7714 —1.0977 2.9809
1. 1.508  2.7375 0.508 2.7842
2. 192,746 6.8787 190.746 190.87
GLS,V = X )
16. 16.6644 2.762 0.6644  2.8408
4.  4.0813 0.8779 0.0813 0.8816
1. 08726 1.071 —0.1274 1.0786
2. 19351 0.3679 —0.0649 0.3736
GLS, V= Eil(’l/}ML)
16. 18.9343 10.8163 2.9343 11.2072
4. 3.7287 2.9453 —0.2713 2.9578
1. 0.8919 1498 —0.1081 1.5019
2. 14114 1.0331 —0.5886 1.189
GLS, Vi = E_I(wk)
16.  18.568 10.5717 2.568  10.8791
4.  4.3131 5.3442 0.3131 5.3534
1. 1.0006 1.3649 0.0006  1.3649
2. 1.7079 1.204 —0.2921 1.2389
ULS,V =1

16.  20.299 14.3775 4.299  15.0065
4.  3.9438 29254 —0.0562 2.9259
1. 0.8881 1.3799 —0.1119 1.3845
2. 08135 23359 —1.1865  2.62

X7 Y(1hy), the GLS estimate 1), in the kth iteration was used.
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true  mean sd bias RMSE ‘

ML
16.8766  0.465 0.8766  0.9923
41435 0.1168 0.1435 0.1851
1.0536  0.0636 0.0536 0.0832
2.8677 0.0837 0.8677 0.8718
0.0038  0.0449 0.0038 0.0451
—0.0158 0.1236 —0.0158 0.1246
12966 0.065 0.2966 0.3037
0.266 0.1822  0.266 0.3224
1.341  0.1868 0.341  0.3888
GLS,V = 2!
16.9229 04922 0.9229  1.046
41458  0.1221  0.1458  0.1902
1.0527  0.0636  0.0527  0.0826
2.9269 0.0951 0.9269 0.9318
0.0074  0.048  0.0074 0.0485
~0.0192 0.1196 —0.0192 0.1211
13020 0.0754 0.3029 0.3121
0.2836  0.1919 0.2836 0.3424
1.3149  0.2097 0.3149  0.3783
GLS,V = 51
168272 053 0.8272 09824
4. 4128 01286 0128 0.1815
1. 1.0453 0.0645 0.0453 0.0788
2. 27465 0.0916 0.7465 0.7521
0.  0.0072 0.0492 0.0072 0.0497
0
1
0
1

—_
&

s S

—
S

s S e

1

=)

—0.0131 0.1183 —0.0131 0.1191
1.2627 0.0742  0.2627  0.273
0.2399 0.1852 0.2399 0.3031
1.2074 0.573  0.2074  0.6093

Table 5: Student-t distributed errors: Pseudo-ML and GLS estimates for sample
size N = 500 in M = 100 replications.
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true  mean sd bias RMSE ‘

ML
16.9316 1.7038 0.9316 1.9419
41199 0.3868 0.1199  0.405
1.0665 0.2189 0.0665 0.2288
2.8546  0.2877 0.8546 0.9017
0.0212 0.1996 0.0212  0.2007
—0.0516 0.4135 —0.0516 0.4167
1.2916  0.2997 0.2916 0.4181
0.2916 0.7182 0.2916 0.7752
1.1305  0.837  0.1305 0.8471
GLS,V = 2!
17.1380  2.07  1.1389 2.3626
41667 0.4975 0.1667 0.5247
1.0778 02323 0.0778  0.245
3.3844 04237 1.3844 1.4478
0.0152  0.1915 0.0152  0.1921
—0.0589 0.4445 —0.0589 0.4484
1.4106  0.2688 0.4106  0.4908
0.3826  0.8855 0.3826 0.9646
0.9258 1.0952 —0.0742 1.0977
GLS,V = 51
6. 16.1292 3.6127 0.1292 3.615
4. 4.0094 0.8591 0.0094 0.8592
1. 1.0167 0.3062 0.0167 0.3067
2. 1.7237 0.3376 —0.2763 0.4363
0.  0.0085 0.2339 0.0085 0.2341
0
1
0
1

,_.
&

s S

—
ISk

s S e

—_

—0.0145 0.4834 —0.0145 0.4836
0.9341 0.4867 —0.0659 0.4912
—0.073 1.2438 —0.073 1.246
1.0072 0.9391 0.0072  0.9391

Table 6: Student-t distributed errors: Pseudo-ML and GLS estimates for sample
size N = 50 in M = 100 replications.
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true  mean sd bias RMSE ‘

ML
17.3848 3.4681 1.3848 3.7343
4.2247 09718  0.2247  0.9974
1.1081 0.4541 0.1081  0.4668
2.8862 0.6801 0.8862 1.1171
0.0305 0.3511 0.0305 0.3524
0.0818 0.6918 0.0818  0.6966
1.2008 0.3076  0.2008  0.3673
0.5644 1.4962 0.5644 1.5991
0.9521 1.0228 —0.0479 1.024
GLS,V = X1
16.  17.8576 4.3553 1.8576 4.7349
4 4197 1.0184 0.197  1.0373
1 1.1264 0.4726 0.1264 0.4892
2. 43416 1.0146 2.3416  2.552
0. 0.0388 0.3539 0.0388  0.356
0
1
0
1

—_
&

s S

0.1587 0.8673 0.1587 0.8817
1.6433 0.5644 0.6433 0.8558
1.4809  3.173  1.4809 3.5015
1.0858 1.7283 0.0858  1.7305

GLS,V = 51

16.  14.8731 6.9453 —1.1269 7.0361
4. 0.649 1.0344 —3.351 3.5071
1. 0.9949 0.8386 —0.0051 0.8386
2. 0. 0. —2. 2.

0. —0.0599 0.2675 —0.0599 0.2741
0. —=0.136 0.7198 —0.136 0.7325
1. 0.0408 0.1057 —0.9592 0.965
0. —0.021 0.2093 —0.021 0.2103
1. 0. 0. —1. 1.

Table 7: Student-t distributed errors: Pseudo-ML and GLS estimates for sample
size N = 15 in M = 100 replications.
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true mean sd bias RMSE ‘

ML
16. 16.1532 9.5657 0.1532  9.5669
4. 2.7765 1.8707 —1.2235 2.2353
1. 1.1478 1.438 0.1478  1.4456
2. 1.8178 1.2978 —0.1822 1.3106
GLS.V = 5 1(0)
16.  6.2775 13.4566 —9.7225 16.6014
4.  0.7697 2131 —3.2303 3.8699
1. 03389 2.2606 —0.6611 2.3553
2. 127.768 73.6055 125.768 145.724
GLS, V= 271(1/)0)
16. 16.5718 3.4107 0.5718  3.4584
4. 4.0293 1.0183 0.0293 1.0187
1. 1.1026  1.2822  0.1026  1.2863
2. 2.1322  0.5452 0.1322 0.561
GLS, V= E_l(¢ML)
16. 17.3081 11.0441 1.3081 11.1213
4. 3.1638 2.3342 —0.8362 2.4794
1. 1.1654 1.391 0.1654  1.4008
2. 19023 1.3353 —0.0977 1.3388
ULS.V =1

16. 19.3151 14.0107 3.3151 14.3976
4. 3.6694 2.6024 —0.3306 2.6233
1. 1.0386  1.4952 0.0386  1.4957
2. 1.4278  2.6082 —0.5722 2.6702

Table 8: Student-t distributed errors: Pseudo-ML and GLS estimates for N = 1.
No converged samples for GLS,V = X ~1(¢)). For 1, the true value {16, 4, 1,2}
was used (see text).
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