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Abstract

Continuous time models with sampled data possess several advantages over conven-
tional time series and panel models (special issue 62:1, 2008, of Statistica Neerlandica).
For example, data with unequal time intervals can be treated efficiently, since the dy-
namic model parameters of the system model are not affected by the measurement
process. In the linear case, the nonlinear parameter restrictions of the sampled model
can be implemented with specialized Kalman filter software (e.g. LSDE) or with struc-
tural equations models (SEM) allowing such nonlinear parameter restrictions. In the
nonlinear case, most filtering algorithms are formulated in discrete time, but mixed
continuous-discrete approaches are also scattered in the literature. The Mathemat-
ica program SDE is a collection of algorithms with consequent focus on the mixed
continuous-discrete case: continuous time updates combined with discrete time mea-
surement updates. Included are the classical methods of extended Kalman filtering and
higher order nonlinear filters, but also new developments such as the unscented Kalman
filter (UKF) and the Gauss-Hermite filter (GHF) using approximations of the filter den-
sity. We also use the Edgeworth-Hermite expansion of probability densities to obtain
generalized Gauss filters (GGHF) utilizing higher order moments such as skewness and
kurtosis.
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1 Overview

1.1 Linear stochastic differential equations (LSDE)

Differential equations are the classical methods of modeling change in the natural sciences.
The most simple model is the linear growth model

dY (t)/dt = AY (t) (1)

with solution

Y (t) = exp[A(t− t0)]Y (t0). (2)

In applications one must model specification error using stochastic equation errors to obtain
the stochastic differential equation (SDE)

dY (t)/dt = AY (t) +Gζ(t) (3)

where ζ(t) is a zero mean Gaussian white noise process with autocorrelation function
γ(t− s) = E[ζ(t)ζ(s)] = δ(t− s) (Dirac delta function). We obtain the solution

Y (t) = exp[A(t− t0)]Y (t0) +
∫ t

t0
exp(A(t− s))Gζ(s)ds. (4)

In symbolic notation (Itô calculus) one can write:

dY (t) = AY (t)dt+GdW (t) (5)

Y (t) = exp[A(t− t0)]Y (t0) +
∫ t

t0
exp[A(t− s)]GdW (s). (6)

Using the times of measurement one obtains the exact discrete model (EDM) of Berg-
strom (1976b, 1988)

Yi+1 = exp[A(ti+1 − ti)]Yi +
∫ ti+1

ti
exp[A(ti+1 − s)]GdW (s), (7)

Yi+1 = Φ(ti+1, ti)Yi + ui, (8)

where Φ is the fundamental matrix of the system and Yi := Y (ti) are the sampled measure-
ments.
The parameters of the EDM are highly nonlinearly restricted, e.g.

Var(ui) =
∫

Φ(ti+1, s)
2g2ds (9)

in the scalar case. This is the main problem for the task of parameter estimation.
Software must be able to implement the required nonlinear restrictions, especially in
the multivariate case where (time ordered) matrix exponentials are involved (some references
are Phillips, 1976, Jones, 1984, Hamerle et al., 1991, 1993, Singer, 1998).
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1.2 Advantages of differential equations

(Möbus & Nagl 1983)

1. The model specification of the system dynamics is independent of the measurement
scheme and is given at the process level of the phenomenon (micro causality in the
infinitesimal time interval dt).

2. The design of the study is specified by a measurement model, independently of the
systems dynamics.

3. Changes of the variables can occur at any time, at and between the measurements. The
state is defined for any time point, even if it can’t be measured.

4. Extrapolation and interpolation of the data points can be obtained for arbitrary times
and is not constrained to the sampling interval of the panel waves.

5. Studies with different or irregular sampling intervals can be compared since the con-
tinuous time structural parameters of the system do not depend on the measurement
intervals.

6. Data sets with different sampling intervals can be analyzed together as one vector series.

7. Irregular sampling and missing data are treated in a unified framework. The parametriza-
tion is parsimonious since only the fundamental continuous time parameters must be
estimated.

8. Cumulated or integrated data (flow data) can be represented explicitly.

9. Nonlinear transformations of data and variables can be handled by a differential calculus
(Itô calculus).

2 Model specification and interpretation

2.1 Linear continuous/discrete state space model

(Jazwinski 1970)

dY (t) = [A(t, ψ)Y (t) + b(t, ψ)]dt+G(t, ψ)dW (t) (10)

Zi = H(ti, ψ)Y (ti) + d(ti, ψ) + εi (11)

measurement times ti, i = 0, ..., T .
Why use models with time-varying matrices A(t), G(t), H(t), ...?

• development psychology: children get older in the course of a longitudinal study, so the
causal effects A(t) are time dependent.

• factor structure H(t) of a depression questionaire may be time dependent due to the
psychological state of the subjects.
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2.2 Exact discrete model (EDM)

From the SDE one obtains the EDM (Bergstrom 1976b, 1988)

Y (ti+1) = Φ(ti+1, ti)Y (ti) +

+
∫ ti+1

ti
Φ(ti+1, s)b(s)ds+

∫ ti+1

ti
Φ(ti+1, s)G(s)dW (s) (12)

The EDM contains the parameter functionals (Arnold 1974)

A∗i := Φ(ti+1, ti) (13)

b∗i :=
∫ ti+1

ti
Φ(ti+1, s)b(s)ds (14)

Ω∗i := Var(ui) =
∫ ti+1

ti
Φ(ti+1, s)G(s)G′(s)Φ′(ti+1, s)ds. (15)

with state transition matrix

d
dt
Φ(t, ti) = A(t)Φ(t, ti); Φ(ti, ti) = I. (16)

In the time invariant and uniform sampling case one obtains the matrix exponential func-
tion

Φ(ti+1, ti) := A∗ = exp(A∆t) =
∞
∑

j=0

(A∆t)j/j!. (17)

It is defined as a Taylor series of the fundamental interaction matrix A. For example, the
second order contribution between variables Yk and Ym

[(A∆t)2]km =
∑

l

AklAlm∆t
2 (18)

involves all intermediate variables Yl.
Alternatively, one obtains the product representation

exp(A∆t) = lim
J→∞

J
∏

j=0

(I + A∆t/J). (19)

2.3 Example 1: Product representation for the sampling interval
∆t = 2 using J = 2 intermediate steps

A =







−0.3 0 1
0 −0.5 0.6
−2 −2 0





;∆t = 2 (20)

λ(A) = {−0.18688 + 1.77645i,−0.18688− 1.77645i,−0.42624}

exp[A∆t] =







−0.242254 −0.634933 −0.131455
−0.38096 0.0697566 −0.116969
0.262911 0.389897 −0.66265






(21)

There is no direct interaction between variables Y1 and Y2, i.e. A12 = 0 = A21.

exp(A∆t) ≈ (I + A∆t/2)2 = I + A∆t+ A2∆t2/4 (22)
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t = 0.5 = 2Dtd

= 4Dt

accumulated interaction = 2Dt

accumulated interaction

Figure 1: 3 variable model: Product representation of interactions within the measurement
interval ∆t = 2. Discretization interval δt = 2/4 = 0.5. Positive causal actions = red; Negative
causal actions = blue.
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Figure 2: 3 variable model: Exact discrete matrix A∗ = exp(A∆t) as a function of measurement
interval ∆t. Matrix elements A∗12, A

∗
21, A

∗
33. Note that the discrete time coefficients change their

strength and even sign.
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Second order terms:

[exp(A∆t)]12 ≈ A13A32∆t
2/4 (23)

• Indirect interactions are mediated through the third variable, which appear at the finite
sampling interval.

• If the signs are different, one gets positive and negative contributions and the overall
sign is dependent on the sampling interval.

2.4 Example 2: Linear oscillator; CAR(2)

The linear oscillator (synonyms: pendulum, swing) is the continuous time AR(2) model
which can model phenomena oscillating in time. The parameters are γ = friction = 4,
ω0 = 2π/To = 4 = angular frequency, To = period of oscillation. The second order SDE can
be written in state spece form

ÿ + γẏ + ω2
0y = bx(t) + gζ(t) (24)

d
[

y1(t)
y2(t)

]

:=
[

0 1
−ω2

0 −γ
][

y1(t)
y2(t)

]

dt+
[

0
b

]

dt+
[

0 0
0 g

]

d
[

W1(t)
W2(t)

]

(25)

zi := [ 1 0 ]
[

y1(ti)
y2(ti)

]

+ εi (26)

and estimated with the linear state space model. The model specification in Mathematica
reads

PAR//Clear;

(***************************************************************)

PAR[{t1_,t2_,t3_,t4_,t5_,t6_}] := Module[{OMEGA,A,B,SIGMA,MUE},

(***************************************************************)

A={{0, 1},

{t1,t2}};

B= {{ 0},

{t3}};

G={{.0001,0 },

{0 ,t4}};

OMEGA=G.Transpose[G];

MUE= {t5,t6};

SIGMA={{1., 0},

{0, 1.}};

{OMEGA,A,B,SIGMA,MUE}

]

PARD//Clear;

(***************************************************************)

PARD[{t1_,t2_,t3_,t4_,t5_,t6_}] =

(***************************************************************)

Module[{t},

t = {t1,t2,t3,t4,t5,t6};

Map[DMS[#,t]&,PAR[t]]//N

]

PARM//Clear

(***************************************************************)

PARM[{phi1_,phi2_}]:= Module[{R,H,D},
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Figure 3: Linear oscillator with irregularly measured states (dots): Filtered state (left),
smoothed state (right) with 95%-HPD confidence intervals. Measurements at τ1 =
{0, .5, 1, 2, 4, 5, 7, 7.5, 8, 8.5, 9, 9.1, 9.2, 9.3, 10} (first component; 1 st line), τ2 = {0, 1.5, 7, 9}
(2 nd component, 2 nd line). Discretization interval δt = 0.1. The controls x(t) were measured
at τ3 = {0, 1.5, 5.5, 9, 10}.
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Figure 4: Linear oscillator: Exact discrete matrices A∗ = exp(A∆t), B∗ = A−1(A∗ − I)B,
Ω∗ =

∫ ∆t
0 exp(As)Ω exp(A′s)ds as a function of measurement interval. Note that the discrete

time coefficients change their strength and even sign.
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(***************************************************************)

H={{1,0},

{0,1}};

D= {{0},

{0}};

R={{(phi1//Exp), 0 },

{ 0 , (phi2//Exp)}};

{R,H,D}

]

PARMD//Clear

(***************************************************************)

PARMD[{phi1_,phi2_}] =

(***************************************************************)

Module[{t},

t = {phi1,phi2};

Map[DMS[#,t]&,PARM[t]]

]

SeedRandom[13579];

{Z,Y} = StateSpace1[H,d,R,A,B,G,Y0,X,K,P,Q,n,T,DT,seed,UniC];

(*selection from Z*)

ZM = Array[MISS&,{T+1,K,n}];

tau1 = {0,.5,1,2,4,5,7,7.5,8,8.5,9,9.1,9.2,9.3,10}/DT + 1;

Do[ZM[[tau1[[i]],1]] = Z[[tau1[[i]],1]], {i,tau1//Length} ];

tau2 = {0,1.5,7,9}/DT + 1;

Do[ZM[[tau2[[i]],2]] = Z[[tau2[[i]],2]], {i,tau2//Length} ];

THETA = { -16, -4, 1, 2, 0, 0} //N;

PHI = {-2,-2} //N;

NONLIN = 1;

EPS = 10.^-4;

KMAX = 40;

F0 = IdentityMatrix[(THETA//Length)+(PHI//Length)];

DT = .1;

PRINT = {1,1,1,1,1,1,1,1};

Fisher = True;

K=2;Q=1;P=2;

T=100;n=10;

np = 1; (*same sampling scheme for each panel unit*)

T1=T+1;

DT=.1;

{THETA,PHI,COV,likpsi,k} =

MBFGS[THETA,PHI,F0,KMAX,EPS,ZM,Xint,K,P,Q,n,np,T,DT,1,NONLIN,MISS,PRINT];

2.5 Discussion

• Researchers using different sampling intervals will have a dispute over the strength and
even the sign of the causal relation, but only if they use a discrete time model without
the deeper structure of the continuous time approach.

• In contrast, a continuous time approach estimates the parameters related to the interval
dt irrespective of the measurement intervals ∆t1, ∆t2, ... of different studies or irregular
intervals in one study.

• Thus sampling can be completely irregular for each panel unit and within the variables.

• One always points to the same fundamental level of the theory.
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3 Estimation

3.1 General and historical remarks

• The exact discrete model is a vector autoregression with special restrictions which must
be incorporated into the estimation procedure.

• Otherwise serious embeddability and identification problems arise (Phillips 1976a, Singer
1992d, Hamerle et al. 1991, 1993)

• For small sampling interval, the EDM may be linearized and time series or SEM software
can be used. This was already proposed by Bergstrom in the 19sixties (rectangle or
trapezium approximation; Bergstrom (1976a)).

• Later, there were attempts to estimate a reparametrized version of the EDM and to
infer the continuous time parameters indirectly.

• This yields serious problems since the restrictions of A,B, .. (see above) cannot be im-
plemented and second, if no restrictions are imposed, embeddability and identification
problems arise.

• Therefore, the likelihood function p(ZT , ...Z0;ψ) must be expressed in terms of the
EDM-matrices

A∗i = exp(A∆ti) (27)

B∗i = A−1(A∗i − I)B (28)

Ω∗i =
∫ ∆ti

0
exp(As)Ω exp(A′s)ds (29)

and A = A(ψ), B = B(ψ), ....

3.2 Exact estimation methods

For ML estimation, we distinguish two methods of computing the likelihood:

1. Recursively by using the Kalman filter

2. Non-recursively by using simultaneous equations with nonlinear parameter restrictions
(e.g. matrix exponential functions)

(for details, see Singer 2007, Oud & Singer 2008, Singer 2008)

Exact Discrete Model

(panel index n = 1, ...N ; i = 0, ...T )

Yi+1,n = A∗inYin + b∗in + uin (30)

Zin = HinYin + din + εin (31)

9



A∗in := Φn(ti+1, ti) =
←

T exp[
∫ ti+1

ti
A(s, xn(s))ds] (32)

b∗in :=
∫ ti+1

ti
Φn(ti+1, s)b(s, xn(s))ds (33)

Var(uin) := Ω∗in =
∫ ti+1

ti
Φn(ti+1, s)GG

′(s, xn(s))Φ′n(ti+1, s)ds. (34)

• Matrices are noncommutative, i.e A(t)A(s) 6= A(s)A(t)

•
←

T A(t)A(s) = A(s)A(t); t < s

is the Wick time ordering operator (Abrikosov et al. 1963).

3.3 Kalman filter approach

likelihood (prediction error decomposition)

(panel index n is dropped)

l(ψ;Z) = log p(ZT , . . . , Z0;ψ) =
T−1
∑

i=0

log p(Zi+1|Z i;ψ)p(Z0), (35)

• p(Zi+1|Z i;ψ) = φ(ν(ti+1|ti); 0, Γ (ti+1|ti))
transition densities (Gauss distributions)

• ν(ti+1|ti) is the prediction error

(measurement minus prediction using information

Z i := {Zi, . . . , Z0} up to time ti)

Γ is the prediction error covariance matrix.

• The computation runs in a sequence of prediction and correction steps (time and mea-
surement update).

• It was first discovered in an engineering context by (Kalman 1960) and is now well
known in many fields.

• An implementation for panel data is LSDE (Singer 1991, 1993, 1995)

Kalman filter algorithm

(Liptser & Shiryayev 2001, Harvey & Stock 1985, Singer 1998)

conditional moments

• µ(t|ti) = E[Y (t)|Z i]

• Σ(t|ti) = Var[Y (t)|Z i],

• Z i = {Zi, ..., Z0} are the measurements up to time ti.
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time update

(d/dt)µ(t|ti) = A(t, ψ)µ(t|ti) + b(t, ψ) (36)

(d/dt)Σ(t|ti) = A(t, ψ)Σ(t|ti) +Σ(t|ti)A′(t, ψ) +Ω(t, ψ) (37)

measurement update

µ(ti+1|ti+1) = µ(ti+1|ti) +K(ti+1|ti)ν(ti+1|ti) (38)

Σ(ti+1|ti+1) = [I −K(ti+1|ti)H(ti+1)]Σ(ti+1|ti) (39)

ν(ti+1|ti) = Zi+1 − Z(ti+1|ti) (40)

Z(ti+1|ti) = H(ti+1)µ(ti+1|ti) + d(ti+1) (41)

Γ (ti+1|ti) = H(ti+1)Σ(ti+1|ti)H ′(ti+1) +R(ti+1) (42)

K(ti+1|ti) := Σ(ti+1|ti)H ′(ti+1)Γ (ti+1|ti)−1 (43)

• K(ti+1|ti) is the Kalman gain,

• Z(ti+1|ti) is the optimal predictor of the measurement Zi+1,

• ν(ti+1|ti) is the prediction error

• Γ (ti+1|ti) is the prediction error covariance matrix.

3.4 SEM approach

In the SEM-EDM approach (Oud & Jansen 2000, Oud et al. 1993) the exact discrete model
is represented by the SEM model (η′n = [Y ′0n, ..., Y

′
Tn])

ηn = Bηn + ΓXn + ζn (44)

Yn = Ληn + τXn + εn (45)

(stochastic ξ are absorbed in η) with structural matrices

B =

















0 0 0 . . . 0
A∗0 0 0 . . . 0
0 A∗1 0 . . . 0
... 0

. . . 0 0
0 0 . . . A∗T−1 0

















: (T + 1)p× (T + 1)p (46)

Xn =

















1
xn0

xn1
...
xnT

















: (T + 1)q + 1 × 1 (47)

Γ =

















µ 0 0 . . . 0 0
0 B∗0 0 . . . 0 0
0 0 B∗1 . . . 0 0
... 0

. . . 0 0 0
0 0 . . . 0 B∗T−1 0

















: (T + 1)p× (T + 1)q + 1 (48)
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b∗ni = [
∫ ti+1

ti
Φ(ti+1, s)B(s, ψ)ds]xni := B∗i xni. (49)

Solving for ηn, one obtains the solution

ηn = (I − B)−1(ΓXn + ζn) (50)

(I − B)−1 =
∞
∑

j=0

Bj =

















I 0 0 . . . 0
A∗0 I 0 . . . 0
A∗1A

∗
0 A∗1 I . . . 0

... 0
. . . I 0

A∗T−1...A
∗
0 A∗T−1...A

∗
1 . . . A∗T−1 I

















. (51)

Thus, all yn(ti) are expressed in terms of the initial condition yn(t0) ∼ N(µ,Σ) (for details,
see Singer 2007).

Likelihood function

l = −N
2
(log |Σy| + tr[Σ−1

y (My + CMxC
′ −MyxC

′ − CMxy)]) (52)

E[Yn] = [Λ(I −B)−1Γ + τ ]Xn := CXn (53)

Σy = Var(Yn) = Λ(I − B)−1Σζ(I − B)−TΛ′ +Σε. (54)

Moment matrices

My = Y ′Y : (T + 1)k × (T + 1)k (55)

Mx = X ′X : (T + 1)q + 1 × (T + 1)q + 1 (56)

Myx = Y ′X : (T + 1)k × (T + 1)q + 1 (57)

Y ′ = [Y1, ...YN ] : (T + 1)k ×N (58)

X ′ = [X1, ...XN ] : (T + 1)q + 1 ×N (59)

• η′n = [Y ′0n, ..., Y
′
Tn] is the sampled trajectory (for panel unit n)

• ΓXn is a deterministic intercept term.

• It is essential, that the SEM (and KF) software permits the nonlinear parameter
restrictions of the EDM (27–29).

• The SEM (44–45) with arbitrary nonlinear parameter restrictions was imple-
mented as the Mathematica program SEM (Singer 2004d)

In Mathematica, it is very simple to compute a matrix exponential (MatrixExp). The EDM
matrices of an evenly spaced AR(2) model with sampling interval Deltat are given as

STERN[Theta_, Deltat_] :=

Module[{L, p, a, b, omega, Ip, Ip2, astern, bstern, ostern},

a = A[Theta];

b = B[Theta];

omega = Omega[Theta];

p = Length[a];
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Ip = IdentityMatrix[p];

Ip2 = IdentityMatrix[p^2];

astern = MatrixExp[a Deltat];

bstern = Inverse[a].(astern - Ip).b;

L = KroneckerProduct[a, Ip] + KroneckerProduct[Ip, a];

ostern = Inverse[L].(KroneckerProduct[astern, astern] - Ip2).Flatten[omega];

ostern = Shape[ostern, {p, p}];

{astern, bstern, ostern}]

These coefficients are inserted into the module SystemEDMdet specifying the structural ma-
trices:

SystemEDMdet[Theta_, {Deltat_, T_}] :=

Module[{astern, bstern, ostern, p, q, beta, gamma, sigma, sigmazeta,

lambdaeta, taueta, sigmaepsilon},

{astern, bstern, ostern} = STERN[Theta, Deltat];

{p, q} = Dimensions[bstern];

null = Shape[0, {p, p}];

beta = SubDiagonalMatrix[astern, {T + 1, p}];

mu = Mue[Theta];

gamma = Spalte[Flatten[{1, Shape[2, T]}]];

gamma = gamma /. {1 -> Spalte[mu], 2 -> bstern};

gamma = BlockMatrix[gamma]; (* [mu’,bstern’,....,bstern’]’ *)

sigma = Sigma[Theta];

sigmazeta = Flatten[{1, Shape[2, T]}];

sigmazeta = sigmazeta /. {1 -> sigma, 2 -> ostern};

sigmazeta = BlockDiagonalMatrix[sigmazeta]; (* Diag(sigma,ostern,...,ostern) *)

h = H[Theta];

lambdaeta = KroneckerProduct[IdentityMatrix[T + 1], h];

{kp, p} = Dimensions[lambdaeta];

{p, q} = Dimensions[gamma];

taueta = Shape[0, {kp, q}];

sigmaepsilon = IdentityMatrix[kp]/10.^8;

{{beta, gamma, sigmazeta}, {lambdaeta, taueta, sigmaepsilon}}]

This module is plugged into the ML routine BFGS

{THETA, COV, LIKI, psii, scoreii, k, ReturnCode} =

BFGS[{{S, m, n, Deterministisch}},

{THETA0, F0},

{{SystemEDMdet, {Deltat, T}},

{Lik, LISRELlik, Score, Hesse}},

{{Sing = False, 1}, KMAX = 300, {EPS1 = .0001, EPS2 = .0001},

OPTION = 0, PRINT = {1, 1, 1, 1, 1, 1, 1, 1, 1}}];

to yield the ML estimates THETA.

3.5 Comparision of the approaches

1. The KF computes the likelihood recursively for the data Z = {Z0, ...ZT}, i.e. the
conditional distributions p(Zt+1|Zt) are updated step by step, whereas the SEM repre-
sentation utilizes the joint distribution of the vector {Z0, ...ZT}.

2. Therefore, the KF can work online, since new data update the conditional moments
and the likelihood, whereas the SEM uses the batch of data Z = {Z0, ...ZT} with
dimension (T + 1)k. The KF only involves the data point Zt : k × 1 and one has to
invert matrices of order k × k (prediction error covariance). The SEM must invert the
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matrices Var(Y ) : (T + 1)k × (T + 1)k and B : (T + 1)p× (T + 1)p in each likelihood
computation.

This will be a serious problem if long data sets T > 100 are analyzed, but not for short
panels.

3. The KF also works in the conditionally Gaussian case, since p(Zt+1|Zt) is still Gaussian,
whereas the joint distribution of Z = {Z0, ...ZT} is not Gaussian any more.

4. As a consequence, the KF approach can be easily generalized to nonlinear systems
(extended Kalman filter EKF), since the transition probabilites are still approximately
conditionally Gaussian.

5. The SEM approach is more familiar to many scientists used to work with LISREL and
other programs. In the early days of SEM modeling, only linear restrictions could be
implemented, but now the system (44–45) and its likelihood can be easily programmed
and maximized using matrix software like Mathematica, SAS/IML etc.

6. Filtered estimates of the latent states are computed recursively by the KF (the condi-
tional moments), and smoothed trajectories can be computed by a (fixed interval)
smoother algorithm. On the other hand, in the SEM approach, it is easy to compute
the conditional expectations E[η|Y ] and Var[η|Y ] yielding the smoothed estimates, but
again matrices of order (T + 1)k × (T + 1)k are involved.

7. Missing data may be treated in both cases by modifying the measurement model. The
Kalman filter processes the data zn(ti) : k × 1 for each time point and panel unit.
Thus, the missing data treatment can be automatically included in the measurement
update by dropping missing entries in the matrices. In the SEM approach, the so called
individual likelihood approach may be utilized.

4 Nonlinear models

In this section we discuss the nonlinear continuous-discrete state space model (Jazwinski,
1970, ch. 6.2) for the panel units n = 1, ..., N and the unit specific measurement times tin

dYn(t) = f(Yn(t), xn(t), ψ)dt+ g(Yn(t), xn(t), ψ)dWn(t) (60)

Zin = h(Yn(tin), xn(tin), ψ) + εni; i = 0, ..., Tn. (61)

with nonlinear drift and diffusion functions f : R
p×R

q×R
u → R

p and g : R
p×R

q×R
u → R

p×R
r.

ψ ∈ R
u is a u-dimensional parameter vector. The state vector Yn(t) ∈ R

p is a continuous
time random process and the xn(t) ∈ R

q are deterministic exogenous (control) variables. As
usual, stochastic controls are treated by extending the state Yn(t) → {Yn(t), Xn(t)}. The
dependence on xn(t) includes the nonautonomous case xn(t) = t. Person specific random
effects πn can be included by extending the state according to Yn(t) → {Yn(t), πn(t)} and
defining the trivial dynamics dπn = 0.
In the measurement model (2), h : R

p × R
q × R

u → R
k is a measurement function mapping

the latent state yn(t) onto discrete time measurements Zin, i = 0, ..., Tn, n = 1, ..., N . The
free parameters in h may be interpreted as nonlinear factor loadings.
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In the nonlinear case it is important to interpret the SDE (60) correctly. We use the Itô
interpretation yielding simple moment equations (for a thorough discussion of the system
theoretical aspects see Arnold (1974), Van Kampen (1981), Singer (1999)).

4.1 Exact Continuous-Discrete Filter

The exact time and measurement updates of the continuous-discrete filter are given by the
recursive scheme (Jazwinski, 1970) for the conditional density p(y, t|Z i):1

Time update:

∂p(y, t|Z i)

∂t
= F (y, t)p(y, t|Z i) ; t ∈ [ti, ti+1] (62)

p(y, ti|Z i) := pi|i

Measurement update:

p(yi+1, ti+1|Z i+1) =
p(zi+1|yi+1, Z

i)p(yi+1, ti+1|Z i)

p(zi+1|Z i)
:= pi+1|i+1 (63)

p(zi+1|Z i) =
∫

p(zi+1|yi+1, Z
i)p(yi+1, ti+1|Z i)dyi+1, (64)

i = 0, . . . , T − 1, where F in

Fp = −
p

∑

k=1

∂

∂yk

[fk(y, t, ψ)p(y, t|x, s)]

+1
2

p
∑

k,l=1

∂2

∂yk∂yl
[Ωkl(y, t, ψ)p(y, t|x, s)] (65)

is the Fokker-Planck operator, Z i = {z(tj)|tj ≤ ti} are the observations up to time ti,
yi := y(ti) and p(zi+1|Z i) is the likelihood function of observation zi+1. The first equation
describes the time evolution of the conditional density p(y, t|Z i) given information up to
the last measurement and the measurement update is a discontinuous change due to new
information using the Bayes formula. The above scheme is exact, but can be solved explicitly
only for the linear case where the filter density is Gaussian with conditional moments µ(t|ti) =
E[y(t)|Z i];Σ(t|ti) = Var[y(t)|Z i] or under conditions in the Daum filter (Daum 2005).

4.2 Exact Moment Equations

Instead of solving the time update equations for the conditional density (62), the moment
equations for the first, second and higher order moments are considered. The general vector
case in discussed in (Singer 2006c). Using the Euler approximation for the SDE (60), one
obtains in a short time interval δt (δW (t) := W (t+ δt) −W (t))

y(t+ δt) = y(t) + f(y(t), t)δt+ g(y(t), t)δW (t). (66)

Taking the expectation E[...|Z i] one gets the moment equation

µ(t+ δt|ti) = µ(t|ti) + E[f(y(t), t)|Z i]δt (67)

1again dropping panel index n
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or in the limit δt→ 0

µ̇(t|ti) = E[f(y(t), t)|Z i]. (68)

The higher order central moments

mk(t|ti) := E[(y(t) − µ(t|ti))k|Z i] := E[Mk(t|ti)|Z i] (69)

fulfil (scalar notation, dropping the condition)

mk(t+ δt) = E[(y(t) + f(y(t), t)δt− µ(t+ δt)) + g(y(t), t)δW (t)]k

:= E[a+ bc]k (70)

For example, the second moment (variance) m2 = σ2 fulfils

E[a + bc]2 = E[a2] + E[b2]δt (71)

= E[y(t) + f(y(t), t)δt− µ(t+ δt)]2

+ E[Ω(y(t), t)2]δt. (72)

Inserting the first moment (67) and setting a := (y −E(y)) + (f −E(f))δt := y∗ + f ∗δt one
obtains

m2(t+ δt) = m2(t) + 2E[y∗f ∗]δt+ E[f ∗2]δt2 + E[Ω]δt (73)

In general, up to O(δt) we have (Mk := (y − µ)k)

mk(t+ δt) = mk(t) + kE[f(y, t) ∗ (Mk−1(t) −mk−1(t))]δt

+ k(k−1)
2

E[Mk−2(t)Ω(y, t)]δt+O(δt2). (74)

The exact moment equations (68, 74) are not differential equations, since they depend on
the unknown conditional density p(y, t|Z i). Using Taylor expansions or approximations of
the conditional density one obtains several filter algorithms.

4.3 Continuous-discrete filtering scheme

Using only the first and second moment equation (68,73), and the optimal linear update
(normal correlation) one obtains the recursive scheme (A− is the generalized inverse of A)

Initial condition: t = t0

µ(t0|t0) = µ+ Cov(y0, h0)(Var(h0) +R(t0))
−(z0 −E[h0])

Σ(t0|t0) = Σ − Cov(y0, h0)(Var(h0) +R(t0))
−Cov(h0, y0)

L0 = φ(z0;E[h0],Var(h0) +R(t0))

i = 0, . . . , T − 1:
Time update: t ∈ [ti, ti+1]

τj = ti + jδt; j = 0, ..., Ji − 1 = (ti+1 − ti)/δt− 1

µ(τj+1|ti) = µ(τj |ti) + E[f(y(τj), τj)|Z i]δt

Σ(τj+1|ti) = Σ(τj |ti) +

+ {Cov[f(y(τj), τj), y(τj)|Z i] + Cov[y(τj), f(y(τj), τj)|Z i] +

+ E[Ω(y(τj), τj)|Z i]}δt

16



Measurement update: t = ti+1

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−(zi+1 −E[hi+1|Z i])

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−Cov(hi+1, yi+1|Z i)

Li+1 = φ(zi+1;E[hi+1|Z i],Var(hi+1|Z i) +R(ti+1)).

Remarks:

1. The time update for the interval t ∈ [ti, ti+1] was written using time slices of width
δt. They must be chosen small enough to yield a good approximation for the moment
equations (68, 73).

2. The measurement update is written using the theorem on normal correlation (Liptser
& Shiryayev 1977, 1978, ch. 13, theorem 13.1, lemma 14.1)

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, zi+1|Z i)Var(zi+1|Z i)− ×
× (zi+1 − E[zi+1|Z i]) (75)

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, zi+1|Z i)Var(zi+1|Z i)− ×
× Cov(zi+1, yi+1|Z i). (76)

Inserting the measurement equation (61) one obtains the measurement update of the
filter. The formula is exact for Gaussian variables and the optimal linear estimate
for µ(ti+1|ti+1), Σ(ti+1|ti+1) in the nongaussian case. It is natural to use, if only two
moments are considered. Despite the linearity in zi+1, it still contains the measurement
nonlinearities in the expectations involving h(y, t). Alternatively, the Bayes formula
(38) can be evaluated directly. This is necessary, if strongly nonlinear measurements
are taken (e.g. the threshold mechanism for ordinal data; see sect. 7)

The approximation of the expectation values containing the unknown filter density leads to
several well known algorithms:

1. Taylor expansion of f,Ω and h:

extended Kalman filter EKF, second order nonlinear filter SNF, higher order nonlinear
filter HNF(2, L) (Jazwinski 1970, Singer 2006d)). Direct linearization in the SDE (60)
using the Itô formula yields the LL approach of Shoji & Ozaki (1997, 1998); cf. Singer
(2002).

2. Approximation of the filter density:

using sigma points: unscented Kalman filter UKF (Julier and Uhlmann, 1997, Julier
et al., 2000), Gaussian density using Gauss-Hermite quadrature: Gauss-Hermite fil-
ter GHF (Ito & Xiong 2000), Hermite expansion of filter density: generalized Gauss-
Hermite filter GGHF (Singer 2006b,c).
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5 Filter Approximations

based on Taylor Expansion

5.1 Extended Kalman Filter EKF

Using Taylor expansions around the conditional mean µ(τj |ti) for the nonlinear functions in
the filtering scheme, one obtains

E[f(y(τj), τj)|Z i] ≈ f(µ(τj |ti), τj) (77)

Cov[f(y(τj), τj), y(τj)|Z i] ≈ fy(µ(τj|ti), τj)Σ(τj |ti) (78)

E[Ω(y(τj), τj)|Z i] ≈ Ω(µ(τj |ti), τj). (79)

Expanding around µ(ti+1|ti), the measurement update is approximately

Cov[yi+1, hi+1|Z i] ≈ Σ(ti+1|ti)h′y(µ(ti+1|ti), ti+1) (80)

Var[hi+1|Z i] ≈ hy(µ(ti+1|ti), ti+1)Σ(ti+1|ti)h′y(µ(ti+1|ti), ti+1) (81)

E[hi+1|Z i] ≈ h(µ(ti+1|ti), ti+1). (82)

5.2 Second Order Nonlinear Filter SNF

Expanding up to second order one obtains (using short notation and dropping third moments)

E[f(y(τj), τj)|Z i] ≈ f(µ(τj |ti), τj) +

+ 1
2
fyy(µ(τj |ti), τj) ∗Σ(τj |ti) (83)

Cov[f(y(τj), τj), y(τj)|Z i] ≈ fy(µ(τj|ti), τj)Σ(τj |ti) (84)

E[Ω(y(τj), τj)|Z i] ≈ Ω(µ(τj |ti), τj) +

+ 1
2
Ωyy(µ(τj|ti)) ∗Σ(τj |ti). (85)

Cov[yi+1, hi+1|Z i] ≈ Σ(ti+1|ti)h′y(µ(ti+1|ti), ti+1) (86)

Var[hi+1|Z i] ≈ hy(µ(ti+1|ti), ti+1)Σ(ti+1|ti)h′y(µ(ti+1|ti), ti+1) (87)

E[hi+1|Z i] ≈ h(µ(ti+1|ti), ti+1) +

+ 1
2
hyy(µ(ti+1|ti), ti+1) ∗Σ(ti+1|ti), (88)

where (fyy ∗Σ)i =
∑

jk fyy,ijkΣjk etc. Expanding to higher orders in the HNF (higher order
nonlinear filter) yields moments of order k > 2 on the right hand side, which must be dropped

or factorized by the Gaussian assumption mk = (k − 1)!!m
k/2
2 , k even, mk = 0, k odd. For

details, see Jazwinski (1970) or Singer (2006d).

5.3 Local linearization LL

A related algorithm occurs if the drift is expanded directly in SDE (60). Using Itô’s lemma
one obtains

f(y(t), t) − f(y(ti), ti) = (89)
∫ t

ti
fy(y(s), s)dy(s) +

∫ t

ti

1
2
fyy(y(s), s) ∗Ω(y(s), s)ds+

∫ t

ti
ft(y(s), s)ds.
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Freezing the coefficients at (yi, ti) and using a state independent diffusion coefficient Ω(s),
Shoji and Ozaki (1997, 1998) obtained the linearized SDE (ti ≤ t ≤ ti+1)

dy(t) = [fy(yi, ti)(y(t) − yi) + f(yi, ti) + ft(yi, ti)(t− ti) +

+1
2
fyy(yi, ti) ∗Ω(ti)(t− ti)]dt+ g(t)dW (t).

The corresponding moment equations are

µ̇(t|ti) = fy(yi, ti)(y(t|ti) − yi) + f(yi, ti) + ft(yi, ti))(t− ti) +

+1
2
fyy(yi, ti) ∗Ω(ti)(t− ti) (90)

Σ̇(t|ti) = fy(yi, ti)Σ(t|ti) +Σ(t|ti)f ′y(yi, ti) +Ω(ti). (91)

By contrast to the EKF and SNF moment equations which is a system of nonlinear differential
equations, the Jacobians are evaluated once at the measurements (yi, ti) and the differential
equations are linear and not coupled (for details, cf. Singer, 2002).

6 Filter Approximations

based on Numerical Integration

The traditional way of nonlinear filtering has been the expansion of the system functions f ,
Ω and h. Another approach is the approximation of the filtering density p(y|Z i).

6.1 Unscented Kalman Filtering

The idea of Julier and Uhlmann (1997) was the definition of so called sigma points with
the property that the weighted mean and variance over these points coincides with the true
parameters. According to Julier et al. (2000) one can take the 2p+ 1 points

x0 = µ; x±l = µ±√
p+ κΓ.l, l = 1, ..., p (92)

with weights

α0 = κ/(p+ κ);αl = 1/(2(p+ κ)) = α−l, (93)

where Γ.l is the lth column of the Cholesky root of Σ = ΓΓ ′, κ is a scaling factor and p is the
dimension of the random vector X. For example, in the univariate case p = 1 one obtains
the three points µ, µ±

√
1 + κσ.

The UT method may be interpreted in terms of the singular density

pUT (x) =
p

∑

l=−p

αlδ(x− xl). (94)

Then, however, only nonnegative weights αl are admissible. Generally, the expectation
EUT [X] =

∫

x pUT (x)dx = µ and

VarUT (X) =
∫

(x− µ)(x− µ)′pUT (x)dx (95)

=
p

∑

l=−p

(xl − µ)(xl − µ)′αl (96)

=
p

∑

l=1

Γ.l(Γ.l)
′ = ΓΓ ′ = Σ (97)
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yields the correct first and second moment. Nonlinear expectations are easily evaluated as
sums

EUT [f(X)] =
∫

f(x)pUT (x)dx =
∑

l

f(xl)αl (98)

=
κ

p+ κ
f(µ) +

1

2(p+ κ)

p
∑

l=−p,p 6=0

f(xl) (99)

Using large κ, the EKF formula ETaylor[f(X)] = f(µ) is recovered.
All expectations in the filter are evaluated using the sigma points computed from the condi-
tional moments µ(τj|ti), Σ(τj |ti). To display the dependence on the moments, the notation
yl = yl(µ,Σ) will be used. For example, the terms in the time update are (short notation
dropping arguments)

E[f |Z i] ≈
∑

l

f(yl)αl (100)

Cov[f, y|Z i] = E[f(y)(y − µ)′|Z i] ≈
∑

l

f(yl)(yl − µ)′αl (101)

E[Ω|Z i] ≈
∑

l

Ω(yl)αl (102)

with sigma points yl = yl(µ(τj|ti), τj), Σ(τj |ti)). With the new moments µ(τj+1|ti), Σ(τj |ti),
updated sigma points are computed.

6.2 Gauss-Hermite Filtering

For the Gaussian filter, one may assume that the true p(x) is approximated by a Gaussian
distribution φ(x;µ, σ2) with the same mean µ and variance σ2. Then, the Gaussian integral

Eφ[f(X)] =
∫

f(x)φ(x;µ, σ2)dx =
∫

f(µ+ σz)φ(z; 0, 1)dz (103)

≈
m

∑

l=1

f(µ+ σζl)wl =
m

∑

l=1

f(ξl)wl (104)

may be approximated by Gauss-Hermite quadrature (cf. Ito and Xiong, 2000). Ito & Xiong
(2000) The ζl, wl are quadrature points and weights for the standard gaussian distribution
φ(z; 0, 1). If such an approximation is used, one obtains the Gauss-Hermite filter (GHF).
Generally, filters using Gaussian densities are called Gaussian filters (GF). The GHF can be
interpreted in terms of the singular density pGH(x) =

∑m
l=1wlδ(x − ξl) concentrated at the

quadrature points ξl. The Gauss-Hermite quadrature rule is exact up to order O(x2m−1).
Multivariate Gaussian integrals can be computed by transforming to the standard normal
distribution and p-fold application of (103).
The Gaussian filter is equivalent to an expansion of f to higher orders L

E[f(X)] ≈
L

∑

l=0

1
l!
f l(µ)E[X − µ]l =

L
∑

l=0

1
l!
f l(µ)ml (105)

(higher order nonlinear filter HNF(2, L)) and factorization of the moments according to the
Gaussian assumption ml := E[X − µ]l = (l − 1)!!σl (l even) and ml = 0 (l odd). This leads
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to an exact computation of (103) for L → ∞. In this limit, the HNF and GF coincide. In
the EKF=HNF(2,1) and SNF=HNF(2,2), the higher order corrections are neglected. Also,
third and higher order moments could be used (HNF(K,L); cf. Singer (2006d)).
It is interesting that κ = 2, p = 1 in the UT corresponds to a Gauss-Hermite rule with m = 3
sample points (Ito and Xiong, 2000).

6.3 Generalized Gauss-Hermite Filtering

The Gaussian filter assumed a Gauss density φ(y;µ, σ2) for the filter distribution p(y). More
generally, one can use a Hermite expansion

p(y) = φ(y;µ, σ2)
K
∑

n=0

cnHn((y − µ)/σ) = φ(y) ∗H(y,K), (106)

with Fourier coefficients c0 = 1, c1 = 0, c2 = 0,

c3 := (1/3!)E[Z3] = (1/3!)ν3 (107)

c4 := (1/4!)E[Z4 − 6Z2 + 3] = (1/24)(ν4 − 3), (108)

Z := (Y −µ)/σ and orthogonal polynomials H0 = 1, H1 = x,H2 = y2−1, H3 = y3−3y,H4 =
y4 − 6y2 + 3 etc. Expectation values occuring in the update equations are again computed
by Gauss-Hermite integration, including the nongaussian term

H(y; {µ,m2, ..., mK}) :=
K

∑

n=0

cnHn((y − µ)/σ). (109)

Since H(y; {µ,m2, ..., mK}) depends on higher order moments, one must use K moments
equations (74). The choice K = 2 recovers the usual Gaussian filter, since c0 = 1, c1 =
0, c2 = 0. The Hermite expansion can model bimodal, skewed and leptokurtic distributions.
For details, see Singer (2006d,b,c).
Related algorithms have been developed by Srinivasan (1970), Challa et al. (2000) but we
formulate the time update as integro-differential equations, solved stepwise by using Gauss-
Hermite integration. Moreover, computation of the measurement update (Bayes formula) is
improved. We use the normal correlation update as Gaussian weight function in the Gauss-
Hermite quadrature to achieve higher numerical accuracy. The a posteriori moments are
obtained directly without iterative procedure.
In contrast, Challa et al. (2000) use truncated moment equations in the time update (higher
order moments are set to zero) and (iterated) EKF measurement updates as approximate
means and variances for the posterior Hermite series (p. 3400). Moreover, only linear system
equations are considered.
In the proposed approach, the time update equations are closed by explicit integration over
the given Hermite expansion of order K. Therefore, for K = 2 we obtain the GHF as special
case, whereas Challa et al. (p. 3399) obtain the EKF. Thus, like the GHF, higher order
moments are not neglected but approximated through the approximate Hermite density.
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7 Discussion

1. The density based filters UKF and GHF have the strong advantage, that no derivatives
of the system functions must be computed. This is no problem for the EKF and SNF,
but for higher orders in the HNF(K,L) complicated tensor expressions arise. Moreover,
higher order moments must be dropped or factorized in order to obtain closed equations.
In the multivariate case, the formulas for Gaussian moments are involved. The fourth
moment is

m4,ijkl = σijσkl + σikσjl + σilσjk. (110)

For a general formula, see (Gardiner 1996, p. 36)

2. Apart from an implementation point of view (see 1.), the low order EKF and SNF suffer
from problems such as filter divergencies, especially when the sampling intervals are
large. Simulation studies suggest, that the UKF and GHF are more stable and yield
smaller filtering error in the mean (Singer 2006a).

3. The moment equations and measurement updates as derived in section (4.3) involve
expectations with respect to the filter density p(y), but not for the noise processes. Their
statistics are already included in these updates (the terms E[Ω]dt = E[gdW (gdW )′]
and R = Var(ε) stem from the noise sequences). Thus no sigma points w.r.t the noises
must be computed, as suggested in the literature on the UKF (Julier et al. 2000, Sitz,
Schwarz, Kurths & Voss 2002, Sitz, Schwarz & Kurths 2002). This is only necessary
if the system is first modeled deterministically and afterwards extended by the noises.
This is neither necessary nor efficient.

8 Parameter estimation: the Lorenz model

In most applications, the models contain unknown parameters to be estimated from the
available sampled data. The likelihood function, which is computed recursively by the filter,
yields maximum likelihood (ML) estimates and asymptotic standard errors by numerically
maximizing the likelihood and evaluting the negative Hessian matrix (observed Fisher infor-
mation). In the context of nonlinear filter theory, a more convenient approach can be taken
by considering the (fixed) parameters as latent states with trivial dynamics dψ = 0, i.e.
constant. Thus the filter runs with the extended state η(t) = {y(t), ψ(t)} and yields condi-
tional distributions p(y(t), ψ(t)|Z i). The filters considered in this paper produce approximate
conditional expectations E(y(t), ψ(t)|Z i) and variances Var(y(t), ψ(t)|Z i). Thus we obtain
recursive estimates ψ̂(t) = E(ψ(t)|Z i) of the parameter vector which is updated at the times
of measurement. Also, recursive standard errors are obtained. The Bayesian estimates may
be called expected a posteriori estimates (EAP). Maximization of the marginal conditional
density p(ψ(t)|Z i) with diffuse a priori distribution p(ψ(t0)) would give the ML estimator.
In this example the chaotic Lorenz model (Lorenz, 1963) is considered. It is the best known
simple system exhibiting chaos and has been used for many purposes. Among them are the
Navier-Stokes equations in meteorology (the original application), laser theory (Haken, 1977,
Graham, 1989), psychology (Singer, 1992) and sociology (Troitsch, 1990). ML estimation has
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method x y z σ r b

EKF 34.4278 49.0568 46.4022 15.968 12.9247 8.18301
(std) 2.35341 4.8163 4.38871 6.61447 4.10521 0.979441
SNF 34.4433 49.2547 46.4675 16.0031 13.7448 8.50263
(std) 2.36142 4.81487 4.41146 6.61724 4.56789 1.1919

HNF(2,2) 34.4388 49.2483 46.4605 15.9944 13.7155 8.50246
(std) 2.35904 4.80811 4.41011 6.59141 4.48563 1.17291

UKF, κ = 0 34.4355 49.2436 46.4566 15.9841 13.6924 8.50225
(std) 2.35775 4.80203 4.411 6.57232 4.41997 1.15926

FIF, n = 10000 35.3055 50.9326 48.7735 22.2944 20.5525 9.43772
(std) 2.81775 5.70727 7.53299 11.3771 10.4972 2.41376

Table 1: Lorenz model: mean and standard deviation of squared filter errorA =
∑

t ν
2
t inM = 100

samples (∆t = 0.2).

been considered by Ozaki et al. (2000) We assume that a vector of variables Y (t) = [x, y, z](t)
evolves according to the system of nonlinear stochastic differential equations

d







x(t)
y(t)
z(t)





 =







−σx(t) + σy(t)
−x(t)z(t) + rx(t) − y(t)

x(t)y(t) − bz(t)





 dt+







g1dW1(t)
g2dW2(t)
g3dW3(t)





 (111)

The usual choice of parameters {σ0, r0, b0} = {10, 28, 8/3} leading to chaotic trajectories
was taken. The system error matrix is G = diag(4, 4, 4) and the measurement error co-
variance was taken as R = diag(0.1, 0.1, 0.1). The data were simulated using a dis-
cretization interval of δt = 0.01 using an Euler-Maruyama scheme and afterwards mea-
sured at regular sampling intervals ∆t = 0.2, 0.5. In order to estimate the parameters, the
state was extended with ψ(t) = {σ, r, b} using the dynamics dψ = 0 (constant parame-
ters). The initial state η(0) = {Y (0), ψ(0)} was assumed to be distributed as N(µ,Σ) with
E[η(0)] = {0, 0, 0, σ, r, b} and Var(η(0)) = diag(10, 10, 10, 1, 1, 1), which reflects moderate a
priori knowledge of the unknown parameters. In the filter solutions (figs. 5–6), the initial
value E[η(0)] = {0, 0, 0, σ0 + 1, r0 + 1, b0 + 1} was used. As is shown in the figures, the
filtered parameters converge to a vicinity of the true value {σ0, r0, b0} = {10, 28, 8/3} and
the approximate 95% HPD confidence intervals E(ψ(t)|Z i)± 1.96[Var(ψ(t)|Z i)]0.5; ti ≤ t get
smaller with increasing sample size. The behavior of the several algorithms is similar. The
simulated filter FIF needs many trajectories to fill the 6-dimensional phase space with enough
sample points. The performance can be expressed by the squared filtering error A =

∑

t ν
2
t ,

νt = y(t) − ŷ(t). Table 1 reports the means and standard deviations of the squared filter
error in a simulation study with M = 100 samples (∆t = 0.2). Surprisingly, the performance
of the EKF is better than the UKF (κ = 0) and the SNF. The UKF and the SNF are very
similar. The FIF (n = 1000) shows degraded performance due to simulation errors. Using
n = 10000 trajectories leads to better results, but still a larger sample size would be necessary.

Mathematica code:

(* system functions *)

driftLorenz[{x_,y_,z_},t_,{sigma_,r_,b_}] :=

{-sigma (x - y),

-x z + r x - y,

x y - b z }
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Figure 5: Filtered estimates of the Lorenz model. Comparision of several filtering algorithms.
Components 4–6 are the unobserved parameters σ, r, b. Sampling interval ∆t = 0.5.
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FIF, n=10000
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GHF, m=3
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Figure 6: Filtered estimates of the Lorenz model. Comparision of several filtering algorithms.
Components 4–6 are the unobserved parameters σ, r, b. Sampling interval ∆t = 0.5.
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DdriftLorenz[{x_,y_,z_},t_,{sigma_,r_,b_}] =

Outer[D,driftLorenz[{x,y,z},t,{sigma,r,b}],{x,y,z}]

diffusionLorenz[{x_,y_,z_},t_,{sigma_,r_,b_}] = DiagonalMatrix[2{1,1,1}]

hLorenz[{x_,y_,z_},t_,{sigma_,r_,b_}] := {x,y,z}

DhLorenz[{x_,y_,z_},t_,{sigma_,r_,b_}] = DiagonalMatrix[{1.,1.,1.}]

RLorenz[{x_,y_,z_},t_,{sigma_,r_,b_}] = DiagonalMatrix[{1,1,1}]

mueLorenz[t_,{sigma_,r_,b_}] = {0,0,0}

sigmaLorenz[t_,{sigma_,r_,b_}] = DiagonalMatrix[{10,10,10}]

(* extended system functions *)

driftLorenzX[{x_,y_,z_,sigma_,r_,b_},t_,Theta_] :=

Module[{f},

f=driftLorenz[{x,y,z},t,{sigma,r,b}];

{f,{0,0,0}}//Flatten]

DdriftLorenzX[{x_,y_,z_,sigma_,r_,b_},t_,Theta_] =

Outer[D,driftLorenzX[{x,y,z,sigma,r,b},t,Theta],{x,y,z,sigma,r,b}]

diffusionLorenzX[{x_,y_,z_,sigma_,r_,b_},t_,Theta_]:=DiagonalMatrix[{4.,4.,4.,.0001,.0001,.0001}]

hLorenzX[{x_,y_,z_,sigma_,r_,b_},t_,Theta_] := {x,y,z}

DhLorenzX[{x_,y_,z_,sigma_,r_,b_},t_,Theta_] = DiagonalMatrix[{1.,1.,1.}]~ii~Shape[0,{3,3}]

RLorenzX[{x_,y_,z_,sigma_,r_,b_},t_,Theta_] = .1 DiagonalMatrix[{1,1,1}]

mueLorenzX[t_,{sigma_,r_,b_}] = {0,0,0,sigma,r,b}//N

sigmaLorenzX[t_,{sigma_,r_,b_}] =

DiagonalMatrix[{10,10,10,1,1,1}]//N

(* simulation of data *)

k = 3;p = 6;q = 1;T = 1000; T1 = T+1;dt = 0.01;r = 6;u = 3;

Theta = {10,28,8/3}//N;

Y0 = {.01,.01,.01,Theta}//Flatten;

X = Shape[10.,{T+1,q}]//N;

SeedRandom[-999999];

{Z,Y}=NonLinStateSpace[hLorenzX, {RLorenzX, konstant}, driftLorenzX, diffusionLorenzX,

Y0, X, T, dt, Theta, Gauss, EulerStep];

ti={1, 21,41,81,220, 300, 301, 350, 490,500,600,610,677,800}; (* irregular sampling *)

ti=Range[1,T+1,50]; (* selection deltat= 0.5 *)

TT=Delta[ti]//Max

miss=-9.;

ZM = Array[miss&,{T+1,k}];

Map[(ZM[[#]] = Z[[#,{1,2,3}]])&,ti];

(* nonlinear filtering with EKF *)

sel=Range[T1];

{YF,PF,clik} =

EKF[{ZM[[sel]], X[[sel]]}, Theta+1,

{driftLorenzX, DdriftLorenzX,diffusionLorenzX, hLorenzX, DhLorenzX,

RLorenzX, mueLorenzX,sigmaLorenzX,dt},

{miss=-9., option=2}] ;//Timing

9 Stochastic Volatility

From the preceeding examples it seems, that UKF, HNF or GHF are always the best algo-
rithms, with the FIF as the only competitor (but with high computational demand). The
stochastic volatility model is interesting in this respect, since it contains a latent variable act-
ing on the diffusion term. It is an alternative to the well known ARCH specification, where
the volatility can be expressed in terms of measured states. Here, the state space model

dS(t) = µS(t)dt+ σ(t)S(t)dW (t) (112)

dσ(t) = λ[σ(t) − σ̄]dt+ γdV (t) (113)

zi = S(ti), (114)
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Figure 7: GGHF(K = 2) = GHF: Stochastic volatility model. Stock price (left) and volatility
(right). Similar results are obtained for the EKF, SNF and UKF.
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Figure 8: GGHF(K = 4): Stochastic volatility model. Stock price (left) and volatility (right).
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Figure 9: GGHF(K = 6): Stochastic volatility model. Stock price (left) and volatility (right).
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Figure 10: Monte Carlo filter (N = 10000 replications): Stochastic volatility model. Stock price
(left) and volatility (right).
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Var(dW, dV ) = 0 (Scott, 1987, Hull and White, 1987) contains an unobservable volatility
process σ(t). The data are simulated daily (365 days), but measured on a weekly sampling
interval. {µ, λ, σ̄, γ} = {.07,−1., .2, .2}. The model accounts for the fact, that the returns

r(t) = dS/S = µdt+ σ(t)dW (t) (115)

on financial time series can exhibit a time dependent variance and leptokurtosis of the return
distribution, as is found empirically (cf. Kim et al., 1998, Fridman and Harris, 1998). Using
higher order moment information as in the GGHF(4), GGHF(6) yields estimates of the latent
volatility trajectory (figs. 8–9) similar to Monte Carlo filtering (functional integral filter FIF,
N = 10000 replications; fig. 10; cf. Singer, 2003).

10 Conclusion

We have presented linear (LSDE) and nonlinear filter algorithms (SDE) for sampled continu-
ous time systems as well as SEM approaches to linear SDE estimation. In the latter case, the
required nonlinear parameter restrictions can be implemented very easily in Mathematica.
The nonlinear filter algorithms are based on moment equations, which can be approximated
by Taylor expansions (EKF, HNF, LL) or numerical integration (UKF, GHF, GGHF). All
algorithms are collected in the packages SDE and SEM.
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Journal of Computational and Graphical Statistics 11,4, 972–995.

Singer, H. (2003), ‘Simulated Maximum Likelihood in Nonlinear Continuous-Discrete State
Space Models: Importance Sampling by Approximate Smoothing’, Computational Statis-

tics 18,1, 79–106.

Singer, H. (2004d), SEM – Linear Structural Equations Models with Arbitrary Non-
linear Parameter Restrictions, Version 0.1, Mathematica Program, http://www.fernuni-
hagen.de/STATISTIK/forschung/SEMArchive.exe, Fernuniversität in Hagen, Hagen, Ger-
many.

Singer, H. (2006a), Continuous-Discrete Unscented Kalman Filtering, Diskussionsbeiträge
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