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Abstract

Stochastic differential equations (SDE) are used as dynamical models for discrete
time measurements (time series and panel data). Thus causal effects are formulated
on a fundamental infinitesimal time scale. Causal effects over the measurement in-
terval can be expressed in terms of the fundamental effects which are independent of
the chosen sampling intervals (e.g. weekly, monthly, annually etc.).

In the linear case, the Kalman filter algorithm yields a recursive representation of
likelihood and filtered states. Alternatively, structural equations models (SEM) with
nonlinear parameter restrictions permit a nonrecursive computation of the likelihood
function. The pro’s and contras of both approaches are discussed. The Kalman
approach is applied to a clinical data set with irregular sampling and missing data.
Finally, the estimation of nonlinear models is discussed, using the extended Kalman
filter (EKF) and Hermite expansions of the transition density.
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1 Introduction

1.1 Continuous time models

Continuous time models coincide with the feeling, that time is a continuously flowing
quantity without steps. On the other hand, data are mostly available at certain
time points, e.g. daily, weekly, quarterly etc. or at arbitrary times. Therefore, there
has been a tendency to formulate dynamical models in discrete time (times series
analysis). Thus, the causal relations are specified between the arbitrary measurement
times. Bartlett (1946) argues as follows

It will have been apparent that the discrete nature of our observa-
tions in many economic and other time series does not reflect any lack
of continuity in the underlying series. Thus theoretically it should often
prove more fundamental to eliminate this imposed artificiality. An unem-
ployment index does not cease to exist between readings, nor does Yule’s
pendulum cease to swing. (emphasis H.S.)

Indeed there are many disadvantages of discrete time models. One of the most
basic defects is that the dynamics are modeled between the (arbitrarily sampled)
measurements and not between the system states. For example, a physical system
like a pendulum (cf. the citation above) fulfils a simple linear relation between the
state and its velocity change (acceleration), whereas the relation between sampled
measurements (e.g. daily) is very complicated and nonlinearly dependent on the
parameters (mass, length of the pendulum etc.) and the sampling interval.
Studies with different sampling intervals cannot be compared, since the causal pa-
rameters relate to the chosen interval. Moreover, if the same data set is analyzed with
different intervals (select a weekly or monthly data set from daily measurements),
one gets estimates corresponding to these intervals which can be in contradiction. In
the sequel it is shown, that the strength and even sign of causal relations depends on
the chosen sampling interval, even if the underlying process is the same.
Nevertheless there is a theory which can combine both points of view:

1. a continuous time dynamical model

2. discrete time (sampled) measurements.

One attempts to estimate the parameters of the continuous time model from time
series or panel measurements. This can be done by computing the conditional prob-
ability density between the measurement times. In the linear Gaussian case, only
the time dependent conditional mean and covariance is needed. More generally, in
the presence of latent states and errors of measurement, a so called measurement
model can be defined, mapping the continuous time state to observable discrete time
data. The corresponding hybrid model is called continuous-discrete state space
model. It first appeared in engineering (Jazwinski, 1970), but is now well known in
econometrics, sociology and psychology.
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1.2 Differential equations

Mathematically speaking, differential equations are the continuous time analog of
time series models, i.e. the state vector Y (t) is a function of the real parameter t
(time) and the desired time function is implicitly given in terms of time derivatives.
For example, the simple growth model

dY (t)/dt = aY (t) (1)

states, that the time change of Y (t) in the interval [t, t + dt] is proportional to the
state at this time point. Examples are the growth of populations or the attenuation
of radioactive rays in media (a < 0). The solution of (1) with initial condition Y (t0)
is given by

Y (t) = exp[a(t− t0)]Y (t0) (2)

which can be verified by computing the derivative dY (t)/dt. In a social science
context, the simple deterministic equation must be extended by a random initial
condition Y (t0, ω) and stochastic equation errors which model neglected variables
and misspecifications in the functional form of the differential equation. A linear
specification is given by the stochastic differential equation (SDE)

dY (t)/dt = aY (t) + gζ(t) (3)

where ζ(t) is a zero mean Gaussian white noise process with autocorrelation func-
tion γ(t − s) = E[ζ(t)ζ(s)] = δ(t − s) (Dirac delta function). This means, that the
noise process is only autocorrelated for very short time spans. The solution of (3) is
given by

Y (t) = exp[a(t− t0)]Y (t0) +
∫ t

t0
exp(a(t− s))gζ(s)ds. (4)

Since the continuous time white noise process is a generalized random function
(cf. Arnold, 1974, ch. 3), the solution is usually rewritten by the replacement
ζ(s)ds = dW (s), where W (s) is the Wiener process, a continuous, but not differen-
tiable random walk process (cf. Arnold, ch. 4). Thus, in order to avoid derivatives
of nondifferentiable processes, one writes symbolically

dY (t) = aY (t)dt + gdW (t) (5)

Y (t) = exp[a(t− t0)]Y (t0) +
∫ t

t0
exp[a(t− s)]gdW (s). (6)

and interprets the first equation as an integral equation. This is the so called Itô
calculus, which is a well defined method for the treatment of stochastic differential
equations (cf. Arnold, 1974). From the explicit solution (6) it is seen that the solution
process is Gaussian if the initial condition is Gaussian or constant as well.
In the context of parameter estimation it is helpful to write the solution as a discrete
time series (exact discrete model; EDM; Bergstrom 1976, 1988)

Yi+1 = exp[a(ti+1 − ti)]Yi +
∫ ti+1

ti
exp[a(ti+1 − s)]gdW (s), (7)
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Yi := Y (ti), or more concisely as

Yi+1 = Φ(ti+1, ti)Yi + ui, (8)

where Φ is the fundamental matrix (scalar case in (8)), but it should be noted
that the parameters of the EDM are highly nonlinearly restricted (e.g. Var(ui) =∫
Φ(ti+1, s)2g2ds).

This is the main problem for the task of parameter estimation. Software must be able
to implement the required nonlinear restrictions, especially in the multivariate
case where (time ordered) matrix exponentials are involved (some references are
Phillips, 1976, Jones, 1984, Hamerle et al., 1991, 1993, Singer, 1998). The term
time ordered means, that the matrices A(t) (see equation 9), which contain the
causal effects, do not commute in general, i.e. A(t)A(s) �= A(s)A(t). This is a general
property of matrices which must be considered in computing the fundamental matrix
and the EDM (14).
Models with time-varying matrices are of empirical interest, since fluctuating exoge-
nous variables may influence a time invariant system or the system itself changes
its dynamics over time. For example, in the context of development psychology,
the children get older in the course of a longitudinal study, so the causal effects are
time dependent (cf. Singer, 1998). Similarly, the factor structure of a depression
questionaire may be time dependent due to the psychological state of the subjects.

1.3 Advantages of differential equation models

Although the estimation of differential equations is more difficult than for discrete
time models, there are many advantages of the approach (cf. Möbus and Nagl,
1983) :

1. The model specification of the system dynamics is independent of the mea-
surement scheme and is given at the process level of the phenomenon (micro
causality in the infinitesimal time interval dt).

2. The design of the study is specified by a measurement model, independently of
the systems dynamics.

3. Changes of the variables can occur at any time, at and between the measure-
ments. The state is defined for any time point, even if it can’t be measured.

4. Extrapolation and interpolation of the data points can be obtained for arbitrary
times and is not constrained to the sampling interval of the panel waves.

5. Studies with different or irregular sampling intervals can be compared since
the continuous time structural parameters of the system do not depend on the
measurement intervals.

6. Data sets with different sampling intervals can be analyzed together as one
vector series.

7. Irregular sampling and missing data are treated in a unified framework. The
parametrization is parsimonious since only the fundamental continuous time
parameters must be estimated.

4



8. Cumulated or integrated data (flow data) can be represented explicitly.

9. Nonlinear transformations of data and variables can be handled by a differential
calculus (Itô calculus).

2 Linear continuous-discrete

state space models

2.1 Exact discrete model

In order to incorporate higher order derivatives (ARMA models), latent factors
and errors of measurement, the linear continuous/discrete state space model
(Jazwinski, 1970, ch. 7.2)

dY (t) = [A(t, ψ)Y (t) + b(t, ψ)]dt +G(t, ψ)dW (t) (9)
Zi = H(ti, ψ)Y (ti) + d(ti, ψ) + εi (10)

with random initial condition Y (t0) ∼ N(µ,Σ) is introduced. In the state equation
(9), W (t) denotes an r-dimensional Wiener process and the state is described
by the p-dimensional state vector Y (t). It fulfils a system of stochastic differential
equations in the sense of Itô (cf. Arnold, 1974). The matrix A : p× p is called drift
and G : p × r;Ω = GG′ is the square root of the diffusion matrix Ω. Furthermore,
the vector b models deterministic control variables (stochastic control variables are
already included in the model by extending the state vector Y (t)).
In the measurement equation (10), the measurement error εi ∼ N(0, R(ti, ψ)), R :
k × k is discrete time white noise and H : k × p contains factor loadings.
It should be noted that model (9–10) is very general and includes continuous time
autoregressive integrated moving average (CARIMA) specifications, models with
coloured noise, regression models with CARMA errors and dynamic factor analy-
sis.
Parametric estimation is based on the u-dimensional parameter vector ψ and the
time dependence t also incorporates deterministic regressor variables x(t). Moreover,
panel data may be treated by joining a panel index n, n = 1, ..., N (cf. Singer, 1998).
In this case, the system matrices may depend on deterministic regressors xn(t), i.e.
A(t, ψ)→ A(t, xn(t), ψ) := An(t), etc.
Random effects may be added by specifying dπn = 0 in the state equation and by
extending the state Yn → {Yn, πn}. In the panel case, the parameters of the random
initial condition Yn(t0) ∼ N(µ(xn(t0), ψ), Σ(xn(t0), ψ)) can be estimated as well.

Example 1: CAR(2) model

As mentioned above, the state space model is very general and allows the specification
of models with higher order derivatives where only the first component is measured
at the sampling times ti. It should be noted that no approximation whatsoever is
involved. For example, the CAR(2) process (pendulum, linear oscillator; γ = friction,
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Figure 1: Linear oscillator with irregularly measured states (dots): Filtered state (left),
smoothed state (right) with 95%-HPD confidence intervals. Measurements at τ1 =
{0, .5, 1, 2, 4, 5, 7, 7.5, 8, 8.5, 9, 9.1, 9.2, 9.3, 10} (first component; 1 st line), τ2 = {0, 1.5, 7, 9}
(2 nd component, 2 nd line). Discretization interval δt = 0.1. The controls x(t) were measured
at τ3 = {0, 1.5, 5.5, 9, 10} (see main text).

ω0 = 2π/To = angular frequency, To = period of oscillation)

ÿ + γẏ + ω2
0y = bx(t) + gζ(t) (11)

with exogenous controls x(t) has state space representation

d

[
y1(t)
y2(t)

]
:=

[
0 1
−ω2

0 −γ
][
y1(t)
y2(t)

]
dt+

[
0
b

]
x(t)dt +

[
0 0
0 g

]
d

[
W1(t)
W2(t)

]
(12)

zi := [ 1 0 ]
[
y1(ti)
y2(ti)

]
+ εi (13)

and there is no need to approximate differentials by finite differences etc.
The unobservable derivative y2 = ẏ is reconstructed by the filter as E[y2(t)|ZT ]
(smoothed, filtered or predicted state depending on time t; cf. Singer, 1993). Ap-
proximating the derivatives by finite differences introduces unnecessary specification
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Figure 2: Linear oscillator: Exact discrete matrices A∗ = exp(A∆t), B∗ = A−1(A∗ − I)B,
Ω∗ =

∫ ∆t
0 exp(As)Ω exp(A′s)ds as a function of measurement interval ∆t. Note that the

discrete time coefficients change their strength and even sign.

error and biased estimates. Figure 1 shows the true, filtered and smoothed trajecto-
ries of a irregularly sampled oscillator with measurement error R = diag(.01, .01) (cf.
Singer, 1995) and 95% highest probability density (HPD) confidence intervals. Here
the second component is measured, but at other time points than the first one. The
ML estimates were inserted in the filter. The EDM in this example was formulated
on a grid with spacing δt = 0.1 and all time points are expressed as multiples of
this (arbitrary) discretization interval (cf. section 2.4). Figure 2 demonstrates, that
the strength and even sign of the discrete time matrices of the EDM may change
over time. Thus, the interpretation of data should rely on the fundamen-
tal structural parameters of the SDE and not on the arbitrarily sampled
discrete time models.
The AR(2) model has been used for the sunspot activity (Bartlett, 1946; Singer,
1993), and more recently, for modeling the dynamics of married couples (Boker,
2004). In this case, two oscillators (pendulums) are connected by a spring with cou-
pling term d(y1 − y2) representing the force �

The state equation (9) can be solved for the times of measurement ti, i = 0, ..., T
(exact discrete model; EDM)

Y (ti+1) = Φ(ti+1, ti)Y (ti) +

+
∫ ti+1

ti

Φ(ti+1, s)b(s)ds+
∫ ti+1

ti

Φ(ti+1, s)G(s)dW (s) (14)

with the parameter functionals (for a proof, see Arnold, 1974)

A∗i := Φ(ti+1, ti) =
←
T exp[

∫ ti+1

ti

A(s)ds] (15)

b∗i :=
∫ ti+1

ti

Φ(ti+1, s)b(s)ds (16)
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where
←
T A(t)A(s) = A(s)A(t); t < s is the Wick time ordering operator (cf.

Abrikosov et al., 1963) and Φ(ti+1, ti) is the state transition matrix solving

d
dtΦ(t, ti) = A(t)Φ(t, ti) (17)
Φ(ti, ti) = I. (18)

In shorthand, one obtains the vector autoregression VAR(1) scheme

Yi+1 = A∗iYi + b∗i + ui (19)
Zi = HiYi + di + εi. (20)

with covariance matrix

Var(ui) := Ω∗i =
∫ ti+1

ti
Φ(ti+1, s)G(s)G′(s)Φ′(ti+1, s)ds. (21)

Example 2: Growth model with time dependent rates

The time dependent model of growth rates with constant part

A0 =
[
λ11 λ12

λ21 λ22

]
(22)

and a linearly changing part (due to development processes)

A1(t) =
[
α t 0
0 β t

]
. (23)

yields a drift matrix A(t) = A0 + A1(t). Since A(t) does not commute with A(s),
i.e. A(t)A(s) − A(s)A(t) �= 0, the state transition matrix is not simply given by the
matrix exponential

Φ(t|ti) = exp[
∫ t

ti

A(s)ds] (24)

but by the time ordered expression

Φ(t|ti) =
←
T exp[

∫ t

ti

A(s)ds] (25)

Using the moment equations (26,27) with a respective numerical approximation
(Euler- or higher order Runge-Kutta scheme) does automatically produce the time
ordered expressions in the Kalman filter or the exact discrete model (14). This is the
crucial step a software package must take in order to implement the correct parameter
functionals (for details see Singer, 1998) �
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2.2 Filtering and likelihood function

The likelihood function can be computed recursively by means of the Kalman fil-
ter algorithm (Jazwinski, 1970, Liptser and Shiryayev, 1977, 2001, Harvey and
Stock, 1985, Singer, 1998). The computation proceeds in steps of time updates and
measurement updates involving the conditional moments µ(t|ti) = E[Y (t)|Zi] and
Σ(t|ti) = Var[Y (t)|Zi], where Zi = {Zi, ..., Z0} are the measurements up to time ti.
The time updates fulfil (t ∈ [ti, ti+1])

(d/dt)µ(t|ti) = A(t, ψ)µ(t|ti) + b(t, ψ) (26)
(d/dt)Σ(t|ti) = A(t, ψ)Σ(t|ti) +Σ(t|ti)A′(t, ψ) +Ω(t, ψ) (27)

where Ω(t, ψ) = GG′(t, ψ) is the diffusion matrix. Initial conditions are µ(ti|ti) and
Σ(ti|ti) (a posteriori moments at time ti). The moment equations (26–27) may be
solved explicitly. Using the fundamental matrix one obtains (dropping ψ)

µ(ti+1|ti) = Φ(ti+1, ti)µ(ti|ti) +

+
∫ ti+1

ti

Φ(ti+1, s)b(s)ds (28)

Σ(ti+1|ti) = Φ(ti+1, ti)Σ(ti|ti)Φ′(ti+1, ti) +

+
∫ ti+1

ti
Φ(ti+1, s)Ω(s)Φ′(ti+1, s)ds. (29)

These results may be obtained as well by taking the conditional (on Zi) mean and
variance of the EDM (14).
At the measurement times, the time update (optimal prediction) is corrected by the
measurement Zi+1 using the Bayes formula leading to the measurement update

µ(ti+1|ti+1) = µ(ti+1|ti) +K(ti+1|ti)ν(ti+1|ti) (30)
Σ(ti+1|ti+1) = [I −K(ti+1|ti)H(ti+1)]Σ(ti+1|ti) (31)
ν(ti+1|ti) = Zi+1 − Z(ti+1|ti) (32)
Z(ti+1|ti) = H(ti+1)µ(ti+1|ti) + d(ti+1) (33)
Γ (ti+1|ti) = H(ti+1)Σ(ti+1|ti)H ′(ti+1) +R(ti+1) (34)
K(ti+1|ti) := Σ(ti+1|ti)H ′(ti+1)Γ (ti+1|ti)−1 (35)

where K(ti+1|ti) is the Kalman gain, Z(ti+1|ti) is the optimal predictor of the mea-
surement Zi+1, ν(ti+1|ti) is the prediction error and Γ (ti+1|ti) is the prediction
error covariance matrix. Fortunately, the updated state Y (ti+1)|Zi+1 is again
conditionally Gaussian and one can proceed with two conditional moments. After T
steps one obtains the likelihood

l(ψ;Z) = log p(ZT , . . . , Z0;ψ) =
T−1∑
i=0

log p(Zi+1|Zi;ψ)p(Z0), (36)

where the transition densities are given in terms of the Gaussian distribution

p(Zi+1|Zi;ψ) = φ(ν(ti+1|ti); 0, Γ (ti+1|ti)). (37)
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Thus the Kalman filter computes the likelihood recursively in terms of predictions,
prediction errors and their conditional variance (cf. Jazwinski, 1970). The time
update is the dynamical prediction starting from the information at time ti, whereas
the measurement update incorporates the new measurement information at ti+1.
It has the form of a linear regression model (30), where the Kalman gain is the
regression parameter matrix and the time update is the intercept. This replicates
the well known fact, that in a Gaussian system information is optimally incorporated
by a linear regression model. If there are deviations from normality, it is still the
best linear estimate (cf. Liptser and Shiryayev, 2001, vol. 2, lemma 14.1).
It may be stated that the parameter estimation task for the linear state space
model can be carried out efficiently by the Kalman filter algorithm. This
works with only one trajectory and/or with panel data. One only has to sum up the
N likelihood contributions. References are Jones and Ackerson (1990), Jones and
Boadi-Boateng (1991), Jones (1993), Singer (1995, 1998).

2.3 Conditionally Gaussian models

It should be noted that the system matrices may also depend on earlier measurements
(i.e. A(t) = A(t, Zi), ti ≤ t,H(ti) = H(ti, Zi−1) etc., but the distributions in the filter
are still conditionally Gaussian if Y (t0)|Z(t0) is such (cf. Liptser and Shiryaev, 2001,
ch. 13). Thus, although the latent states Y (ti) may be nongaussian due to the Z-
dependence, the conditionally Gaussian filtering scheme is still valid. For example,
the diffusion matrix Ω(t) may contain delayed prediction errors Ω(t, ν(ti|ti−1), ...)
and thus autoregressive conditional heteroskedasticity (ARCH) effects in a continuous
time model.

2.4 Computational aspects and simplifications

The moment equations (28) and the EDM (14) contain integrals over the fundamental
matrix which must be solved numerically. Since the solution

Φ(ti+1, ti) =
←
T exp[

∫ ti+1

ti
A(s)ds] (38)

for the fundamental matrix is only formal, one seeks a numerical solution of

d
dtΦ(t, ti) = A(t)Φ(t, ti) (39)
Φ(ti, ti) = I, (40)

e.g. the Euler approximation

Φ(τj+1, ti) ≈ [I +A(τj)δt]Φ(τj , ti) (41)
τj = ti + jδt; j = 0, ..., J − 1;J = ∆ti/δt (42)

on a fine grid with (arbitrary) spacing δt → 0. This expression is analogous to the
formula ex = limn→∞(1 + x/n)n and automatically incorporates the time ordering
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of A(s). More generally, one solves the moment equations (26–27) by appropriate
discrete schemes in the intervals [ti, ti+1], e.g.

µ(τj+1|ti) ≈ [I +A(τj)δt]µ(τj |ti) + b(τj)δt (43)

etc. or higher order Runge Kutta schemes. The EDM may be treated analogously.
In many cases, simplified model are sufficient, for example the panel model with
constant coefficients (Singer, 1991, 1993)

dYn(t) = [A(ψ)Yn(t) +B(ψ)xn(t)]dt +G(ψ)dWn(t) (44)
Zni = H(ψ)Yn(ti) +D(ψ)xn(ti) + εni. (45)

Here, the influence of exogenous (control) variables is parametrized by setting b(t) =
Bxn(t). Since xn(t) is in general only known at times ti, the parameter functional
(16) can be computed only approximately if xn(ti) is interpolated. For example, the
EDM is given by the explicit matrices

A∗i = exp(A∆ti) (46)
B∗i = A−1(A∗i − I)B (47)

Ω∗i =
∫ ∆ti

0
exp(As)Ω exp(A′s)ds (48)

if the control variables are (approximated by) piecewise constant regressors (step
functions). Similar, but more complicated formulas may be obtained if the controls
are polygonal lines or other approximations between measurements (cf. Phillips,
1976, Hamerle, Nagl and Singer, 1993).
The numerical solution of the moment equations (26–27) is more convenient, however,
since arbitrary interpolations of xn(ti) can be used without explicit computation of
the EDM (cf. Singer, 1995, 1998). The exogenous variables may even be measured
at other times than the endogenous state.
A variant of the EDM is formulated on a fine uniform grid with spacing δt, τj =
t0 + jδt; ti = t0 + jiδt, i = 0, ..., T , such that all sampling times can be expressed as
multiples of this unit. Then, one obtains the EDM scheme

Yj+1 = A∗jYj + b∗j + uj (49)
Zj = HjYj + dj + εj . (50)

j = 0, ..., jT − 1; jT = (tT − t0)/δt, with matrices

A∗j := Φ(τj+1, τj) =
←
T exp[

∫ τj+1

τj

A(s)ds] ≈ exp(Ajδt) (51)

b∗j :=
∫ τj+1

τj

Φ(τj+1, s)b(s)ds ≈ bjδt (52)

Var(uj) := Ω∗j =
∫ τj+1

τj

Φ(τj+1, s)Ω(s)Φ′(τj+1, s)ds ≈ Ωjδt. (53)

If the discretization interval δt is short, one can approximate (piecewise constant)
A∗j ≈ exp(Ajδt);Aj = A(τj), b∗j ≈ A−1

j (A∗j − I)bj ≈ bjδt, row(Ω∗j ) ≈ L−1
j (A∗j ⊗A∗j −
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I)row(Ωj) ≈ row(Ωj)δt, Lj = Aj ⊗ I + I ⊗ Aj (cf. Singer, 1995, 1998).1 Then, the
irregular sampling intervals ∆ti = (ji+1 − ji)δt can be bridged by a missing data
treatment if Zj is not observed (cf. 1). In the limit δt→ 0 one obtains an alternative
numerical scheme for the parameter functionals of the irregular EDM (15) and/or
the conditional moments (28). In the case of constant parameter matrices, only one
set of EDM matrices must be computed and the exogenous variables x(t) can vary
arbitrarily between sampling times.

2.5 Estimation with structural equations models (SEM)

The EDM

Yi+1 = A∗iYi + b∗i + ui (54)
Zi = HiYi + di + εi. (55)

i = 0, ..., T −1 may be represented by the matrix equation (cf. Oud et al., 1993, Oud
and Jansen, 2000)

η = Bη + Γ + ζ (56)
Y = Λη + τ + ε (57)

where η′ = [Y ′0 , ..., Y ′T ] is the sampled trajectory, Γ is a deterministic intercept
term, ζ ′ = [ζ ′0, u′0, ..., u′T−1] is the vector of process errors,

B =




0 0 0 . . . 0
A∗0 0 0 . . . 0
0 A∗1 0 . . . 0
... 0

. . . 0 0
0 0 . . . A∗T−1 0


 (58)

Γ =




µ
b∗0
b∗1
...

b∗T−1


 (59)

Var(ζ) =




Σ 0 0 . . . 0
0 Ω∗0 0 . . . 0
0 0 Ω∗1 . . . 0
... 0 0

. . . 0
0 0 . . . 0 Ω∗T−1


 (60)

are the structural matrices, and

Λ =




H0 0 0 . . . 0
0 H1 0 . . . 0
0 0 H2 . . . 0
... 0 0

. . . 0
0 0 . . . 0 HT


 (61)

1row is the row-wise vector operator and ⊗ is the Kronecker product.
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τ =




d0

d1

d2
...
dT


 (62)

Var(ε) =




R0 0 0 . . . 0
0 R1 0 . . . 0
0 0 R2 . . . 0
...

... 0
. . . 0

0 0 . . . 0 RT


 (63)

are the factor loading, deterministic intercept and error matrices of the measure-
ment model. Solving for η one obtains the solution of the SDE for the time points
ti

η = (I −B)−1(Γ + ζ). (64)

In this equation, the initial condition is represented by η0 = y(t0) = µ+ζ0 ∼ N(µ,Σ).
If the matrices do not depend on measurements Zt, the system is multivariate Gaus-
sian2 and the log likelihood function is given by (omitting constants)

l = −1
2(log |Σy|+ tr[Σ−1

y (Y − µy)(Y − µy)′]), (65)

where

µy = E[Y ] = Λ(I −B)−1Γ + τ (66)
Σy = Var(Y ) = Λ(I −B)−1Σζ(I −B)−TΛ′ +Σε. (67)

In the panel case, one has N trajectories Yn, n = 1, ...N and the likelihood is given
by (assuming b(t) = bn(t), d(t) = dn(t))

l = −N
2 (log |Σy|+ tr[Σ−1

y
1
N

∑
(Yn − µyn)(Yn − µyn)′]). (68)

where µyn = E[Yn] = Λ(I − B)−1Γn + τn, and Γ ′n = [µ′n, (b∗0n)′, ..., (b∗T−1,n)′], τ ′n =
[d′0n, ..., d

′
T−1,n].3

These expressions may again be simplified by assuming

bn(t) = B(t, ψ)xn(t) (69)
dn(t) = D(t, ψ)xn(t) (70)

and stepwise constant controls yielding

b∗ni = [
∫ ti+1

ti

Φ(ti+1, s)B(s, ψ)ds]xni (71)

:= B∗i xni. (72)

2but cf. section 2.3
3Assuming that the matrices A, G etc. do not depend on n, but see section 2.1.
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In this case, one can factorize Γn = ΓXn, τn = τXn, where

Xn =




1
xn0

xn1
...

xnT


 : (T + 1)q + 1× 1 (73)

Γ =




µ 0 0 . . . 0 0
0 B∗0 0 . . . 0 0
0 0 B∗1 . . . 0 0
... 0

. . . 0 0 0
0 0 . . . 0 B∗T−1 0


 : (T + 1)p× (T + 1)q + 1 (74)

τ =




0 D0 0 . . . 0 0
0 0 D1 0 . . . 0
0 0 0 D2 . . . 0

0
... 0

. . . 0 0
0 0 0 . . . 0 DT


 : (T + 1)k × (T + 1)q + 1. (75)

The SEM now reads (Xn are deterministic controls) 4

ηn = Bηn + ΓXn + ζn (76)
Yn = Ληn + τXn + εn (77)

and one can rewrite the likelihood for the N independent panel units in terms of data
matrices Y ′ = [Y1, ...YN ] : (T + 1)k ×N , X ′ = [X1, ...XN ] : (T + 1)q + 1×N as

l = −N
2 (log |Σy|+ tr[Σ−1

y (My + CMxC
′ −MyxC

′ − CMxy)]), (78)

where

E[Yn] = [Λ(I −B)−1Γ + τ ]Xn := CXn (79)

and the moment matrices are My = Y ′Y : (T + 1)k × (T + 1)k, Mx = X ′X :
(T + 1)q + 1× (T + 1)q + 1, Myx = Y ′X : (T + 1)k × (T + 1)q + 1.
In the case of constant parameter matrices, further simplifications are possible.

Discussion

SEM software must be able to incorporate the nonlinear restrictions as created by
the EDM or by the moment equations (26,27). It is very easy to implement the
likelihood function (78) in a matrix language (e.g. Mathematica or SAS/IML) and
to write all matrices as nonlinear functions of a parameter vector ψ.
The Kalman filter (KF) and the SEM approach are different in some respects:

1. The KF computes the likelihood recursively for the data Z = {Z0, ...ZT }, i.e.
the conditional distributions p(Zt+1|Zt) are updated step by step, whereas the
SEM representation utilizes the joint distribution of the vector {Z0, ...ZT }.

4This model was implemented as a Mathematica program (SEM, Singer, 2004b) and is available from
the author.
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2. Therefore, the KF can work online, since new data update the conditional
moments and the likelihood, whereas the SEM uses the batch of data Z =
{Z0, ...ZT } with dimension (T + 1)k. The KF only involves the data point
Zt : k × 1 and one has to invert matrices of order k × k (prediction error
covariance). The SEM must invert the matrices Σy : (T + 1)k × (T + 1)k and
B : (T + 1)p × (T + 1)p in each likelihood computation.
This will be a serious problem if long data sets T > 100 are analyzed, but not
for short panels.

3. The KF also works in the conditionally Gaussian case, since p(Zt+1|Zt) is still
Gaussian, whereas the joint distribution of Z = {Z0, ...ZT } is not Gaussian any
more.

4. As a consequence, the KF approach can be easily generalized to nonlinear sys-
tems (extended Kalman filter EKF etc.), since the transition probabilites are
still approximately conditionally Gaussian (see ch. 3).

5. The SEM approach is more familiar to many scientists used to work with LIS-
REL and other programs. In the early days of SEM modeling, only linear
restrictions could be implemented, but now the system (76–77) and its likeli-
hood (78) can be easily programmed and maximized using matrix software like
Mathematica, SAS/IML etc.

6. Filtered estimates of the latent states are computed recursively by the KF
(the conditional moments), and smoothed trajectories can be computed by a
(fixed interval) smoother algorithm. On the other hand, in the SEM approach,
one can compute the conditional expectations E[η|Y ] and Var[η|Y ] yielding the
smoothed estimates, but again matrices of order (T+1)k×(T+1)k are involved.

7. Missing data may be treated in both cases by modifying the measurement
model. The Kalman filter processes the data zn(ti) : k × 1 for each time point
and panel unit. Thus, the missing data treatment can be automatically included
in the measurement update by dropping missing entries in the matrices. In the
SEM approach, the so called individual likelihood approach may be utilized.

In my opinion, software with a direct implementation of the Kalman filter (KF) is
preferrable. The KF is the recursive, most direct and efficient implementation of the
continuous/discrete state space model.

2.6 Other issues

2.6.1 Flow data

In economics many variables (such as gross national product) are cumulated or av-
eraged over certain period of time. These so called flow data can be naturally
modelled by differential equations if additional derivatives are included in the state
space model which generate integrated measurements (cf. Bergstrom, 1984, Singer,
1995). Then, the dynamics are between stocks and latent differentiated flows, but
only integrated measurements are needed.
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2.6.2 Missing data

Often, missing data occur in panel designs or data are measured at arbitrary
frequencies. Sometimes, on may want combine different time series collected at dif-
ferent frequencies (daily, quarterly etc.). The continuous-discrete state space model
can handle all these cases easily, since the system model proceeds in continuous time
but is only measured at certain irregular times ti. Even different sampling intervals
of the panel units and/or exogenous variables are possible. Thus, in principle, one
could collect data at arbitrary times (no panel waves; see clinical example section
2.7). Missing data can be treated easily by the Kalman filter measurement update, if
missing components are canceled in the respective matrices. In fact, the discrete time
measurement of a continuous time model may be viewed as a missing data problem
and all nonmeasured states are reconstructed by the filter.

2.6.3 Random effects

Individual specific random effects πn can be treated in the state space model
by writing (n = 1, . . . , N)

d

[
yn

πn

]
=

[
A I
0 0

][
yn

πn

]
dt +

[
G
0

]
dWn(t) (80)

zni = [H 0 ]
[
yni

πni

]
+ εni,

From this one gets estimates of the covariance matrix Var(πn) of the several unob-
served components and is able to specify correlations between initial states and the
random effects Cov(yn(t0), πn).

2.7 Clinical application

The differential equation method was applied to clinical data which were collected
in a psychiatric hospital at arbitrary time points. 5 The data set contains many
behavioral, socioeconomic and medical variables. Here we choose the three variables
y(t) = {weight, neuroleptica dose, clinical impression}, where ’clinical impression’:
2,...,8, is a rating scale with lower values corresponding to a better health state.
The data set is highly irregular, since the number T +1 of measurement times ranges
between persons from 2 to 21 time points, and the sampling intervals ∆ti vary from 1
to 1574 days corresponding to 4.31 years (cf. figures 4–6). Moreover, missing values
are present in some components of the state vector. Nevertheless, the proposed
methodology is able to model and estimate the dynamical connection between the
state components y = {y1, y2, y3}. In a first step I used a linear SDE of the form
(vector CAR(1) model; the panel index n is dropped)

dy(t) = A[y(t)−m]dt+GdW (t) (81)

5I would like to thank Dr. Matthias Dobmeier, Arbeitsgruppe Psychopharmakologie, Harald Binder,
Dipl. Psych., Arbeitsgruppe Versorgungsforschung, Klinik und Poliklinik für Psychiatrie und Psychother-
apie der Universität Regensburg am Bezirksklinikum, Direktor: Prof. Dr. H.E. Klein, for the sampling,
preparation and permission to analyze the data set.
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or explicitly

dy1 = [a11(y1 −m1) + a12(y2 −m2) + a13(y3 −m3)]dt + g11dW1(t) (82)
dy2 = [a21(y1 −m1) + a22(y2 −m2) + a23(y3 −m3)]dt + g22dW2(t) (83)
dy3 = [a31(y1 −m1) + a32(y2 −m2) + a33(y3 −m3)]dt + g33dW3(t) (84)

where y1 = weight (kg), y2 = neuroleptica dose (mg), y3 = clinical impression (2
(better),...,8 (worse)). The parameter vector m can be interpreted as the asymptotic
mean value (t→∞) of y(t). Using only subjects with at least 2 measurement times
a number of N = 384 persons was selected and the parameters in A,m,G, µ =
E[yn0], Σ = Var(yn0) were estimated with the exact discrete model (EDM; A∗ =
exp(Aδt), etc.) and a linearized EDM (A∗ ≈ I + Aδt) by using the Kalman filter.
Since all sampling times can be expressed as multiples of δt = 1 day, the exact
discrete model is formulated for this discretization interval (cf. section 2.4).
The model specification is motivated by the fact that the panel is nonstationary,
since neuroleptica are known to increase the weight of the subjects. Thus we have
an initial level expressed by the parameters µ and Σ and a mean level expressed by
m. Indeed, comparing the estimates µ̂1 and m̂1 we see a mean increase of about 5
kg (over all persons and times). The coefficients aij are rate constants of the action
of variables i ← j, i.e. the relative change of variable dyi/((yj −mj)dt) in a small
time interval dt, by keeping the other variables at their mean level m. The action
over the interval ∆t is given by the regression parameter A∗(∆t) := exp(A∆t). Thus
the results of the SDE estimation are independent of any sampling intervals and
different persons can be analyzed jointly in a panel. The parameter matrices relate
to the fundamental infinitesimal change in the interval dt. In contrast, a discrete
time model would have to use many autoregressive and error parameter matrices,
each one for the different sampling intervals within and between subjects. Thus, a
SDE model is parsimonious since all measured quantities are expressed in terms of
only one set of matrices A,B,Ω.

Results

Table (5) shows the ML estimates, asymptotic standard deviations and t values.
Comparing the initial level µ and the asymptotic saturation mean level m, the weight
changes from 75.42 to 80.01 kilograms. A Wald test

H0 : Rθ = b (85)
W = (Rθ̂ − b)′(RCR)−1(Rθ̂ − b) ∼ χ2(rankR), (86)

C = F−1 (asymptotic covariance of θ̂; F= Fisher information matrix), shows that
this difference is significant (W = 6.62881, χ2(0.95, 1)-quantile = 3.84146). Here, the
hypothesis matrix is R = [0, 0, ...1, 0....−1, 0, ...0], where the 1 entries are at columns
10 and 16 (cf. the parameter list in Table 1) and b = 0.
The neuroleptica dose slightly increases (14.89 to 16.01; W = 4.48754, χ2(0.95, 1) =
3.84146) and the clinical impression is about the same (4.39 to 4.51; W = 3.13101,
χ2(0.95, 1) = 3.84146). There is a nonsignificant negative initial covariance σ̂12 = –
3.16446 between weight and dose, but the action weight← neuroleptica is positive (â12
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= 0.00299021 with t-value of 0.990259). The only significant (α = 5%) interaction
parameter is â32=0.00167256 (clinical impression← neuroleptica), which means that
higher dose leads to a higher clinical impression score (worse) later. The reverse
effect is negative, but nonsignificant (this effect would mean an influence of clinical
impression on the medication). The model shows that an initial level µ changes
asymptotically to a saturation mean level m with higher weight and slightly higher
dose (figure 3), but this effect cannot be significantly explained by the causal action
of dose on weight. Figures (4–8) display the filtered and smoothed trajectories of 3
selected persons. At the points of measurement, the extrapolated state E[y(t)|Zi], t >
ti is corrected by newly incoming information. Between measurements, it tends to
the asymptotic mean level m. Fig. 7 shows the case, when a nonmeasured state
component (weight at time t = 63 days) is corrected by the other measured states.
Finally, the smoothed trajectory E[y(t)|ZT ] uses information from the past and future
and yields a smooth interpolation of the data points.
Further analysis of the data would impose restrictions on the parameter matrices
followed by a comparision of the models with information criteria like AIC (Akaike’s
information criterion) etc. Also, higher order derivatives could be added, e.g. a
CAR(2) vector autoregression. Furthermore, using the EKF (cf. section 3.1), non-
linear specifications could be estimated. However, in contrast to the linear case, an
infinity of possible drift and diffusion specifications is conceivable.

Computational aspects

The data set was analyzed by using a Mathematica/C-implementation of the SAS/IML
package LSDE (Singer, 1991) 6, where each panel unit n can have different sample size
Tn. The Mathematica code for the linear drift function f(y, x, ψ) = Ay+b = A(y−m)
is similar to (82–84)

f[{y1_,y2_,y3_},x_,
{a11_,a12_,a13_,a21_,a22_,a23_,a31_,a32_,a33_,

m1_,m2_,m3_,g11_,g22_,g33_,
mu1_,mu2_,mu3_,s11_,s12_,s13_,s22_,s23_,s33_}]:=

{a11 (y1-m1) + a12 (y2-m2) + a13 (y3-m3),
a21 (y1-m1) + a22 (y2-m2) + a23 (y3-m3),
a31 (y1-m1) + a32 (y2-m2) + a33 (y3-m3)}

In the above code, x is the q-vector x(t) of exogenous variables (not used here). One
only has to specify the drift f(y, x, ψ), diffusion function G(x, ψ) and the measure-
ment model given by h(y, x, ψ) = Hy + d and R(x, ψ). Also nonlinear specifications
are possible (extended Kalman filter EKF; see section 3.1). The software implements
the EDM (49–50 ). The likelihood for unit n is obtained by the command

cEKFEDM[{Z, X}, psi, {{f, A, G, h, H, R, mue, sigma},

6A new version called SDE (Stochastic Differential Equations) running on Mathematica/C will appear
soon. It covers the linear models as well as nonlinear algorithms such as EKF, SNF etc.
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θ θ̂ Std t-value interpretation

a11 -0.00529433 0.000598578 -8.84483 weight← weight

a12 0.00299021 0.00301962 0.990259 weight← neuroleptica

a13 0.0234382 0.0437436 0.535809 weight← clinical impression

a21 0.00198898 0.00143129 1.38964 neuroleptica← weight

a22 -0.0505835 0.00470394 -10.7534 neuroleptica← neuroleptica

a23 -0.0090749 0.0614409 -0.147701 neuroleptica← clinical imp.

a31 0.0000800229 0.000453001 0.176651 clinical impression← weight

a32 0.00167256 0.000670036 2.49623 clinical imp.← neuroleptica

a33 -0.0933535 0.0127247 -7.33641 clinical imp.← clinical imp.

m1 80.0107 1.50742 53.0779 mean weight

m2 16.0973 0.36628 43.9481 mean dose

m3 4.50905 0.0439121 102.684 mean impression

g11 1.72074 0.0497599 34.5808 error weight

g22 2.54972 0.0979298 26.0362 error dose

g33 0.38952 0.0237472 16.4028 error impression

µ1 75.4199 0.922667 81.7412 initial weight

µ2 14.8932 0.43461 34.2681 initial dose

µ3 4.39445 0.0472563 92.9919 initial impression

σ11 283.029 21.9171 12.9136 initial weight variance

σ12 -3.16446 13.6215 -0.232314 initial weight-dose covar.

σ13 0.5679 0.872826 0.650645 initial weight-imp. covar.

σ22 72.533 5.23379 13.8586 initial dose variance

σ23 0.667828 0.452169 1.47694 initial dose-imp. covar.

σ33 0.794195 0.0601353 13.2068 initial dose variance

Table 1: ML estimates of the continuous time panel model based on EDM with variables
weight, neuroleptica dose and clinical impression.
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Figure 3: Mean level change from initial condition µ̂(t0) = µ̂ to µ̂(t → ∞) = m̂ (interval

t = 0, ..., 200 days). Also shown is the standard deviation std =
√

V̂ar(y(t)).

0 100 200 300
50

60

70

80

weight

   

0 100 200 300

10

15

20

25

30

neuroleptica dose

   

0 100 200 300
3.5

4

4.5

5

5.5

6

clinical impression

   

Figure 4: Filtered estimates with data points and 67%-HPD confidence intervals. Female with
age 49 and ICD 10 diagnosis F20.
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Figure 5: Filtered estimates with data points and 67%-HPD confidence intervals. Male, age
28, ICD diagnosis F20.
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Figure 6: Filtered estimates with data points and 67%-HPD confidence intervals. Female, age
48, diagnosis F20.
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Figure 7: Same person, enlarged graph in the interval [0,100]. The weight is missing at time
point t = 63, but corrected due to the measurements of dose and impression at the same time.
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Figure 8: Same person. Smoothed estimates with data points and 67%-HPD confidence
intervals.
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{dt=1, k=3, p=3, q=1, r=3, u=24, T}},
{miss, option, nonlin, constant}]

where dt = δt and mue = µ(x, ψ), sigma = Σ(x, ψ) is the initial condition of the
Kalman filter. Maximization of the likelihood is obtained by using a quasi-Newton
algorithm with numerical derivatives and BFGS secant updates. The asymptotic
Fisher information matrix is computed from a numerical Hessian with double sided
differences.

3 Nonlinear differential equations and

state space models

Whereas the linear case can be treated completely and efficiently, there are many
issues and competing approaches in the nonlinear field. It is presently an area of
very active research due to the growing interest in finance models. The option price
model of Black and Scholes relies on a SDE model for the underlying stock variable
and Merton’s monograph (1990) on continuous finance has been given the field a
strong ’continuous’ flavor. This is in contrast to econometrics where still times series
methods dominate and also sociology, despite the old tradition of Coleman (1968)
and others. Here we have the nonlinear continuous-discrete state space model
(Jazwinski, 1970, ch. 6.2)

dY (t) = f(Y (t), t, ψ)dt + g(Y (t), t, ψ)dW (t) (87)
Zi = h(Y (ti), ti, ψ) + εi. (88)

with nonlinear drift and diffusion functions f and g. In the nonlinear case it is im-
portant to interpret the SDE correctly. We use the Itô interpretation yielding simple
moment equations (for a thorough discussion of the system theoretical aspects see
Arnold, 1974, ch. 10, van Kampen, 1981, Singer, 1999, ch. 3). A strong simplifica-
tion occurs when the state is completely measured at times ti, i.e. Zi = Yi = Y (ti).
Then, only the transition density p(yi+1, ti+1|yi, ti) must be computed in order to
obtain the likelihood function. Unfortunately, the transition probability can be com-
puted analytically only in some special cases (including the linear), but in general
approximation methods must be employed. Since the transition density fulfils a par-
tial differential equation (PDE), the so called Fokker-Planck equation (cf. 96),
approximation methods for PDE, e.g. finite difference methods can be used (cf.
Jensen and Poulsen, 2002).
A large class of approximations rests on linearization methods which can be applied
to the exact moment equations (extended Kalman filter EKF; second order
nonlinear filter SNF; cf. Jazwinski, 1970 and section 3.1) or directly to the non-
linear differential equation using Itô’s lemma (local linearization LL; Shoji and
Ozaki, 1997, 1998). Since the linearity is only approximate in the vicinity of a mea-
surement or reference trajectory, the conditional Gaussian schemes are valid only
for short measurement intervals ti+1 − ti. Other linearization methods relate to the
diffusion term, but are interpretable in terms of the EKF (Nowman, 1997).
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Another class of approximations relates to the filter density. In the unscented
Kalman filter (UKF), cf. Julier et al. (2000), the true density is replaced by a
singular density with correct first and second moment, whereas the Gaussian filter
(GF) assumes a normal density. Integrals in the update equations are obtained using
Gauss-Hermite quadrature (Ito and Xiong, 2000). More generally, the density may
be represented by Gaussian sums (Alspach and Sorenson, 1972).
Alternatively, the Monte Carlo method can be employed to obtain approximate
transition densities (Pedersen, 1995, Andersen and Lund, 1997, Elerian et al., 2001,
Singer, 2002, 2003).
More recently, Hermite expansions of the transition density have been utilized
by Aı̈t-Sahalia (2002). In this approach, the expansion coefficients are expressed in
terms of conditional moments and computed analytically by using computer algebra
programs. The computations comprise the multiple action of the backward operator
L = F † on polynomials 7. Alternatively, one can use systems of moment differential
equations (sect. 3.2, or Singer, 2004a). It seems that this approach is most efficient
both in accuracy and computing time (cf. Aı̈t-Sahalia, 2002, figure 1, Jensen and
Poulsen, 2002).
Nonparametric approaches attempt to estimate the drift function f and the
diffusion function Ω without assumptions about a certain functional form. They
typically involve kernel density estimates of conditional densities (cf. Bandi and
Phillips, 2001). Other approaches utilize Taylor series expansions of the drift function
and estimate the derivatives (expansion coefficients) as latent states using the LL
method (similarly to the SNF; Shoji, 2002).

3.1 Extended Kalman filter EKF

The continuous-discrete state space model (87–88) may be treated approximately
by linearized moment equations, if one computes the exact evolution equations (the
dependence on ψ is dropped; Zi = {Zi, ...Z0})

(d/dt)µ(t|ti) = E[f(Y, t)|Zi] (89)
(d/dt)Σ(t|ti) = E[f(Y, t)(Y (t)− µ(t|ti))′|Zi] +

E[(Y (t)− µ(t|ti))f(Y, t)′|Zi] + E[Ω(Y, t)|Zi]. (90)

These are not differential equations, however, since they contain the conditional den-
sity p(y, t|Zi) which already is the complete solution of the filtering problem. Taylor
expansion of f up to first order around the conditional mean µ(t|ti) = E[Y (t)|Zi]
yields the continuous-discrete extended Kalman filter EKF

(d/dt)µ(t|ti) = f(µ(t|ti), t) (91)
(d/dt)Σ(t|ti) = A(t)Σ(t|ti) +Σ(t|ti)A′(t) +Ω(µ(t|ti), t). (92)

with Jacobian A(t) = (∂f/∂y)(µ(t|ti), t) : p × p. In contrast to (89-90) the EKF
equations are a closed system of differential equations to be solved with standard

7 L = F † is the adjoint of the Fokker-Planck operator (99)
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numerical techniques (Runge-Kutta etc). Second order derivatives lead to the second
order nonlinear filter (SNF).
At measurement time ti+1, the output vector h may be expanded around the approx-
imate conditional mean µ(ti+1|ti) to yield a locally linear measurement equation

Zi+1 = h(µ(ti+1|ti), ti+1) +H(ti+1) ∗ (Yi+1 − µ(ti+1|ti)) + εi+1 (93)
:= H(ti+1)Yi+1 + d(ti+1) + εi+1 (94)

with Jacobian H(ti+1) = (∂h/∂y)(µ(ti+1|ti), ti+1) : k × p. This permits the usage
of the linear measurement update equations (30-35). Since we approximate the
probability density p(Zi+1|Zi;ψ) by a Gaussian, we obtain the approximate likelihood
function of observation Zi+1

p(Zi+1|Zi;ψ) = φ(Zi+1;Z(ti+1|ti), Γ (ti+1|ti)). (95)

In the linear case f(Y, t) = A(t)Y + b(t), g(Y, t) = G(t), h(Y, t) = H(t)Y + d(t),
the formulas of the KF are recovered. Panel data can be treated by summing the N
likelihood contributions and filtered estimates may be computed for each panel unit.

3.2 General nonlinear filtering scheme

For large measurement intervals ∆ti or strongly nonlinear systems the conditionally
Gaussian approach (EKF, SNF or LL) is not sufficient and other approximation
methods must be applied. The computation of the a priori density p(yi+1, ti+1|Zi)
requires the solution of the Fokker-Planck equation and the measurement update is
the Bayes formula leading to the general nonlinear filtering scheme (Jazwinski,
1970, ch. 6.3)

time update:

∂p(y, t|Zi)
∂t

= F (y, t)p(y, t|Zi) ; t ∈ [ti, ti+1] (96)

p(y, ti|Zi) := p(yi|Zi)
p(y, ti+1|Zi) := p(yi+1|Zi)

measurement update:

p(yi+1|Zi+1) =
p(zi+1|yi+1, Z

i)p(yi+1|Zi)
p(zi+1|Zi)

(97)

:= pi+1|i+1

p(zi+1|Zi) =
∫
p(zi+1|yi+1, Z

i)p(yi+1|Zi)dyi+1, (98)

i = 0, . . . , T − 1, where F is the Fokker-Planck operator

F (y, t)p(y, t|x, s) = −
∑

i

∂

∂yi
[fi(y, t)p(y, t|x, s)]

+1
2

∑
ij

∂2

∂yi∂yj
[Ωij(y, t)p(y, t|x, s)]. (99)
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The filtering scheme yields a recursive computation of the likelihood function

l(ψ;Z) =
T−1∑
i=0

log p(Zi+1|Zi;ψ) + log p(Z0;ψ). (100)

Although the problem is completely described by the filtering scheme, the computa-
tion of the updates is difficult. Some numerical approximations use Monte Carlo in-
tegration (Pedersen, 1995, Singer, 2003). Other simulation based filtering meth-
ods in discrete time have been used such as Markov chain Monte Carlo (MCMC;
Carlin et al., 1992, Kim et al., 1998), rejection sampling using density estimators
(Tanizaki, 1996, Tanizaki and Mariano, 1995, Hürzeler and Künsch, 1998), impor-
tance sampling and antithetic variables (Durbin and Koopman, 1997, 2000) and
recursive bootstrap resampling (Gordon et al., 1993, Kitagawa, 1996). Moreover,
numerical integration procedures have been utilized (Kitagawa, 1987).

3.3 Filtering using Hermite expansions

In the EKF approach, the nongaussian transition density p(y, t|Zi) was approxi-
mated by a Gaussian p(y, t|Zi) ≈ φ(y;µ(t|ti), Σ(t|ti)) and the conditional moments
were obtained as solutions of approximate moment equations. Higher order approx-
imations can be derived if the density is expanded into a Hermite orthogonal series
with leading Gaussian term. The first terms in the series read (scalar case)

p(y, t|Zi) := (1/σ)φ(z)[1 + (1/6)ν3H3(z) + (1/24)(ν4 − 3)H4(z) + ...] (101)

where z = (y−µ)/σ, and the standardized moments νk = E[(Y −µ)k]/σk := mk/σ
k

can be expressed in terms of the centered moments

mk := E[Mk] := E[(Y − µ)k]; σ2 := m2; µ := E[Y ]. (102)

In the above expressions, the condition on the measurements Zi was dropped and
Hn(x) are the Hermite polynomials, an orthogonal function system w.r.t the standard
normal distribution φ(x), i.e.∫ ∞

−∞
Hn(x)Hm(x)w(x)dx = δnmn! (103)

The Hermite polynomials Hn(x) are defined by (cf. Courant and Hilbert, 1968, ch.
II, 9, Abramowitz and Stegun, 1965, ch. 22)

φ(n)(x) := (d/dx)nφ(x) = (−1)nφ(x)Hn(x). (104)

and are given explicitly by H0 = 1,H1 = x,H2 = x2 − 1,H3 = x3 − 3x,H4 =
x4 − 6x2 + 3 etc.

time update:

Between measurements ti ≤ t < ti+1, the centered moments fulfil

µ̇(t|ti) = E[f(Y (t), t)|Zi] (105)
ṁ2(t|ti) = 2E[f(Y (t), t) ∗ (Y (t)− µ(t|ti))|Zi] +

+ E[Ω(Y (t), t)|Zi] (106)
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ṁk = kE[f(Y, t) ∗ (Mk−1 −mk−1)|Zi] + 1
2k(k − 1)E[Ω(Y, t) ∗Mk−2|Zi] (107)

with initial condition mk(ti|ti) = E[(Y (ti)− µ(ti|ti))k|Zi]. These moment equations
may be obtained by inserting the Fokker-Planck equation (96) in the time deriva-
tives of the moments mk. These are not differential equations, however, and Taylor
expansion of f and Ω around µ yields

µ̇ :=
∞∑
l=0

f (l)(µ, t)
ml

l!
(108)

= f(µ, t) + 1
2f
′′(µ, t)m2 + 1

6f
′′′(µ, t)m3 + ...

and (k ≥ 2)

ṁk = k
∞∑
l=1

f (l)(µ, t)
l!

(ml+k−1 −mlmk−1) +

+1
2k(k − 1)

∞∑
l=0

Ω(l)(µ, t)
l!

ml+k−2. (109)

measurement update:

At the next measurement Zi+1, the a priori density p(y, ti+1|Zi) must be updated
according to (97). Since the density is represented in terms of the Hermite series, the
likelihood and the a posteriori moments were computed using numerical integration.
After the determination of mk(ti+1|ti+1), the next time update is performed.

Example: CEV model with ordinal measurements

The algorithm was implemented in Mathematica (Wolfram, 1999) and tested with a
heteroskedastic stock price model. The system model reads

dY (t) = rY (t)dt + σY (t)α/2dW (t), (110)

the constant elasticity of variance (CEV) process. It is a generalization of the geo-
metric Brownian motion (GBB) which models random rates of change, i.e.

dY (t)/dt = [r + σdW (t)/dt]Y (t). (111)

This equation can be interpreted as equation (1) with a stochastic rate a(t) = r +
σdW (t)/dt. The CEV model yields this as a special case (α = 2). The measurement
model

Zi = h(Y (ti)) + εi (112)
h(y) = θ(y − c1) + θ(y − c2) (113)

Var(εi) = R (114)

gives ordinal measurements (Z ∈ {0, 1, 2}) at sampling times ti (θ = unit step func-
tion). Examples are rating classes for firms or dynamic threshold models in psy-
chometrics. The true parameter values were ψ = {r = .1, α = 1, σ = .2, R =
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Figure 9: CEV model: trajectory Y (t) and ordinal measurements h(Y (t)) with threshold values
(left above). Filtered estimates with data points and 67%-HPD confidence intervals (right
above). Film of a priori (light grey) and a posteriori densities (dark grey) at measurement
points. Also shown is the measurement density (∝ indicator function).
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.001, c1 = .9, c2 = 1.1} (square root model). Note that the measurement density
p(z|y) = φ(z;h(y), R) is proportional to the indicator function of the interval h−1(z),
i.e. χ{y|z=h(y)}(y). Fig. (9) illustrates the sequence of measurement updates of
a nongaussian density using the Hermite expansion (101). The moment equations
were solved with K = 4 moments and the Taylor expansion was up to order L = 3.
The unknown moments on the right hand side of 108 – 109) were factorized by the
Gaussian assumption

mk =
{

(k − 1)!!mk/2
2 ; k > K is even

0; k > K is odd
(115)

(for a discussion see Singer, 2004a).

4 Conclusion

We have shown that the continuous/discrete state space model is a very flexible
dynamical specification with many theoretical as well as practical advantages. Com-
pletely irregularly sampled data can be analyzed in a parsimonious way by sepa-
rating the dynamical model from the measurement process. Moreover, the system
state is defined for any continuous time point. Models with higher order derivatives
(CAR(p)) can be estimated efficiently without approximating the derivatives by finite
differences.
Clinical survey data with irregular sampling intervals and different sample size for
each person including missing values could be easily specified and estimated within
the proposed framework. Kalman filter software like LSDE or SEM software with
nonlinear parameter restrictions (Mx, SEM etc.) can be used to estimate the exact
discrete model.
Whereas the linear continuous/discrete state space model (including conditionally
Gaussian models) can be efficiently estimated by the Kalman filter algorithm, the
nonlinear case (with and without measurement model) is presently an active field
of research with competing methods (both analytical and numerical). The methods
of extended Kalman filtering (EKF) and Hermite expansions were shortly discussed.
Especially in the multivariate case further research is needed.
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klopädie der Psychologie. Hogrefe, 1983.

[38] K.B. Nowman. Gaussian estimation of single-factor continuous time models of
the term structure of interest rates. Journal of Finance, 52:1695–703, 1997.

[39] J.H.L. Oud and R.A.R.G Jansen. Continuous Time State Space Modeling of
Panel Data by Means of SEM. Psychometrika, 65:199–215, 2000.

[40] J.H.L. Oud, J.F.J van Leeuwe, and R.A.R.G Jansen. Kalman Filtering in dis-
crete and continuous time based on longitudinal LISREL models. In J.H.L. Oud
and R.A.W. van Blokland-Vogelesang, editors, Advances in longitudinal and
multivariate analysis in the behavioral sciences, pages 3–26, Nijmegen, Nether-
lands, 1993. ITS.

[41] A.R Pedersen. A New Approach to Maximum Likelihood Estimation for
Stochastic Differential Equations Based on Discrete Observations. Scandina-
vian Journal of Statistics, 22:55–71, 1995.

[42] P.C.B. Phillips. The estimation of linear stochastic differential equations with
exogenous variables. In A.R. Bergstrom, editor, Statistical Inference in Contin-
uous Time Models, pages 135–173. North Holland, Amsterdam, 1976.

[43] P.C.B. Phillips. The structural estimation of a stochastic differential equation
system. In A.R. Bergstrom, editor, Statistical Inference in Continuous Time
Models, pages 97–122. North Holland, Amsterdam, 1976b.

[44] I. Shoji. Nonparametric state estimation of diffusion processes. Biometrika, 89,
2:451–456, 2002.

[45] I. Shoji and T. Ozaki. Comparative Study of Estimation Methods for Continuous
Time Stochastic Processes. Journal of Time Series Analysis, 18, 5:485–506,
1997.

[46] I. Shoji and T. Ozaki. A statistical method of estimation and simulation for
systems of stochastic differential equations. Biometrika, 85, 1:240–243, 1998.

[47] H. Singer. LSDE - A program package for the simulation, graphical display,
optimal filtering and maximum likelihood estimation of Linear Stochastic Dif-
ferential Equations, User‘s guide. Meersburg, 1991.

[48] H. Singer. Continuous-time dynamical systems with sampled data, errors of
measurement and unobserved components. Journal of Time Series Analysis,
14, 5:527–545, 1993.

[49] H. Singer. Analytical score function for irregularly sampled continuous time
stochastic processes with control variables and missing values. Econometric
Theory, 11:721–735, 1995.

31



[50] H. Singer. Continuous Panel Models with Time Dependent Parameters. Journal
of Mathematical Sociology, 23:77–98, 1998.
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