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Abstract

Panel data are modeled as dynamic structural equations in continuous
time (stochastic differential equations). The continuously moving latent state
vector is mapped to an observable discrete time series (or panel) with the
help of a measurement equation including errors of measurement (continuous-
discrete state space model). Therefore the approach is able to handle data
with irregularly observed waves, missing values and arbitrarily interpolated
exogenous influences. In order to model development and growth models, the
system parameter matrices are assumed to be time dependent.

1 Introduction

Continuous time dynamical systems do not seem to be suitable for longitudinal
studies in psychology, sociology and economics, since data are mostly collected in
panel waves with large time distances (monthly, quarterly, annually etc.). On the
other hand, we usually feel that the phenomenon is evolving in continuous time.
Both points of view can be unified if we model the system in continuous time,
but the measurement model in discrete time. This kind of model is well known in
econometrics (Bergstrom, 1976, 1988), finance (Black and Scholes, 1973, Merton,
1990) and engineering (Jazwinski, 1970), but has also been proposed in psychology
and the social sciences (Coleman, 1968, Möbus and Nagl, 1983, Singer, 1986, 1992,
Oud et al., 1993).
The so called continuous-discrete state space model is very flexible and can cover
complicating factors in panel analysis such as measurement error, missing data,
redefinition of variables and irregular sampling intervals (cf. Engel and Reinecke,
1996, ch. 1, Singer, 1995, 1996).
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Sometimes, due to structural changes or development processes, it must be assumed
that the structural parameters of a model change over time (Oud et al., 1993, Oud
and Jansen, 1996), but these authors used discrete time models or an indirect esti-
mation method for continuous time systems which was proved to be incorrect (see
Hamerle et al., 1991, 1993 and the references cited therein). Moreover, it is claimed
that constant parameter models show stationarity, which is not the case because of
initial conditions and exogenous variables.
Another example is the modelling of bond prices, where the price at maturity is
fixed. A convenient model for this is the Brownian bridge which can be written as
an Itô equation with time dependent coefficients (cf. Ball and Torous, 1983 and
example 2).
This paper attempts to specify and estimate parameter varying linear continuous
time panel models with discrete sampling, missing data and exogenous influences
from arbitrary sampling schemes. For the general nonlinear case see Singer, 1996.

2 Continuous/discrete state space models with

time varying coefficients

We discuss the continuous/discrete state space model

dyn(t) = f(yn(t), t, ψ)dt+ g(yn(t), t, ψ)dWn(t) (1)

where measurements zni are taken at times {t0, t1, . . . , tT} and t0 ≤ t ≤ tT :

zni = h(yn(ti), ti, ψ) + εni. (2)

In (1), Wn(t) denotes r-dimensional Wiener processes independent for different panel
units n and the units are described by the p-dimensional state vectors yn(t), n =
1, . . . , N . They fulfil a system of stochastic differential equations in the sense of Itô
(cf. Arnold, 1974) with random initial condition

yn(t0) ∼ N(µn(ψ), Σn(ψ)) independently distributed.

In (2), εni ∼ N(0, R(ti, ψ)) is a k-dimensional discrete time white noise process
(measurement error). Parametric estimation is based on the u-dimensional param-
eter vector ψ.
In order to simplify the approach, a linear vector field (drift) f(yn(t), t, ψ) = A(t, ψ)∗
yn(t) + b(t, ψ) and state independent diffusion coefficient g(yn(t), t, ψ) = G(t, ψ) is
specified. Therefore the solution process yn(t) does not depend on the definition of
the stochastic integral

∫
gdW (cf. Arnold, 1974, ch. 10). Furthermore, we assume
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linear measurements h(yn(t), t, ψ) = H(t, ψ)yn(t) + d(t, ψ) where H(t, ψ) are time
dependent factor loadings.
The linear specification can be applied to nonlinear systems by Taylor expansions
of f and h, leading to an extended Kalman filter (EKF) in (14-23). This approach
is discussed in Singer, 1996.
In order to model exogenous influences, A, b, G, µ, Σ and H , d, R are assumed to
depend on regressor variables xn(t), i.e. A(t, ψ) = A(t, xn(t), ψ) etc.
Thus we have the general linear time dependent specification

dyn(t) = A(t, xn(t), ψ)yn(t)dt+ b(t, xn(t), ψ)dt+G(t, xn(t), ψ)dWn(t) (3)

yn(t0) ∼ N(µ(xn(t0), ψ), Σ(xn(t0), ψ))

zni = H(ti, xn(ti), ψ)yn(ti) + d(ti, xn(ti), ψ) + εni (4)

To simplify notation only the t dependence of the parameter matrices will be dis-
played. Formerly, a special case of (3, 4), the linear state space model with constant
coefficients

dyn(t) = Ayn(t)dt+Bxn(t)dt+GdWn(t) (5)

zni = Hyn(ti) +Dxn(ti) + εni (6)

was estimated (Singer, 1993, 1995).

3 Exact Discrete Models with

Fundamental Matrices

In order to compute the likelihood function of system (3, 4), we must express the
probability distribution of states in terms of discretely measured data zn(ti). Usually
this problem is solved by deriving a so called exact discrete model from the system
equation (3), which is valid at the times of measurement. We obtain (cf. Arnold,
1974, ch. 8):

yn(t) = Φ(t, t0)yn(t0) +
∫ t

t0
Φ(t, s)b(s)ds+

∫ t

t0
Φ(t, s)G(s)dWn(s), (7)

where Φ(t, t0) is a fundamental (transition) matrix solving the deterministic equation

d/dt Φ(t, t0) = A(t)Φ(t, t0); Φ(t0, t0) = Ip. (8)

Choosing t = ti+1 and t0 = ti we obtain a difference equation (AR(1) process)
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yn(ti+1) = Φ(ti+1, ti)yn(ti) +
∫ ti+1

ti
Φ(ti+1, s)b(s)ds+

∫ ti+1

ti
Φ(ti+1, s)G(s)dWn(s) (9)

From (9) it is seen that the conditional distribution of yn(ti+1) given yn(ti) is Gaus-
sian since the stochastic integral contains a deterministic function Φ(ti+1, s)G(s).
In the case with constant coefficients, we can express Φ explicitly as

Φ(ti+1, ti) = exp(A(ti+1 − ti)) := exp(A∆ti) (10)

It is well known that the matrix exponential contains the elements of A in a very
complicated nonlinear way (cf. Phillips, 1976[25]). This fact has been leading to a
controversy whether it is possible to obtain Â from a knowledge (estimate) of Φ (cf.
Hamerle et al., 1991, 1993). Even in the univariate case p = 1 the explicit form of
the fundamental matrix contains a time integral

Φ(ti+1, ti) = exp(
∫ ti+1

ti
A(s)ds) (11)

leading to nonlinear equations for ψ. At any rate, the functional form of Φ implies
nonlinear restrictions involving transcendental functions which have to be incorpo-
rated into the estimation procedure. In the general multivariate case, we can write
Φ as

Φ(ti+1, ti) = T exp(
∫ ti+1

ti
A(s)ds), (12)

where T is the Wick time ordering operator yielding a time ordered matrix expo-
nential (TA(t)A(s) = A(s)A(t) if t < s). This is necessary since A(t) in general
does not commute with A(s) even in simple cases (cf. example 1). Although (12)
is an explicit expression, it must be worked out using Taylor series involving time
ordered multiple integrals (see, e.g. Abrikosov et al., 1963, p. 47 ff). Therefore it
seems difficult to compute the likelihood function of the exact discrete state space
model (prediction error decomposition; Schweppe, 1965 )

Lψ(z) =
T−1∏
i=0

N∏
n=1

|2πΓn,i+1|i|− 1
2 exp

{
−1

2
tr[Γ−1

n,i+1|iνn,i+1ν
′
n,i+1]

}
p(zn0), (13)

where z = {zni|n = 1, . . . , N, i = 0, . . . , T}, νn,i+1 = zn,i+1 −Hn,i+1yn,i+1|i − dn,i+1

is the innovation, Γ n,i+1|i = Var(zn,i+1|zni, . . . , zn0) = is the innovation covariance
and p(zn0) is the distribution of the inital state zn(t0). Here, H(ti, xn(ti), ψ) is
abbreviated as Hni etc.
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More explicitly, the innovation ν is given in terms of the one step predictor

yn,i+1|i = Φ(ti+1, ti)yn,i|i +
∫ ti+1

ti
Φ(ti+1, s)b(s)ds (14)

and prediction error

Pn,i+1|i = Φ(ti+1, ti)Pn,i|iΦ(ti+1, ti)
′ +

∫ ti+1

ti
Φ(ti+1, s)G(s)G(s)′Φ(ti+1, s)

′ds. (15)

The measurement updates (a posteriori estimates) in the Kalman filter are given
explicitly as

Kn,i+1 = Pn,i+1|iH ′
n,i+1(Hn,i+1Pn,i+1|iH ′

n,i+1 +Rn,i+1)
− (16)

yn,i+1|i+1 = yn,i+1|i +Kn,i+1νn,i+1 (17)

Pn,i+1|i+1 = Pn,i+1|i −Kn,i+1Hn,i+1Pn,i+1|i (18)

νn,i+1 = zn,i+1 −Hn,i+1yn,i+1|i − dn,i+1 (19)

Γ n,i+1|i = Hn,i+1Pn,i+1|iH ′
n,i+1 +Rn,i+1 (20)

The filter must be initialized with the conditional expectations

yn,0|0 = E[yn(t0)|zn(t0)] (21)

Pn,0|0 = Var[yn(t0)|zn(t0)] (22)

(e.g. Liptser and Shiryayev, 1978, ch. 13) using the parameters µ(xn(t0), ψ) =
E[yn(t0)] and Σ(xn(t0), ψ) = Var[yn(t0)]. Thus, we can compute the likelihood
function and the ML estimator ψ̂ if we are able to evaluate the integrals (14, 15)
involving the transition matrix Φ.

4 Practical Computation of the Likelihood Func-

tion

As in the case of constant coefficients (Singer, 1995), we solve this problem by using
a slightly different discretization scheme (note that the exact discrete model does
not involve any approximation)

yn(tj+1) = Φ(tj+1, tj)yn(tj) +
∫ tj+1

tj
Φ(tj+1, s)b(s)ds+ (23)

+
∫ tj+1

tj
Φ(tj+1, s)G(s)dWn(s)

znj = Hnjyn(tj) + dnj + εnj, (24)
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j = 0, . . . , J = (tT − t0)/δt, where δt is an arbitrary discretization interval so small
that all times of measurement ti can be expressed as multiples of δt, i.e. ti = t0+jiδt
(cf. Singer, 1995). Then, however, we must introduce a missing data treatment in
(24) which can be achieved by dropping rows in Hnj, dnj and εnj if some component
in znj is missing.
This procedure opens up the possibility of completely irregular sampling for each
unit n and each component k′ of response variables znj. For example, we can combine
times series of different time lags to form a vector time series with irregular sampling
and missing data.
A further advantage of the representation (23, 24) is in the treatment of exogenous
variables xn(t). Usually these are only measured at certain time points. In order to
evaluate the functional

∫ ti+1

ti
Φ(ti+1, s)b(s, xn(s))ds (25)

we must know the values for times t ∈ [ti, ti+1]. Usually, xn(t) is interpolated be-
tween the function values xn(ti) using simple interpolation formulas such as step
functions, polygonal lines or parabolas (cf. Phillips, 1976[24]). In the case of con-
stant coefficients, Φ(ti+1, s) = exp(A(ti+1 − s)) can be inserted into integral (25)
together with b(s, x̂n(s)) where x̂n(s) is the interpolating function. The resulting
explicit formulas are complicated matrix functions, however (cf. Bergstrom, 1976,
1984, 1990, Phillips, 1976, Sargan, 1976). In the case of time dependent A(t) the
evaluation of (25) would involve the time ordered exponential.
All these problems can be circumvented if we let δt→ 0 in (23, 24) and linearize

Φ(tj+1, tj) ≈ I + A(tj)δt (26)∫ tj+1

tj
Φ(tj+1, s)b(s)ds ≈ b(tj)δt (27)

∫ tj+1

tj
Φ(tj+1, s)G(s)dWn(s) ≈ G(tj)δWn(tj). (28)

Then, the scheme (23) generates the exact discrete model since it is an Euler-Maru-
yama approximation of stochastic differential equation (3) (cf. Rümelin, 1982).
With this approach we do not need to evaluate the transition matrix explicitly or
calculate the functional involving the exogenous variables. Therefore more sophis-
ticated interpolation schemes such as splines can be used (cf. Singer, 1995), The
linearized Φ(tj+1, tj) motivates the formula
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Φ(ti+1, ti) = lim
δt→0

T
ji+1∏
j=ji

I + A(tj)δt (29)

where later times stand to the left of earlier times, which can be used to compute
the reduced form (discrete time) parameters.
As in former work, the maximum likelihood estimates ψ̂ are computed iteratively
with the help of a quasi Newton algorithm using BFGS secant updates (see Dennis
and Schnabel, 1983)

ψk+1 = ψk + F−1
k sk (30)

where Fk is a secant update and sk is the score ∂/∂ψk lψk
(z); l = logL. In later

work it is hoped to present analytical scores, but here we use numerical derivatives
as in Jones, 1984, Jones and Tryon, 1987, or Harvey and Stock, 1985. The BFGS
algorithm (30) is started with F0 = Iu and updates are computed from the score.
Only at the end of the iteration the observed Fisher information J = −∂2/∂ψ2 lψ(z)

is computed once to obtain asymptotic covariances of ψ̂.

5 Examples

5.1 Growth model with time dependent rates and distur-

bances

To illustrate the method, a bivariate growth model with changing growth rates was
simulated and estimated. The computations were done using Mathematica (Wolfram
Research, 1992).
We specify a time independent matrix of growth rates

A0 =
[
λ11 λ12

λ21 λ22

]
(31)

and a linearly changing part

A1(t) =
[
α t 0
0 β t

]
. (32)

The drift matrix is the sum A(t) = A0 + A1(t). We compute the commutator of
A(t) with A(s)

A(t)A(s) − A(s)A(t) =
[

0 (−α + β) λ12 (s− t)
(−α + β) λ21 (−s + t) 0

]
, (33)
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which shows that the time ordering operator T must be used in calculating the transi-
tion matrix Φ. The parameters in A(t) were chosen as ψ = {λ11, λ12, λ21, λ22, α, β} =
{.1,−.01, .02, .3, .01,−.02} which means that the rate A11 is increasing whereas the
rate A22 is decreasing with time (see figure 3). Furthermore, we specify a time de-
pendent diffusion matrix G = Diag(0.01 t, 0.02 t) in order to model increasing noise
during the development process. Of course, the parameters in G could be estimated
by including them in ψ. The measurement model is given by H(t) = I2, d(t) = 0
and R = Diag(0.001, 0.001).
In order to test BFGS algorithm (30) a small simulation study was performed with
a sample size of n = 10 and M = 50 replications. Data were simulated in a time
interval 0 ≤ t ≤ 10 with discretization interval δt = 0.1, but afterwards irregularly
sampled at times τ = {0, 1, 2, 3, 5, 6, 7, 8, 8.5, 9, 9.5, 10}. Figure 1 shows n = 10
simulated trajectories of zn(t) starting with an initial value of zn(t0) = [1, 2]′ + εn0.
In figure 3 the time dependence of the rates Aij is plotted. First the eigenvalues of
A(t) are real, but at a certain time they suddenly become conjugate complex, which
means that oscillations of the system are possible (figure 4). This example again
demonstrates the problems when using an indirect estimation method as proposed by
several authors (cf. Coleman, 1968, Sinha and Lastman, 1982, Arminger, 1986, Oud
et al., 1993) and criticized in Hamerle et al., 1991, Singer, 1992 . The identification
problem arising from complex eigenvalues of A cannot be overcome by claiming
that in development processes no oscillations occur: a pair of real eigenvalues can
suddenly jump to the complex plane although the respective matrices only differ by
a small amount ||A(t)−A(t+∆t)||. In contrast, the direct estimation approach via
ψ can ensure identification because of restrictions (the special form of Φ is correctly
specified and G is diagonal, e.g.) and leads to correct estimates. The result of the
simulation study is shown in table 1 and figure 5. The histograms and kernel density
estimates (using Gauss kernels) show some deviations from normality due to small
sample size (N = 10, T = 12), but means are near to the true values which are
covered by approximate 95% confidence intervals. The BFGS algorithm converges
after about 15 iterations, where ||ψk+1 − ψk||∞ < .001.

5.2 Brownian bridge and bond prices

The Brownian bridge is a Wiener type process where initial and final values B(t0)
and B(t1) are fixed. Usually, these values are set to zero, and t0 = 0, t1 = 1. It
is a simple model for bond prices, which have a fixed payoff at maturity t1, but
random variation because of fluctuations in interest rates (cf. Ball and Torous,
1983). When a bond is emitted, its value sligthly deviates from its maturity price
in order to avoid arbitrage. A standard Brownian bridge can be written as B(t) =
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Figure 1: Simulated trajectories of growth model, first and second component
zn1(t), zn2(t) (see text).
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Figure 2: Filtered (left) and smoothed trajectories and 99% HPD confidence inter-
vals for growth model.
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Figure 3: Time dependence of growth rates Aij(t).
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Figure 4: Real and imaginary parts of the eigenvalues of A(t) as a function of time.
First they are real, but suddenly they get complex (oscillations) and finally return
to the real line.

true mean std
k 15.2 1.16619
λ11 10. 8.82621 2.19069
λ12 -1. -0.568103 0.923164
λ21 2. 3.18632 3.72381
λ22 30. 29.5543 1.42541
α 1. 0.868005 0.373103
β -2. -1.97443 0.0954185

Table 1: Means and standard deviations of M = 50 replications of ψ̂ (in percent);
k is the number of iterations per sample to achieve convergence.

10



28 30 32 34

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

-2.2-2.1 -1.9 -1.8-1.7

1

2

3

4

4 6 8 10 12 14

0.025
0.05
0.075
0.1

0.125
0.15
0.175

-3 -2 -1 1 2

0.1

0.2

0.3

0.4

-5 5 10 15

0.025

0.05

0.075

0.1

0.125

0.15

Figure 5: Histograms, fitted normal density and kernel density estimates of repli-
cated ML estimates for growth model.

W (t) − tW (1), 0 ≤ t ≤ 1. A representation, which is more suitable for the methods
as developed formerly, is in the form of an Itô equation

dB(t) =
B(t)

t− 1
dt+ dW (t); B(0) = 0. (34)

More generally, we can write

dB(t) = α
B(t) − B1

t− t1
dt+ σdW (t); B(t0) = B0, (35)

where general conditions and drift and variance (volatility) parameters were intro-
duced. Since B(t) can assume negative values, the logarithm of the bond price
should be modeled. Figure 6 shows simulated trajectories of a Brownian bridge
with t0 = 0, t1 = 1, δt = 1/200 and B(t0) = 1, B(t1) = 2. We assumed that only one
trajectory can be measured at irregular times {0, 0.05, 0.1, 0.15, 0.25, 0.5, 1.} without
measurement errors. Figure 7 shows data, filtered and smoothed trajectories and

99% HPD intervals E[B(t)|z]±2.58
√

Var[B(t)|z] using the true ψ. The ML estimate

is obtained after 6 iterations starting from the true values ψ = {α, σ} = {1, 1} as
{1.26279(0.892963), 0.825131(0.248366)} (asymptotic standard deviations in paran-
theses).
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Figure 6: Simulated trajectories of a generalized Brownian bridge.
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Figure 7: Brownian bridge: filtered and smoothed estimates from discrete measure-
ments and 99% HPD confidence intervals.

12



6 Conclusion

We have shown how to compute ML estimates of a general time dependent stochastic
differential equation system from irregularly sampled panel data. Random effects,
stochastic exogenous variables and flow data are included by extending the latent
state vector yn(t) with appropriate components. Analytical score functions can be
computed by generalizing the approach in Singer, 1995.
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