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This article compares several estimation methods for nonlinear stochastic differential
equations with discrete time measurements. The likelihood function is computed by Monte
Carlo simulations of the transition probability (simulated maximum likelihood SML) using
kernel density estimators and functional integrals and by using the extended Kalman filter
(EKF and second-order nonlinear filter SNF). The relation with a local linearization method
is discussed. A simulation study for a diffusion process in a double well potential (Ginzburg–
Landau equation) shows that, for large sampling intervals, the SML methods lead to better
estimation results than the likelihood approach via EKF and SNF. A second study using a
nonlinear diffusion coefficient (generalized Cox–Ingersoll–Ross model) demonstrates that
the EKF type estimators may serve as efficient alternatives to simple maximum quasi-
likelihood approaches and Monte Carlo methods.

Key Words: Discrete measurements; Importance sampling; Nonlinear systems; Maximum
likelihood estimation; Monte Carlo simulation; Stochastic differential equations.

1. INTRODUCTION

Nonlinear dynamical systems have been a focus of interest since the advent of “deter-
ministic chaos,” “catastrophy theory,” “synergetics,” and “dissipative systems” (see Schuster
1984; Arnold 1986; Ozaki 1985) which swapped from physics (Haken 1977) into other fields
such as economics (Zhang 1991; Feichtinger 1992; Puu 1992) and sociology (Weidlich and
Haag 1983).

This article attempts to derive and compare parameter estimation methods for nonlinear
stochastic differential equations (SDE). To meet requirements of empirical data analysis,
only discrete time measurements are assumed (sampling), but the modeling of the dynamics
is specified in physical continuous time. These models are well known in econometrics
and are considered as models of choice by some authors, since they permit an optimal
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usage of restrictions in the dynamical specification at a micro level, that is, for very small
extrapolation to the future. By contrast, the dynamical connection between discrete times of
measurement may be very intricate because of the cumulated interactions in this time span
(exact discrete model; see Bergstrom 1990, Singer 1995, and the references cited therein).

Maximum likelihood (ML), least squares, generalized method of moments (GMM),
and minimum χ2 estimation of nonlinear differential or difference systems with continuous
or discrete measurements have been treated by Basawa and Prakasa Rao (1980), Kitagawa
(1987, 1996), Lo (1988), Campillo and Le Gland (1989), Florens-Zmirou (1989), Genon-
Catalot (1990), Brockwell and Hyndman (1992), Singer (1992), Komaki (1993), Hansen
and Scheinkman (1995), Wymer (1995), Tanizaki and Mariano (1995), Gallant and Long
(1997), Overbeck and Rydén (1997), Elerian, Chib and Shephard (2001), and others.

Recently, Shoji and Ozaki (1997, 1998) compared the performance of discrete time
schemes for stochastic differential equations using the Euler scheme and Itô-Taylor expan-
sions of the vector field with a discretized likelihood ratio approach (discretized continuous
sampling) and the generalized method of moments (GMM). The discretization intervals
were small, however (∆t = 0.05, . . . , 0.2).

In this article we choose larger sampling intervals, ∆t = 0.5, . . . , 2, in order to address
the needs of econometrics and the social sciences. Furthermore, an estimation method is
proposed which is asymptotically unbiased for arbitrary sampling interval (simulation of
the transition probability). It is shown how the Itô-Taylor expansion of Shoji and Ozaki
corresponds to a second-order nonlinear filter SNF (Jazwinski 1970).

The article is organized as follows: Section 2 introduces the continuous-discrete state
space model. Section 3 derives and compares the likelihood-based methods

1. extended Kalman filter (EKF),
2. second order EKF (SNF),
3. local linearization with Itô-formula (Shoji and Ozaki),
4. simulated transition probability (kernel density method), and
5. simulated transition probability (functional integral method)

with each other.
Section 4 presents a simulation study that uses an SDE with nonlinear drift coefficient

(fourth-order potential; Ginzburg–Landau equation), and compares the performance of the
several estimation methods with each other. Section 5 gives a second simulation study that
addresses the generalized Cox–Ingersoll–Ross model (GCIR) used in the financial modeling
of interest rates (nonlinear diffusion coefficient).

2. NONLINEAR CONTINUOUS/DISCRETE STATE SPACE
MODELS

We discuss the nonlinear continuous/discrete state space model

dy(t) = f(y(t), t, ψ)dt+ g(y(t), t, ψ)dW (t), (2.1)

where discrete measurements zi are taken at times {t0, t1, . . . , tT } and t0 ≤ t ≤ tT accord-
ing to

zi = h(y(ti), ti, ψ) + εi. (2.2)
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In state Equation (2.1), W (t) denotes a r-dimensional Wiener process and the state is
described by the p-dimensional state vector y(t). It fulfills a system of stochastic differential
equations in the sense of Itô (see Arnold 1974) with fixed initial condition y(t0). The
functions f : R

p × R × R
u → R

p and g : R
p × R × R

u → R
p × R

r are called drift and
diffusion coefficients, respectively. In measurement Equation (2.2), εi ∼ N(0, R(ti, ψ)) is a
k-dimensional discrete time white noise process (measurement error). Parametric estimation
is based on the u-dimensional parameter vector ψ. The key quantity for the computation
of the likelihood function is the transition probability p(y, t|x, s) which is a solution of the
Fokker–Planck equation

∂p(y, t|x, s)
∂t

= −
∑
i

∂

∂yi
[fi(y, t, ψ)p(y, t|x, s)]

+
1
2

∑
ij

∂2

∂yi∂yj
[Ωij(y, t, ψ)p(y, t|x, s)] (2.3)

subject to the initial condition p(y, s|x, s) = δ(y−x) (Dirac delta function). The diffusion
matrix is given by Ω = gg′ : R

p×R×R
u → R

p×R
p. Under certain technical conditions

the solution of (2.3) is the conditional density of y(t) given y(s) = x (see, e.g., Wong and
Hajek 1985, chap. 4). Furthermore, in this article we assume direct noiseless measurements
of y(ti), that is, h(y(t), t, ψ) = y(t) and R(ti, ψ) = 0.

Extensions to nonlinear noisy measurements are given in Gordon, Salmond, and Smith
(1993); Kitagawa (1987, 1996); Hürzeler and Künsch (1998); and Singer (2000).

In order to model exogenous influences, f and g are assumed to depend on deterministic
regressor variables x(t) : R → R

q, that is, f(y, t, ψ) = f(y, t, x(t), ψ) and so on. For
notational simplicity, the dependence on the x(t) will be suppressed.

3. COMPUTATION OF THE LIKELIHOOD FUNCTION

In order to compute the likelihood function of system (2.1)–(2.2), we can express the
probability distribution of states y(t0), . . . , y(tT ) in terms of solutions of Fokker–Planck
Equation (2.3). Using the Markov property of y(t) we obtain

p(yT , . . . , y1|y0;ψ) =
T−1∏
i=0

p(yi+1|yi;ψ), (3.1)

where p(yT , . . . , y1|y0;ψ) is the joint distribution of measurements conditional on y(t0) =
y0 (see Lo 1988) and p(yi+1|yi;ψ) := p(yi+1, ti+1|yi, ti;ψ) is the transition probability
density. Defining the likelihood function as Lψ(y) := p(yT , . . . , y1|y0;ψ) and the ML esti-
mator as ψ̂ := arg maxψ Lψ(y) we must solve Fokker–Planck Equation (2.3) repeatedly in
a nonlinear optimization algorithm. Only in the case of a linear vector field f and state inde-
pendent diffusion coefficient g do we obtain a Gaussian density, but otherwise complicated
functions arise. In some special cases analytical solutions have been derived. For example,
in the case of linear f(y) = µy and g(y) = σyα/2, which is the well-known constant elas-
ticity of variance (CEV) diffusion process used in option pricing (see Feller 1951; Cox and
Ross 1976), an analytical solution has been derived by Feller involving Bessel functions.
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In the general multivariate case, we cannot hope to obtain analytical solutions and must
resort to approximations and numerical procedures for (2.3) (matrix continued-fractions,
finite differences, Monte Carlo methods, and so on; see Risken 1989; Press, Teukolsky,
Vetterling, and Flannery 1992; Ames 1992; Kloeden and Platen 1992). Alternatively, the
prediction error identification method (Ljung and Söderström 1983), the extended Kalman
filter EKF or other linearization methods (e.g., Shoji and Ozaki 1997) lead to approxima-
tions of the conditional density in terms of conditional Gauss distributions (see Sections
3.1–3.4). These approximations work well when the sampling intervals ∆ti = ti+1 − ti are
not too large in comparision with the dynamics as specified in f and g (see Section 3.4).
On the other hand, time series and panel data often involve large sampling intervals which
are fixed by the design of the study. Therefore, as in the linear case, the likelihood should
be computed exactly for the times of measurement ti (exact discrete model).

3.1 EXTENDED KALMAN FILTER

The extended Kalman filter (EKF) is a well-known extension of the linear Kalman filter
to nonlinear systems (see Jazwinski 1970). Here we use a version which is applicable to
the continuous/discrete state space model.

Denoting the conditional mean and covariance matrix as y(t|ti) = E[y(t)|Zi] and
P (t|ti) = var[y(t)|Zi], where Zi = {zi, . . . , z0} are the measurements up to time ti, these
fulfil the exact equations (ti ≤ t ≤ ti+1)

ẏ(t|ti) = E[f |Zi] (3.2)

Ṗ (t|ti) = cov(f, y|Zi) + cov(y, f |Zi) + E[Ω|Zi] (3.3)

between measurements. These are not differential equations, however, because the expec-
tation values require knowledge of the conditional distribution p(y, t|Zi).

Expanding the drift f and the diffusion matrix Ω around the estimate y(t|ti) up to first
order, and inserting this into (3.2)–(3.3) leads to the coupled approximate moment equations
(Jazwinski 1970, chap. 9)

ẏ(t|ti) = f(y(t|ti), t) (3.4)

Ṗ (t|ti) = fy(y(t|ti), t)P (t|ti) + P (t|ti)f ′
y(y(t|ti), t) + Ω(y(t|ti), t), (3.5)

where the Jacobian of the drift is defined by

(fy)jk := fj,k :=
∂fj(y, t)
∂yk

; j, k = 1, . . . , p (3.6)

3.2 SECOND-ORDER EXTENDED KALMAN FILTER

Expanding the drift f and the diffusion matrix Ω up to second order around the estimate
y(t|ti) and inserting this into (3.2)–(3.3) leads to the coupled approximate moment equations
(second-order nonlinear filter SNF; Jazwinski 1970, chap. 9)

ẏ(t|ti) = f(y(t|ti), t) +
1
2
fyy(y(t|ti), t) ∗ P (t|ti) (3.7)
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Ṗ (t|ti) = fy(y(t|ti), t)P (t|ti) + P (t|ti)f ′
y(y(t|ti), t)Ω(y(t|ti), t)

+
1
2
Ωyy(y(t|ti), t) ∗ P (t|ti), (3.8)

where the Jacobians are defined by

(fy)jk := fj,k :=
∂fj(y, t)
∂yk

; j, k = 1, . . . , p (3.9)

(fyy)jkl := fj,kl :=
∂2fj(y, t)
∂yk∂yl

; j, k, l = 1, . . . , p (3.10)

(Ωyy)jklm := Ωjk,lm :=
∂2Ωjk(y, t)
∂yl∂ym

; j, k, l,m = 1, . . . , p. (3.11)

The second-order terms fyy ∗ P (t|ti) and Ωyy ∗ P (t|ti) explicitly read

(fyy ∗ P (t|ti))j =
∑
kl

(fyy)jklP (t|ti)kl = tr[(fyy)jP (t|ti)], (3.12)

and

(Ωyy ∗ P (t|ti))jk =
∑
lm

(Ωyy)jklmP (t|ti)lm = tr[(Ωyy)jkP (t|ti)]. (3.13)

At times of measurement ti, the conditional mean and covariance are changed by the EKF
measurement update. In the present context, where the state is measured directly without
noise, this leads to the initial conditions y(ti|ti) = yi, P (ti|ti) = 0. In the usual EKF, the
second-order term fyy ∗ P (t|ti) in the mean equation and Ωyy ∗ P (t|ti) in the variance
equation are neglected. Moment equations including the second-order terms define the
second-order nonlinear filter SNF (Jazwinski 1970, chap. 9). In both cases the likelihood
function is computed recursively using the prediction error decomposition (Schweppe 1965)

Lψ(z) =
T−1∏
i=0

|2πΓi+1|i|−1/2 exp

{
−1

2
ν′
i+1Γ

−1
i+1|iνi+1

}
, (3.14)

νi+1 = zi+1 − h(y(ti+1|ti), ti+1), (3.15)

Γi+1|i = Hi+1P (ti+1|ti)H ′
i+1 +Ri+1, (3.16)

and Hi+1 = hy(y(ti+1|ti), ti+1) : k × p is the Jacobian of the output function h(y, t).

3.3 LOCAL LINEARIZATION METHOD OF SHOJI AND OZAKI

There is a close relation to the local linearization method of Shoji and Ozaki (1997,
1998) where the Itô formula was used to expand the vector field f(y, t). We obtain

f(y(t), t) − f(y(ti), ti) =
∫ t

ti

fy(y(s), s)dy(s) +
∫ t

ti

1
2
fyy(y(s), s) ∗ Ω(y(s), s)ds

+
∫ t

ti

ft(y(s), s)ds. (3.17)
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Freezing the coefficients at (yi, ti) and using a state independent diffusion coefficient Ω(s)
Shoji and Ozaki obtained the linearized SDE (ti ≤ t ≤ ti+1)

dy(t) = [fy(yi, ti)(y(t) − yi) + f(yi, ti) + ft(yi, ti)(t− ti)
+

1
2
fyy(yi, ti) ∗ Ω(ti)(t− ti)]dt+ g(t)dW (t).

The corresponding moment equations are

ẏ(t|ti) = fy(yi, ti)(y(t|ti) − yi) + f(yi, ti) + ft(yi, ti))(t− ti)
+

1
2
fyy(yi, ti) ∗ Ω(ti)(t− ti) (3.18)

Ṗ (t|ti) = fy(yi, ti)P (t|ti) + P (t|ti)f ′
y(yi, ti) + Ω(ti). (3.19)

By contrast to the EKF moment Equations (3.7)–(3.8), which is a system of nonlinear
differential equations, the Jacobians are evaluated once at the measurements (yi, ti) and the
differential equations are linear and not coupled. In both cases, the differential equations
were discretized on a grid with spacing δt = (ti+1 − ti)/Ji and numerically solved with
the Euler method.

The similarity with the SNF of Section 3.2 is seen from a Taylor expansion of the drift
around (yi, ti) up to second order leading to

f(y(t), t) = f(yi, ti) + fy(yi, ti)(y(t) − yi) + ft(yi, ti)(t− ti)
+

1
2
fyy(yi, ti) ∗ (y(t) − yi)(y(t) − yi)′

+O(||y(t) − yi||3) +O((t− ti)2). (3.20)

Inserting this into (3.2) and replacing E[(y(t) − yi)(y(t) − yi)′|Zi] ≈ Ω(ti)(t− ti) yields
the first moment equation of the Shoji–Ozaki approach. By contrast, the SNF results by
Taylor expansion of f around the filtered state y(t|ti). Of course, this is not surprising since
the Itô formula is based on Taylor expansion as well.

3.4 VALIDITY OF THE LINEARIZATION METHODS

As mentioned earlier, the EKF and also the Shoji–Ozaki method rest on the assumption,
that the transition density p(yi+1|yi;ψ) is Gaussian and the moments y(t|ti) = E[y(t)|Zi]
and P (t|ti) = var[y(t)|Zi] :=M2 can be computed by solving approximate moment equa-
tions. If p is Gaussian, the third momentM3 = E[(y(t)−y(t|ti))3|Zi] must vanish and the
fourth moment will factorize asM4 = 3M 2

2 in the scalar case. Since these moments fulfill the
equations

Ṁ3(t|ti) = 3E[f(y(t), t) ((y(t) − y(t|ti))2 −M2)|Zi]
+3E[Ω(y(t), t) (y(t) − y(t|ti))|Zi] (3.21)

Ṁ4(t|ti) = 4E[f(y(t), t) ((y(t) − y(t|ti))3 −M3)|Zi]
+6E[Ω(y(t), t) (y(t) − y(t|ti))2|Zi], (3.22)
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with initial conditions M3(ti|ti) = 0;M4(ti|ti) = 3M2(ti|ti)2, M3 will not remain zero
if f is nonlinear and Ω(y, t) depends on y. Expanding again around the conditional mean
y(t|ti) up to second order, one obtains the approximate equations

Ṁ3(t|ti) = 3fyM3 +
3
2
fyy(M4 −M 2

2 ) + 3ΩyM2 +
3
2
ΩyyM3 (3.23)

Ṁ4(t|ti) = 4fyM4 + 2fyy(M5 −M2M3) + 6ΩM2 + 6ΩyM3 + 3ΩyyM4.

(3.24)

Only in the linear case f = Ay + b; Ω = const., the solution of Ṁ3 = 3AM3 is zero
for all times and Ṁ4 = 4AM4 +6ΩM2 is solved byM4 = 3M 2

2 , as required by a Gaussian
solution. Nonlinearities lead to deviations from the Gauss distribution which is valid only
for short sampling intervals ∆ti = ti+1 − ti.

Similar considerations apply to the Shoji–Ozaki method, where
∫
fydy ≈ fy(y(t) −

y(ti)) and
∫
fyyΩydt ≈ fyyΩy(t − ti). This is valid only for small t − ti and for longer

intervals nonlinear terms appear in the approximate stochastic differential equation leading
to deviations from Gaussianity.

For example, if f = ay + b/2y2; fy = a + by, the Itô integral is exactly solved by∫
fydy = a(y(t) − y(ti)) + b/2(y(t)2 − y(ti)2 − Ω(t− ti)), whereas the approximation

leads to (a + by(ti))(y(t) − y(ti)) Using y2 − x2 = (y + x)(y − x) ≈ 2x(y − x) for
y(t) ↓ y(ti) it is seen that the expressions coincide for t ↓ ti by the continuity of the solution
y(t).

3.5 KERNEL DENSITY METHOD

We choose a solution method of Fokker–Planck Equation (2.3), which basically in-

volves simulation ofN independent trajectories yn(t), n = 1, . . . , N between times ti and

ti+1. The functional

p(y, t|x, s) = E[δ(y(t) − y)|y(s) = x] (3.25)

is approximated by the mean (N -point estimator)

p̂(y, t|x, s) =
1
N

N∑
n=1

δ(ynxs(t) − y), (3.26)

whereynxs(t) is an ensemble of solutions of (2.1) starting at (x, s). p̂ is an unbiased estimator

of p, but its variance does not exist since integrals involving the square of the delta function

δ(.)2 cannot be defined (see, e.g., Lighthill 1958). If we use a unimodal positive kernel

function K(.) integrating to one, such as the Gauss density φ(y; 0,Σ) instead of δ(.), we

obtain a kernel density estimator of p (see Silverman 1986). This estimator is used for the

transition density p(yi+1|yi) and likelihood (3.1). Since it is necessary to evaluate p̂ very

often, the simple choice of the smoothing parameter Σ, namely

Σ(t) = (aN− 1
p+4 )2v̂ar(ynxs(t))

a =
(

4
p+ 2

) 1
p+4

(3.27)
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was used. It is only optimal for Gauss distributed data (see Silverman 1986). Here,

v̂ar(ynxs(t)) is the empirical covariance matrix at time t of the N trajectories starting

at (x, s). The smoothing parameter is separately chosen for each evaluation of the transition

density p(yi+1|yi;ψ) occuring in (3.1). In the context of Monte Carlo filtering in discrete

time, a similar approach was used by Hürzeler and Künsch (1998). Letting the smoothing

parameter go to zero, the filtering method of Kitagawa (1996) is recovered and (3.26) is ob-

tained. The trajectories ynxs(t) were simulated using the simplest stochastic Runge–Kutta

scheme, the Euler–Maruyama method (see Fahrmeir 1976; Rümelin 1982; Kloeden and

Platen 1992). More accurate higher order methods such as Heun’s scheme could be used,

but these schemes generate solutions in the sense of Stratonovich. Of course it is always

possible to modify the drift such that the simulated solution coincides with the Itô solution

of (2.1).

Since we want to evaluate only a functional of y(t), a weak Euler scheme was used.

Instead of the Gaussian increments of the Wiener process δW (t) = W (t + δt) −W (t)

uniform random variables with mean zero and variance δt were used leading to savings in

CPU time. Alternatively, a two-point variable with the same moments could be used, too

(see Kloeden and Platen 1992, part VI).

In comparision to other solution methods of the Fokker–Planck equation, the Monte

Carlo approach works well in higher dimensions (p-dimensional state y) and is applicable

even if the diffusion matrix Ω = gg′ is singular at some points. Furthermore, p̂ is always

positive and integrates to one. Finite difference methods, for examples, can lead to negative

values of the solution matrix because of approximation errors.

3.6 FUNCTIONAL INTEGRAL METHOD

An alternative representation of the transition probability is obtained by repeatedly

using the Markov property and the Chapman–Kolmogorov equation

p(yi+1|yi) =
∫
p(yi+1|ηJi−1)p(ηJi−1|ηJi−2)

. . . p(η1|yi)dηJi−1 . . . dη1, (3.28)

where the interval [ti, ti+1] is divided in Ji = ∆ti/δt subintervals of spacing δt = ∆ti/Ji
and auxiliary variables yi = η0, . . . , ηJi = yi+1 were introduced (ηj = y(τj); τj =

ti + jδt; j = 0, . . . , Ji). Then, for small δt the transition density can be approximated by

the normal density

p(ηj+1|ηj) ≈ φ(ηj+1; ηj + f(ηj , τj)δt,Ω(ηj , τj)δt). (3.29)
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In the limit Ji → ∞ we obtain the path (functional) integral representation

p(yi+1|yi) = lim
Ji→∞

∫
exp


−1

2

Ji−1∑
j=0

(ηj+1 − ηj − fjδt)′(Ωjδt)−1(ηj+1 − ηj − fjδt)



×
Ji−1∏
j=0

|2πΩjδt|−1/2dηJi−1 . . . dη1 (3.30)

:=
∫

exp

(
−1

2
O[y]

)
Dy(t) (3.31)

(see Haken 1977, chap. 6.6; Risken 1989, ch. 4.4.2; Kloeden and Platen 1992, chap. 16.3;
Pedersen 1995, theorem 3). The formal exponent

O[y] =
∫ ti+1

ti

[ẏ(t) − f(y, t)]′Ω(y, t)−1[ẏ(t) − f(y, t)]dt (3.32)

is called a Onsager-Machlup functional and Dy(t) symbolizes the integration over paths.
In practical computations we do not go to the limit but choose δt small enough [a so-called
ε version in the sense of Stratonovich (1989)]. Thus, we obtain a (Ji − 1)-dimensional
integral (3.28), which is approximated by the mean

p̂(yi+1|yi) = N−1
N∑
n=1

p(yi+1|ηn,Ji−1), (3.33)

where ηn,Ji−1 is thenth simulated time path yn,yi,ti(t) evaluated at time t = ti+(Ji−1)δt.
As with the kernel density method, a weak Euler scheme (with uniform variates) was used
for the simulation of the sample paths.

3.6.1 Importance Sampling

The integral representation (3.28) can be rewritten to reduce the the variance of the
estimate (3.33). In general, the integral

E1[g] =
∫
g(y)p1(y)dy =

∫
g(y)

p1(y)
p2(y)

p2(y)dy (3.34)

= E2

[
g
p1

p2

]

leads to a variance reduced unbiased estimate

Ê1[g] = N−1
N∑
n=1

g(yn)
p1(yn)
p2(yn)

(3.35)

yn ∼ p2 if the density p2 is chosen appropriately. One can show that the optimal density is
given by

p2,opt =
|g(y)|p1(y)
E1|g(y)| (3.36)
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and the variance of (3.35) is zero if g is positive (see Kloeden and Platen 1992, chap.
16.3). Setting g(ηJi−1) = p(yi+1|ηJi−1) and p1 = p(ηJi−1|ηJi−2) . . . p(η1|η0) leads to the
optimal density

p2,opt = p(ηJi−1|ηJi−2, yi+1) . . . p(η1|η0, yi+1), (3.37)

where the transition densities are conditioned on future measurements yi+1. In general
these are difficult to compute, but for the linear system an exact result is available which
can be generalized to nonlinear systems. Thus, in linear systems, the estimate (3.35) has
variance zero and the mean is exact with one trajectory. In nonlinear systems, the density
p2 leads to an estimate p̂(yi+1|yi) with variance > 0 but still to a variance reduction. Since
in the linear case all densities are Gaussian, one obtains the conditional mean and variance
(ηj = y(τj); τj = ti + jδt; j = 0, . . . , Ji − 1)

E(ηj+1|ηj , yi+1) = E(ηj+1|ηj) + Fj [yi+1 − E(yi+1|ηj)] (3.38)

var(ηj+1|ηj , yi+1) = var(ηj+1|ηj) − Fjvar(yi+1|ηj)]F ′
j (3.39)

Fj := var(ηj+1|ηj)Φ′(ti+1, τj+1)var(yi+1|ηj)−1 (3.40)

which characterize the density p(ηj+1|ηj , yi+1). The smoother gain Fj and the update
formulas are analogous to the fixed interval smoother (see Anderson and Moore 1979) and
can be easily generalized to noisy measurements zi+1 (Singer 2000). The quantities in the
update formulas can be obtained by solving the differential equations (τj ≤ t ≤ ti+1)

ẏ(t|τj) = f(y(t|τj), t); y(τj |τj) = ηj (3.41)

Ṗ (t|τj) = A(t)P (t|τj) + P (t|τj)A′(t) + Ω(t); P (τj |τj) = 0 (3.42)

Φ̇(t|τj+1) = A(t)Φ(t|τj+1); Φ(τj+1|τj+1) = I (3.43)

f(y, t) := A(t)y + b(t) (3.44)

and setting

E(ηj+1|ηj) = y(τj+1|τj) (3.45)

E(yi+1|ηj) = y(ti+1|τj) (3.46)

var(ηj+1|ηj) = P (τj+1|τj) (3.47)

var(yi+1|ηj) = P (ti+1|τj). (3.48)

In the limit of small δt one can write

E(ηj+1|ηj , yi+1) = ηj + f(ηj , τj)δt+ Fj [yi+1 − E(yi+1|ηj)] (3.49)

var(ηj+1|ηj , yi+1) = Ω(τj)δt− Fjvar(yi+1|ηj)F ′
j (3.50)

which can be interpreted as a correction to the drift f and the diffusion matrix Ω. Therefore
the optimal density p2 and trajectories drawn from it can be obtained by using a modified
drift f2 and diffusion coefficient Ω2.

Since the moment equations (3.41)–(3.44) can be generalized to nonlinear systems
by replacing A(t) → fy(y, t) and Ω(t) → Ω(y, t) one obtains a sampling scheme where
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Figure 1. Convergence of the simulated likelihood (Ginzburg–Landau model). Means ± standard deviations in
M = 10 replications. Right picture: with importance sampling. Sample size N = 10, 50, 100, 200.

the (sub)optimal density p2 is implemented by means of the EKF updates and trajectories
{ηJi−1, . . . , η0}n ∼ p2 can be simulated using f2 and Ω2. The convergence of the simulated
likelihood is shown in Figure 1, where the model discussed in Section 4 was used. The
variance of the estimates is considerably reduced in comparision to the simple estimate
(3.33), but improvements of the density p2 may be possible. Heuristically, the benchmark
of the sampler is the EKF, and systems well described by it will exhibit small variances
even for small sample size N .

4. SIMULATION STUDY 1: GINZBURG–LANDAU MODEL

The several estimation methods were tested in a simulation study. The model under
consideration is a diffusion process in a double well potential Φ(y, {α, β, σ}) = α

2 y
2 + β

4 y
4

-10 -5 0 5 10

-20

-10

0

10

20

α=−3

−2

α=1

−1
0

Figure 2. Potential Φ(y, {α, β, σ}) = α
2 y2 + β

4 y4 for β = 1 and several values of α = −3, . . ., 1. Bifurcation
of f when α becomes negative.
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Figure 3. Diffusion process in a bimodal potential. Filtered estimates of y(t) using the EKF, SNF and local
linearization (true parameters inserted, sampling interval ∆t = 2).
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Table 1. Means and Standard Deviations of ML Estimates in M = 100 Replications. Comparison of
EKF, SNF, and Shoji–Ozaki’s local linearization at different sampling intervals ∆t = 2, 1, 0.5.

EKF SNF Shoji–Ozaki

para- true
meter values mean std RMSE mean std RMSE mean std RMSE

∆t = 2
α –1. –0.4363 0.5689 0.8009 –0.2728 0.2227 0.760503 –0.164693 0.277562 0.880215
β 0.1 0.1192 0.1545 0.15565 0.04142 0.04057 0.071258 0.0214504 0.0119278 0.079450
σ 2. 2.204 0.9013 0.92401 1.554 0.242 0.507157 1.59717 0.349 0.532984

∆t = 1
α –1. –0.5145 0.4284 0.64744 –0.6365 0.2748 0.455647 –0.461325 0.230173 0.58579
β 0.1 0.08236 0.05755 0.06020 0.07118 0.02423 0.037655 0.0450723 0.0155778 0.05709
σ 2. 1.992 0.3542 0.35427 1.804 0.1785 0.265299 1.76298 0.198182 0.30896

∆t = 0.5
α –1. –0.7608 0.2817 0.36955 –0.9744 0.3626 0.36345 –0.81903 0.285035 0.33763
β 0.1 0.09741 0.02708 0.02721 0.1002 0.02942 0.02942 0.076245 0.019856 0.030961
σ 2. 2.028 0.1617 0.16417 1.989 0.1475 0.14783 1.91593 0.131459 0.156042

with vector field f = −∂Φ/∂y and state independent diffusion coefficient g = σ. The SDE
reads explicitly (Ginzburg–Landau equation)

dy = −[αy + βy3]dt+ σdW (t). (4.1)

A physical picture is the strongly damped random movement of a sphere in a landscape
defined by the potential Φ.

The potential Φ can exhibit a Hopf bifurcation when α becomes negative (β > 0; see
Figure 2). The singularity (zero of f ) at y = 0 forks into 3 singularities at {±√−α/β, 0}.
In the simulation study a parameter constellation of ψ = {α, β, σ} = {−1, 0.1, 2} cor-
responding to minima of Φ at ±√

10 was used. It can be easily shown that the stationary
density p0(y) = limt→∞ p(t, y|x, s) is proportional to exp(− 2

σ2 Φ) leading to a bimodal
shape with maxima at the singularities. Models of this kind occur in the context of limit
cycles, phase transitions and as normal forms of nonlinear systems (Arnold 1973, 1986;
Haken 1977; Holmes 1981, normal form theorem 4.4). From a more practical point of
view, the model has been studied in order to guide the application of filter methods in the
atmospheric and oceanic sciences (Miller, Ghil, Gauthiez 1994). In the present context the
non-Gaussian density of the model is a test for the local linearization and EKF methods,
which still rely on small deviations from the linear case.

The data used for estimation were M = 100 simulated trajectories on a grid with
J = 500, δt = 0.1, but these were sampled at uniform time intervals of ∆t = 2, that is,
i = 0, . . . T = 25. Also, smaller intervals ∆t = 1, 0.5 were investigated.

The likelihood was computed using the several estimation methods and maximized
by using a quasi Newton scheme with numerical score and BFGS secant updates (Dennis
and Schnabel 1983). The iteration was stopped at k, if the score and the difference in the
log-likelihood was small, that is, ||sk||∞ < ε1 = 0.001 and |lk − lk−1| < ε2 = 0.001.
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Figure 4. EKF and SNF. Empirical distribution (kernel density estimates and fitted normal distribution) of M =
100 ML estimates of {α, β, σ} = { −1., 0.1, 2. } (from left). Rows 1 – 2: ∆t = 2, row 1: EKF, row 2: SNF. Rows
3 – 4: ∆t = 1, row 3: EKF, row 4: SNF. Rows 5 – 6: ∆t = 0.5, row 5: EKF, row 6: SNF. True values are marked
by vertical lines.
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Figure 5. Local linearization (Shoji–Ozaki). Empirical distribution of M = 100 ML estimates of {α, β, σ} =
{−1., 0.1, 2.} (from left). Row 1: ∆t = 2, Row 2: ∆t = 1, Row 3: ∆t = 0.5.

4.1 EKF, SECOND-ORDER EKF, AND LOCAL LINEARIZATION

First the EKF, the second-order EKF (SNF; Taylor expansions of f and g), and the
Shoji–Ozaki approach were compared using three different sampling intervals (∆t =
2, 1, 0.5). Figure 3 shows a simulated trajectory and the approximate filter solution
E[y(t)|Zt] for the methods EKF, SNF, and the Shoji–Ozaki approach. At the times of
measurement ti = i∆t,∆t = 2 the solution changes discontinuously due to the new mea-
surement information. The figures show that the second-order corrections lead to a better
tracking of the trajectory y(t).

The results of the simulation study are shown in Table 1 and Figures 4–5. For the
sampling intervals ∆t = 2, 1, the second-order filter is best in terms of the root mean square
error (RMSE), but for ∆t = 0.5 each of the methods leads to good results. Generally, the
smaller the sampling interval, the smaller the bias and RMSE of the estimates.

4.2 KERNEL DENSITY AND FUNCTIONAL INTEGRAL APPROACH

Since the linearized estimators of the last section are asymptotically biased in the
limit T → ∞, ∆t fixed, the asymptotically unbiased (N → ∞, T → ∞, ∆t fixed)
kernel density and functional integral approaches (simulated likelihood) were tested with
the large sampling interval ∆t = 2 using different sizes of the Monte Carlo sample (N =
10, 50, 100). The results are shown in Tables 2–4 and Figures 6–8.

In comparision with the EKFs, the estimates computed with the simulated likelihood
method exhibit smaller bias and less dispersion. Without variance reduction, the size N of
the Monte Carlo sample must be large enough (50 or more) in order to keep the simulation
error small, but the variance reduced sampler (3.35) yields good results already for N =
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Table 2. Kernel Density Method. Means and standard deviations of ML estimates in M = 100 replica-
tions (Monte Carlo sample size N = 10, 50, 100).

∆t = 2 True values Mean Std RMSE

N = 10
α –1. –2.73522 1.66331 2.40366
β 0.1 0.334058 0.193477 0.303671
σ 2. 2.37004 0.634993 0.734947

N = 50

α –1. –1.47312 0.776728 0.909478
β 0.1 0.179503 0.102761 0.129926
σ 2. 1.81311 0.355508 0.40164

N = 100

α –1. –1.42286 0.720371 0.835311
β 0.1 0.158894 0.084701 0.103164
σ 2. 1.91374 0.367772 0.377752

10. Comparing the two different approaches, the functional integral method is superior,
especially in the estimation of parameters α and β related to the drift.

4.3 COMPARISION OF ALL METHODS

In the case of large sampling interval ∆t = 2, the estimation methods relying on a
simulation of the likelihood function lead to the smallest RMSE, if the Monte Carlo sample
size is large enough or variance reduction techniques are used. This is because the simula-
tion methods take into account, that the conditional density p(y, t|yi) is bimodal, whereas
the EKFs and the Shoji–Ozaki approach always assume a Gaussian distribution. This is a

Table 3. Functional Integral Method. Means and standard deviations of ML estimates in M = 100
replications (Monte Carlo sample size N = 10, 50, 100).

∆t = 2 True values Mean Std RMSE

N = 10

α –1. –1.79274 1.03301 1.30213
β 0.1 0.200757 0.115922 0.15359
σ 2. 2.50679 0.550433 0.748208

N = 50

α –1. –1.11849 0.579374 0.591366
β 0.1 0.119159 0.0553919 0.0586115
σ 2. 2.00896 0.379529 0.379634

N = 100

α –1. –1.06157 0.555947 0.559346
β 0.1 0.110808 0.0578512 0.0588522
σ 2. 1.90572 0.375373 0.387032
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Table 4. Functional Integral Method with Importance Sampling. Means and standard deviations of ML
estimates in M = 100 replications (Monte Carlo sample size N = 10, 50, 100).

∆t = 2 True values Mean Std RMSE

N = 10

α –1. –1.04213 0.328788 0.331476
β 0.1 0.10861 0.0377964 0.0387645
σ 2. 2.04636 0.388395 0.391153

N = 50

α –1. –0.981368 0.360238 0.36072
β 0.1 0.102277 0.0416743 0.0417364
σ 2. 1.93997 0.361415 0.366367

N = 100

α –1. –0.820112 0.312953 0.36097
β 0.1 0.0872694 0.0371133 0.039236
σ 2. 1.85711 0.345669 0.374037

good approximation only for small sampling intervals ∆ti (see Section 3.4). On the other
hand, the simulation of the likelihood requires much more computation time (see Table
5), but for large sampling intervals the improvements in bias and RMSE are considerable.
Computation of the importance density by smoothing requires higher computational costs
but the results for N = 10 are better than the corresponding estimates without importance
sampling (N = 100). The computations were performed on a PowerPC 604e with 180
MHz using MPW C and Mathematica with the MathLink communication library.

-3 -2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

-0.75-0.5-0.25 0 0.25 0.5 0.75 1
0

1

2

3

4

5

0.5 1 1.5 2 2.5 3 3.5 4
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-3 -2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

-0.75-0.5-0.25 0 0.25 0.5 0.75 1
0

1

2

3

4

5

0.5 1 1.5 2 2.5 3 3.5 4
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-3 -2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

-0.75-0.5-0.25 0 0.25 0.5 0.75 1
0

1

2

3

4

5

0.5 1 1.5 2 2.5 3 3.5 4
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Figure 6. Kernel density method. Empirical distribution of M = 100 ML estimates of {α, β, σ} = { −1., 0.1,
2. } (from left). Sample size N = 10, 50, 100 (from above).
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Figure 7. Functional integral method. Empirical distribution of M = 100 ML estimates of {α, β, σ} = { −1.,
0.1, 2. } (from left). Sample size N = 10, 50, 100 (from above).
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Figure 8. Functional integral method with importance sampling. Empirical distribution of M = 100 ML estimates
of {α, β, σ} = { −1., 0.1, 2. } (from left). Sample size N = 10, 50, 100 (from above).



990 H. SINGER

Table 5. Comparision of CPU Times (seconds) for 10 Likelihood Evaluations and Varying Monte Carlo
sample size N (Ginzburg–Landau model).

Method N = 10 50 100

EKF 1.76 − − −
SNF 1.95 − − −
FIF 1.08 1.70 2.63

FIF/IS 6.56 58.85 131.27

5. SIMULATION STUDY 2: GENERALIZED
COX-INGERSOLL-ROSS MODEL

The Cox–Ingersoll–Ross (CIR) model (α = 1) and its generalization (GCIR)

dr(t) = µ[r(t) − r0]dt+ σr(t)α/2dW (t), (5.1)

were designed to model interest rates r(t) which fluctuate around an equilibrium value
r0 (Cox, Ingersoll, and Ross 1985). The solution is always positive but only known ex-
plicitly for α = 1 (square root process; see, e.g., Overbeck and Rydén 1997) or r0 = 0
(CEV model; see Section 3). In the present context it serves as an example for a nonlinear
diffusion coefficient. The model was estimated on the weekly three months to maturity
interest rate series as published by the Federal Reserve Bank (H.15 data, series tbsm3m)
from 01/08/1954 to 12/31/1999 (see Figure 9). Similar data have been estimated by the so
called efficient method of moments (EMM) using the GCIR model (Andersen and Lund
1997). The ML estimates ψ̂ = {µ̂, r̂0, α̂, ĥ = log σ̂2} = {−0.128, 6.15, 1.43,−1.91} ob-
tained by using the EKF were taken as true values and the estimation methods quasi-ML (see
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15

 

Figure 9. Weekly three months to maturity interest rate series tbsm3m (source: Federal Reserve Bank).
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Table 6. Simulation Study Using the GCIR Model and Simulated Interest Rate Data (M = 100 replica-
tions; see text).

True values Mean STD RMSE

MQLE

–0.128 –0.140027 0.0854657 0.0863078
6.15 6.62231 2.42761 2.47312
1.43 1.62785 0.313982 0.371122

–1.91 −2.26715 0.593798 0.69293

EKF

–0.128 –0.191776 0.0918065 0.111784
6.15 6.10848 2.17473 2.17513
1.43 1.43853 0.0726564 0.0731559

–1.91 –1.92337 0.116938 0.1177

SNF

–0.128 –0.191776 0.0918113 0.111789
6.15 6.10869 2.17541 2.17581
1.43 1.43863 0.072659 0.0731699

–1.91 –1.92369 0.116973 0.117771

FIF/N = 100

–0.128 –0.199283 0.0983863 0.121495
6.15 5.78519 1.95189 1.98569
1.43 1.43861 0.0813057 0.0817604

–1.91 –2.09144 0.129997 0.223206

FIF/N = 200

–0.128 –0.189293 0.09179 0.110373
6.15 6.20549 2.17114 2.17185
1.43 1.42951 0.0829616 0.082963

–1.91 –2.02065 0.130989 0.171466

FIF/Importance Sampling/N = 10

–0.128 –0.190444 0.0920237 0.11121
6.15 6.26824 2.38093 2.38387
1.43 1.41205 0.0718943 0.0741003

–1.91 –1.88408 0.116619 0.119465

FIF/Importance Sampling/N = 50

–0.128 –0.193136 0.0933753 0.113849
6.15 6.04289 2.57447 2.5767
1.43 1.42757 0.071608 0.0716494

–1.91 –1.90635 0.115705 0.115763

FIF/Importance Sampling/N = 100

–0.128 -0.192599 0.0918176 0.112265
6.15 6.02299 2.148 2.15175
1.43 1.44306 0.072509 0.0736752

−1.91 −1.92798 0.11644 0.117821
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below), EKF, SNF, FIF and FIF/IS (with importance sampling) were tested on M = 100
replications. The estimation and simulations were based on a discretization scheme with
∆t = 1/52 (weekly sampling interval) and δt = 1/(52 ∗ 7) (daily discretization in-
terval). Since the drift function is linear, the first moment equation ẏ(t|ti) = f(y(t|ti), t),
y(t|ti) := E[r(t)|r(ti)] is exact, but the variance equation Ṗ (t|ti) = fy(y(t|ti), t)P (t|ti)+
P (t|ti)f ′

y(y(t|ti), t) + Ω(y(t|ti), t) is approximate except for α = 1 (CIR model). In
this case E[Ω(r(t))|r(ti)] = E[σ2r(t)|r(ti)] = σ2y(t|ti) (see Section 3.1). It can be
shown that the score function of the EKF is equivalent to the estimating equations de-
rived by Wefelmeyer (1996), if fourth moments are factorized by the Gaussian assumption
E[z4] = 3E[z2]2. These equations combine first and second conditional moments and
are called the extended quasi-likelihood model. The resulting efficient estimator is the
extendend maximum quasi-likelihood estimator (EMQLE). From these theoretical results
the EKF type estimators should perform well when first- and second-order moments are
sufficient to describe likelihood and score. A simpler MQLE using only the first condi-
tional moment was computed as well (martingale estimator, see Bibby and Sorensen 1995;
Overbeck and Rydén 1997). In scalar notation without measurement model the estimating
equations are of the form

0 =
T−1∑
i=0

wi(yi+1 − y(ti+1|ti)), (5.2)

where the optimal weights are given by wi = yψ(ti+1|ti)/P (ti+1|ti) and yi+1 := r(ti+1).
The resulting MQL estimates of ψ can be interpreted as conditional least squares estimates
using the prediction error (see Bibby and Sorensen 1995; Klimko and Nelson 1978). It may
seem that Equation (5.2) uses the information in the second conditional momentP (ti+1|ti),
but as shown by Wefelmeyer (1996), the estimator does not use P , although it is contained
in the definition. A second term using the squared prediction error νi := yi+1 − y(ti+1|ti)
yields the combined estimation equations

0 =
T−1∑
i=0

w1iνi + w2i[ν2
i − P (ti+1|ti)], (5.3)

and the resulting EQMLE is equivalent to the EKF estimates.
The results of the simulation study are presented in Table 6. It is somewhat surprising,

that the EKF and SNF perform very well in terms of the RMSE, but the functional integral
approach with N = 200 has slight advantages in the estimation of the parameter µ (mean
reversion). The simple QMLE (5.2) using only the first conditional moment is outperformed
by the ML methods considering also second moments (EKF) and by simulated ML. Finally,
the functional integral approach with importance sampling (N = 100) is slightly better in
relation to EKF and FIF in terms of RMSE for the mean level r0.

6. CONCLUSION

We compared several estimation methods for the structural parameters of a sampled
stochastic differential equation system. In a first simulation study using a nonlinear drift
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in a double well potential, linearization methods based on the extended Kalman filter and
on Itô’s formula are shown to be time saving, but the estimates exhibit strong bias for
large sampling intervals. The simulation based likelihood methods are preferable for large
sampling intervals, but require more CPU time.

In a second simulation study adressing nonlinear diffusion coefficients, but linear drift,
the EKF type estimators perform as well as the computationally more demanding Monte
Carlo methods with simulated likelihood. The advantages of the latter methods may be
more pronounced if the sampling interval (weekly) is larger or if stronger nonlinearities are
considered. The simulation parameters were determined by a real dataset, however.

Although the simulation studies assume uniform sampling intervals, the software im-
plementation also allows irregular sampling and missing values in some components of the
measurements.

In Miller, Ghil, and Gauthiez (1994), using a double well potential, it was demonstrated
that the inclusion of measurement noise leads to a degradation of performance of the EKF
in tracking the system trajectories. This will also diminish the quality of the parameter
estimates which are based on the prediction error decomposition and may lead to a further
advantage of the simulation methods.

Present investigations include a measurement model for the kernel density and func-
tional integral method and simulation experiments for multivariate systems such as the
Lorenz model.
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