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Abstract

This paper extends maximum entropy estimation of discrete probability
distributions to the continuous case. This transition leads to a nonpara-
metric estimation of a probability density function, preserving the max-
imum entropy principle. Furthermore, the derived density estimate pro-
vides a minimum mean integrated square error.

In a second step it is shown, how boundary conditions can be included,
resulting in a probability density function obeying maximum entropy. The
criterion for deviation from a reference distribution is the Kullback-Leibler -
Entropy. It is further shown, how the characteristics of a particular distri-
bution can be preserved by using integration kernels with mimetic prop-
erties.

Keywords: Maximum Entropy; Kullback-Leibler -Entropy; Kernel Den-
sity Estimation; Mean Integrated Square Error.

1. Introduction

Real decision situations are often highly complex, forcing the decision maker
to rely on a decision support system. A research area in artificial intelligence
(AI) is the representation and imitation of human knowledge in computer sys-
tems. Knowledge based systems, which started with purely deterministic rule
processing in the early 1970s, are nowadays capable of handling uncertain, sub-
jective and vague knowledge. One particular field of research uses rules, based
on conditional probabilities, for communication between user and system. Such
conditional probabilities have to be specified either by expert knowledge or by
estimation from statistical data. At the beginning of the 1990s, knowledge rep-
resentation in probabilistic networks received attention not only in academic
research, but also industry wide (Lauritzen and Spiegelhalter, 1988; Jensen,
1996).

To conduct knowledge acquisition under uncertainty with maximum entropy
(MaxEnt) principle is an axiomatically well-founded approach (Csiszàr, 1975;
Kern-Isberner, 1998; Paris and Vencovská, 1997; Shore and Johnson, 1980).
Incoming information about the conditional structure of all involved variables
in a given domain is processed in a way that avoids generation of new and
unintended dependencies (Paris and Vencovská, 1990; Schramm and Fronhöfer,

1



2001; Calabrese, 2004). This type of conservative knowledge processing provides
a justification for MaxEnt as unique probabilistic inference process, satisfying
a set of reasonable conditions (Paris and Vencovská, 1990, 1997; Shore and
Johnson, 1980; Calabrese, 2004).

The remainder of this paper is organized as follows. Section 2 gives a short
review of the milestones in AI. The focus in Section 3 lies on knowledge acqui-
sition under maximum entropy for discrete models. For this case, the expert-
system-shell SPIRIT1 is a suitable tool, which allows to handle large knowledge
bases with hundreds of variables in milliseconds. In Section 4 we show how to
overcome the limitation on discrete variables by extending the MaxEnt inference
principle to quasi continuous domains. We further show that the suggested ap-
proach is a generalization of the well established inference procedure in discrete
domains. An illustrative example of this idea is given in Section 5. Section 6
summarizes the findings and draws conclusions. Further research activities on
this field are motivated subsequently.

2. Milestones in Artificial Intelligence

The cradle of Artificial Intelligence (AI) was in Dartsmouth, USA, when 1956
some famous researcher organized a workshop to discuss, how to simulate human
thinking patterns on a computer. In the following decade first expert-systems
were developed (Harmon and King, 1985).

The “General Problem Sover” was created by Newell et al. (1959). It was
based on their theoretical work on logical machines. The programm was the first
to solve formalized symbolic problems, theorem proofs, geometric problems or
to play chess, for instance. The “Advice Taker”, developed by McCarthy (1958),
was a hypothetical program and the first one allowing for the use of logic to
represent information.

Some further programs followed in the 1960s, but at the beginning of
the 1970s more user-friendly software-tools prevailed as mainstream in expert-
systems. The most famous one was MYCIN, developed at the Stanford Uni-
versity in 1972. It was designed to identify bacteria causing severe infections,
such as bacteremia and meningitis, and to recommend antibiotics. It was the
first programm with the ability to handle conditionals of the type if-then with
uncertainty factors. But due to ethical doubts, the system was never devel-
oped further. Other structural problems caused a decrease in enthusiasm in
expert-systems over the following years.

At the end of the 1980s Lauritzen and Spiegelhalter (1988) revived the in-
terest in the AI-community. Their work was seminal in that they discovered a
method to handle large knowledge-bases efficiently in graphical structures. This
knowledge launched a renaissance of expert-systems. The program HUGIN2,
developed by Jensen in the beginning of the 1990s, is a representative of Bayes-

1The shell SPIRIT is a java programm, which therefore is independent of the operating
system. For more details about the algorithmic implementation and applications, illustrating
the power of the shell, the reader is referred to Rödder et al. (2006).

2http://www.hugin.com
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net-oriented programs. The system is used in different commercial applications.
HUGIN is able to handle continuous variables with normal, beta, gamma, expo-
nential, weibull, uniform, triangular and lognormal distribution. It is also able
to handle discrete and (special) continuous variables simultaneously. The gen-
eration of knowledge and the inference process in Bayes-net-oriented systems is
based on the Bayes-formula.

For two discrete variables X and Y with finite values x and y the probability
P of the conditional X = x|Y = y for any (x, y) is given by

P (X = x|Y = y) =
P (Y = y|X = x) · P (X = x)

P (Y = y)

=
P (Y = y|X = x) · P (Y = y)∑
x P (Y = y|X = x) · P (X = x)

.

(1)

The inference principle in HUGIN is applicable for continuous X and Y , if both
variables are Gaussian. This involves an additional restriction for handling
continuous variables in HUGIN

• A continuous variable never can have discrete “parents”. More precisely,
for a continuous X the conditional X|Y can only be defined, if Y is not a
discrete variable.

We want to overcome these drawbacks and therefore focus on knowledge acqui-
sition with MaxEnt, which is much more flexible in generating knowledge bases
than Bayes-nets. For more details the reader is referred to Rödder et al. (2009).
Theoretical results of MaxEnt knowledge acquisation in continuous domains are
also obtained recently by Singer (2005)

3. Knowledge Acquisition by MaxEnt

In this section we give a short review of the ideas of the MaxEnt-concept, which
is partially adopted in Rödder et al. (2009). To build a knowledge base one
needs a finite set of finite valued variables V = {V1, ..., VL} with respective
values vl of Vl. The variables might be boolean, nominal or numerical. With
help of literals of the form Vl = vl, propositions A,B, C, ... are formed by the
junctors ∧ (and), ∨ (or), ¬ (not) and by respective parentheses. Conjuncts of
literals, such as v = v1, ..., vL, are elementary propositions, V is the set of all
v. | is the directed conditional operator; expressions like B|A are conditionals.
Such conditionals inside a knowledge domain are true up to a certain degree,
which might be expressed by probabilities p ∈ [0; 1]; thus we write B|A [p]
for such conditional uncertain information. Regarding semantics, a model is a
probability distribution P for which such conditional information is valid.

Given a set of rules R = {Bi|Ai [pi], i = 1, . . . , I}, the knowledge acquisition
process is conducted by solving the nonlinear optimization problem

P ∗ = arg min KL(Q||P 0), s.t. Q |= R, (2a)

where
KL(Q||P 0) =

∑
v

Q(v) · ld Q(v)
P 0(v)

. (2b)
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KL(Q||P 0) denotes Kullback-Leibler -divergence (cf. Csiszàr, 1975). Let ld de-
note the logarithm with base two, then the quantity KL has dimension bit.
Here the arg-function determines the special probability distribution P ∗ among
Q, minimizing KL(Q||P 0) and satisfying the linear constrains R. A set of con-
ditionals R = {Bi|Ai [pi], i = 1, . . . , I} represents a convex polyhedron (Reucher
and Kulmann, 2007). P ∗ is considered the epistemic state from which all valid
conditionals can be evaluated. P 0 denotes the uniform distribution and is the
solution of (2a) for R = {}.
(2a) is equivalent to maximizing the entropy (Rödder, 2003):

P ∗ = arg max H(Q), s.t. Q |= R, (3a)

where
H(Q) = −

∑
v

Q(v) · ld Q(v). (3b)

It is well known, that H measures the average uncertainty of any v being true.
The maximum entropy distribution P ∗ is uniquely determined as the one

incorporating all information in R. Furthermore, it is maximally unbiased with
respect to missing information. So, P ∗ is characterized by the distribution
expressing maximum uncertainty with respect to R.

The principle of minimizing Kullback-Leibler-divergence, or maximum en-
tropy, respectively, follows quite naturally from the axioms of Shore and Johnson
(1980, p. 27). Given a continuous priori density and a set of constrains, there
is only one posterior density satisfying all restrictions. It can be determined by
a procedure satisfying the following axioms Shore and Johnson (1980, p. 29):

• Uniqueness

• Invariance

• System Independence

• Subset Independence

The unique posterior distribution can be obtained by minimizing the cross-
entropy (2a). The principle of minimum cross-entropy is implemented in the
expert-system-shell SPIRIT for discrete variable domains.

However, many knowledge domains consist of quasi-continuous variables.
Such variables are height, age, etc. The following example demonstrates the
principle of knowledge acquisition by maximum entropy with a quasi-continuous
variable. It will be revisited in Section 5.2. Given a sample (N = 10 000) of a
random variable X ∼ N(5, 1.5). Clearly the interval [0; 10] supports more than
a 3σ-range to both sides of the expectation value. This should be sufficient for
dividing the continuous domain of X into discrete classes.

In the first step we discretize the support into five intervals
[0;2);[2;4);[4;6);[6;8);[8;10). Learning the sample in SPIRIT yields distribu-
tion P ∗

5 as a first approximation of N(5, 1.5). Hence the difference H(P ∗
5 ) −

H(N(5, 1.5)) = 2.7124 − 2.6321 = 0.0803 bit are the ‘costs’ for the loss of
knowledge due to the rough discretization. A finer dicretization of ten intervals,
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Figure 1: Sample-based and Rule-based Knowledge Acquisition is SPIRIT

each with length 1.0, yields the sample-based learned knowledge P ∗
10. Figure 1

(left) shows a screenshot in SPIRIT.
The entropy of this distribution is H(P ∗

10) = 2.6413 bit. In this case the ac-
quired knowledge P ∗

10 differs just 0.0088 bit. Obviously, the approximation of
N(5, 1.5) becomes better, the finer the discretization is made.

Suppose now, we get the additional information P (X ≤ 3) = 0.4. For the
incorporation of this information in SPIRIT (2a) is solved with P 0 = P ∗

10 and
the rule R = {X = [0; 1) ∨ X = [1; 2) ∨ X = [2; 3) [.4]}. The posteriori
distribution P ∗∗

10 is shown in figure 1 (right). Needless to say, the precision of
the posteriori distribution depends on the discretization, too.

This example illustrates how quasi-continuous variables can be handled in
the shell SPIRIT. But the discretization causes loss of knowledge. To overcome
this problem, we will develop an alternative method for building knowledge
bases with quasi-continuous variables under maximum entropy.

4. Explorative Density Approximation

Assume X is a discrete random variable defined on a probability space (Ω,F , P ),
fulfilling all necessary requirements regarding measurability, as required. If the
set of possible realizations {x1, . . . , xN} is large, it may be more convenient to
extend the probability space in order to treat X as continuous random variable.
Examples for such situations are body height, age, income and many more. In
a continuous setting one has access to probability density functions, which, for
large N , are far more efficient than sets of individual probabilities {π1, . . . , πN}.

The transition between quasi continuous distributions and continuous prob-
ability densities can be formalized with Dirac’s delta function

p(x) = lim
N→∞

N∑
n=1

πnδ(x− xn). (4)

For finite N , (4) is an approximation, which exactly represents the moment
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structure of the distribution. This can be shown easily for the first moment

E[X] =
∫

xp(x)dx ≈
N∑

n=1

πn

∫
xδ(x− xn)dx =

N∑
n=1

πnxn (5)

and for all higher moments, analogously. Unfortunately, the sum of delta func-
tions, even though it generates a valid density with correct moment structure, is
a poor approximation of the density function itself. In what follows, we derive
a better representation with other integration kernels and show how to control
the approximation error.

4.1. Nonparametric Density Approximation

In discrete setup, the maximum entropy distribution is a uniform distribution.
So π1 = . . . = πN = 1

N holds. If an additional observation is available, say xm,
the distribution changes to πn = 1

N+1 for all n 6= m and πm = 2
N+1 (see Rödder,

2006). For quasi continuous random variables a density approximation is then
realized in form of a histogram density. In continuous setup, the probability
density is estimated similar to (4)

p̂(x) =
1
N

N∑
n=1

k(x− xn, h). (6)

Equation (6) should be discussed in some more detail. The hat above p indi-
cates an estimator for the true but unknown continuous density. The function
k(x− xn, h) is the kernel function, replacing Dirac’s delta function in (4). This
kernel function should fulfill the requirements of a probability density itself.
The parameter h rules the bandwidth or window width of the kernel function.
Usually this parameter is a function of N itself. Determination of an optimal
bandwidth is a well known problem in kernel density estimation3. As measure
for performance of the chosen bandwidth and kernel function, we introduce the
mean integrated square error

MISE =
∫

E
[
p̂(x)− p(x)

]2
dx

=
∫ (

E
[
p̂(x)

]
− p(x)

)2
dx +

∫
Var
[
p̂(x)

]
dx.

(7)

Equation (7) shows that the mean integrated square error can be broken up into
a sum of integrated square bias and integrated variance (cf. Silverman, 1986,
p. 36). It is easy to show that for zero bandwidth kernels, like the delta function
in (4), the integrated bias vanishes but the integrated variance is large. For large
bandwidths, h → ∞, the variance of the density estimation vanishes but the
estimator is seriously biased. Hence, choosing a proper bandwidth for the kernel
function means finding an optimal tradeoff between bias and variance.

We will discuss this subject later in more detail. If we assume for the moment
that we are able to calculate an optimal bandwidth, the immediate question

3For an excellent treatment on this subject see Silverman (1986).
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of an appropriate kernel function arises. If an optimal bandwidth is chosen,
then ceteris paribus the Epanechnikov -Kernel (Epanechnikov, 1969) causes the
smallest MISE of all possible kernel functions (see Silverman, 1986, tab. 3.1).
We will use a Gaussian kernel instead, because it is differentiable everywhere
and its efficiency is about 95% of the Epanechnikov -Kernel

k(x− xn, h) = φ(x, xn, h) =
1√

2πh2
e−

1
2(

x−xn
h )2

. (8)

Choosing a Gaussian kernel has one additional advantage. If we assume the
true but unknown density to be Gaussian also, with standard deviation σ, then
the optimal bandwidth can be calculated straight forward

h = 5

√
4

3N
σ, (9)

(cf. Silverman, 1986, p. 45). Other methods for choosing an adequate band-
width are subjective choice, cross validation and others. We will see later that
characteristics of the approximated density function are also important for de-
termination of kernel dispersion.

To demonstrate the advantage of smooth kernel functions an illustrative ex-
ample is given in figure 2. Assume the drivers age in years (between 18 and 80)
is observed in a spot check on traffic. The appropriate data was simulated, con-
ditioned on a normal distribution with an expectation of 48 years and standard
deviation of 8 years as the true distribution. The related probability density
is indicated as black dashed line in figure 2. While the traditional maximum
entropy density approximation is given as histogram density, the smooth kernel
density estimation is indicated gray. Obviously, the area between the kernel
density estimation and the true density is much smaller than that between the
histogram density and the true one. The absolute value of this area is the square
root of the MISE. Therefore, according to criterion (7), the kernel density ap-
proximation is far superior. The effect becomes even more distinct for larger
samples (figure 2 right).

20 30 40 50 60 70 80

Age

N=250

20 30 40 50 60 70 80

Age

N=1000

Figure 2: Maximum Entropy Density of Age Distribution – Histogram-Density and
Kernel Density Estimation
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Notice that the discrete maximum entropy distribution, prior to observation,
is given by a uniform distribution. To achieve formal equivalence of both meth-
ods, in the kernel density framework every possible discrete realization has to
be occupied with one artificial observation first. In doing so, one can reproduce
the original histogram result by choosing a rectangular kernel function

k(x− xn, h) =

{
1
h for |x− xn| < h

2

0 else,
(10)

with h indicating the width of the observation classes. The rectangular kernel
is less efficient than the Gaussian kernel (Silverman, 1986, tab. 3.1 on page 43),
which is why the kernel density method outperforms the traditional maximum
entropy representation in this example.

4.2. Mimetic Hyperbolic Kernel Function

It may not always be appropriate to use a smooth kernel like the Gaussian one,
because certain features of the approximated distribution may be blurred. In
order to obtain more flexibility in approximating continuous densities with the
discrete maximum entropy methodology, we introduce a new hyperbolic kernel
function

κ(x− xn, h, ν) =
sinh

[
1
2ν

]
h
(
cosh

[
1
2ν

]
+ cosh

[
1

hν (x− xn)
]) . (11)

Here, the bandwidth parameter h gives the width of one observation class, while
the dispersion parameter ν determines, how much probability mass is located
within the bandwidth. Thus, for ν → 0 we get a rectangular kernel function
of width h, while for greater ν, it becomes more similar to a Gaussian kernel.
If the dispersion parameter approaches infinity, the kernel function becomes
completely non-informative, like a degenerated Gaussian density for σ → ∞.
Figure 3 shows a hyperbolic kernel function around x0 = 0, with bandwidth
h = 1 and various dispersions.

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

ΚHx,1,ΝL

Ν=0.01
Ν=0.2
Ν=0.5
Ν=1

Figure 3: Hyperbolic Kernel Function with Different Dispersions
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The problem of choosing an optimal bandwidth is a little more involved in
this setup. While the raw bandwidth is determined by the width of observation
classes, the primary task is to select an adequate dispersion parameter ν. On the
one hand, the properties of the true underlying density have to be considered,
in order to mimic the characteristics of the true density; on the other hand, one
can calculate the efficiency of the hyperbolic kernel regarding the dispersion.

4.3. Efficiency of the Hyperbolic Kernel Function

The efficiency of an arbitrary kernel function is assessed in comparison to the
Epanechnikov -Kernel, which is the optimal choice considering a minimal MISE.
Silverman (1986, equation 3.26 on page 42) derives an explicit formula for the
efficiency

Eff
[
k(x)

]
=

3
5
√

5

(∫
x2k(x)dx

)− 1
2
(∫

k(x)2dx

)−1

. (12)

All arguments for bandwidth or dispersion, respectively, are suppressed in (12)
for notational simplicity. Evaluating both integrals for the hyperbolic kernel
shows ∫ ∞

−∞
x2κ(x, h, ν)dx =

h2(4π2 + ν2)
12ν2

(13a)

and ∫ ∞

−∞
κ(x, h, ν)2dx =

2 + ν + eν(ν − 2)
hν(eν − 1)

≈ ν

h(2 + ν)
.

(13b)

The approximation in (13b) results from a Maclaurin-Series expansion of the
exponential, neglecting terms of O(ν3). Thus, the efficiency of the hyperbolic
kernel is approximately

Eff
[
κ(x, h, ν)

]
≈ 3

√
12

5
√

5
· 2 + ν√

4π2 + ν2
. (14)

As required, the efficiency does not depend on the bandwidth h. By differen-
tiating (14) and equating to zero, one finds ν = 2π2 which is the dispersion at
which the hyperbolic kernel achieves its highes efficiency

Eff
[
κ(x, h, 2π2)

]
≈ 97.5%. (15)

It should be emphasized that this efficiency on the one hand results from a
calculation, that does not account for specific properties of the underlying true
density. On the other hand, a series expansion around ν = 0 was conducted,
which might cause significant error for large dispersions. Nevertheless, the hy-
perbolic kernel is more flexible than a rectangular or Gaussian kernel and seems
to be more efficient under certain conditions.
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5. Maximum Entropy and Boundary Conditions

The aim of this section is to extend the kernel density methodology to maximum
(relative) entropy problems under boundary conditions. The Kullback-Leibler -
Entropy for continuous variables x is definied as (Kullback and Leibler, 1951)

KL =
∫

p(x) log
[

p(x)
p0(x)

]
dx (16)

In what follows, we do not minimize KL, but maximize −KL instead and define
S = −KL to be the relative entropy.

S = −
∫

p(x) log
[

p(x)
p0(x)

]
dx

=
∫

p(x) log
[
p0(x)

]
dx−

∫
p(x) log

[
p(x)

]
dx.

(17)

The reference density is indicated as p0 in equation (17), whereas p is approxi-
mated as kernel density

p(x) =
N∑

n=1

wnk(x− xn, h). (18)

This is a slightly modified approach, because now every kernel has a weight wn

and the sum of all weights is one. In the following we will discuss, how these
weights are determined optimally.

5.1. Lagrange-Method for Constrained Optimization

Let p0(x) be an arbitrary reference density, and p(x) the demanded maximum
relative entropy density. Further, assume that π is the probability mass located
in the interval [a, b]. The maximum relative entropy density can now be found
by Lagrange-Optimization. Taking approximation (18) and the relative entropy
(17) one obtains the Lagrange-Function

L =
N∑

m=1

wm

∫
k(x− xm) log

[
p0(x)

]
dx

−
N∑

m=1

wm

∫
k(x− xm) log

[
N∑

n=1

wnk(x− xn)

]
dx

+ λ

(
N∑

m=1

wm − 1

)
+ λ1

(
N∑

m=1

wm

∫ b

a
k(x− xm)dx− π

)
.

(19)

Once again, all arguments of bandwidth and dispersion were suppressed for
notational convenience. In order to find an optimal solution for an arbitrary
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weight, (19) has to be differentiated with respect to wm. One obtains

∂L

∂wm
=
∫

k(x− xm) log
[
p0(x)

]
dx

−
∫

k(x− xm) log

[
N∑

n=1

wnk(x− xn)

]
dx

+ λ0 + λ1

∫ b

a
k(x− xm)dx,

(20)

with the multiplier substitution λ0 = λ − 1. The next step is to approxi-
mate the integrals in (20), to get an analytic expression for the Lagrange-
Derivative. This is accomplished by presuming the kernel functions strongly
localized k(x − xm) ≈ δ(x − xm). This assumption my be false for kernels,
localized in direct neighborhood, but for more distant kernels the intersection
is scarcely perceptible. The delta-approximation allows immediate calculation
of the integrals and one obtains

∂L

∂wm
= log

[
p(xm)

]
− log

[
N∑

n=1

wnk(xm − xn)

]
+ λ0 + λ1I[a,b)(xm), (21a)

with the indicator function

I[a,b)(xm) =

{
1 if a ≤ xm < b

0 else.
(21b)

Now we can equate (21a) to zero and after some algebraic manipulation the
condition

N∑
n=1

wnk(xm − xn) = eλ0+λ1I[a,b)(xm)p0(xm) (22)

is obtained. Equation (22) is valid for all xm with m = 1, . . . , N . Therefore,
the set of conditions can be written most conveniently in vector/matrix form.
Furthermore, determining an optimal weight vector is obviously a linear problem
to be solved by matrix inversion. The solution has the form

w = Ψ−1Rp0 ≈ RΨ−1p0. (23)

In (23), R is a diagonal matrix, containing the boundary conditions or restric-
tions. Its elements are Rnn = eλ0+λ1I[a,b)(xn) and Rmn = 0 for m 6= n. Ψ
is called the metrics, because it depends on the kernel function, or more pre-
cisely, on the distance measure induced by the kernel function. Its elements
are Ψmn = k(xm − xn). The vector p0 =

(
p0(x1), . . . , p0(xN )

)′ contains the
function values of the reference density at x1, . . . , xN . Generally two arbitrary
matrices, A and B, are not commutative regarding multiplication, AB 6= BA.
Here, R is diagonal by definition and earlier we assumed the kernel function to
be sharply localized, resulting in a nearly diagonal Ψ. Thus, we can expect the
commutator to be very small and the approximation in (23) to hold.
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In order to determine R, the Lagrange-Function (19) has to be differentiated
with respect to its multipliers. By ∂L

∂λ = 0,

N∑
n=1

wn = 1 (24)

follows. Differentiating with respect to λ1 and once again using the simplifica-
tion k(x− xm) ≈ δ(x− xm) yields

N∑
n=1

wnI[a,b)(xn) = π. (25)

For the following calculations it is beneficial to collect the indicator terms into
a vector χ =

(
I[a,b)(x1), . . . , I[a,b)(xN )

)′. We can then use the identity χ′R =
eλ0+λ1χ′ to obtain

χ′w = eλ0+λ1χ′Ψ−1p0 = π. (26)

Furthermore, define the unity vector 1 = (1, . . . , 1)′, then an expression similar
to (26) can be derived for (1 − χ)′w = 1 − π. Summarizing these results, we
obtain

eλ0 =
1− π

(1− χ)′Ψ−1p0

and eλ0+λ1 =
π

χ′Ψ−1p0

. (27)

Notice that the determination of kernel weights of an unrestricted maximum
relative entropy density approximation is a special case of (27). In this case
(23) simplifies to

w =
Ψ−1p0

1′Ψ−1p0

. (28)

5.2. Uniform and Normal Distribution Example

To illustrate the capabilities of the suggested method, we approximate two stan-
dard distributions with and without constraints. In this example a uniform dis-
tribution in the interval [0, 10] and a normal distribution with mean µ = 5 and
standard deviation σ = 1.5 is chosen. Both distributions provide completely
different characteristics, and thus adequately illustrate certain aspects of the
kernel density approximation.

To put a little stress on the method, a rather rough grid of ten equally
spaced kernels was positioned inside the relevant interval, ranging from 0.5 to
9.5. Initially, the unconstrained probability densities were approximated. The
hyperbolic kernel (11) was used as kernel function. Figure 4 shows the results
of both approximations. The particular densities in figure 4 and 5 are coded
as follows. The true, unconstrained density is indicated by a black dashed
line. Kernel approximations with the hyperbolic kernel of bandwidth h = 1 are
indicated gray. The solid gray function is generated by a kernel approximation
with dispersion parameter ν = 0.001, while the dotted gray line indicates a
dispersion of ν = 0.5.
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Figure 4: Unconstraint Uniform (Left) and Normal (Right) Probability Density
Approximation

It is easily seen in figure 4 that the different characteristics of the distri-
butions require different kernel shapes. While a sharp localized kernel is re-
quired to generate an appropriate representation of a uniform distribution or
more generally, of a distribution with discontinuities in the density function, a
more ‘blurred’ kernel is required for a smooth distribution like the normal one.
Therefore, the dispersion parameter should always be selected with respect to
the nature of the underlying distribution. Obviously the kernel approximation is
a quite powerful method, even the smooth normal density coincides completely
with the approximation if the dispersion is chosen properly.

Now we introduce a boundary condition. Suppose that due to external
knowledge we have to assume that 40% of the probability mass is located be-
neath x = 3. This condition has the formal appearance P (x ≤ 3) = 0.4. After
calculating the restriction matrix R according to (27), the weight vector and
kernel approximation of the maximum relative entropy density is available. Fig-
ure 5 shows the resulting approximations for both test distributions. Once again
the importance of a proper choice of the dispersion parameter, with respect to
the characteristics of the reference density, becomes obvious. The approximated
maximum entropy density may serve as new reference density for incorporating
additional boundary conditions due to external knowledge.
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Figure 5: Constraint Uniform and Normal Probability Density Approximation –
Boundary Condition P (x ≤ 3) = 0.4
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6. Maximum Entropy Density Approximation of
Income under Constraints

In this section we present an example of quasi-continuous maximum entropy
density estimation that illustrates the full potential of the method suggested
in this paper. We want to approximate the maximum entropy distribution of
income by use of various external information. We will show that in case of
rare information the maximum entropy criterion fills the gaps and enables us to
calculate the appropriate probability density.

Suppose we want to generate a maximum entropy density of the net-income
of households in a certain period. Assume further that we are not provided
with sample details, but only with some cumulated statistical quantities. In
our example, the average income (in thousands of currency) may be given by
µ = 20. We are thereby provided with two clues; we know that the income has
to be non-negative and we know its expectation. This is enough information to
calculate a maximum entropy reference density in a first step.

Calculating a maximum entropy density is a Lagrange-Problem again. But
contrary to the calculation we did before, we are dealing with a moment restric-
tion here. The Lagrange-Function can be formulated as

L = −
∫ ∞

0
p(x) log

[
p(x)

]
dx + λ

(∫ ∞

0
p(x)dx− 1

)
+ λ1

(∫ ∞

0
xp(x)dx− µ

)
.

(29)

The first term on the right hand side of (29) is the entropy again. By calculating
the functional derivative4 and substituting λ0 = λ− 1, one obtains

ðL

ðp(x)
= − log

[
p(x)

]
+ λ0 + λ1x, (30)

which shows that after equating (30) to zero, the maximum entropy density has
an exponential form. Differentiating the Lagrange-Function (29) with respect
to λ and λ1 provides solutions for the Lagrange-Multipliers and after some basic
calculations one obtains the maximum entropy density

p(x) =
1
µ

e
− x

µ . (31)

This density is indicated in figure 6 as dashed line. Furthermore, (31) serves as
reference density, in case more information becomes available to be incorporated
into a new maximum entropy probability density.

Now that we know the continuous maximum entropy density of the problem
we can spread an adequate grid of kernels over the relevant interval. In this

4If a function value ϕ(y) is assigned to the function ϕ(x) at y, this assignment de-
fines the functional F [ϕ(x)] =

R
ϕ(x)δ(y − x)dx. For the functional derivative one obtains

ðF [ϕ(x)]
ðϕ(x)

= ðϕ(y)
ðϕ(x)

= δ(y − x). If the functional is defined as F [ϕ(x)] =
R

f(ϕ(y))dy, the deriv-

ative is obtained by applying the chain rule ðF [ϕ(x)]
ðϕ(x)

=
R ðf(ϕ(y))

ðϕ(x)
dy =

R ∂f(ϕ(y))
∂ϕ(y)

ðϕ(y)
ðϕ(x)

dy =
R ∂f(ϕ(y))

∂ϕ(y)
δ(y − x)dy = ∂f(ϕ(x))

∂ϕ(x)
.
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Figure 6: Maximum Entropy Density of Net Income under Constrains – Boundary
Conditions P (x ≤ 10) = 0.15 and P (x ≥ 40) = 0.05

specific example we use one hundred kernels, equally distributed over the interval
[0, 100]. Now suppose an additional information is available. Assume that
only 15% of the investigated households have a net-income of 10 thousands
of currency or less. This information can be incorporated easily as shown in
the previous section. Figure 6 left shows the results. Again we have used the
hyperbolic kernel (11) with dispersion ν = 1 (dark gray) and ν = 0.001 (light
gray).

An inherent problem of smooth kernel functions becomes evident immedi-
ately. On the one hand, we are able to smoothly approximate the maximum
entropy density, on the other hand some characteristics may be masked due to
oversmoothing. This is the case for the discontinuity of the maximum entropy
density at x = 0. A nearly rectangular kernel function can resolve this prob-
lem but again leaves us with a rough density approximation. This problem is
known in kernel density estimation as well, where variable bandwidth selection
is suggested as possible solution (cf. Silverman, 1986, sec. 2.6). An analogous
modification for variable dispersion may result in better density approximations
in this setup, but the present example is focused on incorporating boundary
conditions.

Suppose an additional information is available. Let the proportion of hi-
income households with a net-income of 40 thousands of currency or more be
merely 5%. Now the previous kernel density approximation serves as maximum
entropy reference and the new set of weights is calculated according to (23),
as before. The results are given in figure 6 right. In fact, we can incorporate
as many boundary conditions as become available to obtain a quasi-continuous
approximation of the maximum entropy probability density with respect to the
given information.

7. Conclusions

In this paper we provided a generic method for knowledge acquisition of con-
tinuous random variables under maximum entropy. We extended the common
principle of MaxEnt to quasi continuous domains. The vehicle for this exten-
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sion is the representation of probability densities with kernel density methods.
A specific kernel with the ability to incorporate certain structural characteristics
of the underlying problem was suggested. Its usefulness was demonstrated in
a typical example of income estimation under constrains. Future work includes
implementation of an algorithm in SPIRIT, allowing to process conditionals of
the form B|A in arbitrary combinations of continuous and discrete domains.
Corresponding theoretical research is in progress.
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