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Abstract 
Pricing derivatives with Monte-Carlo simulations involve standard errors that typically decrease 
at a rate proportional to N1  where N is the sample size. Several approaches have been discussed 
to reduce the empirical variance for a given sample size. This article analyzes the joint application 
of the put-call-parity approach and importance sampling to variance reduced option pricing. For 
this purpose, we examine non-path-dependent and path-dependent options. For European options, 
we observe dramatic variance reduction, especially for in-the-money options. Also for arithmetic 
Asian options, a significant variance reduction is achieved. 

 
Keywords 
Monte-Carlo Simulation, Variance Reduction, Importance Sampling, Put-Call-Parity, Asian Option 

 
 

1. Introduction 
Monte-Carlo simulations are frequently used to estimate prices of financial products for which no analytical 
formulae exist, e.g., several path-dependent options. A difficulty related to this approach is that the empirical 
variance of estimators decreases slowly, typically at a rate 1 N∝  where N is the sample size. Several 
techniques have been discussed to reduce the empirical variance for a given sample size N [1]. Importance 
sampling turns out to be a particularly effective variance reduction technique [2]-[5]. 

An alternative approach to variance reduction at least for in-the-money options is the application of the 
put-call-parity: instead of simulating an in-the-money call price, the corresponding out-of-the-money put price 
can be simulated. Then, the call price can be calculated from the put-call-parity yielding a variance reduced 
estimator [6] [7]. 

This analysis will investigate how the joint application of the put-call-parity and importance sampling can 
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lead to significant variance reduction in the simulation of Monte-Carlo estimators. The article is organized as 
follows: in Section 2 the method of importance sampling is introduced. Section 3 explains how put-call-parities 
can be employed for variance reduction. Next, the combination of the two approaches is introduced in Section 4. 
Numerical results of the achieved variance reductions are presented in Section 5 for both non-path-dependent 
and path-dependent options. A conclusion follows in Section 6.  

2. Importance Sampling  
Foundations of Importance Sampling This section introduces the concept of importance sampling, which 
serves to reduce the empirical variance of estimators. 

The expectation value of a non-negative function ( )0: ,dh X h X+→ →   of a random variable X with 
probability density p is calculated as  

( ) ( ) ( ) d .p h X h x p x xα = ≡   ∫E                                 (1) 

An estimator of α  with N i.i.d. realizations 1, , NX X  of the random variable X is  

( )
1

1ˆ   .
N

p i
i

h X
N

α
=

= ∑                                       (2) 

With any other probability density p′ , α  can be rewritten as  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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The fraction p p′  is usually called “Radon-Nikodým derivative”. 
An unbiased estimator of this expression is  
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Its variance  
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vanishes if we choose  

( ) ( ) ( ).p X h X p X′ ∝                                     (6) 

To obtain a a new probability density this product must be normalized (note that 0h ≥  by definition):  

( ) ( ) ( ) ( )
( )

opt

p

h X p X
p X p X

h X
′ = =

  E
.                               (7) 

For this purpose, the integral  

( ) ( ) ( ) dp h X h x p x x=   ∫E                                   (8) 

must be calculated, which is the original problem to be solved in Equation (1). However, an approximation of 
the optimal density can already lead to significant variance reduction [1]. 

Monte-Carlo simulation of the Feynman-Kac formula Option prices can be calculated as the expectation 
value of the derivative’s discounted pay-off function. In the following, a variance reduced estimator of the 
resulting Feynman-Kac formula  

( ) ( ) ( ) ( ), d, e |
T
t r S

t T tC S t h S S t Sτ τ τ−∫ = =  
E                            (9) 

will be presented. Note that the Feynman-Kac formula also covers the case of path-dependent options, i.e. the 
case where h does not only depend on the terminal value of the underlying’s price TS  but also on other values 
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tS  with 0 t T< < . Instead of writing tS  in Equation (9), one could write tX  and define tX  as a bivariate 
random process whose first element is the underlying price tS  itself and the second element is the integral of 

tS  with respect to time. 
For simplicity, a constant risk-free interest rate r is assumed. For the purpose of numerical calculations, the 

Feynman-Kac formula can be expressed as  

( ) ( ) ( ) ( ) ( )1 1 1 1 1, e  , | , , | , d dr T t
t n n n n n t nC S t h S p S S p S S t S Sτ τ τ− −

− −≈ × ×∫                 (10) 

using a finite-dimensional approximation on a grid k t kτ τ= + ∆  with Euler densities ( )1 1, | ,i i i ip S Sτ τ− −  and 
n discretization steps (for details see Appendix B in [5]). We set n Tτ =  and consequently n TS S= . 

In accordance with Equation (2), a simple Monte-Carlo estimator of this expression is  

( )( ) ( ) ( )( )
1 1

1 1ˆ ˆ, e .
N N

r T t
i i

i i
C S t t C h S T

N N
− −

= =

= =∑ ∑                           (11) 

Importance sampling by adding an additional drift term In 2014, Singer presented a variance reduced 
Monte-Carlo estimator for Equation (9) which relies on importance sampling by adding an additional drift term 
to the stochastic differential equation  

( ) ( )( ) ( )( ) ( )d d dS t f S t t g S t W t= +                               (12) 

where ( )( )f S t  is a drift parameter, t the time, ( )( )g S t  a diffusion coefficient and ( )W t  a Wiener process. 
Here we just present the result, while the lenghty derivation can be found in [5]. Melchior and Öttinger have 
introduced a similar approach in 1995 [2]. 

The optimal importance sampling density optp p′ =  is chosen as indicated in Equation (7). It can be shown 
that this density is equivalent to a new stochastic differential equation with additional drift term of the form  

2
optd d d d d .g CS f t g W f t g W

C S
 ∂

= + = + + ∂ 
                          (13) 

In the Black-Scholes model with f rS=  and g Sσ= , one obtains  

( )2d d dS r S t S Wσ σ= + +                                  (14) 

using the abbreviation  
S C
C S
∂

=
∂

                                          (15) 

for the option price elasticity. 
Here, C is the Feynman-Kac formula from Equation (9). Again, the problem of Equations (7) and (8) 

materializes: To describe the optimal stochastic differential equation, knowledge of the unknown quantity C is 
required. 

However, variance reduction can also be achieved by approximating C. For this purpose, in our analysis we 
use the Black-Scholes formula for European options [8]. This formula is the best possible choice when 
simulating European options in the Black-Scholes model, as it yields the analytically exact value. But also for 
other models of the underlying price (e.g., the CEV model or models with stochastic volatility) or for other 
options (e.g., Asian options) it represents a useful approximation. 

In the univariate Black-Scholes case that is considered in this article, the Radon-Nikodým derivative for one 
step on the discretized grid yields  

2 2
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                               (16) 

Ultimately, for the variance reduced Monte-Carlo estimator with sample size N, n discretization steps and 
sampling from optp  one obtains 
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As mentioned, ik  can be calculated from the Black-Scholes formula [8]. Depending on whether h represents 
the pay-off function of a call option or a put option, one obtains [9]  
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r T t d S t tKS t t
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                        (18) 

3. Variance Reduction with Put-Call-Parities for European and Arithmetic  
Asian Options  

European options Simple non-arbitrage arguments require that for a European call with pay-off function  

( )T TC S K += −                                       (19) 

the following put-call-parity holds true where 0C  is the initial call price at 0t =  and 0P  the put price [10]:  

0 0 0 e rTC P S K −= + −                                     (20) 

Arithmetic Asian options Also for arithmetic Asian call options with the pay-off function  

( )
1

1with
n

T T T i
i

C S K S S
n

+

=

= − = ∑                               (21) 

a put-call-parity holds. n TS S=  and equidistant iS  are assumed. 
With  

( )1

e e 1
rT n rT

n nµ
−

− − 
= + + +  
 

                                 (22) 

the following relation is required to avoid arbitrage [7]:  

0 0 0 e rTC P S K
n
µ −= + − .                                   (23) 

Variance reduction Reider (1994) [6] suggested to apply put-call-parities to variance reduced importance 
sampling. In-the-money call/put options can be estimated more efficiently by first estimating the corresponding 
put/call option with the same parameters and subsequently calculating the required call/put price from the 
put-call-parity. Conversely, if the approach is applied to out-of-the-money options, the empirical variance is 
generally increased. 

Put-call-parities allow to split a stochastic quantity into deterministic components and a residual stochastic 
quantity. The deterministic components’ standard errors vanish by definition. If the residual stochastic quantity 
is reduced in absolute size compared to the stochastic quantity of interest, the residual stochastic quantity’s 
standard error will generally tend to be lower as well, all else being equal. According to Gaussian propagation of 
uncertainty, variance reduction is achieved [7]. 

4. Joint Application of the Put-Call-Parity and Importance Sampling  
In a previous article, it is suggested that a combined application of the put-call-parity and importance sampling 
might be particularly attractive [7]. The author discusses that importance sampling in many cases is especially 
attractive for out-of-the-money options. Therefore, the valuation of an in-the-money call/put option could be 
conducted more efficiently by pricing the corresponding out-of-the-money put/call option with importance 
sampling and then calculating the desired option price from the put-call-parity. More specifically, the following 
procedure to price call options is examined numerically in the next section: 

1) To obtain a benchmark against which variance reductions can be analyzed, a simple Monte-Carlo simulation 
of the estimator (11) is conducted. Both the estimator and its empirical variance are calculated.  

2) To simulate the option price of a call option with a given set of parameters, the corresponding put option 
with the same set of parameters is simulated using the variance reduced Monte-Carlo estimator (17).   is 
calculated using the Black-Scholes formula for put options as described in Equation (18).  

3) The call price is calculated from the put-call-parity (20) resp. (23). The empirical variance of this estimated 
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call price is the same as the empirical variance of the previously simulated put price. This is the case as all other 
terms in Equation (20) resp. (23) have zero variance.  

4) The variance reduction ratio (“VarRatio”) is calculated as the ratio between the empirical variance of the 
benchmark estimator and the empirical variance of the variance reduced estimator calculated employing importance 
sampling and the put-call-parity.  

5. Numerical Results  
In this section, we apply the introduced combined approach of importance sampling and employing the put- 
call-parity to simulate variance reduced Monte-Carlo estimators. To make results comparable, we present two 
examples that have served previously in the analysis of other approaches discussed in literature [11]. More 
specifically, we simulate prices of European call options and of arithmetic Asian call options and evaluate 
achieved variance reductions. 

According to the Black-Scholes model, the underlying tS  is simulated as follows:  

( ) ( )
2

2
1 exp

2k k k kS S r Wστ τ σ τ σ+

   = + − ∆ + ∆  
   

 .                       (24) 

We use a discretized time-grid k t kτ τ= + ∆  with n equidistant steps. 
For benchmark simulations without importance sampling 0k =  follows for all k. For simulations involving 

importance sampling we choose k  as described in Section 2. 
European options First, we consider the example of a European call option with pay-off function  

( )T TC S K += −                                       (25) 

with 0 50S = , 0.05r = , 1.0T = , 16n =  and 610N =  trajectories. For reasons of numerical stability, we 
truncate the absolute value of the option price elasticity   to the interval 41;10   . 

Column “PCP-IS method” of Table 1 presents the results of the approach described in section 4. For com- 
parison, results of two other approaches previously discussed in literature are presented as well in the columns 
“GHS method” and “ZLG method”. The first method was presented by Glasserman, Heidelberger and Shahabuddin 
in 1999 [4] and the second by Zhao, Liu and Gu in 2013 [11]. The numerical results for these two methods are 
taken from [11]. 

The approach presented in this article achieves higher variance reductions for all considered parameter 
constellations compared to the other two approaches. Especially for (deep-)in-the-money options ( 30K = ), we 
observe dramatic variance reductions of several orders of magnitude. For in-the-money options, the approach 
turns out to be more effective for low-volatility conditions. 

Two further aspects should be noted: First, in the case of out-of-the money options a direct application of the 
introduced importance sampling procedure would be more appropriate than the joint application employing the 
put-call-parity. E.g., when foregoing the put-call-parity for 55K = , we obtain variance reduction ratios of 59.3  

 
Table 1. Estimated variance reduction ratios for European call option.                                                          

Parameters GHS method ZLG method PCP-IS method 

σ K Price VarRatio Price VarRatio Price VarRatio 

0.1 30 21.463 103.3 21.463 931.2 21.463 8.37E+17 

 45 7.317 8.2 7.316 15.9 7.314 9.76E+03 

 50 3.404 7.2 3.405 12.1 3.402 201.7 

 55 1.087 11.2 1.088 12.5 1.086 14.5 

0.3 30 21.602 14.9 21.601 30.0 21.598 6.45E+04 

 45 9.869 9.5 9.855 15.9 9.848 283.1 

 50 7.118 10.3 7.121 15.8 7.115 96.6 

 55 5.010 11.8 5.014 5.9 5.013 40.4 
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for 0.1σ =  resp. 64.2 for 0.3σ = . This is not surprising, as the put-call-parity approach increases empirical 
variance for out-of-the-money options [7]. 

Second, the combination of the put-call-parity approach with importance sampling outperforms the two 
standalone approaches (put-call-parity and importance sampling) for in-the-money options. The standalone 
importance sampling approach in the case of deep-in-the money calls only leads to limited variance reduction. 
For the standalone put-call-parity approach applied to the low-volatility case 0.1σ = , we observe that not even 
one of the 610N =  trajectories simulated yields a positive contribution to the Monte-Carlo put option estimator. 
The result is an empirical variance of zero. Consequently, no reasonable variance reduction can be determined. 

Arithmetic Asian options The second example examines an arithmetic Asian option with pay-off function  

( )
1

1with .
n

T T T i
i

C S K S S
n

+

=

= − = ∑                             (26) 

Again, we set 0 50S = , 0.05r = , 1.0T = , 16n =  and 610N =  trajectories. To approximate the option 
price elasticity  , the Black-Scholes formula for European options with corresponding parameters has been 
used. Again, we truncate  . However, in the case of arithmetic Asian options we observe best results for a 
truncation of its absolute value to the interval [ ]1; 2.5 . 

In the same structure as before, Table 2 shows that we observe the best results for in-the-money options. For 
low-volatility conditions, we achieve variance reductions of several orders of magnitude. The presented approach 
outperforms the other methods for in-the-money options. For out-of-the-money options, we achieve no or low 
variance reduction by employing the combined approach. Again, better results could be achieved by foregoing 
the put-call-parity. 

For European options, we achieved higher variance reduction than for arithmetic Asian options. This is not 
surprising, as we calculated the option price elasticity   from the Black-Scholes formula for European options 
in both examples. Thus, we approximated the optimal importance sampling density more accurately for European 
options and consequently a higher variance reduction should be expected. More accurate estimations of the 
option price elasticity for arithmetic Asian options might lead to increased variance reduction ratios. 

Again, the numerical results for the GHS method and the ZLG method are taken from [11]. 
 

Table 2. Estimated variance reduction ratios for arithmetic Asian call option.                                                  

Parameters GHS method ZLG method PCP-IS method 

σ K Price VarRatio Price VarRatio Price VarRatio 

0.05 45 6.042 39.8 6.042 931.2 6.041 2.10E+07 

 50 1.437 6.4 1.438 11.5 1.438 11.5 

 55 0.007 138.1 0.007 35.9 0.007 0.0 

0.1 45 6.055 10.8 6.055 24.5 6.055 754.6 

 50 1.919 7 1.919 11.9 1.919 5.3 

 55 0.202 21.2 0.202 13.3 0.200 0.2 

0.2 45 6.418 7.7 6.419 14.5 6.419 51.2 

 50 3.028 8.2 3.028 13.4 3.030 5.4 

 55 1.106 13 1.106 14 1.107 0.9 

0.3 45 7.15 8.3 7.151 15 7.150 31.2 

 50 4.169 9.2 4.169 14.9 4.168 7.2 

 55 2.211 12.2 2.21 15.4 2.215 2.1 

0.5 45 8.996 10.6 8.996 18.6 9.001 29.3 

 50 6.459 11.6 6.457 18.7 6.461 10.6 

 55 4.455 13.5 4.543 18.9 4.541 4.3 
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6. Conclusions  
We conducted variance reduced Monte-Carlo simulations for European and arithmetic Asian options. For in- 
the-money options, we achieve significant variance reduction by combining importance sampling with the put- 
call-parity approach. The presented approach delivers best results in low-volatility environments. For European 
options, it outperforms previously published results for all parameter constellations. Also for arithmetic Asian 
options, we obtain higher variance reduction ratios for in-the-money options. 

This analysis does not consider the combination with other variance reduction techniques, e.g., antithetic 
variates or stratification, which could lead to further increased variance reduction ratios. 
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