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Abstract

The conditional Gauss–Hermite filter (CGHF) utilizes a decompo-
sition of the filter density p(y1, y2) into the product of the conditional
density p(y1|y2) with p(y2) where the state vector y is partitioned into
(y1, y2). In contrast to the usual Gauss–Hermite filter (GHF) it is
assumed that the product terms can be approximated by Gaussians.
Due to the nonlinear dependence of φ(y1|y2) from y2, quite compli-
cated densities can be modeled, but the advantages of the normal dis-
tribution are preserved. For example, in stochastic volatility models,
the joint density p(y, σ) strongly deviates from a bivariate Gaussian,
whereas p(y|σ)p(σ) can be well approximated by φ(y|σ)φ(σ). As in
the GHF, integrals in the updates can be computed by Gauss–Hermite
quadrature. We obtain recursive update fomulas for the conditional
moments E(y1|y2), Var(y1|y2) and E(y2), Var(y2).

Key Words: Multivariate stochastic differential equations; Nonlinear
systems; Discrete time measurements; Continuous-discrete state space
model; Conditionally gaussian densities; Stochastic volatility.

1 Introduction

The Gaussian filter (GF) assumes, that the true filter density p(y) can be
approximated by a Gaussian distribution φ(y). Thus, expectation values oc-
curing in the time and measurement update can be computed numerically
by Gauss–Hermite integration (GHF, cf. Ito and Xiong; 2000). There are
important applications, however, where the joint Gaussian assumption does
not lead to satisfactory results. For example, if the volatility parameter of an
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Ornstein-Uhlenbeck process is filtered (Bayesian estimation), the measure-
ments do not lead to any change in the conditional volatility state. This
stems from the fact, that the state vector (y(t), σ(t)) is not bivariate Gaus-
sian anymore, since the process y(t) is driven by the product of the Gaussian
volatility and the Wiener process (cf. fig. 5). Similarly, stochastic volatil-
ity models (Scott; 1987; Hull and White; 1987) are not satisfactorily filtered
by the GHF (and other filters relying on 2 moments, such as the extended
Kalman filter EKF, or the unscented Kalman filter UKF). One can solve the
problem by using better density approximations such as the Gaussian sum
filter (Alspach and Sorenson; 1972; Ito and Xiong; 2000) or by expanding
the density into a Fourier series such as the Hermite expansion (Kuznetsov
et al.; 1960; Aı̈t-Sahalia; 2002; Singer; 2006b, 2008).
Alternatively, it is proposed to factorize the joint density of all states y by
using the partitioned state y = (y1, y2) such that p(y1|y2) is (approximately)
conditionally Gaussian. Then, p(y1|y2)p(y2) ≈ φ(y1|y2)φ(y2) and the numer-
ical methods for the usual GHF can be adapted. 1

In section 2, static conditionally Gaussian models are discussed. This is
extended to dynamic models in sect. 3 and illustrated by the Ornstein-
Uhlenbeck process (Bayesian estimation of the volatility parameter). Section
4 develops the general conditional Gaussian filter whereas in section 5 recur-
sive ML estimation is compared with sequential filtering of σ using several
approximate nonlinear filters.

2 Conditionally Gaussian models

As explained, it may be advantageous not to approximate the full joint den-
sity, but first to factorize the distribution by conditioning on certain variables
in order to get conditional distributions near to a Gaussian.

2.1 Example 1

For example, if y ∼ N(µ, σ), the joint density

p(y, µ, σ) = φ(y|µ, σ)p(µ, σ) ∝ (2πσ2)−1/2 exp[−1
2
(y − µ)2)/σ2] (1)

is of Gaussian shape as a function of µ, but not for σ (cf. figs. 1– 2 where
we set µ = 0 and used a prior p(σ) = φ(σ; 2, 1)). The joint distribution
p(y, σ) = p(y|σ)p(σ) displays the variability in the variance of y. It cannot
be well approximated by a bivariate Gaussian φ(y, σ), as would be the case for
the Gaussian filter. From fig. 2 (right), it can be seen that the posterior mean
E[σ|y] depends on y and thus we obtain estimates of σ from observations
y, although the covariance Cov(y, σ) = E[yσ] − E[y]E[σ] = E[E[y|σ]σ] −
E[y]E[σ] = 0, since E[y|σ] = E[y] = µ = 0.

1We use the notation φ(y1|y2) = φ(y1;E[y1|y2],Var[y1|y2]) for the Gaussian density
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Figure 1: Conditional density φ(y|σ) and posterior density p(σ|y) with prior
p(σ) = φ(σ; 2, 1).
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Figure 2: Joint density φ(y|σ)p(σ) and posterior mean E[σ|y]. It depends on y
although Cov(y, σ) = 0 (see text).
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In contrast, figs. 3–4 (setting σ = 1 and using a prior p(µ) = φ(µ; 2, 1))
display the joint distribution of y and µ. Since the role of these variables
is symmetric in eqn. 1, the Gaussian shape is preserved and the regression
E[µ|y] is linear. Thus, the estimation of parameters related to the mean
(e.g. drift coefficients) is much simpler as compared to volatility parameters,
where the regression E[σ|y] is nonlinear (cf. fig. 2). In a bivariate Gaussian
setting φ(y, σ), only a linear relation is possible (cf. 3) �

Therefore, the idea is put forward, to represent the joint distribution of states
and volatilites p(y, σ) not by a joint Gaussian φ(y, σ), as in the Gaussian filter
(or EKF, UKF), but by the product φ(y|σ)φ(σ). This allows a fully nonlinear
specification of the conditional moments

E[y|σ] = µ1(σ) (2)

Var[y|σ] = Σ1(σ).

In contrast, the joint Gaussian assumption only allows the normal correlation
structure (Liptser and Shiryayev; 2001, ch. 13, theorem 13.1, lemma 14.1)

E[y|σ] = E[y] + Cov(y, σ)Var(σ)−(σ − E[σ]) (3)

Var[y|σ] = Var(y)− Cov(y, σ)Var(σ)−Cov(σ, y)

which is linear in the conditional mean and independent of σ for the condi-
tional variance (− denotes the generalized inverse). Put the other way round,
a bivariate Gaussian can be obtained by a linear µ1(σ) and constant Σ1(σ) =
Σ1.
More generally, the distribution p(y1, y2) of the vectors y1, y2 is not approxi-
mated by φ(y1, y2), but by

p(y1, y2) = p(y1|y2)p(y2) ≈ φ(y1|y2)φ(y2) (4)

= φ(y1;µ1(y2),Σ1(y2))φ(y2;µ2,Σ2),

where the conditional moments µ1(y2) = E[y1|y2],Σ1(y2) = Var(y1|y2) are
nonlinear functions of the conditioning states y2. Of course, the choice of y2

depends on the form of the true distribution p(y1, y2). It is chosen such, that
p(y1|y2) is well approximated by a Gaussian with parameters µ1(y2),Σ1(y2).
In example 1, we must condition on y2 = (µ, σ) to get exactly p(y1|y2) =
φ(y1|y2). A jointly Gaussian φ(y1, y2) is included as a special case (linear
moments)

E[y1|y2] = E[y1] + Cov(y1, y2)Var(y2)
−(y2 − E[y2]) (5)

Var[y1|y2] = Var(y1)− Cov(y1, y2)Var(y2)
−Cov(y2, y1).

with conditional moments.
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Figure 3: Conditional density φ(y|µ) and posterior density p(µ|y) with prior
p(µ) = φ(µ; 2, 1).

�2 0 2 4 6

y

�2

0

2

4

m
u

�3 �2 �1 0 1 2 3

y

�0.5

0

0.5

1

1.5

2

2.5

m
u

Figure 4: Joint density φ(y|µ)p(µ) and posterior mean E[µ|y].
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3 State space models

We want to filter the continuous-discrete state space model (Jazwinski; 1970)

dy(t) = f(y(t), t, ψ)dt+ g(y(t), t, ψ)dW (t) (6)

where discrete time measurements zi := z(ti) are taken at times {t0, t1, . . . , tT}
and t0 ≤ t ≤ tT according to the measurement equation

zi = h(y(ti), ti, ψ) + εi. (7)

In state equation (6), W (t) denotes an r-dimensional Wiener process and the
state is described by the p-dimensional state vector y(t). It fulfils a system of
stochastic differential equations in the sense of Itô (Arnold; 1974) with ran-
dom initial condition y(t0) ∼ p0(y, ψ). The functions f : Rp × R × Ru → Rp

and g : Rp × R × Ru → Rp × Rr are called drift and diffusion coefficients,
respectively. In measurement equation (7), εi ∼ N(0, R(ti, ψ))i.d. is a k-
dimensional discrete time white noise process (measurement error). Para-
metric estimation is based on the u-dimensional parameter vector ψ. For
notational simplicity, deterministic control variables x(t) are absorbed in the
time argument t. Moreover, the functions f and g may also depend on
nonanticipative measurements Zi = {z(tj)|j ≤ i}, ti ≤ t and h, R may de-
pend on lagged measurements Zi−1 = {z(tj)|j ≤ i − 1} allowing continuous
time ARCH specifications. In the linear case, the system is conditionally
Gaussian (cf. Liptser and Shiryayev; 2001, ch. 11). This dependence will be
dropped below.

3.1 Example 2: Ornstein-Uhlenbeck process

The linear Gauss-Markov process is given by the SDE

dy(t) = λy(t)dt+ σdW (t) (8)

with measurement equation (i = 0, . . . , T )

zi = yi + εi (9)

where ψ = {λ, σ,R = Var(εi)} are unknown (nonrandom) parameters. For
simplicity, let λ,R be known. Then, σ can be estimated by exact ML (Singer;
1993, 1995), or as Bayes estimator, using an extended state vector η = {y, σ}

dy = λydt+ σdW (t) (10)

dσ = 0 (11)

zi = yi + εi. (12)

However, as shown in fig. 5, the moments µ = E(y, σ) and Σ = Var(y, σ)
cannot filter the volatility state σ(t). However, if we note that dy|σ = λydt+
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Figure 5: Gauss–Hermite filter for the Ornstein-Uhlenbeck process y(t) with
random volatility parameter σ.
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Figure 6: Conditional Gauss–Hermite filter for the Ornstein-Uhlenbeck process
y(t) with random volatility parameter σ.

7



σdW is Gaussian, the idea of the last section turns over to the dynamic
context. Using the exact discrete model (EDM) at the measurement times
ti, setting yi = y(ti) etc., we obtain

yi+1 = λiyi + σiui (13)

σi+1 = σi (14)

zi = yi + εi (15)

with the Gaussian error term ui =
∫ ti+1
ti exp[λ(ti+1−s)]dW (s) and the AR(1)

parameter λi = exp[λ(ti+1 − ti)].

3.1.1 Time update:

Assume that the posteriori density after measurement zi is conditionally
Gaussian, i.e. p(yi|σi, Z

i) = φ(yi;E[yi|σi, Z
i],Var[yi|σi, Z

i]) and p(σi|Zi) =
φ(σi|Zi). Then, the time update p(yi+1|σi+1, Z

i) is Gaussian with parameters

E[yi+1|σi+1, Z
i] = λiE[yi|σi, Z

i] (16)

Var[yi+1|σi+1, Z
i] = λiVar[yi|σi, Z

i]λ′
i + σiVar(ui)σ

′
i (17)

since σi+1 = σi in this simple example.

3.1.2 Measurement update:

At the time of measurement ti+1 the Bayes formula

p(yi+1, σi+1|zi+1, Z
i) =

p(zi+1|yi+1, σi+1, Z
i)p(yi+1, σi+1|Zi)

p(zi+1|Zi)
(18)

can be evaluated easily due to the Gaussian densities (measurement and a
priori density)

p(zi+1|yi+1, σi+1, Z
i) = φ(zi+1; yi+1, R) (19)

p(yi+1, σi+1|Zi) = φ(yi+1|σi+1, Z
i)φ(σi+1|Zi). (20)

Since the measurements are linear, the normal correlation update (3) is exact
and one obtains

p(yi+1, σi+1|Zi+1) = φ(yi+1|σi+1, Z
i+1)p(σi+1|Zi+1) (21)

p(σi+1|Zi+1) = φ(zi+1|σi+1, Z
i)φ(σi+1|Zi)/p(zi+1|Zi). (22)

Thus, the posterior of σi+1 is nongaussian due to the nonlinear dependence of
Var(zi+1|σi+1, Z

i) = Var(yi+1|σi+1, Z
i)+R from σi+1 (cf. 17). This nonlinear

dependence is the reason why the posterior mean

E[σi+1|Zi+1] =
∫
σi+1p(σi+1|Zi+1)dσi+1 (23)

=
∫
σi+1φ(zi+1|σi+1, Z

i)φ(σi+1|Zi)dσi+1/p(zi+1|Zi)

8



is a function of the measurements, in contrast to the usual GHF. The inte-
gral can be computed by Gauss–Hermite integration (see appendix A). From
the posteriori moments E[σi+1|Zi+1] and Var(σi+1|Zi+1) one can construct a
Gaussian distribution and proceed in the recursive filter algorithm with the
next time update.
For the posterior mean of the state yi+1 we simply obtain the usual normal
correlation update

E[yi+1|σi+1, Z
i+1] = E[yi+1|σi+1, Z

i]

+ Var(yi+1|σi+1, Z
i)[Var(yi+1|σi+1, Z

i) +R]−1

× (zi+1 − E[yi+1|σi+1, Z
i]) (24)

etc. The a priori terms are given in (16). Figs. 5–6 display the difference in
the performance of the GHF and the CGHF. In this picture, an Ornstein-
Uhlenbeck process was simulated according to (8) with parameters ψ = {λ =
−1, σ = 2, R = Var(εi) = 0.1} with sampling interval δt = 0.1. I used a sim-
ple Euler-Maruyama scheme (cf., e.g. Kloeden and Platen; 1992). The mea-
surements were taken at times τ = {0, 4, 6, 8, 10, 11, 12, 13.5, 13.7, 15, 15.1, 17,
19, 20}. Clearly, the Gauss-Hermite filter (fig. 5) does not filter the volatility
process (Bayesian parameter) dσ = 0, whereas the CGHF, due to the condi-
tional Gaussian filter density, yields estimates of σ from the observations
y(ti) �

4 Conditional Gauss–Hermite filtering

In this section we derive a sequence of time update and measurement update
steps for the filter density p(y1, y2, t|Zi) which is approximated by the product
of Gaussians

p(y1, y2, t|Zi) ≈ φ(y1, t|y2, t, Z
i)φ(y2, t|Zi). (25)

The densities are evaluated at the time points τj = t0 + jδt, j = 0, . . . , J =
(tT − t0)/δt, and δt is an arbitrary (but small) discretization interval. The
times of measurement are given by ti = τji

. The filter proceeds in a recur-
sive sequence of time update (dynamic moment equations) and measurement
updates (Bayes formula; cf. appendix B).
According to the Gaussian assumption (25) one has to consider the condi-
tional moments

E[y1(t)|y2(t), Z
i] = µ1(y2(t), Z

i) (26)

E[y2(t)|Zi] = µ2(t, Z
i) (27)

Var(y1(t)|y2(t), Z
i) = Σ1(y2(t), Z

i) (28)

Var(y2(t)|Zi) = Σ2(t, Z
i) (29)

and we seek recursive equations for their time evolution.
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The state space model 6–7 is written in partitioned form (y1 : p1×1, g1 : p1×r
etc.; dropping ψ)

dy1(t) = f1(y1, y2, t)dt+ g1(y1, y2, t)dW (t) (30)

dy2(t) = f2(y1, y2, t)dt+ g2(y1, y2, t)dW (t) (31)

with measurements at ti

zi = h(y1(ti), y2(ti), ti) + εi. (32)

4.1 Time update

In a short time step δt, the Euler-Maruyama approximation for the Itô equa-
tions (30–31) is

y1(t+ δt) = y1(t) + f1(y1, y2, t)δt+ g1(y1, y2, t)δW (t) (33)

y2(t+ δt) = y2(t) + f2(y1, y2, t)δt+ g2(y1, y2, t)δW (t) (34)

and we find the moment equations (dropping the dependence on Zi)

E[y1(t+ δt)|y2(t)] = E[y1(t)|y2(t)] + E[f1(y1, y2, t)|y2(t)]δt (35)

E[y2(t+ δt)] = E[y2(t)] + E[f2(y1, y2, t)]δt (36)

The second moments read

Var[y1(t+ δt)|y2(t)] = Var[y1(t)|y2(t)] +

Cov[y1(t), f1(y1, y2, t)|y2(t)]δt+

Cov[f1(y1, y2, t), y1(t)|y2(t)]δt+

E[g1g
′
1(y1, y2, t)|y2(t)]δt (37)

Var[y2(t+ δt)] = Var[y2(t)] +

Cov[y2(t), f2(y1, y2, t)]δt+

Cov[f2(y1, y2, t), y2(t)]δt+

E[g2g
′
2(y1, y2, t)]δt. (38)

The expectation values on the right hand sides are with respect to the distri-
butions φ(y1(t)|y2(t), Z

i) and φ(y2(t)|Zi) and can be evaluated using Gauss–
Hermite quadrature (appendix A). For example

E[f1(y1, y2, t)|y2(t)] =
∫
f1(y1, y2, t)φ(y1;µ1(y2),Σ1(y2))dy1 (39)

≈
L∑

l=1

f1(η1lm, η2m, t)w1l (40)

where

η2m = µ2 + Σ
1/2
2 ζ2m : p2 × 1 (41)

η1lm = µ1(η2m) + Σ
1/2
1 (η2m)ζ1l : p1 × 1 (42)
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Figure 7: Gauss–Hermite sample points for the Ornstein-Uhlenbeck process (L =
21,M = 21). Also displayed is the conditional mean and standard deviation

µ1(η2m)± Σ
1/2
1 (η2m).

11



are Gauss–Hermite sample points for the integration over y2 and y1 (condi-
tional on the values y2 = η2m). Thus, one has y1-sample points η1lm for each
y2-coordinate η2m; l = 1, . . . , L;m = 1 . . .M (cf. fig. 7).
Similarly,

E[f2(y1, y2, t)] =
∫ ∫

f2(y1, y2, t)φ(y1;µ1(y2),Σ1(y2))

× φ(y2;µ2,Σ2)dy1dy2

≈
L,M∑

l,m=1

f2(η1lm, η2m, t)w1lw2m. (43)

Now it is assumed that E[y1(t+ δt)|y2(t)] ≈ E[y1(t+ δt)|y2(t+ δt)] etc. and
using this approximation the time update is continued over the complete
time interval [ti, ti+1].

4.2 Measurement update

At time ti+1, new measurements zi+1 come in, which are incorporated by
using the Bayes formula (setting yi+1 := y(ti+1) etc.)

p(y1,i+1, y2,i+1|zi+1, Z
i) =

p(zi+1|y1,i+1, y2,i+1)p(y1,i+1, y2,i+1|Zi)

p(zi+1|Zi)
.

(44)

The product of the measurement density

p(zi+1|y1,i+1, y2,i+1) = φ(zi+1;h(y1,i+1, y2,i+1, ti+1), Ri+1) (45)

with the a priori distribution

p(y1,i+1, y2,i+1|Zi) = φ(y1,i+1|y2,i+1, Z
i) ∗ φ(y2,i+1|Zi) (46)

can be evaluated approximately by the normal correlation update as

φ(y1,i+1|y2,i+1, Z
i+1) ∗ φ(zi+1|y2,i+1, Z

i) ∗ φ(y2,i+1|Zi) (47)

where φ(zi+1|y2,i+1, Z
i) = φ(zi+1;E[h|y2,i+1, Z

i],Var[h|y2,i+1, Z
i] + Ri+1) is

the conditional likelihood of zi+1 given y2,i+1. The moments of the posterior
of y1|y2 are given by

E[y1,i+1|y2,i+1, Z
i+1] = E[y1,i+1|Fi+1] + Cov[y1,i+1, zi+1|Fi+1]

× Var[zi+1|Fi+1]
−(zi+1 − E[zi+1|Fi+1])

Var[y1,i+1|y2,i+1, Z
i+1] = Var[y1,i+1|Fi+1]− Cov[y1,i+1, zi+1|Fi+1]

× Var[zi+1|Fi+1]
−Cov[zi+1, y1,i+1|Fi+1]

where Fi+1 = {y2,i+1, Z
i} is shorthand for the conditioning variables. Now the

moments of the a priori distribution (E[y1,i+1|y2,i+1, Z
i],Var[y1,i+1|y2,i+1, Z

i],

12



E[y2,i+1|Zi],Var[y2,i+1|Zi]) are known from the time update and the expec-
tations can be evaluated by Gauss–Hermite integration again. For example

E[zi+1|y2,i+1, Z
i] = E[h(y1,i+1, y2,i+1, ti+1)|y2,i+1, Z

i] (48)

≈
L∑

l=1

h(η1lm, η2m, ti+1)w1l (49)

where again

η2m = µ2 + Σ
1/2
2 ζ2m (50)

η1lm = µ1(η2m) + Σ
1/2
1 (η2m)ζ1l (51)

are the Gauss–Hermite sample points evaluated at the a priori moments
(µ2 = E[y2,i+1|Zi], µ1(y2) = E[y1,i+1|y2,i+1, Z

i]) etc.
The posteriori distribution for y2 is given by (cf. 47)

p(y2,i+1|Zi+1) = φ(zi+1|y2,i+1, Z
i)φ(y2,i+1|Zi)/p(zi+1|Zi). (52)

Now, since

E[zi+1|y2,i+1, Z
i] = E[h(y1,i+1, y2,i+1, ti+1)|y2,i+1, Z

i] (53)

Var[zi+1|y2,i+1, Z
i] = Var[h(y1,i+1, y2,i+1, ti+1)|y2,i+1, Z

i] +Ri+1 (54)

are in general nonlinear functions of y2,i+1 (cf. example 2; 17), the measure-
ment zi+1 is informative for the ’volatility state’ y2,i+1 and one obtains the
likelihood of observation zi+1 and the posterior mean of y2

p(zi+1|Zi) =
∫
φ(zi+1|y2,i+1, Z

i)φ(y2,i+1|Zi)dy2,i+1

≈
M∑

m=1

φ(zi+1|η2m, Z
i)w2m (55)

E[y2,i+1|Zi+1] = p(zi+1|Zi)−1
∫
y2,i+1φ(zi+1|y2,i+1, Z

i)

× φ(y2,i+1|Zi)dy2,i+1

≈ p(zi+1|Zi)−1
M∑

m=1

η2mφ(zi+1|η2m, Z
i)w2m (56)

(analogously for Var[y2,i+1|Zi+1]).
Starting from the a priori moments µ1(y2(t0)) = E[y1(t0)|y2(t0)], µ2 = E[y2(t0)]
etc. one obtains a recursive sequence of measurement and time updates for
the moments and the Gauss–Hermite sample points (cf. fig. 7).
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4.3 Complete filter

Putting together the measurement update and the time update, one obtains
a recursive sequence of moments (26-29) at the measurement times ti and
for the time points τj = ti + jδt, j = 1, . . . , (ti+1 − ti)/δt in between. The
unconditional moments (w.r.t. y2, dropping Zi) can be computed from the
filter terms as

E[y1(t)] = E[E[y1(t)|y2(t)]] (57)

Var[y1(t)] = E[(y1(t)− µ1(t))(y1(t)− µ1(t))
′]

= E[Var(y1(t)|y2(t))] + Var(E[y1(t)|y2(t)]) (58)

(residual variance + explained variance).
For the starting values I used µ1(y2(t0)) = µ1,Σ1(y2(t0)) = Σ1 (indepen-
dent of y2) and µ2 = E[y2(t0)],Σ2 = Var[y2(t0)]. Thus, the prior p0 =
p(y1(t0)|y2(t0))p(y2(t0)) is a Gaussian distribution with uncorrelated states
y1(t0), y2(t0). After the first measurement update one obtains η2m and µ1(η2m),
i.e. the unknown function µ1(y2) is determined on the sample points η2m

(same for Σ1(y2)). Iterating, one obtains the regression functions µ1(y2) etc.
in a nonparametric way.

5 Example 3:

ML vs. recursive Bayesian estimation

In example 2, the Ornstein-Uhlenbeck process was discussed. It is interesting
to compare ML estimation of σ with recursive Bayesian filtering. As noted,
the likelihood can be computed exactly by using the Kalman filter, i.e.

µi+1|i = λiµi|i

Σi+1|i = λiΣi|iλ
′
i + Ωi

µi+1|i+1 = µi+1|i +Ki(zi+1 − µi+1|i)

Ki = Σi+1|i(Σi+1|i +R)−

Σi+1|i+1 = (I −Ki)Σi+1|i

Li+1(zi+1) = φ(zi+1;µi+1|i,Σi+1|i +R).

In the formulae above, Ki is the Kalman gain and Ωi = Var(σui) = σ2(1 −
exp(2λ∆ti))/(2λi) is the variance of the system error ui (cf. 13). As usual,
µi+1|i = E[yi+1|Zi] etc. denotes the conditional expectations. Starting from
a flat prior Σ0|−1 = 10 one obtains the ML estimator by maximizing l(σ) =∑t

i=0 log(Li). The estimator σ̂(t) was computed recursively for the data set
Zt, t = 1, . . . , T .
Fig. 8 shows a comparision of the sequential estimates of σ using maximum
likelihood (ML), the newly developed CGHF, the generalized Gauss-Hermite
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Figure 8: Sequential estimation of the parameter σ (discrete sampling): Max-
imum likelihood (top, left), CGHF (top, right), GGHF (bottom, left), Gaussian
sum filter (bottom, right). Estimates σ̂(t)± std(σ̂(t)) (see text).
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Figure 9: Sequential estimation of the parameter σ (quasi-continuous sampling):
ML (top, left), CGHF (top, right), GGHF (bottom, left), Gaussian sum filter
(bottom, right). Estimates σ̂(t)± std(σ̂(t)) (see text).
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Figure 10: CUKF (κ = 3): Sequential estimation of the parameter σ: discrete
sampling (top), quasi-continuous sampling (bottom).

filter (GGHF, cf. Singer; 2006b) and the Gaussian sum filter, implemented
with GHF updates (cf. Ito and Xiong; 2000). If more measurements are used,
the convergence is more quickly (cf. fig. 9, using all data). Clearly, ML works
best, but for each estimate σ̂(t), a nonlinear optimization algorithm has to
be solved (I used a quasi Newton algorithm with BFGS secant update and
numerical score). The estimate σ̂(t−1) was used as starting value for the next
maximization at time t. In contrast, the nonlinear filters work sequentially
without iterative optimization. In comparision, the CGHF works best and is
the fastest. Alternatively, the integrations can be done using the unscented
transform leading to a conditional unscented Kalman filter (CUKF). The
CPU times for the several algorithms are shown in table 1.

6 Conclusion

We have shown how the filtering of volatility parameters can be achieved
by a simple assumption. Instead of taking the joint Gaussian φ(y1, y2), the
Gaussian product φ(y1|y2)φ(y2) was used leading to a nonlinear dependence
of E[y1|y2] and Var(y1|y2) on y2. In contrast, a joint Gaussian assumption
can only accomodate a linear regression E[y1|y2] = a + by2 and a constant
variance Var[y1|y2] = Var[y1] − Cov(y1, y2)Var(y2)

−Cov(y2, y1). However, in
stochastic volatility models, the variance of y1 is dependent on y2. The Gaus-
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method CPU time (sec)

discrete sampling

CGHF (M,L) = (3, 3) 0.45
CGHF (M,L) = (11, 11) 1.89
CGHF (M,L) = (21, 21) 5.27
GGHF (K,M) = (6, 12) 27.27
Sum filter GHF (N,M) = (500, 4) 86.05
CUKF (κ = 3) 0.45

continuous sampling

CGHF (M,L) = (3, 3) 6.32
CGHF (M,L) = (11, 11) 22.69
CGHF (M,L) = (21, 21) 55.96
GGHF (K,M) = (6, 11) 78.58
Sum filter GHF (N,M) = (500, 4) 145.56
CUKF (κ = 3) 6.37

Table 1: CPU times of several algorithms.

sian product is the simplest assumption for this type of nonlinear problems
and leads to an efficient algorithm using Gauss-Hermite quadrature. Alter-
natively, the integrations can be done using the unscented transform leading
to a conditional unscented Kalman filter (CUKF).

Appendix A: Gauss–Hermite integration

The moment equations of the (C)GHF require the computation of expecta-
tions of the type E[f(Y )], where Y is a random variable with density p(y).
For the Gaussian filter, one may assume that the true p(y) is approximated
by a Gaussian distribution φ(y;µ, σ2) with the same mean µ and variance
σ2. Then, the Gaussian integral

Eφ[f(Y )] =
∫
f(y)φ(y;µ, σ2)dy =

∫
f(µ+ σz)φ(z; 0, 1)dz

≈
m∑

l=1

f(µ+ σζl)wl =
m∑

l=1

f(ηl)wl

may be approximated by Gauss–Hermite quadrature (Ito and Xiong; 2000)
Here, (ζl, wl) are quadrature points and weights, respectively. If such an
approximation is used, one obtains the Gauss–Hermite filter (GHF). Filters
using Gaussian densities are called Gaussian filters (GF). More generally, the
density may be approximated by the product of conditionally Gaussian den-
sities φ(y1|y2)φ(y2) (CGHF) which again yields integrals w.r.t. the Gaussian
density i.e. E[f(Y )] =

∫
f(y1, y2)φ(y1|y2)φ(y2)dy1dy2.
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In the multivariate case, the integration is performed using standardization
with some matrix square root (e.g. the Cholesky decomposition)

Eφ[f(Y )] =
∫
f(y)φ(y;µ,Σ)dy

=
∫
f(µ+Σ1/2z)φ(z; 0, I)dz1...dzp

≈
∑

l1,...,lp

f(µ+Σ1/2{ζl1 , ..., ζlp})wl1,...,lp

=
∑

l1,...,lp

f(ηl1 , ..., ηlp)wl1,...,lp ,

since φ(z; 0, I) = φ(z1; 0, 1)...φ(zp; 0, 1) allows stepwise application of the
univariate quadrature formula and {ζl1 , ..., ζlp}, lj = 1, ...,m, is the p-tupel of
Gauss–Hermite quadrature points with weights wl1,...,lp = wl1 ...wlp .

Appendix B:

Continuous-discrete filtering scheme

The Gauss-Hermite filter (GHF) is a recursive sequence of time and mea-
surement updates for the conditional moments µ(t|ti) = E[y(t)|Zi] and
Σ(t|ti) = Var[y(t)|Zi], where expectation values are computed according
to (59) using Gauss-Hermite quadrature (− denoting the generalized inverse;
Ω := gg′, cf. eq. 6):

Initial condition: t = t0

µ(t0|t0) = µ+ Cov(y0, h0)

× (Var(h0) +R(t0))
−(z0 − E[h0])

Σ(t0|t0) = Σ − Cov(y0, h0)

× (Var(h0) +R(t0))
−Cov(h0, y0)

L0 = φ(z0;E[h0],Var(h0) +R(t0))

ηl = ηl(µ,Σ);µ = E[y0], Σ = Var(y0) (quadrature points).

i = 0, . . . , T − 1:
Time update: t ∈ [ti, ti+1]

τj = ti + jδt; j = 0, ..., Ji − 1 = (ti+1 − ti)/δt− 1

µ(τj+1|ti) = µ(τj|ti) + E[f(y(τj), τj)|Zi]δt

Σ(τj+1|ti) = Σ(τj|ti) + {Cov[f(y(τj), τj), y(τj)|Zi] +

Cov[y(τj), f(y(τj), τj)|Zi] + E[Ω(y(τj), τj)|Zi]}δt
ηl = ηl(µ(τj|ti), Σ(τj|ti)) (quadrature points)
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Measurement update: t = ti+1

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, hi+1|Zi)

× (Var(hi+1|Zi) +R(ti+1))
−(zi+1 − E[hi+1|Zi])

Σ(ti+1|ti+1) = Σ(ti+1|ti)− Cov(yi+1, hi+1|Zi)

× (Var(hi+1|Zi) +R(ti+1))
−Cov(hi+1, yi+1|Zi)

Li+1 = φ(zi+1;E[hi+1|Zi],Var(hi+1|Zi) +R(ti+1))

ηl = ηl(µ(ti+1|ti), Σ(ti+1|ti)) (quadrature points)

Remarks

1. The discretization interval δt is a small value controlling the accuracy
of the Euler scheme implicit in the time update. Since the quadrature
points are functions of the mean and variance, the moment equations
(35,37) are a coupled system of nonlinear differential equations for the
sample points of the Gauss-Hermite scheme. Therefore, other approxi-
mation methods such as the Heun scheme or higher order Runge-Kutta
schemes could be used.

2. The time update neglects second order terms. Inclusion of E[f −
E(f)][f − E(f)]′δt2 leads to a positive semidefinite update, which is
numerically more stable.

3. The measurement update is the optimal linear update (normal corre-
lation; Liptser and Shiryayev, 2001, ch. 13, theorem 13.1, lemma 14.1)

E[yi+1|zi+1, Z
i] = E[yi+1|Zi] + Cov(yi+1, zi+1|Zi)

× Var(zi+1|Zi)−(zi+1 − E[zi+1|Zi])

Var[yi+1|zi+1, Z
i] = Var[yi+1|Zi]− Cov(yi+1, zi+1|Zi)

× Var(zi+1|Zi)−Cov(zi+1, yi+1|Zi).

with measurement equation (7) inserted and covariances computed by
Gauss-Hermite integration. It is linear in z but includes the nonlinear
measurements z = h(y) + ε in the expectation values and covariance
terms. It does not require any Taylor expansions and can be used for
discontinuous measurement functions as in threshold models (ordinal
data). A direct implementation of the Bayes formula (44) would lead
to the asymmetric a posteriori density

p(yi+1|Zi+1) =
m∑

l=1

w∗
l δ(yi+1 − ηl)

w∗
l = wlp(zi+1|ηl)/

m∑
l=1

wlp(zi+1|ηl)
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where the a priori density is p(yi+1|Zi) =
∑m

l=1wlδ(yi+1 − ηl) with
Gauss-Hermite sample points ηl = ηl(µ(ti+1|ti), Σ(ti+1|ti)). Computing
the a posteriori moments

µ(ti+1|ti+1) =
∫
yi+1p(yi+1|Zi+1)dyi+1 =

m∑
l=1

w∗
l ηl

Σ(ti+1|ti+1) =
∫

(yi+1 − µ(ti+1|ti+1)

× (yi+1 − µ(ti+1|ti+1)
′p(yi+1|Zi+1)dyi+1

=
m∑

l=1

w∗
l [ηl − µ(ti+1|ti+1)][ηl − µ(ti+1|ti+1)]

′

one can construct a symmetric a posteriori distribution with the same
first and second moments.

4. Taylor expansion of f , Ω and h around µ leads to the usual EKF and
SNF. Using sigma points instead of Gaussian quadrature points yields
the unscented Kalman filter UKF (cf. Julier and Uhlmann; 1997; Julier
et al.; 2000; Julier and Uhlmann; 2004; Singer; 2006a)
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