
SOS 2004 Preliminary Version

Toward the concept of backtracking
computation

M. Kulaš

FernUniversität Hagen, FB Informatik, D-58084 Hagen, Germany 1

Abstract

This article proposes a new mathematical definition of the execution of pure Pro-
log, in the form of axioms in a structural operational semantics. The main advantage
of the model is its ease in representing backtracking, due to the functionality of the
transition relation and its converse. Thus, forward and backward derivation steps
are possible. A novel concept of stages is introduced, as a refinement of final states,
which captures the evolution of a backtracking computation. An advantage over
the traditional stack-of-stacks approaches is a modularity property. Finally, the
model combines the intuition of the traditional ‘Byrd box’ metaphor with a com-
pact representation of execution state, making it feasible to formulate and prove
theorems about the model. In this paper we introduce the model and state some
useful properties.

Key words: backtracking, Prolog, operational semantics

1 Motivation, aims and results

In this paper, we introduce S1:PP, a new operational semantics for pure Pro-
log, and establish some useful properties, aiming toward an algebraic defi-
nition of the concept of Prolog computation. On the way, we obtain some
new concepts useful for characterizing backtracking, but possibly also useful
for objects which evolve over time. Such an object is in logic programming
the goal, in its dynamic sense (‘this unique, run-time invocation of a Prolog
procedure’), as opposed to its static or syntactic sense (‘this goal formula’).

The goal is a basic concept of logic programming, but nevertheless one
which proved hard to grasp in a formal way, even in the case of pure Prolog.
The problem is the possible evolution of ‘the’ goal through slightly different
identities, in case of a non-deterministic procedure.

1 Email: marija.kulas@fernuni-hagen.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kulaš

For example, assume we pose the following query to a Prolog program:
p(X, Y), q(Y), fail. Assume two answers for p(X, Y), say p(a, Z) and p(b, 3). In
the static sense, we have only one goal q(Y), but dynamically we can have two
different goals: first q(Z), and if q(Z), fail terminates, then q(3). Both goals
have their own creation, lifetime of forward and backward execution, and
possible expiration. It is vital for an operational semantics of backtracking
to differentiate between these objects. Moreover, assume q/1 is recursive.
During the computation of e. g. the goal q(Z), we need to pay attention to all
the recursive invocations of q/1 as well, in order to know exactly where to go
after a failure. Are they all to be considered distinct objects as well, of the
same kind as the above two, q(Z) and q(3), and how to manage them anyway?

In the rest of this paper we proceed as follows. First a canonical form of
predicates is defined, into which the original pure Prolog program shall be
transformed. Then, in Section 3, a novel operational semantics of pure Prolog
is defined, in a structural operational manner. Throughout the Section 4 –
Section 7 we develop formal tools (concepts and theorems) suitable for char-
acterizing Prolog computation. This obviously includes defining in some way
or other the (dynamic) concept of the goal as well. We solved this problem
by means of stages, through which an initial event (representing the creation
of a goal) passes in the course of computation. Stages can be seen as a gener-
alization of the normal form idea, in the sense that stages are independent on
the context of computation, as shown in Section 7, but organized by macro
transitions. Starting from individual transitions as given in the model, simple
derivations (forward and backward) are built, which are the basis of simple
passes, and simple passes aggregate into composed passes. Finally, we show
in Section 8 how composed passes model Prolog computations.

Our approach can be seen as a formalization of the original Byrd model.
But there is an important detail: we extend the notion of a port, initially
conceived by Byrd for selected atoms, to general goal formulas. The shifting
of attention from atoms to general goal formulas proved to be a key idea and
made a very simple model possible. The model in its first version, called S:PP,
was proposed in [18]. But the handling of variables turned out to be difficult.
The new model S1:PP improves on that.

2 Preliminaries

Before it can be interpreted in our model, the original Prolog program has to be
transformed into a canonical form, the common single-clause representation.
This representation is arguably ‘near enough’ to the original program, the only
differences concern the head-unification (which is now delegated to the body)
and the choices (which are now uniformly expressed as disjunction).

Definition 2.1 (full canonical form) We say that a predicate P/n is in
full canonical form, if its definition in the given program Π consists of a
single clause P (X1, ..., Xn) :− Bs. Here X1, ..., Xn are distinct variables, and

2

Kulaš

Bs is a disjunction of branches (possibly empty, corresponding to fail). Each
branch is of the form X1=T1, . . . , Xn=Tn, Gs, where Gs is a conjunction of
goal formulas (possibly empty, corresponding to true). No Xi may appear in
any T1, ..., Tn, Gs.

Here, a goal formula may be of six kinds: user-defined atom P (T1, ..., Tn),
special terms true and fail, equality T1=T2 , conjunction and disjunction of
goal formulas.

Transformation into full canonical form may proceed as follows: First re-
name the clauses for P/n apart, obtaining clauses P (T1, ..., Tn) :− G. (For
facts, set G to true.) Pick distinct variables X1, ..., Xn not appearing in any
T1, ..., Tn, G. For each body G, assemble a new body X1=T1, . . . , Xn=Tn, G.
Finally, make a disjunction of the new bodies, preserving the order of their
appearance in Π, giving the body of the canonical form. The head shall be
P (X1, ..., Xn). As an example, the following program

p(a,Z).
p(b,3).
q(0).
q(s(N)) :− q(N).

would be canonically represented as

p(X,Y) :− X=a, Y=Z, true; X=b, Y=3, true.
q(Z) :− Z=0, true; Z=s(N), q(N).

and simplified to

p(X,Y) :− X=a; X=b, Y=3.
q(Z) :− Z=0; Z=s(N), q(N).

For the purposes of this paper, a weaker notion is sufficient:

Definition 2.2 (canonical form) We say that a predicate P/n is in canon-
ical form, if its definition in the given program Π consists of a single clause
P (X1, ..., Xn) :− G . Here X1, ..., Xn are distinct variables, while G is an ar-
bitrary goal formula.

3 The semantics S1:PP

The model S1:PP we are proposing fits naturally into a structural operational
format. For easy reference, the model is defined in two figures, Subsection 3.3
(syntax) and Subsection 3.4 (rules). Notice that there are no premisses to the
transition rules, so the calculus consists solely of axioms.

Definition 3.1 (event) An event is a quadruple (Port ,Goal ,A-stack ,B-stack),
as given by the grammar in Subsection 3.3.

Intuitively, an event is a state of Prolog computation, and it is determined
in our model by four parameters:

3

Kulaš

• goal: the current focus or ‘goal’ of computation (a general goal formula)

• port: marks evolution of the current goal (call , exit , fail or redo)

• A-stack: the history of the current goal (stack of ancestors)

• B-stack: the current environment (stack of bets)

Definition 3.2 (transition) Let Π be a pure Prolog program in canonical
form, as defined by Subsection 3.3 and Definition 2.2. The transition relation
_Π is defined in Subsection 3.4. The converse relation shall be denoted by
^Π . If E1 _Π E, we say that E1 leads to E. Alternatively, we say that E1

is a predecessor to E, and E is a successor to E1. An event E can be entered,
if some event leads to it. An event E can be left, if it leads to some event.

The left-hand sides of the transition rules are mutually disjoint, i. e. there
are no critical pairs, so we have

Lemma 3.3 (transitions are deterministic) _Π is functional, i. e. for
each event E there can be at most one event E1 such that E _Π E1.

Remark 3.4 (converse relation) The converse of the transition relation
is not functional, since there may be more than one event leading to the
same event. For example, call T1=T2 〈

nil

nil
〉 _Π fail T1=T2 〈

nil

nil
〉, as well as

redo T1=T2 〈
σ • nil

nil
〉 _Π fail T1=T2 〈

nil

nil
〉. Further down it will be shown that,

for events that are legal, the converse relation is functional. In our example,
redo T1=T2 〈

σ • nil

nil
〉 is not a legal event.

Definition 3.5 (derivation) Let E0, E be events. A Π-derivation of E from
E0 in k steps, written as E0 _Π

k E, is a path of length k from E0 to E in
the graph of _Π . We say that E can be reached from E0. Derivation of
a nonzero length is denoted by E0 _

+
Π

E, and derivation of any length by
E0 _

∗

Π
E.

Definition 3.6 (initial event) An initial event is call Q 〈nil

nil
〉 for any Q.

Intuitively, the goal Q of an initial event corresponds in Prolog to a top-
level goal (query).

Definition 3.7 (legal derivation, legal event) If there is a goal Q such
that call Q 〈nil

nil
〉 _

∗

Π
E0 _

∗

Π
E, then we say that E0 _

∗

Π
E is a legal Π-

derivation, and E is a legal Π-event.

Definition 3.8 (final event) A legal Π-event E is a final Π-event, if there
is no transition E _Π E1.

Notation 1 (impossible event) As a notational convenience, all the events
which are not final and do not lead to any further events by means of _Π

are depicted as leading to the impossible event, written as ⊥. Analogously for
events that are not initial and cannot be entered.

In particular, redo fail _Π ⊥ and exit fail ^Π ⊥ for any Π. Some more
examples: call G 〈σ • nil

nil
〉 ^Π ⊥, redo G 〈 Σ

nil
〉 ^Π ⊥ (cannot be entered,

4

Kulaš

non-initial), and redo p 〈nil

U
〉 _Π ⊥ (cannot be left, but not legal, p being

an atomic goal). The last example is perhaps less obvious, and follows from
Lemma 4.1 and (S1:atom:2).

3.1 Remarks on the calculus

(i) In S1:PP, the word goal is used in both its usual senses: as a syntax
domain, meaning ‘goal formula’ (Subsection 3.3), and as one of the four
components of an execution state, meaning ‘current goal’ (Subsection 3.4).

(ii) SLD-resolution is operating on the selected atom, but S1:PP is operating
on the whole current goal.

(iii) For the syntax domains that have not been defined in Subsection 3.3, we
refer to [14] (substitutions), [21] (logic programming) and [12] (Prolog).

(iv) The most general unifiers σ shall be chosen to be idempotent, namely
σ(σ(T)) = σ(T). This is always possible.

(v) Resolution is modeled by (S1:atom:1), and it is the only rule actually
depending on Π. If the predicate of the atomic goal has a definition in
Π, the resolution will succeed, because of canonical form.

(vi) Note the requirement σ(GA) = GA in (S1:atom:1). Since the clauses are
in canonical form, unifying the head of a clause with a goal could do no
more than rename the goal. We prefer the mgu to operate only on the
clause.

(vii) A fresh variable, at a certain point of a derivation, represented by an
event, is a variable not appearing in the previous course of the derivation,
represented by the goal and the A-stack of the event.

3.2 Auxiliary notation

In addition to the language given in Subsection 3.3, here is some auxiliary
notation that shall be used in theorems:

(i) Anonymous meta-variable: If some parts of an event are of no interest in
a topic at hand, they shall be abstracted away by the underscore ” ”.

(ii) To navigate an ancestor X, two functions are used: bXc, which is the
selected half of X, as defined in Subsection 3.3, and dXe, which is X
without tags: dN /A,Be := A,B , dN /A; Be := A; B , dGAe := GA.

(iii) Stack addition and subtraction: Concatenation to the right of a stack
we denote by +, and if U +V = W , then W − V := U . Concatenat-
ing to both stacks of an event we denote by �, with Γ G 〈Σ

U
〉� 〈∆

V
〉 :=

Γ G 〈Σ +∆

U +V
〉, and Γ G 〈Σ +∆

U +V
〉� 〈∆

V
〉 := Γ G 〈Σ

U
〉.

(iv) Stack order : If there is W such that U = W +V , then we say that U � V .

(v) σ |T means substitution σ restricted to the variables of the term T .

(vi) Macro transitions
.

_Π,
/

_Π,−→Π, =⇒Π will be defined in Section 5 and

5

3.3 Language of events

event ::= port goal
〈

B-stack
A-stack

〉

program ::= {definition.}+

definition ::= atom :− goal
port ::= push | pop
push ::= call | redo
pop ::= exit | fail
goal ::= true | fail | atom | term = term | goal; goal | goal, goal
ancestor ::= atom | tag/goal; goal | tag/goal, goal
tag ::= 1 | 2
memo ::= BY (goal) | OR(tag)
bet ::= mgu | memo
A-stack ::= nil | ancestor • A-stack
B-stack ::= nil | bet • B-stack

Meta-variables

E : event
Π : program
Γ : port, Push : push, Pop : pop

U , V : A-stack, a, b, Ĝ : ancestor, N : tag
Σ, Θ, Ψ , Ω, ∆ : B-stack, α : bet
σ : substitution
A, B , C , G , H : goal
GA : atom
T : term

Meta-functions

b1/A,Bc := A, b2/A,Bc := B , and analogously for disjunction
σ(T) = application of σ upon T
mgu(T1 ,T2) = mgu of T1 and T2

subst(Σ) = current substitution = composition of all mgus from Σ;
subst(Σ)(T) shall be abbreviated to Σ(T), and is defined as follows:

nil(T) := T

α •Σ(T) :=

{
α(Σ(T)), if α is an mgu
Σ(T), if α is a memo

Syntax domains taken in their usual sense:

term (taken in the Prolog sense, as a superset of goal);
atom (user-defined predication in logic programming);
substitution, renaming, mgu.

3.4 Operational semantics S1:PP of pure Prolog

Conjunction

call A,B 〈Σ
U
〉 _Π call A 〈 Σ

1/A,B •U
〉 (S1:conj:1)

exit A 〈 Σ

1/A,B •U
〉 _Π call B 〈 Σ

2/A,B •U
〉 (S1:conj:2)

fail A 〈 Σ

1/A,B •U
〉 _Π fail A,B 〈Σ

U
〉 (S1:conj:3)

exit B 〈 Σ

2/A,B •U
〉 _Π exit A,B 〈Σ

U
〉 (S1:conj:4)

fail B 〈 Σ

2/A,B •U
〉 _Π redo A 〈 Σ

1/A,B •U
〉 (S1:conj:5)

redo A,B 〈Σ
U
〉 _Π redo B 〈 Σ

2/A,B •U
〉 (S1:conj:6)

Disjunction

call A; B 〈Σ
U
〉 _Π call A 〈 Σ

1/A;B •U
〉 (S1:disj:1)

fail A 〈 Σ

1/A;B •U
〉 _Π call B 〈 Σ

2/A;B •U
〉 (S1:disj:2)

fail B 〈 Σ

2/A;B •U
〉 _Π fail A; B 〈Σ

U
〉 (S1:disj:3)

exit C 〈 Σ

N/A;B •U
〉 _Π exit A; B 〈OR(N) •Σ

U
〉, with C ...2 (S1:disj:4)

redo A; B 〈OR(N) •Σ

U
〉 _Π redo C 〈 Σ

N/A;B •U
〉, with C ...2 (S1:disj:5)

True and Fail

call true 〈Σ
U
〉 _Π exit true 〈Σ

U
〉 (S1:true:1)

redo true 〈Σ
U
〉 _Π fail true 〈Σ

U
〉 (S1:true:2)

call fail 〈Σ
U
〉 _Π fail fail 〈Σ

U
〉 (S1:fail)

Equality

call T1=T2 〈
Σ

U
〉 _Π

{
exit T1=T2 〈

σ •Σ

U
〉, if mgu...3

fail T1=T2 〈
Σ

U
〉, otherwise

(S1:unif:1)

redo T1=T2 〈
σ •Σ

U
〉 _Π fail T1=T2 〈

Σ

U
〉 (S1:unif:2)

User-defined atom GA

call GA 〈
Σ

U
〉 _Π

{
call σ(B) 〈 Σ

GA •U
〉, if H :−B ...4

fail GA 〈
Σ

U
〉, otherwise

(S1:atom:1)

exit B 〈 Σ

GA •U
〉 _Π exit GA 〈

BY (B) •Σ

U
〉 (S1:atom:2)

fail B 〈 Σ

GA •U
〉 _Π fail GA 〈

Σ

U
〉 (S1:atom:3)

redo GA 〈
BY (B) •Σ

U
〉 _Π redo B 〈 Σ

GA •U
〉 (S1:atom:4)

2 with C = bN /A;Bc.
3 if mgu(Σ(T1), Σ(T2)) = σ.
4 if H :− B is a fresh renaming of a clause in Π, and σ = mgu(G ′

A
,H) with

G ′

A
:= Σ(GA) and σ(G ′

A
) = G ′

A
.

Kulaš

Section 6.

Notation 2 (distinguishing two levels) Object-level terms (i. e. actual Pro-
log terms) are shown in sans serif, like true. Meta-level terms (i. e. anything
else in the calculus) are shown in italics, like call,α.

Notation 3 (dropping Π) In the following we usually drop any reference to
Π, since a program in pure Prolog cannot change during a derivation. How-
ever, a fixed program Π is always assumed. Observe that all the new relations
in this paper, built upon the transition relation, also implicitly depend on Π.

4 Uniqueness claim

First we state a useful property, which we call the pendant lemma. Observe
that the formulation is non-deterministic in that we only claim the existence
of a pendant event (with the identical B-stack), but it is not known whether
it is the only one.

Lemma 4.1 (pendant) If call G 〈nil

nil
〉_

∗ fail H 〈 Θ
W
〉, then

call G 〈nil

nil
〉_

∗ call H 〈 Θ
W
〉_∗ fail H 〈 Θ

W
〉.

If call G 〈nil

nil
〉_∗ redo H 〈 Θ

W
〉, then

call G 〈nil

nil
〉_

∗ exit H 〈 Θ
W
〉_

∗ redo H 〈 Θ
W
〉.

The pendant lemma enables us to prove a vital property of our calculus: there
can be only one successor to a given event, and moreover, for a legal event
there can be only one predecessor.

Theorem 4.2 (legal transitions are unique) If E is a legal event, then
E can have only one legal predecessor, and only one successor. In case E is
non-initial, there is exactly one legal predecessor. In case E is non-final, there
is exactly one successor.

Having established functionality of the transition relation and its converse,
we may unfold a legal derivation from each of its endpoints. First let us see
how far we can go from an initial event by means of transitions.

Lemma 4.3 (ancestor) If Γ G 〈 Σ

a •V
〉 is a legal event, then there are Push

and Σ ′ such that Push dae 〈Σ
′

V
〉_

+ Γ G 〈 Σ

a •V
〉 is a legal derivation.

Lemma 4.4 (tagged parent) If Γ G 〈 Σ

a •V
〉 is a legal event, and a = N /A,B

or a = N /A; B, then G = bac.

Lemma 4.5 (final event) If E is a legal pop event with a non-empty A-
stack, then there is always a transition E _ E1.

Lemma 4.6 If call G 〈nil

nil
〉 _

+ Γ H 〈Θ
W
〉 and Γ H 〈 Θ

W
〉 6= Pop 〈

nil
〉, then

W = V + Ĝ •nil for some V and an ancestor Ĝ such that dĜe = G.

Lemma 4.7 If call G 〈nil

nil
〉_∗ Pop H 〈 Σ

nil
〉, then H = G.

8

Kulaš

The above lemmas suggest events of the form Pop 〈
nil
〉 as natural end-

points of derivation. For this reason we develop a concept of derivation around
such events. We start with a concept of simple derivation.

5 Simple derivation and subevent

In this section, we set about defining some new, ‘macro’ transition relations,
by collapsing whole sequences of transition steps into one big step. Arguably,
illegal derivations do not make much sense in such a context, therefore we
exclude them:

Notation 4 (only legal derivations) In the transition relations that we shall

define from now on, namely
.

_,
/

_,−→, =⇒, it is always assumed that the
derivations are legal.

Definition 5.1 (forward or backward simple derivation) Consider a le-
gal derivation Push G 〈Σ

U
〉 _

+ E such that there is no Pop 〈
U
〉 within this

derivation, i. e. Push G 〈Σ
U
〉 _

+ Pop 〈
U
〉 _

+ E is not allowed. Such a

derivation we call a forward derivation relative to U , and denote by Push G 〈 Σ
U
〉

.

_

E. Analogously, a legal derivation Pop G 〈Σ
U
〉 _

+ E such that there is no
Push 〈

U
〉 within this derivation, is a backward derivation relative to U , de-

noted by Pop G 〈Σ
U
〉

/

_ E. A forward or a backward derivation relative to U is
a simple derivation relative to U .

Forward derivation gives rise to subevents:

Definition 5.2 (subevent) If Push G 〈Σ
U
〉

.

_ Γ H 〈 Θ
W
〉 then Γ H 〈 Θ

W
〉 is a

subevent of Push G 〈Σ
U
〉.

Lemma 4.6 and Lemma 4.7 can be generalized to provide for the case of
an arbitrary push event and an arbitrary A-stack, and proven in the same
manner as the original lemmas:

Theorem 5.3 (the subevent property) If Push G 〈Σ
U
〉

.

_ Γ H 〈 Θ
W
〉 and

Γ H 〈 Θ
W
〉 6= Pop 〈

U
〉, then W = V + Ĝ •U for some V and an ancestor

Ĝ such that dĜe = G.

Lemma 5.4 (endpoint) If Push G 〈Σ
U
〉

.

_ Pop H 〈Θ
U
〉 then H = G.

Obviously, each push transition is a forward derivation. Some forward
derivations can be composed as well. This follows from the subevent property.

Corollary 5.5 If Push1 G 〈Σ
U
〉

.

_ Push H 〈 Θ

a •U
〉

.

_ E, then Push1 G 〈Σ
U
〉

.

_

E. Also, if Push G 〈Σ
U
〉

.

_ E _ E1 with E 6= Pop 〈
U
〉, then Push G 〈Σ

U
〉

.

_

E1.

Lemma 5.6 (forward pass) If Pop G 〈Σ
U
〉 is a legal event, then Pop G 〈Σ

U
〉

/

^

Push G 〈Σ
◦

U
〉 for some Push and Σ◦.

9

Kulaš

The next statement follows from the subevent property. Analogous claim
with pop and push swapping places, holds due to the simple pass lemma.

Lemma 5.7 (no pop no push) Let Push0 G 〈
U
〉 _

∗ E be a legal deriva-
tion, such that there is no Pop 〈

U
〉 within the derivation. Then there is no

Push 〈
U
〉 within the derivation as well. The same holds for derivations of

the form E _
∗ Push0 G 〈

U
〉.

Taking into account composition of forward derivations, we can prove a
stronger version of the ancestor lemma. The new version has the advantage
of determinacy, i. e. there is only one place in a derivation where the parent
event can be: the most recent past event of the form Push dae 〈

V
〉.

Lemma 5.8 (ancestor, stronger) If Γ G 〈 Σ

a •V
〉 is a legal event, then there

are Push and Σ ′ such that Push dae 〈Σ
′

V
〉

.

_ Γ G 〈 Σ

a •V
〉 is a legal derivation.

Lemma 5.9 (subevent, converse) If for a legal event Γ H 〈 Θ

W
〉 holds that

W = V + a •U , then Γ H 〈 Θ
W
〉 is a subevent of Push dae 〈Σ

U
〉 for some Push

and some Σ.

As we have seen, forward or backward derivations between events with
identical A-stack and identical goal play a special role in the calculus. We
abstract such derivations to a new concept:

Definition 5.10 (forward or backward simple pass) A forward deriva-

tion Push G 〈
U
〉

.

_ Pop G 〈
U
〉 we call a forward pass relative to G and U .

Analogously, a backward derivation Pop G 〈
U
〉

/

_ Push G 〈
U
〉 we call a back-

ward pass relative to G and U . A forward or a backward pass from E1 to E2

is a simple pass, denoted by E1 −→ E2. The events E1, E2 are called stages.
To denote stages we may use the fixed parts (the goal and the A-stack) as
superscripts, like this: EG,U .

6 Composed derivation

Fortified with the useful results like the pendant and forward pass lemma, we
are now in a position to prove stronger results. As with the stronger version of
the ancestor lemma, the advantage is in the deterministic specification of the
correlated events from the past. For example, for a fail event we now know
that its pendant call (with the identical B-stack) is the most recent call event
bearing the same goal and the same A-stack.

Theorem 6.1 (pendant, stronger) Let fail H 〈 Θ

W
〉 be a a legal event. Then

fail H 〈 Θ
W
〉^∗ call H 〈 Θ

W
〉, where call H 〈

W
〉 does not appear within the deriva-

tion. Furthermore, if redo H 〈 Θ

W
〉 is a legal event, then redo H 〈 Θ

W
〉 ←− exit H 〈 Θ

W
〉.

Lemma 6.2 (B-stack) If call G 〈Σ
U
〉 −→ Γ H 〈Σ

′

U
〉, then Σ ′ � Σ.

Lemma 6.3 (no call no fail) If E _
∗ Pop G 〈

U
〉 is a legal derivation, and

call G 〈
U
〉 is not within this derivation, then fail G 〈

U
〉 is also not within this

10

Kulaš

derivation.

From Lemma 5.6 and Theorem 6.1 we know that a legal pop event can run
through a series of past stages, like exit 〈

U
〉 ←− redo 〈

U
〉 ←− exit 〈

U
〉 ←−

... Due to the finiteness of a converse derivation and Lemma 5.6, a call 〈
U
〉 is

bound to appear. So we must ultimately reconstruct a derivation exit 〈
U
〉^∗

call 〈
U
〉, where no events of the form call 〈

U
〉 intervene. Similarly for a fail

event.

Definition 6.4 (composed pass) Consider a sequence of simple passes
EG,U

1 −→+ EG,U
2 such that there is no call G 〈

U
〉 within this sequence, i. e.

EG,U
1 −→+ call G 〈

U
〉 −→+ EG,U

2 is not allowed. Such a sequence is called

composable, or a composed pass relative to G and U , and denoted by EG,U
1 =⇒

EG,U
2 .

It can be seen that call G 〈
U
〉 cannot appear within a composed pass rela-

tive to G and U even if regarded as a derivation, i. e. neither among the stages
of the simple passes nor somewhere in between. One important question re-
mains: How do the B-stacks of the particular stages relate to each other? This
is the main concern of our next claim, companion to Lemma 5.6.

Theorem 6.5 (composed pass) The following two relationships hold:

If fail G 〈Σ
U
〉 is legal, then fail G 〈Σ

U
〉 ⇐= call G 〈Σ

U
〉. (1)

If exit G 〈Σ
U
〉 is legal, then exit G 〈Σ

U
〉 ⇐= call G 〈Σ

◦

U
〉, with Σ � Σ◦ (2)

For (2) further holds: If G is a disjunction, then Σ � Σ◦, starting with
OR(N) for some N , and analogously for a unification or an atomic goal.

We already know that for a legal redo event holds redo G 〈Σ
U
〉 ←− exit G 〈Σ

U
〉,

which adds some more relationships like

If fail G 〈Σ
U
〉 ⇐= redo G 〈Σ

′

U
〉, then Σ ′ � Σ (3)

If redo G 〈Σ
U
〉 is legal, then redo G 〈Σ

U
〉 ⇐= call G 〈Σ

◦

U
〉, with Σ � Σ◦ (4)

As a by-product, the following supplement to Lemma 4.5 can be obtained,
leading to a conclusion that the only final events are legal pop events with an
empty A-stack:

Lemma 6.6 (non-final event) If E is a legal push event, then there is al-
ways a transition E _ E1.

7 Independence claim and modularity

Remark 7.1 (up-to-date calls) Bearing in mind the canonical form of the
clauses, as well as idempotency of the mgus in our model, it can be seen
from the rule (S1:atom:1) that for any legal event call σ(B) 〈 Σ

GA •U
〉 holds:

Σ(σ(B)) = σ(B). In other words, the goal part of such an event is up-to-date
with respect to the B-stack.

Theorem 7.2 (adding stacks) Let call G 〈nil

nil
〉 _ E1 _ ... _ En _

11

Kulaš

Pop G 〈 Ω

nil
〉 be a legal derivation. Then for every G ◦, U and Σ such that

call G◦ 〈Σ
U
〉 is a legal event and Σ(G ◦) = G, holds:

call G◦ 〈Σ
U
〉 _ E ◦

1
� 〈Σ

U
〉 _ ... _ E ◦

n
� 〈Σ

U
〉 _ Pop G◦ 〈Ω +Σ

U
〉

is also a legal derivation. Here if Ei = Γ H 〈Θ
V
〉, then E◦

i := Γ H ◦ 〈 Θ

V ◦
〉, where

Σ(H ◦) = H and Σ(V ◦) = V .

Theorem 7.3 (subtracting stacks) Let call G 〈Σ
U
〉 _ E1 _ ... _ En _

Pop G 〈Ω
U
〉 be a legal derivation, and Ei 6= Pop 〈

U
〉 for every i. Then for

G ′ := Σ(G) holds:

call G ′ 〈nil

nil
〉 _ E ′

1
� 〈Σ

U
〉 _ ... _ E ′

n
� 〈Σ

U
〉 _ Pop G ′ 〈Ω −Σ

nil
〉

is also a legal derivation. Here if Ei = Γ H 〈Θ
V
〉, then E ′

i := Γ H ′ 〈 Θ

V ′
〉, where

Σ(H) = H ′ and Σ(V) = V ′.

The previous two claims show that a simple pass, starting with a call event,
is independent on the starting contents of the stacks. The stacks represent
the context of the computation for the goal at hand.

It would be interesting to see whether similar properties hold for a sim-
ple pass starting with a redo event. First note that if redo G 〈Σ

U
〉 is a le-

gal event, then, according to Theorem 6.1, redo G 〈Σ
U
〉 ←− exit G 〈Σ

U
〉. Us-

ing Theorem 6.5, we further obtain that redo G 〈Σ
U
〉 ⇐= call G 〈Σ

◦

U
〉, where

Σ � Σ◦. This gives us a hint on how much we may cut off of the stacks.
Observe that, as opposed to a call event, we do not necessarily arrive at a
legal redo event by means of adding or subtracting stacks. (For example, a
redo event with an empty A-stack cannot be reached.) But if we do, then we
may know its next stage, due to the following claim:

Lemma 7.4 (starting with redo) Let redo G 〈Σ
U
〉 _ E1 _ ... _ En _

Pop G 〈Ω
U
〉 be a legal derivation, and Ei 6= Pop 〈

U
〉 for every i. Further let

redo G 〈Σ
U
〉 ⇐= call G 〈Σ

◦

U
〉. Then for G ′ := Σ◦(G) and E ′

i analogous as in
Theorem 7.3 holds:

redo G ′ 〈Σ −Σ◦

nil
〉 _ E ′

1 � 〈Σ
◦

U
〉 _ ... _ E ′

n � 〈Σ
◦

U
〉 _ Pop G ′ 〈Ω −Σ◦

nil
〉.

Moreover, for Θ(G ◦) = G and E◦

i analogous as in Theorem 7.2 holds:

redo G◦ 〈Σ +Θ

U +V
〉 _ E ◦

1 � 〈Θ
V
〉 _ ... _ E ◦

n � 〈Θ
V
〉 _ Pop G◦ 〈Ω +Θ

U +V
〉.

Our next aim is to prove: even upon backtracking, the goal shall pass
always the same stages, independent on the starting contents of the stacks.

Lemma 7.5 (backward independence) Consider the sequences

call G 〈Σ
U
〉 −→ exit G 〈Σ

′

U
〉 −→ redo G 〈Σ

′

U
〉 −→ exit G 〈Ω

U
〉

call H 〈Θ
V
〉 −→ exit H 〈Θ

′

V
〉 −→ redo H 〈Θ

′

V
〉 −→ exit H 〈Ψ

V
〉

where Θ(H) = Σ(G). Then Θ′ = Σ ′−Σ +Θ and Ψ = Ω−Σ + Θ.

12

Kulaš

In other words, the second derivation starts from a different context, but
from the same goal, and it passes the same stages as in the first derivation.
Notice the presence of backtracking.

This result can be generalized for arbitrary composed passes. Bearing in
mind that there can be only one appearance of a fail stage in a composed
pass, due to Lemma 6.3, we arrive at a general claim of independence upon
the context of derivation.

Theorem 7.6 (independence) Let the following sequences be composable,
where m, k ≥ 1, and let Θ(H) = Σ(G).

call G 〈Σ
U
〉 −→ EG,U

1 −→ ... −→ EG,U
m

call H 〈Θ
V
〉 −→ EH ,V

1 −→ ... −→ EH ,V
k

Then for any i in common (i ≤ m, k) holds:

If EG,U
i := Γ G 〈Σ

′

U
〉 then EH ,V

i = Γ H 〈Θ
′

V
〉, such that Θ′ = Σ ′−Σ +Θ.

Independence on the context of derivation, together with compositionality
with respect to conjunction and disjunction, and aggregation of transitions
into bigger steps, establishes a kind of modularity in S1:PP. There is an illus-
tration at the end of Section 8.

In the remaining technical section we define a concept of computation
intended to mimick SLD-resolution in the style of Prolog, i. e. SLD-resolution
with leftmost selection and a sequential, left-to-right depth-first search. For
brevity, thus restricted SLD-resolution shall be called Prolog computation.

8 Modeling pure Prolog computations

Based on the concept of stages, it is possible to express Prolog computation
in a succinct way. Throughout this section, Π denotes again a pure Prolog
program in canonical form, as defined in Subsection 3.3 and Definition 2.2.

Theorem 8.1 (existential termination, success, failure) Prolog compu-
tation of a goal G relative to Π terminates existentially if there is a simple
pass

call G 〈nil

nil
〉 −→Π Pop G 〈 ∆

nil
〉

In case Pop = exit, the Prolog computation of G is successful, otherwise it is
failed.

Theorem 8.2 (the first computed answer) If call G 〈 nil

nil
〉 −→Π exit G 〈 ∆

nil
〉,

then subst(∆) |G is the first computed answer substitution for G relative to Π
in Prolog.

Theorem 8.3 (all computed answers, universal termination) In a com-
posable sequence

call G 〈 nil

1/G,fail • nil
〉 −→Π

2k−1 exit G 〈 ∆

1/G,fail • nil
〉

13

Kulaš

is subst(∆) |G the kth computed answer substitution for G relative to Π in
Prolog. Furthermore, G is universally terminating relative to Π if

call G 〈 nil

1/G,fail • nil
〉 =⇒Π fail G 〈 nil

1/G,fail • nil
〉

Actually we can be a bit more precise, by considering a goal G as a subgoal
of other goals. Recall that, if call G 〈Σ

U
〉 is legal and U = an • ... • a1 • nil , then

call G 〈Σ
U
〉

/

^Π Push da1e 〈nil
〉. In other words, call G 〈Σ

U
〉 is a subevent of the

most recent Push da1e 〈nil
〉. Moreover, since a push event with an empty A-

stack cannot be reached, we know that ours must be the oldest event of the
derivation, of the form call da1e 〈

nil

nil
〉. In analogy to subgoals in Prolog, let us

define two new concepts:

Definition 8.4 (S1-supergoal, S1-subgoal) Let call G 〈Σ
U
〉 be legal. If U =

an • ... • a1 •nil , we say that da1e is the S1-supergoal of G ′, and G ′ is a S1-
subgoal of da1e, where G ′ := Σ(G). In case U = nil, we define G ′ to be its
own S1-supergoal.

Theorem 8.5 (supergoal) Let call G 〈Σ
◦

U
〉 be a legal event. Consider the

maximal composable sequence call G 〈Σ
◦

U
〉 −→Π

2k−1 exit G 〈Σ
U
〉. Then holds:

subst(Σ−Σ◦) |G′ is the kth and last computed answer substitution for G ′

relative to Π in Prolog, where G ′ := Σ◦(G) and the query of the Prolog
computation was the S1-supergoal of G ′.

In conclusion, we show an example of a modular derivation. Let exit A,B 〈Σ
U
〉

be a legal event. How could it have been derived? Luckily, converse transitions
are deterministic for legal events (uniqueness property), so we may unfold a
legal derivation from whichever endpoint it seems more promising. The index
Π will be omitted, since the following holds for any program.

exit A,B 〈Σ
U
〉

^ exit B 〈 Σ

2/A,B •U
〉, by (S1:conj:4)

⇐= call B 〈 Σ◦

2/A,B •U
〉, by Theorem 6.5.(2), with Σ � Σ◦

^ exit A 〈 Σ◦

1/A,B •U
〉, by (S1:conj:2)

⇐= call A 〈 Σ◦◦

1/A,B •U
〉, by Theorem 6.5.(2), with Σ◦ � Σ◦◦

^ call A,B 〈Σ
◦◦

U
〉, by (S1:conj:1)

Additionally, it can be seen that the whole derivation is a composable
sequence. So we obtain

Lemma 8.6 (conjunction) Let exit A,B 〈Σ
U
〉 be a legal event. Then Σ◦, Σ◦◦

exist with Σ � Σ◦ � Σ◦◦ such that exit A,B 〈Σ
U
〉 ⇐= call A,B 〈Σ

◦◦

U
〉, and also

exit B 〈 Σ

2/A,B •U
〉 ⇐= call B 〈 Σ◦

2/A,B •U
〉 and exit A 〈 Σ◦

1/A,B •U
〉 ⇐= call A 〈 Σ◦◦

1/A,B •U
〉.

In a similar way we can unfold a disjunction and an atomic goal, thus
simulating the vanilla meta-interpreter in S1:PP.

14

Kulaš

9 Related work

The earliest and still authoritative model of pure Prolog execution is SLD-
derivation [3]. There is no explicit disjunctive information in this model, so
backtracking is not formalized at all. This issue is addressed in another popu-
lar model, SLD-tree [3]. One drawback with both is lack of compositionality:
it is not possible to express e. g. an SLD-tree of a conjunction via the SLD-trees
of the conjuncts. Much further work was inspired by the traditional metaphor
of a box with four ports, known as the Byrd model [9], designed to represent
the evolution of a procedure call in Prolog. The Byrd model is a seminal work
in control flow, but it proved hard to formalize, and variable handling was
not tackled in the original work at all. Tobermann and Beckstein formalize in
[24] the graph traversal idea of Byrd, defining the central notion of execution
trace (of a given query with respect to a given program), as a path in a trace
graph. The ports are quite lucidly defined as hierarchical nodes of such a
graph. However, trace graphs are not very manageable. Cheng et al. [10] pro-
pose another graphical model called SLD-contour, a variant of SLD-tree, but
whose traversal should corresponds better to the execution trace. The idea
of a SLD-contour turned out to be extendable to conjunctive and disjunctive
goals, giving the presumably first compositional model of pure Prolog execu-
tion. In essence, they extend the notion of the Byrd’s box to general goal
formulas, thus preceding our own research. Another formal approach in the
spirit of the Byrd model is a continuation-based idea of Jahier, Ducassé and
Ridoux [16]. There is also an attempt to define Byrd’s box within our ear-
lier work [19], but it suffers essentially the same problem as the other trace
specifications, starting from the tracer break/1 of [9]: In these approaches,
traces of Prolog execution are generated, but there is no support for reason-
ing about the structure of the execution, so the trace generation would have
to be accompanied by trace analysis via some other device. There are vari-
ous other models of pure (or even full) Prolog execution. Comparable to our
work are stack-based approaches. Stärk gives in [23], as a side issue, a simple
operational semantics of pure logic programming. A state of execution is a
stack of frame stacks. The seminal paper of Jones and Mycroft [17] was the
first to present a stack-of-stacks model of execution, applicable to pure Prolog
with cut added. Stack-of-stacks idea reflects the usual memory management
of Prolog implementations, and it is in general not possible to abstract parts
of execution.

10 Summary

The motivation for this work was to be able to prove that a certain program
transformation used in debugging does not affect the original program in any
‘serious’ way. It soon became obvious that even to formulate such a property
is no easy task, and requires quite a powerful model of Prolog execution.

15

Kulaš

The model needed to be able to represent Prolog execution in sufficient
detail, and on the other hand, to support formal reasoning about it (this
implied some means of abstraction, like modularity). Apart from these two
vital requirements, the model should lend itself to efficient implementation, for
the sake of its own development and practical relevance (this implied purely
symbolic representation and small overhead).

As a result, a rather simple calculus S1:PP defining pure Prolog execution
has been developed. Due to compositionality with respect to conjunction and
disjunction, and aggregation of transitions into bigger steps, a kind of modu-
larity is achieved. Forward and backward computation of Prolog are treated
in a uniform manner, making the model suitable to represent backtracking.
It remains to be seen how far this idea can be stretched towards defining full
Standard Prolog. Also, the potential for specifying other kinds of reversible
computation seems worth investigating.

Acknowledgement

Many thanks for helpful comments upon an earlier draft of this paper are due
to C. Beierle and the anonymous referees.

References

[1] J. H. Andrews. Logic Programming: Operational Semantics and Proof Theory.
Cambridge University Press, 1992.

[2] J. H. Andrews. The witness properties and the semantics of the Prolog cut.
Theory and Practice of Logic Programming, 3(1):1–59, 2003.

[3] K. R. Apt and M. H. van Emden. Contributions to the theory of logic
programming. J. of the ACM, 29:841–862, 1982.

[4] B. Arbab and D. M. Berry. Operational and denotational semantics of Prolog.
J. of Logic Programming, 4(4):309–329, 1987.

[5] M. Baudinet. Proving termination properties of Prolog programs: A semantic
approach. J. of Logic Programming, 14:1–29, 1992.

[6] M. Billaud. Simple operational and denotational semantics for Prolog with cut.
Theoretical Computer Science, 71(2):193–208, 1990.

[7] M. Billaud. Axiomatizations of backtracking. In Proc. of the STACS, pages
71–82, 1992.

[8] E. Börger and D. Rosenzweig. A mathematical definition of full Prolog. Science
of Computer Programming, 24(3):249–286, 1995.

[9] Lawrence Byrd. Understanding the control flow of Prolog programs. In S. A.
Tärnlund, editor, Proc. of the 1980 Logic Programming Workshop, pages 127–
138, Debrecen, Hungary, 1980. Also as D. A. I. Research Paper No. 151.

16

Kulaš

[10] M. H. M. Cheng, M. H. van Emden, R. N. Horspool, and M. Levy.
Compositional operational semantics for Prolog programs. J. New Generation
Computing,, 10(3):315–328, 1992.

[11] E. P. de Vink. Comparative semantics for Prolog with cut. Science of Computer
Programming, 13(1):237–264, 1989.

[12] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard (Reference
Manual). Springer-Verlag, 1996.

[13] P. Deransart and G. Ferrand. An operational formal definition of Prolog: A
specification method an its application. J. New Generation Computing, 10:121–
171, 1992.

[14] E. Eder. Properties of substitutions and unifications. J. Symbolic Computation,
1:31–46, 1985.

[15] B. Elbl. A declarative semantics for depth-first logic programs. J. of Logic
Programming, 41:27–66, 1999.

[16] E. Jahier, M. Ducassé, and O. Ridoux. Specifying Byrd’s box model with a
continuation semantics. In Proc. of the WLPE’99, Las Cruces, NM, volume 30
of ENTCS. Elsevier, 2000. http://www.elsevier.com/locate/entcs/.

[17] N. D. Jones and A. Mycroft. Stepwise development of operational and
denotational semantics for Prolog. In Proc. of the ISLP’84, pages 281–288,
Atlantic City, 1984.

[18] M. Kulaš. Pure Prolog execution in 21 rules. In Proc. of the 5th Workshop
on Rule-Based Constraint Reasoning and Programming (RCoRP’03), Kinsale,
September 2003.

[19] M. Kulaš and C. Beierle. Defining Standard Prolog in rewriting logic. In
K. Futatsugi, editor, Proc. of WRLA 2000, Kanazawa, volume 36 of ENTCS.
Elsevier, 2001. http://www.elsevier.com/locate/entcs.

[20] T. Lindgren. A continuation-passing style for Prolog. In Proc. of the 11th Int.
Symposium on Logic Programming (ILPS’94), pages 603–617, Ithaca, NY, 1994.

[21] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[22] T. Nicholson and N. Foo. A denotational semantics for Prolog. ACM Trans.
on Prog. Lang. and Systems, 11(4):650–665, 1989.

[23] Robert F. Stärk. The theoretical foundations of LPTP (a logic program theorem
prover). J. of Logic Programming, 36(3):241–269, 1998. Source distribution
http://www.inf.ethz.ch/˜staerk/lptp.html.

[24] G. Tobermann and C. Beckstein. What’s in a trace: The box model revisited.
In Proc. of the 1st Int. Workshop on Automated and Algorithmic Debugging
(AADEBUG’93), Linköping, volume 749 of LNCS. Springer-Verlag, 1993.

17

Kulaš

A An example proof

As an illustration of S1:PP, here is a proof of the pendant lemma, and its application
in proving uniqueness of legal transitions. Although lengthy, the proof of Lemma 4.1
is rather schematic.

Lemma 4.1 (pendant) If call G 〈 nil

nil
〉_∗ fail H 〈 Θ

W
〉, then

call G 〈nil

nil
〉_

∗ call H 〈 Θ
W
〉_

∗ fail H 〈 Θ
W
〉. (5)

If call G 〈nil

nil
〉_∗ redo H 〈 Θ

W
〉, then

call G 〈nil

nil
〉_

∗ exit H 〈 Θ
W
〉_∗ redo H 〈 Θ

W
〉. (6)

Proof. We shall use induction on the length n of derivation to prove the two parts
of the lemma simultaneously. The inductive assumption for each of the parts shall
be denoted as Ind(fail) and Ind(redo) respectively. First let us construct base
cases. With Lemma 4.1(5) we are lucky, since derivations of length n = 1 can be
failed. There are three such cases, and they directly satisfy Lemma 4.1(5):

call fail 〈nil

nil
〉 _ fail fail 〈nil

nil
〉, by (S1:fail) (7)

call T1 =T2 〈
nil

nil
〉 _ fail T1 =T2 〈

nil

nil
〉, by (S1:unif:1), if no mgu (8)

call GA 〈
nil

nil
〉 _ fail GA 〈

nil

nil
〉, by (S1:atom:1), if no resolvent (9)

With Lemma 4.1(6) we have a harder time since no derivation of length n ≤ 2
can end up in a redo, so with the number of derivations getting out of hand, we
turn to reconstructing a minimal legal derivation of a redo. A legal redo event
stems from a redo or from a fail, so for a minimal derivation it had to be a fail:
fail B 〈 Σ

2/A,B •V
〉 _ redo A 〈 Σ

1/A,B •V
〉. Now we are looking for a minimal deriva-

tion of this fail event, which may not include any redo events. The predecessor may
be a fail (pushing the A-stack) or a call (not affecting the stacks). In case of a call,
we get exit A 〈 Σ

1/A,B •V
〉 _ call B 〈 Σ

2/A,B •V
〉 _ fail B 〈 Σ

2/A,B •V
〉. In this manner

we eventually reconstruct the minimal derivations for redo:

call A,B 〈nil

nil
〉 _ call A 〈 nil

1/A,B • nil
〉 _ exit A 〈 nil

1/A,B • nil
〉 _ call B 〈 nil

2/A,B • nil
〉 _

_ fail B 〈 nil

2/A,B • nil
〉 _ redo A 〈 nil

1/A,B • nil
〉

and they satisfy Lemma 4.1(6).

Assume Lemma 4.1 holds for derivations of length 1 ≤ n < k and consider a
derivation of length k. We shall use the following simple observation: If call G 〈 nil

nil
〉_

∗

Γ A 〈 Θ
W
〉, and W 6= nil or Γ 6= call , then also

call G 〈nil

nil
〉_

+ Γ A 〈 Θ
W
〉 (10)

First we discuss the cases for a legal fail event. There are eight possibilities for the
last step of its derivation: (S1:fail), (S1:unif:1), (S1:atom:1), (S1:conj:3), (S1:disj:3),
(S1:atom:3), (S1:true:2) and (S1:unif:2). The first three cases are again directly

18

Kulaš

satisfied. Case (S1:conj:3):

call G 〈nil

nil
〉_+ fail A 〈 Θ

1/A,B •W
〉 _ fail A,B 〈 Θ

W
〉, the last step (11)

call G 〈nil

nil
〉_∗ call A 〈 Θ

1/A,B •W
〉_

∗ fail A 〈 Θ

1/A,B •W
〉, by Ind(fail) (12)

call G 〈nil

nil
〉_∗ call A,B 〈 Θ

W
〉 _ call A 〈 Θ

1/A,B •W
〉, predecessor & (10) (13)

call G 〈nil

nil
〉_∗ call A,B 〈 Θ

W
〉_

∗ fail A,B 〈 Θ
W
〉, by (11)-(13), q.e.d.

Case (S1:atom:3) is similar to the previous. Case (S1:disj:3) can be handled by
double use of Ind(fail):

call G 〈nil

nil
〉_+ fail B 〈 Θ

2/A;B •W
〉 _ fail A;B 〈 Θ

W
〉, the last step (14)

call G 〈nil

nil
〉_∗ call B 〈 Θ

2/A;B •W
〉_

∗ fail B 〈 Θ

2/A;B •W
〉, by Ind(fail) (15)

call G 〈nil

nil
〉_∗ fail A 〈 Θ

1/A;B •W
〉 _ call B 〈 Θ

2/A;B •W
〉, predecessor & (10) (16)

call G 〈nil

nil
〉_∗ call A 〈 Θ

1/A;B •W
〉_

∗ fail A 〈 Θ

1/A;B •W
〉, by Ind(fail) (17)

call G 〈nil

nil
〉_∗ call A;B 〈 Θ

W
〉 _ call A 〈 Θ

1/A;B •W
〉, predecessor & (10) (18)

call G 〈nil

nil
〉_∗ call A;B 〈 Θ

W
〉_

∗ fail A;B 〈 Θ
W
〉, by (14)-(18), q.e.d.

For the last two cases (redo-fail transitions) we shall use Ind(redo). Case (S1:true:2):

call G 〈nil

nil
〉_

+ redo true 〈 Θ
W
〉 _ fail true 〈 Θ

W
〉, the last step (19)

call G 〈nil

nil
〉_

∗ exit true 〈 Θ
W
〉_

∗ redo true 〈 Θ
W
〉, by Ind(redo) (20)

call G 〈nil

nil
〉_

∗ call true 〈 Θ
W
〉 _ exit true 〈 Θ

W
〉, predecessor & (10) (21)

call G 〈nil

nil
〉_

∗ call true 〈 Θ
W
〉_

∗ fail true 〈 Θ
W
〉, by (19)-(21), q.e.d.

The last case (S1:unif:2) can be handled in the same manner.

It remains to discuss the cases for a legal redo event. There are four possi-
bilities for the last step of its derivation: (S1:conj:5), (S1:conj:6), (S1:disj:5) and
(S1:atom:4). Here a symmetry between ‘entering redo’ and ‘leaving exit’ takes over.
Namely, if we take the rules for entering redo, turn the arrow around and replace
exit for redo and call for fail, then we obtain the rules for leaving exit. Due to
determinacy of such transitions, each ‘entering redo’ can be simulated with an ap-
propriate ‘leaving exit’, which reconstructs the stacks in exactly the same manner.
The case (S1:conj:5) is special because it uses Ind(fail):

call G 〈nil

nil
〉_+ fail B 〈 Θ

2/A,B •W
〉 _ redo A 〈 Θ

1/A,B •W
〉, the last step (22)

call G 〈nil

nil
〉_∗ call B 〈 Θ

2/A,B •W
〉_

∗ fail B 〈 Θ

2/A,B •W
〉, by Ind(fail) (23)

call G 〈nil

nil
〉_∗ exit A 〈 Θ

1/A,B •W
〉 _ call B 〈 Θ

2/A,B •W
〉, predecessor & (10) (24)

call G 〈nil

nil
〉_∗ exit A 〈 Θ

1/A,B •W
〉_

∗ redo A 〈 Θ

1/A,B •W
〉, by (22)-(24), q.e.d.

Case (S1:conj:6):

call G 〈nil

nil
〉_

+ redo A,B 〈 Θ
W
〉 _ redo B 〈 Θ

2/A,B •W
〉 (25)

call G 〈nil

nil
〉_

∗ exit A,B 〈 Θ
W
〉_

∗ redo A,B 〈 Θ
W
〉, by Ind(redo) (26)

call G 〈nil

nil
〉_

∗ exit B 〈 Θ

2/A,B •W
〉 _ exit A,B 〈 Θ

W
〉, predecessor & (10) (27)

call G 〈nil

nil
〉_

∗ exit B 〈 Θ

2/A,B •W
〉 _ redo B 〈 Θ

2/A,B •W
〉, by (25)-(27), q.e.d.

19

Kulaš

The last two cases (S1:disj:5) and (S1:atom:4) can be handled in the same manner.
This concludes the proof of Lemma 4.1. 2

Theorem 4.2 (legal transitions are unique) If E is a legal event, then E can
have only one legal predecessor, and only one successor. In case E is non-initial,
there is exactly one legal predecessor. In case E is non-final, there is exactly one
successor.

Proof. The successor part follows from the functionality of _ . Looking at the
rules, we note that only two kinds of events may have more than one predecessor:
fail GA 〈

Σ

U
〉 and fail T1 =T2 〈

Σ

U
〉. Let fail T1 =T2 〈

Σ

U
〉 be a legal event. Then it has

at least one derivation from an initial event, say call G 〈 nil

nil
〉. Its predecessor in this

derivation may have been call T1=T2 〈
Σ

U
〉, on the condition that Σ(T1) and Σ(T2)

have no mgu, or it may have been redo T1=T2 〈
σ •Σ

U
〉. In the latter case we obtain:

call G 〈nil

nil
〉_∗ redo T1=T2 〈

σ •Σ

U
〉 _ fail T1 =T2 〈

Σ

U
〉, assumption (28)

call G 〈nil

nil
〉_∗ exit T1=T2 〈

σ •Σ

U
〉_

∗ redo T1=T2 〈
σ •Σ

U
〉, Lemma 4.1(6) (29)

call G 〈nil

nil
〉_∗ call T1 =T2 〈

Σ

U
〉 _ exit T1 =T2 〈

σ •Σ

U
〉, by (S1:unif:1) (30)

Let us comment a bit on (29)-(30). From (29) we know that exit T1 =T2 〈
σ •Σ

U
〉

is a legal event, i. e. it is reachable from an initial event. But there is only one
possibility to enter exit T1=T2 〈

σ •Σ

U
〉, namely via (S1:unif:1), under the condition

mgu(Σ(T1), Σ(T2)) = σ. To sum up: If redo T1 =T2 〈
σ •Σ

U
〉 is a legal predecessor

of fail T1 =T2 〈
Σ

U
〉, then mgu(Σ(T1), Σ(T2)) = σ.

So depending on the existence of this particular mgu, either redo T1 =T2 〈
σ •Σ

U
〉

or call T1 =T2 〈
Σ

U
〉 is a legal predecessor of fail T1 =T2 〈

Σ

U
〉, but never both.

By a similar argument, this time using Lemma 4.1(5), we can prove that fail GA 〈
Σ

U
〉

can have only one legal predecessor. 2

20

	Motivation, aims and results
	Preliminaries
	The semantics S1:PP
	Remarks on the calculus
	Auxiliary notation
	Language of events
	Operational semantics S1:PP of pure Prolog

	Uniqueness claim
	Simple derivation and subevent
	Composed derivation
	Independence claim and modularity
	Modeling pure Prolog computations
	Related work
	Summary
	Acknowledgement
	References
	An example proof

