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Abstract

In this paper, we show how to obtain causal semantics
distinguishing ”earlier than” and ”not later than” causal-
ity between events from algebraic semantics of Petri nets.

Janicki and Koutny introduced so called stratified order
structures (so-structures) to describe such causal seman-
tics. To obtain algebraic semantics, we redefine our own al-
gebraic approach generating rewrite terms via partial oper-
ations of synchronous composition, concurrent composition
and sequential composition. These terms are used to pro-
duce so-structures which define causal behavior consistent
with the (operational) step semantics. For concrete Petri net
classes with causal semantics derived from processes mini-
mal so-structures obtained from rewrite terms coincide with
minimal so-structures given by processes. This is demon-
strated exemplarily for elementary nets with inhibitor arcs.

1. Introduction

Since the basic developments of Petri nets more and
more differentPetri net classesfor various applications
have been proposed. Causal semantics of such special Petri
net classes are often constructed in a complicated ad-hoc
way, defining process nets which generate causal structures
(see e.g. [14, 6, 11, 12]). Naturally there are also several
approaches to unify the different classes in order to be able
to define non-sequential semantics in a systematic way us-
ing algebraic descriptions [19, 1, 3, 5, 17, 15, 16] (see [18]
for an overview). Most of these approaches are based on the
paper [13], where non-sequential runs of nets are described
by equivalence classes of rewrite process terms. These pro-
cess terms are generated from elementary terms (transitions
and markings) by concurrent and sequential composition.
Unfortunately, none of these works provides a method how
to obtain causal semantics from the algebraic semantics.

This paper extends theunifying approachof algebraic

Petri netsas proposed in Part II of [7]. With the approach
from [7] non-sequential semanticscan be derived on an ab-
stract level for Petri nets with restricted occurrence rule(en-
coded by partiality of concurrent composition). In addition
to other works, and in particular to [5], in [7] it is shown how
to obtain causal semantics based on ”earlier than” causal-
ity between events (formally given as labelled partial orders
(LPOs)) from process terms. It is shown in [7] for many
concrete net classes that the minimal LPOs obtained from
process terms coincide with minimal LPOs given by ac-
knowledged classical processes.
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Figure 1. An elementary net with inhibitor
arcs (p3, f), (p6, h) and (p7, g), a process of the
net and the associated run.

As explained in [6], ”earlier than” causality expressed by
LPOs is not enough to describe causal semantics for some
Petri net classes, as for example the a-priori semantics of
elementary nets with inhibitor arcs.1 In Figure 1 this phe-
nomenon is depicted: In the a-priori semantics the testing
for absence of tokens (through inhibitor arcs) precedes the
execution of a transition. Thusf cannot occur later than
e, because after the occurrence ofe the placep3 is marked
and consequently the occurrence off is prohibited by the
inhibitor arc(p3, f). Thereforee andf cannot occur con-
currently or sequentially in ordere → f . But they still can

1There are also other semantics for elementary nets with inhibitor arcs
such as the a-posteriori semantics which are less problem-prone [6].



occur synchronously (because of the occurrence rule ”test-
ing before execution”) or sequentially in orderf → e -
this is exactly the behavior described by ”f not later than
e” (see Section 2 for details on the occurrence rule). Af-
ter the respective firing off ande we reach the marking
{p3, p4, p5}. Now with the same arguments as above the
transitionsg andh can even only occur synchronously but
not sequentially in any order. The described causal behav-
ior (between events) of the net is illustrated on the right side
of Figure 1 (”run”). The drawn through arcs represent a
(common) ”earlier than”-relation, i.e. the events can only
occur in the expressed order but not synchronously or in-
versely, and dotted arcs depict the ”not later than” relation
explained above. The net in the middle of Figure 1 shows
a process corresponding to the run on the right (details on
processes and runs are explained in the next section). Alto-
gether there exist net classes including the by practitioners
admired inhibitor nets where synchronous and concurrent
behaviour has to be distinguished. In [6] causal semantics
based on stratified order structures (so-structures, see Sec-
tion 2) like the run in Figure 1 consisting of a combination
of an ”earlier than” and a ”not later than” relation between
events were proposed to cover such cases.

In order to describe such situations on the algebraic level,
in [9] we extended the algebraic Petri nets from [5] by a
synchronous composition operation which allows to distin-
guish between concurrent and synchronous occurrences of
events. Therewith a great variety of additional concrete net
classes can be covered compared to [7]. Unfortunately, pa-
per [9] does not provide a general method how to construct
so-structure based causal semantics from algebraic seman-
tics. Therefore in [9] a correspondence of the algebraic se-
mantics to non-sequential a-priori semantics of elementary
nets with inhibitor arcs was proven in a complicated ad hoc
way not comparing causal semantics.

As the main result of this paper we fill this gap. Namely,
we show how to obtain causal semantics based on so-
structures from process terms and derive exemplarily their
correspondence to causal semantics produced from pro-
cesses for elementary nets with inhibitor arcs equipped with
the a-priori semantics.

Thereto we generalize our own algebraic approach from
[9] generating process terms via partial operations of syn-
chronous composition, concurrent composition and sequen-
tial composition (Section 3). These terms are used to pro-
duce so calledenabledso-structures defining causal se-
mantics of algebraic nets (Section 4). These causal se-
mantics are consistent with the step semantics of algebraic
nets in the sense that an so-structure is enabled iff every
of its step sequentializations is an enabled step sequence.
Given a Petri net of a concrete Petri net class, we define the
corresponding algebraic net to have the same step seman-
tics (Section 5). Then for concrete Petri net classes with

causal semantics derived from processes minimal enabled
so-structures obtained from process terms of a correspond-
ing algebraic net coincide with minimal so-structures given
by processes. Exemplarily we will show this result in a sys-
tematic way (which can obviously be adapted to further net
classes) for elementary nets with inhibitor arcs (Section 6)2,
thus generalizing the main result of [9].

Because of lack of space we omitted all proofs in this
published version of our paper; these can be found in a de-
tailed technical report [8].

2. Preliminaries

In this section we recall the basic definitions ofstrat-
ified order structures, elementary nets with inhibitor arcs
(equipped with the a-priori semantics)andpartial algebras.
Given a setX we will denote the set of all subsets ofX by
2X , the set of all multisets overX by N

X , the identity re-
lation overX by idX , the reflexive, transitive closure of
a binary relationR overX by R∗ and the composition of
two binary relationsR,R′ overX by R ◦ R′. Two nodes
a, b ∈ V are calledindependentw.r.t. a binary relation→
overV if a 6→ b andb 6→ a. We denote the set of all pairs
of nodes independent w.r.t.→ by co → ⊆ V × V . A par-
tial order is a pair po = (V,<), whereV is a finite set of
nodes and< is an irreflexive and transitive binary relation
on V . If co < = idV then (V,<) is calledtotal. Given
two partial orderspo 1 = (V,<1) and po 2 = (V,<2),
we say thatpo 2 is a sequentialization(or extension) of
po 1 if <1⊆<2. A relational structure(rel-structure) is a
triple S = (X,≺,<), whereX is a set (ofevents), and
≺⊆ X × X and<⊆ X × X are binary relations onX .
A rel-structureS′ = (X,≺′,<′) is said to be anextension
of another rel-structureS = (X,≺,<), writtenS ⊆ S′, if
≺⊆≺′ and<⊆<

′.

Definition 1 (Stratified order structure [6]). A rel-structure
S = (X,≺,<) is called stratified order structure(so-
structure) if the following conditions are satisfied for all
x, y, z ∈ X :
(C1)x 6< x
(C2)x ≺ y =⇒ x < y
(C3)x < y < z ∧ x 6= z =⇒ x < z
(C4)x < y ≺ z ∨ x ≺ y < z =⇒ x ≺ z

In figures≺ is graphically expressed by drawn through
arcs and< by dotted arcs. According to (C2) a dotted arc is
omitted if there is already a drawn through arc. Moreover,
we omit arcs which can be deduced by (C3) and (C4). It
is shown in [6] that(X,≺) is a partial order. Therefore so-
structures are a generalization of partial orders which turned

2This net class has the advantage that it is already extensively analysed
in the concept of ad-hoc process definitions.



out to be adequate to model the causal relations between
events of complex systems regarding sequential, concurrent
and synchronous behavior. In this context≺ represents the
ordinary ”earlier than” relation (as in partial order based
systems) while< models a ”not later than” relation (ex-
amples are depicted in Figure 1 and 2). The♦-closureof
a rel-structureS = (X,≺,<) is given byS♦ = (X,≺S♦

,<S♦) = (X, (≺ ∪ <)∗◦ ≺ ◦(≺ ∪ <)∗, (≺ ∪ <)∗ \ idX).
A rel-structureS is called♦-acyclic if ≺S♦ is irreflexive.
The♦-closureS♦ of a rel-structureS is an so-structure if
and only if S is ♦-acyclic [6] (observe that the notion of
the♦-closure in the context of so-structures corresponds to
the concept of the transitive closure in the less general situa-
tion of partial orders). Finally, we introduce two subclasses
of so-structures which turn out to be associated to (specific
subclasses of) process terms of algebraic Petri nets. Let
S = (X,≺,<) be an so-structure, thenS is calledsyn-
chronous closedif co≺ = co < ∪ (< \ ≺) (e.g. the so-
structure in Figure 1 is not synchronous closed) andS is
called total linear if co≺ = (< \ ≺) ∪ idX (for exam-
ples see Figure 2). The set of all total linear extensions (or
linearizations) ofS is denoted bystratsos(S). Now we
will summarize some results about these two classes of so-
structures. The following result proven in [11] shows that
every so-structure can be reconstructed from its lineariza-
tions (see Figure 2 for an example):

Proposition 2. LetS be an so-structure. Then

S = (X,
⋂

(X,≺,<)∈stratsos(S)

≺,
⋂
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((e⊕f)||{p5});
((g⊕h)||{p3})

((f||{p1,p5});(e||{p4,p5}));
((g⊕h)||{p3})

(f||{p1,p5});
(e⊕g⊕h)

((f||{p1,p5});((g⊕h)||{p1});
(e||{p6,p7}))

Figure 2. All linearizations of the so-structure
from Figure 1 and process terms of the net
from Figure 1, to which the respective so-
structures above are associated.

Each total linear so-structure is synchronous closed be-
cause according to (C2)co≺ = (< \ ≺) ∪ idX implies
co < = idX . Using the results from [6] about augment-
ing so-structures one can conclude that every so-structureis
extendable to a total linear so-structure. The crucial prop-
erty of synchronous closed so-structures is the fact that they
exactly describe the causal relationships of events given by
process terms (see Section 4).

We will often uselabelled so-structuresin the following.
These are so-structuresS = (X,≺,<) together with aset
of labelsM and alabelling functionl : X →M .

Next we present the example net class considered in this
paper. Anelementary netis a netN = (P, T, F ), whereP
is a finite set of places,T is a finite set of transitions and
F ⊆ (P ×T )∪ (T ×P ) is the flow relation. Forx ∈ P ∪T
we abbreviate•x = {y ∈ P ∪ T | (y, x) ∈ F} (pre-set
of x) andx• = {y ∈ P ∪ T | (x, y) ∈ F} (post-set of
x). This notation can be extended toX ⊆ P or X ⊆ T
by •X =

⋃
x∈X

•x andX• =
⋃

x∈X x• . Eachm ⊆ P
is called amarking. A transitiont ∈ T is enabled to occur
in a markingm of N iff •t ⊆ m ∧ (m \ •t) ∩ t• = ∅. In
this case, its occurrence leads to the markingm′ = (m \
•t) ∪ t• . Two transitionst1, t2 ∈ T, t1 6= t2 arein conflict
iff ( •t1 ∪ t•1 ) ∩ ( •t2 ∪ t•2 ) 6= ∅.

An elementary net with inhibitor arcsis a quadruple
ENI = (P, T, F, C−), where(P, T, F ) is an elementary
net andC− ⊆ P × T is thenegative context relationsatis-
fying (F ∪ F−1) ∩ C− = ∅. In the example net of Figure
1 the negative context relation is depicted through so called
inhibitor arcs with circles as arrowheads. For a transitiont,
−t = {p ∈ P | (p, t) ∈ C−} is thenegative contextof t.
A transitiont is enabled to occurin a markingm iff it is
enabled to occur in the underlying elementary net(P, T, F )
and −t ∩m = ∅. The occurrence of an enabled transitiont
leads to the markingm′ = (m \ •t) ∪ t• . Two transitions
t1, t2 ∈ T, t1 6= t2, are insynchronous conflict(in the a-
priori semantics) if they are in conflict in the underlying ele-
mentary net or if( •ti)∩(−tj) 6= ∅ (for i, j ∈ 1, 2, i 6= j). A
set of transitionss ⊆ T , calledsynchronous step, is enabled
to occurin a markingm of N iff every t ∈ s is enabled to
occur inm and no two transitionst1, t2 ∈ s, t1 6= t2, are
in conflict. In this case, its occurrence leads to the mark-
ingm′ = (m \ •s) ∪ s• and we writem

s
−→ m′ (see the

Introduction for an example on the occurrence rule).
Now we introduce the ”classical” process semantics for

ENI as presented in [6]. Remember that since the absence
of a token in a place cannot be directly represented in an
occurrence net, every inhibitor arc is replaced by a read arc
(depicted with dots as arrowheads) to a complement place.
It is shown in [14] thatENI can be transformed viacom-
plementationinto a contact-free elementary net with pos-
itive context, i.e. with read arcs, exhibiting the same be-
havior. The set of complement places3 will be denoted by
P ′ and the complementation-bijection fromP toP ′ will be
denoted byc. The processes ofENI will be defined en-
dowing processes of ”ordinary” elementary nets (defined as
usual by occurrence nets using complementation, see e.g.
[9]) with read arcs (also called activator arcs in [6, 11, 12]).

3The concept of complement places can often be simplified (omitting
complement places or using existing places as complement places); such
principles are applied in graphical representations.



Definition 3 (Activator process). A labelled activator occur-
rence net(ao-net) is a five-tupleAON = (B,E,R,Act, l)
satisfying:(B,E,R) is an occurrence net,(B,E,R,Act)
is an elementary net with positive context, and the relational
structure

S(AON) = (E,≺,<)

= (E, (R ◦R)|E×E ∪ (R ◦Act), (Act−1 ◦R) \ idE)

is ♦-acyclic. Anao-netAON is an activator processof
ENI = (P, T, F, C−) w.r.t. m iff:

• ON = (B,E,R, l) is a process of the elementary net
N = (P, T, F ) w.r.t. m, and

• ∀b ∈ B, ∀e ∈ E : (b, e) ∈ Act ⇐⇒
(c−1(l(b)), l(e)) ∈ C−.

In this case the labelled so-structure(S(AON)♦, l) is
called a run ofENI w.r.t. m. Denote byRun(ENI,m)
the set of all runs ofENI w.r.t.m.

e f e f e f

(a) (b) (c)

Figure 3. The nets in (a) and (b) generate the
order e ≺ f , the net in (c) the order e < f .

An example of an activator process and an associated run
is depicted in Figure 1. The construction rule ofS(AON)
is illustrated in Figure 3 (for details see [6, 11, 12]).

The central idea to model restricted occurrence rules as
in the case of inhibitor nets on the algebraic level is the
utilisation of partial algebras in the context of partial com-
position rules for process terms. Apartial algebra is a
set calledcarrier together with a set of (partial) operations
(with possibly different arity) on the carrier. A partial alge-
bra with one binary operation is apartial groupoid, i.e. an
ordered tupleI = (I, dom∔,∔), whereI is thecarrier of
I, dom∔ ⊆ I×I is thedomainof ∔, and∔ : dom∔ → I
is thepartial operationof I. I is called apartial closed
commutative monoidif the following conditions are satis-
fied: If a ∔ b is defined then alsob ∔ a is defined with
a∔b = b∔a (closed commutativity), if (a∔b)∔c is defined
then alsoa∔(b∔c) is defined with(a∔b)∔c = a∔(b∔c)
(closed associativity) and there is a (unique)neutral ele-
menti ∈ I such thata ∔ i is defined for alla ∈ I with
a∔i = a (existence of a (total) neutral element). We shortly
recall the concept of closed congruences on partial algebras.
Given a partial algebra with carrierX , an equivalence rela-
tion ∼ onX is calledcongruenceif for eachn-ary opera-
tion op onX with domaindomop: a1 ∼ b1, . . . , an ∼ bn,
(a1, . . . , an) ∈ domop and(b1, . . . , bn) ∈ domop implies
op(a1, . . . , an) ∼ op(b1, . . . , bn). A congruence∼ is called

closedif for eachn-ary operationop on X with domain
domop: a1 ∼ b1, . . . , an ∼ bn and(a1, . . . , an) ∈ domop

implies (b1, . . . , bn) ∈ domop. Thus, a congruence is an
equivalence which preserves all operations of a partial alge-
bra. A closed congruence moreover preserves the domains
of operations. Therefore the operations of a partial algebra
X with carrierX can be carried over to the set of equiv-
alence classes of a closed congruence∼. For this, denote
[x]∼ = {y ∈ X | x ∼ y} andX/∼ = {[x]∼ | x ∈ X},
domop/∼

= {([a1]∼, . . . , [an]∼) | (a1, . . . , an) ∈ domop}
andop/∼([a1]∼, . . . , [an]∼) = [op(a1, . . . , an)]∼ for each
n-ary operationop : domop → X of X (this is well de-
fined for closed congruences). This defines a partial alge-
braX/∼ with carrierX/∼ and operationsop/∼. X/∼ is
called factor algebraof X w.r.t. ∼. A possibility to gen-
erate (closed) congruences on partial algebras is through so
called(closed) homomorphisms[2]. The most important re-
sult of [2] for this paper is that there always exists a unique
greatest closed congruence on a given partial algebra.

3. Algebraic (M, I)-nets

A general algebraic Petri netis a quadrupleA =
(M,T, pre : T → M,post : T → M) (similar to [13]),
which is a graph with vertices representingmarkingsand
edges labelled bytransitions. Formally, the set of markings
is given by a (total) commutative monoidM = (M,+)
with neutral element0. T denotes the set of transitions.
The two mappingspre : T → M,post : T → M assign
pre-setsand post-setsto each transition. In order to ob-
tain process term semantics, firstly transitions can be syn-
chronously composed tosynchronous step terms, and sec-
ondly markings and synchronous step terms can be sequen-
tially and concurrently composed toprocess terms. As
usual, each process termα has assigned aninitial mark-
ing pre(α) ∈M and afinal markingpost(α) ∈M , written
α : pre(α) → post(α). Two process terms can bese-
quentially composed, if the final marking of the first process
term equals the initial marking of the second process term.
Moreover, each marking and each transition has assigned an
information element used for determining the synchronous
composability of transitions and the concurrent composabil-
ity of process terms. Thus, a set of information elements
I is equipped with partial operations‖̇ : dom‖̇ → I and

⊕̇ : dom⊕̇ → I, dom‖̇, dom⊕̇ ⊆ I × I, for the concur-
rent and synchronous composition of information elements,
resulting in a partial algebraI = (I, dom‖̇, ‖̇, dom⊕̇, ⊕̇).

The groupoids(I, dom‖̇, ‖̇) and(I, dom⊕̇, ⊕̇) are assumed
to be partial closed commutative monoids with neutral ele-
mentsi0 andj0. SuchI is calledsc-partial algebra.

Definition 4 (Algebraic (M, I)-net). Let I =

(I, dom‖̇, ‖̇, dom⊕̇, ⊕̇) be an sc-partial algebra,



A = (M,T, pre : T → M,post : T → M) be a
general algebraic Petri net, andinf : M ∪ T → I be a
mapping. Then(A, inf ) is calledalgebraic(M, I)-net.

For the example (Figure 1) of elementary nets with in-
hibitor arcs the crucial mappingspre, post and inf for a
corresponding algebraic(M, I)-net (see Section 5 for the
technical definition of corresponding) will be defined as fol-
lows: pre(t) = •t, post(t) = t•, inf (t) = (•t, t•, −t)
for t ∈ T and inf (m) = (m,m, ∅) for m ⊆ P (see
Section 6 for details), i.e. M = (2P ,∪), T = T
and I = 2P × 2P × 2P . The first two components
of i ∈ I represent the write part -pre and post - and
the last component stores the read information - the nega-
tive context which is not in the write part. Consequently
for the example net from Figure 1 we haveinf(e) =
({p1}, {p3}, ∅), inf(f) = ({p2}, {p4}, {p3}), inf(g) =
({p5}, {p6}, {p7}), inf(h) = ({p4}, {p7}, {p6}). Note
that in this example it is now important which informa-
tion triples can be composed synchronously respectively
concurrently and which information triples result from
such a composition. Thereto completely coincident with
the occurrence rule of elementary nets with inhibitor arcs
equipped with the a-priori semantics, two information ele-
mentsi1, i2 ∈ I can be composed

– concurrently iff the write part ofi1 is disjoint from the
write and the read part ofi2 and vice versa,

– synchronously iff the write parts ofi1 andi2 are disjoint
and thepre-component (first component) ofi1 is disjoint
from the read part ofi2 and vice versa.

Two transitions can besynchronously composed, if their as-
sociated information elements can be synchronously com-
posed. Their synchronous composition yields a syn-
chronous step term, which has associated as information
element the synchronous composition of their information
elements. Accordingly in our example the only pair of tran-
sitions that cannot be composed synchronously isf with h.
Note thate andf as well asg andh can be composed syn-
chronously withinf(e⊕ f) = ({p1, p2}, {p3, p4}, ∅) and
inf(g⊕ h) = ({p4, p5}, {p6, p7}, ∅). The illustrated prin-
ciple of synchronous composition can be iterated. In this
way alsoe⊕ f ⊕ g ande⊕ g⊕h are defined synchronous
step terms. Thus, in general the synchronous step terms of
an algebraic(M, I)-net are defined inductively as follows.

Definition 5 (Synchronous step terms). The elementary
synchronous step termsof (A, inf ) are its transitions
t ∈ T . If s and s′ are synchronous step terms with
(inf (s), inf (s′)) ∈ dom⊕̇, then their synchronous com-
position yields thesynchronous step terms⊕ s′ with ini-
tial markingpre(s⊕ s′) = pre(s) + pre(s′), final marking
post(s⊕ s′) = post(s) + post(s′) and assignedinforma-
tion elementinf(s⊕ s′) = inf(s) ⊕̇ inf(s′). Denote by
Step(A,inf ) the set of all synchronous step terms.

Eachs ∈ Step(A,inf ) has the forms = v1 ⊕ . . .⊕ vn for
transitionsv1, . . . , vn ∈ T . We define|s| ∈ N

T by |s|(t) =
|{i ∈ {1, . . . , n} | t = vi}|. Next we define the process
term semantics of algebraic(M, I)-nets through sequential
and concurrent composition of markings and synchronous
step terms. Each process term will have assigned a set of
information elements (information set). For markings and
synchronous step terms, the associated information set will
contain only the information element assigned by the map-
ping inf . The sequential composition of two process terms
has assigned the union of their respective information sets.
The concurrent composition of two process terms has as-
signed the set of concurrent compositions of the informa-
tion elements in their respective information sets. Note that
the concurrent composition‖ is partial, since for concurrent
composability the information sets of the two process terms
have to be independent4. Consequently a possible process
term in the example is((e⊕ f) ‖{p5}); ((g⊕h) ‖{p3}) (il-
lustrated in Figure 4). For the technical definitions the sc-
partial algebraI = (I, dom‖̇, ‖̇, dom⊕̇, ⊕̇) is lifted to the

partial algebraX = (2I , dom{‖̇}, {‖̇}, 2
I × 2I ,∪) defined

by dom{‖̇} = {(X,Y ) ∈ 2I × 2I | X × Y ⊆ dom‖̇} and

X{‖̇}Y = {x ‖̇ y | x ∈ X ∧y ∈ Y }. It is easy to verify that
X is also a partial closed commutative monoid. Two infor-
mation setsA andB cancarry the same ”information”in
the sense that each information setC is either independent
from bothA andB or not independent from bothA andB.
Such sets need not be distinguished and can be technically
identified through a closed congruence on2I . Therefore we
distinguish information sets only up to the greatest closed
congruence∼=∈ 2I × 2I onX (for a concrete construction
of ∼= see Section 6). Based on these preparations process
terms of(A, inf ) which represent all its abstract computa-
tions are defined inductively as follows:

Definition 6 (Process terms). Theelementary process terms
of (A, inf ) are of the formida : a −→ a with Inf (ida) =
[{inf (a)}]∼= for a ∈ M (mostly we denoteida simply bya)
ands : pre(s) −→ post(s) with Inf (s) = [{inf (s)}]∼= for
s ∈ Step(A,inf ).

If α : a1 −→ a2 andβ : b1 −→ b2 are process terms
satisfying(Inf (α), Inf (β)) ∈ dom{‖̇}/∼=

, their concurrent
compositionyields the process termα ‖β : a1+b1 −→ a2+

b2 with Inf (α ‖β) = Inf (α) {‖̇}/∼= Inf (β).
If α : a1 −→ a2 and β : b1 −→ b2 are process

terms satisfyinga2 = b1, their sequential composition
yields the process termα;β : a1 −→ b2 with Inf (α;β) =
Inf (α)∪/∼= Inf (β).

Thepartial algebra of all process termswith the partial

4Two information setsX andY are calledindependentif each infor-
mation element inX is independent from (i.e. concurrently composable
with) each information element inY .



operations of synchronous, concurrent and sequential com-
position will be denoted byP(A, inf ).

{p1}

{p3}

e
({p1},{p3},∅)

⊕

{p2}

{p4}

f
({p2},{p4},{p3})

{p1,p2}

{p3,p4}

e⊕f
({p1,p2},{p3,p4},∅)

{p5}

{p5}

{p5}
({p5},{p5},∅)|| =

{p1,p2,p5}

{p3,p4,p5}

(e⊕f)||{p5}
{({p1,p2,p5},{p3,p4,p5},∅)}

{p5}

{p6}

g
({p5},{p6},{p7})

⊕

{p4}

{p7}

h
({p4},{p7},{p6})

{p4,p5}

{p6,p7}

g⊕h
({p4,p5},{p6,p7},∅)

{p3}

{p3}

{p3}
({p3},{p3},∅)|| =

{p3,p4,p5}

(g⊕h)||{p3}
{({p3,p4,p5},{p3,p6,p7},∅)}

((e⊕f)||{p5});((g⊕h)||{p3})
{({p1,p2,p5},{p3,p4,p5},∅), 
({p3,p4,p5},{p3,p6,p7},∅)}

Figure 4. Deriving exemplary a process term
of the net from Figure 1 with associated infor-
mation elements resp. information sets.

Compared to [9] and [7], the definition of algebraic
(M, I)-nets is as general as possible. In order to derive
conclusions about process term semantics on the algebraic
level similar as in [7] it is necessary to require certain
properties for the mappinginf of an algebraic(M, I)-net
(A, inf ), relating the sets(I, dom‖̇, ‖̇), (I, dom⊕̇, ⊕̇) and
M = (M,+). All properties have a simple intuitive inter-
pretation and for all common net classes (with so-structure
based semantics) it is easy to show that they are fulfilled.
In contrast to [9] where no results are obtained on the ab-
stract level we have to introduce more specific properties for
inf . We did not include them into the algebraic(M, I)-net
definition, instead, for each stated result we will explicitly
mention which properties are required. These properties are
for x, y,m,m1,m2 ∈M ands, s1, s2 ∈ Step(A,inf ):

(Con1) (inf (x), inf (y)) ∈ dom‖̇ =⇒ inf (x + y) =

inf (x) ‖̇ inf (y)

(Con2) inf (0) = i0

(Con3) {inf (s)} ∼= {inf (s), inf (pre(s)), inf (post(s))}

(Con4) (inf (s1), inf (s2)) ∈ dom⊕̇ =⇒{inf (s1 ⊕ s2)} ∼=
{inf (s1 ⊕ s2), inf (s1), inf (s2)}

(Con5) (inf (s1), inf (s2)) ∈ dom⊕̇, (inf (s1) ⊕̇ inf (s2),
m), (inf (s1), inf (m1)), (inf (s2), inf (m2)) ∈ dom‖̇,
pre(s1) + pre(s2) +m = pre(s1) +m1, post(s1) +
m1 = pre(s2)+m2 =⇒ (inf (pre(s2)+m), inf (s1)),
(inf (post(s1) +m), inf (s2)) ∈ dom‖̇

(Con6) (inf (s1), inf (s2)) ∈ dom‖̇ =⇒ (inf (s1), inf (s2))

∈ dom⊕̇ and {inf (s1) ‖̇ inf (s2)} ∼= {inf (s1) ‖̇
inf (s2), inf (s1) ⊕̇ inf (s2)}

(Det) (inf (s), inf (x)), (inf (s), inf (y)) ∈ dom‖̇, pre(s)+
x = pre(s) + y =⇒ post(s) + x = post(s) + y

The first two consistency properties (Con1) and (Con2)
are self explanatory. Property (Con3) states that the in-
formation (about concurrent composability) attached to a
synchronous steps includes information aboutpre(s) and
post(s) and (Con4) tells that it also includes information
about sub-steps ofs. (Con5) can be interpreted as fol-
lows: if two synchronous step termss1, s2 can occur syn-
chronously and sequentially in the orders1 −→ s2 in the
same initial marking, then the occurrence ofs2 does not de-
pend on the final marking of the occurrence ofs1 and the
occurrence ofs1 does not depend on the initial marking of
the occurrence ofs2. The next condition (Con6) determines
that two synchronous step terms, which can occur concur-
rently, can also occur synchronously and that the informa-
tion associated to their concurrent composition includes the
information associated to their synchronous composition.
For net classes we are interested in, the occurrence of a step
s in a markingm is deterministic in the sense that the fol-
lower markingm′ is unique (Det).

4. Causal semantics of algebraic(M, I)-nets

We define explicit causal semantics of algebraic(M, I)-
nets by associating so-structures to process terms.

Definition 7 (So-structures of process terms). We define in-
ductivelylabelled so-structuresgoα = (V,≺α,<α, lα) of
(or associated to) a process termsα: gom = (∅, ∅, ∅, ∅) for
m ∈ M , got = ({v}, ∅, ∅, l) with l(v) = t for t ∈ T , and
gos1 ⊕ s2

= (V1∪V2, ∅,<1 ∪ <2 ∪(V1×V2)∪(V2×V1), l1∪
l2), for synchronous step termss1, s2 ∈ Step(A,inf ) with
associated so-structuresgo1 = (V1, ∅,<1, l1) and go2 =
(V2, ∅,<2, l2), where the sets of nodesV1 andV2 are as-
sumed to be disjoint (what can be achieved by appropriate
renaming of nodes). Finally, given process termsα1 andα2

with associated so-structuresgo1 = (V1,≺1,<1, l1) and
go2 = (V2,≺2,<2, l2), define

• goα1 ‖α2
= (V1 ∪ V2,≺1 ∪ ≺2,<1 ∪ <2, l1 ∪ l2),

• goα1;α2
= (V1 ∪ V2,≺1 ∪ ≺2 ∪(V1 × V2),<1 ∪ <2

∪(V1 × V2), l1 ∪ l2),



again assuming disjoint sets of nodesV1 andV2.

Since all labelled so-structures associated to a process
termα are isomorphic (and arbitrary labelled so-structures
isomorphic togoα are also associated toα) we mostly dis-
tinguish labelled so-structures only up to isomorphism. It
is easy to verify (by an inductive proof) that a labelled so-
structuregoα of a process termα is synchronous closed.

In Figure 2 the principle of so-structures associated to
process terms is demonstrated. Note that there cannot exist
a process term to which the run from Figure 1 is associated
because this so-structure is not synchronous closed. That
is why we considered its linearizations (which are always
synchronous closed). The fact that in this example it is ac-
tually possible to find such process terms for all of these
linearizations (see Figure 2) leads to the next essential idea.

We want to deduce so-structure based semantics of alge-
braic(M, I)-nets from their process term semantics. Easy
examples show that single so-structures associated to a pro-
cess term in general cannot describe each run of a Petri net
(e.g. as explained the run from Figure 1 is not associated
to a process term; other examples which are also valid for
the partial order case include so called N-forms [7]). Con-
sequently the set of so-structures of process terms is not
expressive enough in order to directly describe the com-
plete causal semantics of algebraic(M, I)-nets. But we
can derive the complete causal behaviour from the set of so-
structures of process terms in a similar way as in [7] for the
partial order based semantics case. This causal behaviour
will be represented by the set of so calledenabled labelled
so-structures. For their definition we denote process terms
α of the formα = (s1 ‖m1); . . . ; (sn ‖mn) (s1, . . . , sn ∈
Step(A,inf ), m1, . . . ,mn ∈ M ) as synchronous step se-
quence terms, and the set of all synchronous step sequence
terms with initial markingm byStepseq(A,inf ,m). It is easy
to observe that so-structures associated to synchronous step
sequence terms are total linear.

Definition 8 (Enabled labelled so-structure). A labelled
so-structurego is enabled to occurin a markingm w.r.t.
(A, inf ), if everygo′ ∈ stratsos(go) is associated to some
β ∈ Stepseq(A,inf ,m). Denote byEnabled(A, inf ,m)
the set of labelled so-structures enabled to occur inm w.r.t.
(A, inf ).

In this definition enabled labelled so-structures are in-
troduced using linearizations. Figure 2 gives an example
how to check if an so-structure is enabled. It shows that
the run from Figure 1 is enabled w.r.t. the marked net in
the same figure. We will show in Theorem 10, that so-
structures of process terms are always enabled in the initial
marking of the process term. Obviously, every extension
of an so-structure enabled inm is also enabled inm. A
labelled so-structurego enabled inm is said to bemini-
mal, if there exists no labelled so-structurego′ 6= go en-

abled inm, wherego is an extension ofgo′. We denote by
MinEnabled(A, inf ,m) the set of all such minimal en-
abled labelled so-structures. For example with this defini-
tion one can check (intuitively and technically) that the run
from Figure 1 is inMinEnabled(A, inf ,m). In the next
definition process terms are identified through an equiva-
lence relation. The basic idea is to identify two enabled
so-structures if one is an extension of the other. Carrying
over this principle to process terms we will show in Theo-
rem 13 that two process terms are equivalent if their asso-
ciated so-structures can be identified in the above described
sense. In this context the process terms in Figure 2 should
all be equivalent. For algebraic(M, I)-nets representing
concrete Petri nets equivalent process terms will represent
the same commutative process of the Petri net (for details
and examples to commutative processes see [7]). In the ex-
ample all process terms in Figure 2 represent the (commu-
tative) process in Figure 1.

Definition 9 (The congruence∼). The relation∼ on the
set of all process terms of an algebraic(M, I)-net is the
least congruence of the partial algebra of all process terms
with the partial operations⊕, ‖ and ;5, which includes the
relation given by the following axioms for process terms
α, β, α1, α2, α3, α4 and markingsm,n:
(1)α ‖β ∼ β ‖α
(2) (α ‖β) ‖ γ ∼ α ‖(β ‖ γ)
(3) (α;β); γ ∼ α; (β; γ)
(4)α = ((α1 ‖α2); (α3 ‖α4)) ∼ β = ((α1;α3) ‖(α2;α4))
(5)α⊕β ∼ β⊕α
(6) (α⊕β)⊕ γ ∼ α⊕(β⊕ γ)
(7) (α⊕β) ∼ (α ‖ pre(β)); (post(α) ‖ β)
(8) (α; post(α)) ∼ α ∼ (pre(α);α)
(9) id(m+n) ∼ idm ‖ idn

(10)pre(α)+m = pre(α)+n, post(α)+m = post(α)+n
=⇒ (α ‖ idm) ∼ (α ‖ idn)
(11) (α ‖ id0) ∼ α
if the terms on both sides of∼ are defined process terms.

E.g. for the first two process terms in Figure 2 we have
the following equivalence transformation:

((e⊕ f) ‖{p5}); ((g⊕h) ‖{p3})
(7)
∼

(((f ‖{p1}); (e ‖{p4})) ‖{p5}); ((g⊕ h) ‖{p3})
(8)
∼

(((f ‖{p1}); (e ‖{p4})) ‖({p5}; {p5})); ((g⊕h)‖{p3})
(4)
∼

((f ‖{p1} ‖{p5}); (e ‖{p4} ‖{p5})); ((g⊕ h) ‖{p3})
(9)
∼

((f ‖{p1, p5}); (e ‖{p4, p5})); ((g⊕ h) ‖{p3}) (note that
all occurring process terms are defined).

Given two∼-equivalent process termsα andβ, there
holds pre(α) = pre(β) and post(α) = post(β). The
so-structures associated to process terms are changed only
through the axioms (4) and (7). Regarding (4) we get that

5According to [2] this least congruence exists uniquely.



goα is an extension ofgoβ with additional≺-ordering be-
tween events ofα1 andα4 as well as between events ofα2

andα3. Regarding (7) the associated so-structures are not
comparable in a similar way.

In order to simplify the identification of transitions
of a process term and nodes (events) of an associated
so-structure it would be helpful to assume that the la-
belling function of an so-structuregoα of α is the id-
function. In such a case a transition would occur only
once in a process term. To achieve this simplification for
a given process term, we will identify copies of transi-
tions of the process term with events of the associated so-
structure: For a setV and a surjective labelling function
l : V → T we denote by(A(V,l), inf (V,l)) the algebraic
(M, I)-net given byA(V,l) = (M,V, pre(V,l), post(V,l))
andinf (V,l) : M ∪ V → I, wherepre(V,l)(v) = pre(l(v)),
post(V,l)(v) = post(l(v)), inf (V,l)|M = inf |M and
inf (V,l)(v) = inf (l(v)) for everyv ∈ V . (A(V,l), inf (V,l))
is called(V, l)-copy net of(A, inf ).

The first important theorem of this paper shows that so-
structures of process terms are enabled in the initial marking
of the process term.

Theorem 10. Let α be a process term of an alge-
braic (M, I)-net(A, inf ) which fulfills (Con1)-(Con3) and
(Con6). Thengoα ∈ Enabled(A, inf ,m) with m =
pre(α). In particular, everygo′ ∈ stratsos(goα) is as-
sociated to someβ ∈ Stepseq(A,inf ,m) satisfyingα ∼ β.

An enabled so-structurego is uniquely determined by the
set of process terms whose associated so-structures extend
go. As we have already seen in the recurring example the
run (an enabled so-structure) from Figure 1 can be recon-
structed with the linearizations from Figure 2 which are all
associated to certain process terms.

Definition 11. Let go = (V,≺,<, l) ∈
Enabled(A, inf ,m). Then the setΥcan

go of all pro-
cess termsα of (A(V,l), inf (V,l)) with pre(α) = m whose
associated so-structures extend(V,≺,<, id) is called the
canonical setof go.

Remark 12. Let go = (V,≺,<, l) ∈
Enabled(A, inf ,m), α ∈ Υcan

go and goα = (V,≺α

,<α, id). Thengo = (V,
⋂

α∈Υcan

go

≺α,
⋂

α∈Υcan

go

<α, l) by
Proposition 2.

The next theorem states that process terms with the same
initial marking, whose associated so-structures are all ex-
tensions of one enabled so-structure, are∼-equivalent.

Theorem 13. Let (A, inf ) be an algebraic(M, I)-net ful-
filling (Det) and (Con1)-(Con5) andα andβ process terms
with initial markingm. If goα and goβ are extensions of
go ∈ Enabled(A, inf ,m), then there holdsα ∼ β.

With this theorem we can identify minimal enabled so-
structures through their canonical sets (use Remark 12).

Corollary 14. Let (A, inf ) be an algebraic(M, I)-net
with the same preconditions as in Theorem 13 and let
go ∈ Enabled(A, inf ,m). ThenΥcan

go ⊆ [α]∼ for some
process termα of (A(V,l), inf (V,l)). If Υcan

go = [α]∼, then
go ∈ MinEnabled(A, inf ,m).

5 The corresponding algebraic(M, I)-net

Despite the differences between classes of Petri nets,
there are some common features of almost all net classes,
such as the notions ofmarking(state),transition, andoccur-
rence rule(see [4]). Thus, in the next definition we suppose
a Petri net be given by a set of markings, a set of transitions
and an occurrence rule determining whether a synchronous
step (a multi-set) of transitions is enabled to occur in a given
marking and if yes determining the follower marking. The
occurrence rule of a Petri net with a set of transitionsT and
a set of markingsM can always be described by a transition
system. Accordingly, we suppose that a Petri net is given in
the form of a transition system(M,E,NT ) with nodesm ∈
M , labelled arcse ∈ E ⊆M×N

T ×M and labelss ∈ N
T ,

wheres is interpreted as a synchronous step of transitions.
The notationm

s
−→ m′ for (m, s,m′) ∈ E means thats

can occur inm with follower markingm′. The notation
m0

s1...sn−→ mn means that there existm1, . . . ,mn−1 ∈ M ,
such thatm0

s1−→ m1, . . . ,mn−1
sn−→ mn.

Definition 15 (Corresponding net). LetN = (M,E,NT )
be a Petri net in the form of a transition system. An al-
gebraic (M, I)-net ((M,T, pre : T → M,post : T →
M), inf ) = (A, inf ) is called acorresponding net toN
if the occurrence rule for synchronous steps is preserved,
i.e. if for every pair of markingsm,m′ ∈M and every syn-
chronous steps ∈ N

T there holds:m
s

−→ m′ if and only
if there exists̃s ∈ Step(A,inf ) with |s̃| = s and a mark-
ing m̃ ∈ M such thatα = s̃ ‖ m̃ is a defined process term
fulfilling pre(α) = m andpost(α) = m′.

From the definitions we conclude:m
s1...sn−→ m′ ⇐⇒

there existsα : m → m′ ∈ Stepseq(A,inf ,m) of the
form α = s̃1 ‖ m̃1; . . . ; s̃n ‖ m̃n, where m̃i ∈ M and
s̃i ∈ Step(A,inf ) with |s̃i| = si for everyi ∈ {1, . . . , n}.

Thenα is calledcorresponding tom
s1...sn−→ m′. More-

over, an so-structure associated toα is calledassociated to
m

s1...sn−→ m′. Altogether this describes the consistency of
the algebraic approach to operational step semantics.

The construction of corresponding algebraic(M, I)-
nets provides a general framework to derive causal seman-
tics for a wide range of concrete net classes. This is il-
lustrated in Section 6 for the example of elementary nets
with inhibitor arcs equipped with the a-priori semantics (the



respective ideas were already exemplary developed in the
previous sections) using the following general scenario: (1)
Give the classical definition of a Petri net class including
their synchronous step occurrence rule. (2) Given a net
N of the considered class, construct a corresponding al-
gebraic(M, I)-net (A, inf ) through definingM, I, pre,
post, inf appropriately and deduceX , ∼= and a partial al-
gebra of information isomorphic toX/∼=. (3) Show that
(A, inf ) satisfies the stated properties of the mappinginf

(thus ensuring the validity of the theorems of Section 4). (4)
Now one can derive algebraic semantics of(A, inf ) through
process terms and thus causal semantics ofN through
MinEnabled(A, inf ,m).

From the considerations of this section we can conclude
that the causal semantics ofN derived with this scheme
are consistent with the operational semantics ofN , be-
cause obviously (using Theorem 10):go is associated to
m

s1...sn−→ m′ ⇐⇒ go ∈ stratsos(go
′) for somego′ ∈

MinEnabled(A, inf ,m). Moreover so-structures which
are not enabled never fulfill such a property and thus mini-
mal enabled so-structures are the so-structures with the least
causalities guaranteing consistency to the operational oc-
currence rule. These characteristics ensure that the derived
causal semantics are reasonable and should always coin-
cide with process based semantics. In [7] this was already
demonstrated for several Petri net classes with partial order
based semantics. Moreover if there are no non-sequential
semantics based on processes for a given Petri net class,
they can be straightforwardly given (following the scenario
above) byMinEnabled(A, inf ,m).

6 Elementary nets with inhibitor arcs

In this section we will now apply the techniques devel-
oped in the previous sections to the concrete net class of el-
ementary nets with inhibitor arcs equipped with the a-priori
semantics. Some of the main ideas, e.g. the definition of a
corresponding algebraic(M, I)-net, were already partially
discussed on the basis of the recurring example net in Figure
1. Note that the content of this section is based on the pro-
cess semantics introduced by Janicki and Koutny (see Sec-
tion 2). Similar results as in this section have been derived
in [9]. But in [9] there was only shown a one to one corre-
spondence between the process term semantics and the pro-
cess semantics in a complicated lengthy ad-hoc way without
regarding causal behaviour. Here we additionally get the
complete consistency of the causal behaviour derived from
process terms and the causality of activator processes using
the general framework from Section 5.

Given an elementary net with inhibitor arcsENI =
(P, T, F, C−) (see Section 2) we construct a corresponding
algebraic(M, I)-net analogously as in [7] by

• M = (2P ,∪), I = 2P × 2P × 2P , pre(t) = •t,

post(t) = t•, inf (t) = (•t, t•, −t) (t ∈ T ) and
inf (m) = (m,m, ∅) (m ∈M ).

• dom⊕̇ = {((a, b, c), (d, e, f)) ∈ I × I | (a∪ b)∩ (d∪
e) = a ∩ f = d ∩ c = ∅} with (a, b, c) ⊕̇(d, e, f) =
(a ∪ d, b ∪ e, (c ∪ f) \ (b ∪ e)).

• dom
‖̇

= {((a, b, c), (d, e, f)) ∈ I × I | (a ∪ b) ∩

(d ∪ e) = (a ∪ b) ∩ f = c ∩ (d ∪ e) = ∅} with
(a, b, c) ‖̇(d, e, f) = (a ∪ d, b ∪ e, c ∪ f)

and define

• supp : 2I → 2P × 2P , supp (A) = (s1(A), s2(A) \
s1(A)) wheres1(A) =

⋃
(a,b,c)∈A(a∪b) ands2(A) =⋃

(a,b,c)∈A c.

• ∼=⊆ 2I × 2I , A ∼= B ⇐⇒ supp(A) = supp(B).

In [7] it was shown that∼= is the greatest closed congru-
ence onX = (2I , {‖̇}, dom{‖̇}, 2

I × 2I ,∪). It is a straight-
forward computation that the algebraic(M, I)-net defined
in this section fulfills all formulated properties of the map-
ping inf . It is shown in [7]:

Theorem 16. The algebraic (M, I)-net
((2P , T, pre, post), inf ) with M, I, pre, post, inf as
developed in this section is corresponding toENI
(according to Definition 15).

To prove the consistency of the algebraic approach to
the process based concept we can use an important result
about activator processes. Corollary 2 in [11] (considering
the more general case of p/t-nets with inhibitor arcs) reads
in our terminology:

Theorem 17. {goα | α ∈ Stepseq(A,inf ,m)} =⋃
r∈Run(ENI,m) stratsos(r).

As a consequence we directly get thatRun(ENI,m) ⊆
Enabled(A, inf ,m). In order to prove the main result
Run(ENI,m) = MinEnabled(A, inf ,m), we funda-
mentally need the following lemma.

Lemma 18. Let go1 = (V,≺1,<1, id) andgo2 = (V,≺2

,<2, id) be labelled so-structures of∼-equivalent process
termsα : m → m′ and β : m → m′ of (A, inf ) and
let go = (V,≺,<, id) ∈ Run(ENI,m) satisfying that
go ⊆ go2, thengo ⊆ go1.

As a corollary we get that for each runr ∈
Run(ENI,m) there isα with Υcan

r = [α]∼. That means
Run(ENI,m) ⊆ MinEnabled(A, inf ,m) (Corol-
lary 14). For the reverse statement observe that for
go ∈ Enabled(A, inf ,m) every so-structurego′ ∈
stratsos(go) is associated toα ∈ Stepseq(A,inf ,m). All
these process termsα are∼-equivalent (Theorem 13) and



all elements ofstratsos(go) are extensions of one runr ∈
Run(ENI,m) (Theorem 17, Lemma 18). Using the rep-
resentation ofgo from Proposition 2, we get thatgo itself is
an extension ofr. This gives altogether

Theorem 19. GivenENI and (A, inf ) as defined above,
there holdsRun(ENI,m) = MinEnabled(A, inf ,m).

We deduce that every∼-equivalence class of process
terms of the copy net is the canonical set of a unique run
(Theorem 10, Remark 12). Consequently there holds the
following one-to-one relationship, which is an enhancement
of the main result of [9] (proven in another manner).

Theorem 20. GivenENI and (A, inf ) as defined above,
the mappingψ : Run(ENI,m) → {[α]∼ | pre(α) = m}
defined byψ(r) = [α]∼ for someα such thatgoα is an
extension ofr is well-defined and bijective.

Finally, this especially implies that everygo ∈
Enabled(A, inf ,m) is an extension of exactly oner ∈
Run(ENI,m). This result is connected to the well-known
result obtained for elementary nets (without context), which
says that each occurrence sequence of an elementary net is
a linearization of exactly one run of the net.

7 Conclusion

In this paper we have presented a very flexible and gen-
eral unifying approach regarding causal semantics. While
in other approaches to unifying Petri nets (see e.g. [17,
15, 16, 10]) the occurrence rule is never a parameter and
therefore the definitions in [15] and [10] both capture ele-
mentary nets but let open more complicated restrictions of
enabling conditions in the occurrence rule, such as inhibitor
arcs or capacities, in our case we were even able to extend
the basic approach from [7] to so-structure based seman-
tics. Thus it would be an interesting and promising project
of further research to additionally extend the approach of
algebraic Petri nets in order to include new net classes of
a different fundamental structure. But we also have more
proximate and immediate research in this area. On the one
hand we still have to examine some net classes and com-
pare the algebraic semantics to process semantics, as for
example elementary nets with read arcs and p/t-nets with
inhibitor arcs each equipped with the a-priori semantics,6

nets with priorities or p/t-nets with weak capacities regard-
ing explicit synchronous semantics. On the other hand it
would be interesting to derive behavioral results beyond the
causal semantics on the abstract level.

6Note that these classes are already discussed regarding thea-posteriori
semantics [7].
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