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Abstract Petri netsas proposed in Part Il of [7]. With the approach

from [7] non-sequential semantican be derived on an ab-

In this paper, we show how to obtain causal semantics stract level for Petri nets with restricted occurrence (ate
distinguishing "earlier than” and "not later than” causal-  coded by partiality of concurrent composition). In additio
ity between events from algebraic semantics of Petri nets. to otherworks, and in particularto [5], in [7] it is shown how

Janicki and Koutny introduced so called stratified order to obtain causal semantics based on "earlier than” causal-
structures (so-structures) to describe such causal seman-ty between events (formally given as labelled partial osde
tics. To obtain algebraic semantics, we redefine our own al- (LPOs)) from process terms. It is shown in [7] for many
gebraic approach generating rewrite terms via partial oper concrete net classes that the minimal LPOs obtained from
ations of synchronous composition, concurrent compasitio process terms coincide with minimal LPOs given by ac-
and sequential composition. These terms are used to proknowledged classical processes.
duce so-structures which define causal behavior consistent o, . 0, Obp,

with the (operational) step semantics. For concrete Pedti n
classes with causal semantics derived from processes mini- . ) . il e “f
mal so-structures obtained from rewrite terms coincidéwit
minimal so-structures given by processes. This is demon- oe
strated exemplarily for elementary nets with inhibitor sirc R Po (IPu L)

g h 9 h 'rg ) h
1. Introduction o Upr e Opr

Since the basic developments of Petri nets more and Figure 1. An elementary net with inhibitor
more differentPetri net classedor various applications arcs (ps, f), (ps, h) and (pr, g), aprocess of the
have been proposed. Causal semantics of such special Petri N€t and the associated run.
net classes are often constructed in a complicated ad-hoc ) ] ] ]
way, defining process nets which generate causal structures S explained in [6], "earlier than” causality expressed by
(see e.g. [14, 6, 11, 12]). Naturally there are also severaILPO_S is not enough to describe causal ser_na_ntlcs for_some
approaches to unify the different classes in order to be ablePetri net classes, as for example the a-priori semantics of
to define non-sequential semantics in a systematic way us€/émentary nets with inhibitor aré'slr} Figure 1 this phe-
ing algebraic descriptions [19, 1, 3, 5, 17, 15, 16] (see [18] homenon is depicted: In the a-prlo_rl_semantlcs the testing
for an overview). Most of these approaches are based on thd0" absence of tokens (through inhibitor arcs) precedes the
paper [13], where non-sequential runs of nets are describedXecution of a transition. Thug cannot occur later than
by equivalence classes of rewrite process terms. These pro% because after the occurrencecdhe placep; is marked
cess terms are generated from elementary terms (trarssition@"d consequently the occurrencefois prohibited by the
and markings) by concurrent and sequential composition.inhibitor arc(ps, f). Thereforee and f cannot occur con-
Unfortunately, none of these works provides a method how cUrrently or sequentially in order— f. But they still can
to obtain causal semantics from the algebraic semantics. IThere are also other semantics for elementary nets withitohiarcs
This paper extends thenifying approachof algebraic such as the a-posteriori semantics which are less probiene(6].




occur synchronously (because of the occurrence rule "test-causal semantics derived from processes minimal enabled
ing before execution”) or sequentially in ordgr — e - so-structures obtained from process terms of a correspond-
this is exactly the behavior described by ot later than ing algebraic net coincide with minimal so-structures give

e” (see Section 2 for details on the occurrence rule). Af- by processes. Exemplarily we will show this result in a sys-
ter the respective firing of ande we reach the marking tematic way (which can obviously be adapted to further net
{p3,ps,p5}- Now with the same arguments as above the classes) for elementary nets with inhibitor arcs (Sect)dn 6
transitionsg andh can even only occur synchronously but thus generalizing the main result of [9].

not sequentially in any order. The described causal behav- Because of lack of space we omitted all proofs in this
ior (between events) of the netis illustrated on the rigth¢si  published version of our paper; these can be found in a de-
of Figure 1 ("run”). The drawn through arcs represent a tailed technical report [8].

(common) "earlier than"-relation, i.e. the events can only

occur in the expressed order but not synchronously or in- T

versely, and dotted arcs depict the "not later than” refatio 2. Preliminaries

explained above. The net in the middle of Figure 1 shows ) ) ) o

a process corresponding to the run on the right (details on_ !N this section we recall the basic definitions sifat-
processes and runs are explained in the next section). Alto/fied order structureselementary nets with inhibitor arcs
gether there exist net classes including the by practitione (quipped with the a-priori semanticadpartial algebras
admired inhibitor nets where synchronous and concurrentG)'(Ven a setX’ we will denote the set ofXaII subsets &fby
behaviour has to be distinguished. In [6] causal semantics? + the set of all multisets ovek' by N=, the identity re-

based on stratified order structures (so-structures, see Se lation overX by idx, the reflei(ive, transitive closure of
tion 2) like the run in Figure 1 consisting of a combination & Pinary relation? over X' by R* and the composition of

of an "earlier than” and a "not later than” relation between WO binary relationsiz, it over X by R o R'. Two nodes
events were proposed to cover such cases. a,b € V are calledndependentv.r.t. a binary reIanm_
overV if a / bandb /4 a. We denote the set of all pairs
of nodes independent w.rt> by co_, C V x V. A par-
tial orderis a pairpo = (V, <), whereV is a finite set of

In order to describe such situations on the algebraic level,
in [9] we extended the algebraic Petri nets from [5] by a
synchronous composition operation which allows to distin- . . . . . .

. nodes and is an irreflexive and transitive binary relation
guish between concurrent and synchronous occurrences ofn V. If co- — idy then (V. <) is calledtotal. Given
events. Therewith a great variety of additional concrete ne Lo s — ’ )

two partial orderspo; = (V,<;) and pos = (V,<s),
classes can be covered compared to [7]. Unfortunately, pa- . S .
. we say thatpo s is a sequentializationor extensioh of

per [9] does not provide a general method how to construct o1 if <1C<s. A relational structure(rel-structure) is a
so-structure based causal semantics from algebraic semarj-. * =2 :
. . . riple S = (X, <,C), whereX is a set (ofevent}, and
tics. Therefore in [9] a correspondence of the algebraic se- . .

. . L . <C X x X andC C X x X are binary relations oiX.
mantics to non-sequential a-priori semantics of elemgntar

nets with inhibitor arcs was proven in a complicated ad hoc A rel-structures” = (X, <', ") s said to be amxtension
: P . P of another rel-structur€ = (X, <, C), writtenS C &', if
way not comparing causal semantics.

<C<"andcCrZ.
As the main result of this paper we fill this gap. Namely,
we show how to obtain causal semantics based on so-Definition 1 (Stratified order structure [6])A rel-structure
structures from process terms and derive exemplarily theirS = (X, <,C) is called stratified order structuré¢so-
correspondence to causal semantics produced from prostructure) if the following conditions are satisfied for all
cesses for elementary nets with inhibitor arcs equippéd wit z,y, 2 € X:
the a-priori semantics. CHx £ x

Thereto we generalize our own algebraic approach from(C2)z <y =z C y
[9] generating process terms via partial operations of syn-(C3)2 CyCz Az # 2z =z C 2
chronous composition, concurrent composition and sequen{C4)z Cy <z Vo <yCz =1z <2

tial composition (Section 3). These terms are used to pro- In fi . hicall dbvd h h
duce so callecenabledso-structures defining causal se- n figures< s graphically expressed by drawn throug

mantics of algebraic nets (Section 4). These causal sedrcs and- by dotted arcs. According to (C2) a dotted arcis

mantics are consistent with the step semantics of algebraicOmlttecj if there is already a drawn through arc. Moreover,

nets in the sense that an so-structure is enabled iff ever)),Ne omit arcs which can be deduced by (C3) and (C4). It

of its step sequentializations is an enabled step sequencé.S shown in [6] tha(X,, <) is a partial order. Therefore so-

Given a Petri net of a concrete Petri net class, we define thestructures are a generalization of partial orders whiaheidr
corresponding algebraic net to have the same step seman- 2yjs net class has the advantage that it is already extéysinalysed

tics (Section 5). Then for concrete Petri net classes with in the concept of ad-hoc process definitions.




out to be adequate to model the causal relations between We will often usdabelled so-structurem the following.
events of complex systems regarding sequential, condurrenThese are so-structurés= (X, <, ) together with aset

and synchronous behavior. In this contextepresents the
ordinary "earlier than” relation (as in partial order based
systems) while_ models a "not later than” relation (ex-
amples are depicted in Figure 1 and 2). Kxelosureof

a rel-structureS = (X, <, C) is given byS® = (X, <4
,Ceo) = (X, (RUD) o <o(xUD)", (xUD)*\idx).

A rel-structureS is called<{-acyclicif <g¢ is irreflexive.
The {-closureS¢ of a rel-structureS is an so-structure if
and only if S is {-acyclic [6] (observe that the notion of

of labelsM and alabelling functionl : X — M.
Next we present the example net class considered in this
paper. Anelementary neis a netN = (P, T, F'), whereP
is a finite set of placed]" is a finite set of transitions and
F C (PxT)U(T x P) is the flow relation. Fox € PUT
we abbreviate’r = {y € PUT | (y,x) € F'} (pre-set
of ) andz® = {y € PUT | (z,y) € F} (post-set of
x). This notation can be extended C Por X C T
by *X = U,ex *zandX*® = (J,.x2*. Eachm C P

the {-closure in the context of so-structures corresponds tois called amarking A transitiont € T is enabled to occur

the concept of the transitive closure in the less generasit
tion of partial orders). Finally, we introduce two subckss

in a markingm of N iff *t Cm A (m\ *t)Nnt* =0. In
this case, its occurrence leads to the markigig= (m \

of so-structures which turn out to be associated to (specific®t) U ¢*. Two transitions, t2 € T',t; # t, arein conflict
subclasses of) process terms of algebraic Petri nets. Letff (*t; Ut$) N (*ta UtS) # 0.

S = (X, <,C) be an so-structure, the$i is calledsyn-
chronous closedf co = co- U (C \ <) (e.g. the so-
structure in Figure 1 is not synchronous closed) &nhi$
calledtotal linearif cox = (C \ <) Uidx (for exam-

An elementary net with inhibitor arcgs a quadruple
ENI = (P,T,F,C_), where(P, T, F) is an elementary
netandC_ C P x T is thenegative context relatiosatis-
fying (FU F~1) N C_ = {. In the example net of Figure

ples see Figure 2). The set of all total linear extensions (0r1 the negative context relation is depicted through sodalle

linearizations) ofS is denoted bystrats,s(S). Now we

inhibitor arcs with circles as arrowheads. For a transition

will summarize some results about these two classes of so—; — {p € P| (pt) € C_} is thenegative contexdf ¢.
structures. The following result proven in [11] shows that A transitiont is enabled to occuin a markingm iff it is
every so-structure can be reconstructed from its lineariza enabled to occur in the underlying elementary(d&tr’, F)

tions (see Figure 2 for an example):

Proposition 2. LetS be an so-structure. Then

M M

(X,<,C)Estratsos(S) (X,<,C)Estratsos(S)

S=(X, <, C)
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Figure 2. All linearizations of the so-structure
from Figure 1 and process terms of the net
from Figure 1, to which the respective so-
structures above are associated.

Each total linear so-structure is synchronous closed be-

cause according to (C2o 4 = (C \ <) Uidx implies
co- = idx. Using the results from [6] about augment-
ing so-structures one can conclude that every so-struisture
extendable to a total linear so-structure. The crucial pro

erty of synchronous closed so-structures is the fact tiegt th

and ¢t Nn'm = (). The occurrence of an enabled transition
leads to the marking:’ = (m \ °t) Ut®. Two transitions
t1,ta € T,t1 # to, are insynchronous conflidiin the a-
priori semantics) if they are in conflictin the underlying-el
mentary netorif *t;,)N( ~t;) # 0 (fori,j € 1,2,7 # j). A
set of transitions C T, calledsynchronous stejs enabled
to occurin a markingm of N iff every t € s is enabled to
occur inm and no two transitions;, to € s,t; # to, are
in conflict. In this case, its occurrence leads to the mark-
ingm’ = (m\ °s)Us* and we writem — m’ (see the
Introduction for an example on the occurrence rule).

Now we introduce the "classical” process semantics for
ENT as presented in [6]. Remember that since the absence
of a token in a place cannot be directly represented in an
occurrence net, every inhibitor arc is replaced by a read arc
(depicted with dots as arrowheads) to a complement place.
It is shown in [14] thatE NI can be transformed vieom-
plementationinto a contact-free elementary net with pos-
itive context, i.e. with read arcs, exhibiting the same be-
havior. The set of complement placewill be denoted by
P’ and the complementation-bijection frafhto P’ will be
denoted byc. The processes df NI will be defined en-
dowing processes of "ordinary” elementary nets (defined as
usual by occurrence nets using complementation, see e.g.

D [9]) with read arcs (also called activator arcs in [6, 11,)12]

3The concept of complement places can often be simplifiedt(omi

exactly describe the causal relationships of events giyen b complement places or using existing places as complemaoes); such

process terms (see Section 4).

principles are applied in graphical representations.



Definition 3 (Activator process)A labelled activator occur-
rence netao-net) is a five-tupleAON = (B, E, R, Act, 1)
satisfying: (B, E, R) is an occurrence ne{(,B, E, R, Act)

is an elementary net with positive context, and the relation
structure

S(AON) = (E,=,C)
= (E,(RoR)|pxpU(Ro Act),(Act™ ' o R) \ idg)

is {-acyclic. Anao-net AON is an activator processf
ENI = (P, T, F,C_) w.rt. m iff:

e ON = (B, E,R,!) is a process of the elementary net
N = (P,T,F)w.r.t. m, and

eVb € B)\Ve € FE
(e (D)), 1(e) € O—.

In this case the labelled so-structuS(AON)®,1) is
called a run of ENI w.r.t. m. Denote byRun(ENI,m)
the set of all runs oE NI w.r.t. m.

(bye) € Act

<~

@ (b)
[(—O—] [F—O—]
e f e f

©
[»—O——{]

e f

Figure 3. The nets in (a) and (b) generate the
order e < f,the netin (¢) the order e C f.

An example of an activator process and an associated ru
is depicted in Figure 1. The construction rulefAON)
is illustrated in Figure 3 (for details see [6, 11, 12]).

The central idea to model restricted occurrence rules as

in the case of inhibitor nets on the algebraic level is the
utilisation of partial algebras in the context of partiahto
position rules for process terms. partial algebrais a
set calledcarrier together with a set of (partial) operations
(with possibly different arity) on the carrier. A partiaba-
bra with one binary operation isgartial groupoid i.e. an
ordered tupleZ = (I, dom ,+), wherel is thecarrier of
Z,domy C IxIisthedomainof 4, and+ : dom; — I

is the partial operationof Z. 7 is called apartial closed
commutative monoid the following conditions are satis-
fied: If a + b is defined then alsé + « is defined with
a+b = b+a(closed commutatividyif (a+0b)+cis defined
then alsai+ (b+¢) is defined with(a+b) + ¢ = a+ (b+¢)
(closed associativijyand there is a (unique)eutral ele-
menti € I such thate + ¢ is defined for alle € I with
a-+1i = a (existence of a (total) neutral elem&niVe shortly
recall the concept of closed congruences on partial algebra
Given a partial algebra with carriéf, an equivalence rela-
tion ~ on X is calledcongruencef for eachn-ary opera-
tion op on X with domaindom,,: a1 ~ by,...,an ~ by,
(a1,...,an) € domey and (b, ..., b,) € dom,, implies
op(ay,...,a,) ~ op(by,...,b,). Acongruence- is called

closedif for eachn-ary operatiorop on X with domain
domep: a1 ~ bi,...,a, ~ b, and(ai,...,a,) € dome,
implies (b1, ...,by) € domep,. Thus, a congruence is an
equivalence which preserves all operations of a partia-alg
bra. A closed congruence moreover preserves the domains
of operations. Therefore the operations of a partial algebr
X with carrier X can be carried over to the set of equiv-
alence classes of a closed congruencefor this, denote
[z]. ={y € X |z ~y}andX/. = {[z]. | z € X},
domey,/ = {(lai]~, ... [an]~) | (a1,.. ., an) € domep}
andop/~([a1]~, - ., [an]~) = [op(a1,...,a,)]~ for each
n-ary operatiorop : dom,, — X of X (this is well de-
fined for closed congruences). This defines a partial alge-
bra X’/ with carrier X/ and operationsp/.. X /. is
calledfactor algebraof X w.r.t. ~. A possibility to gen-
erate (closed) congruences on partial algebras is thraugh s
called(closed) homomorphisnfig]. The most important re-
sult of [2] for this paper is that there always exists a unique
greatest closed congruence on a given partial algebra.

3. Algebraic (M, Z)-nets

A general algebraic Petri neis a quadrupled =
(M,T,pre: T — M,post: T — M) (similar to [13]),
which is a graph with vertices representin@rkingsand
edges labelled biransitions Formally, the set of markings
is given by a (total) commutative monoith = (M, +)

I){vith neutral elemen®. T denotes the set of transitions.

The two mappinggre: T — M, post: T — M assign
pre-setsand post-setdo each transition. In order to ob-
tain process term semantics, firstly transitions can be syn-
chronously composed tsynchronous step termand sec-
ondly markings and synchronous step terms can be sequen-
tially and concurrently composed farocess terms As
usual, each process termmhas assigned aimitial mark-

ing pre(«) € M and afinal markingpost(«) € M, written

a : pre(a) — post(a). Two process terms can lse-
guentially composedf the final marking of the first process
term equals the initial marking of the second process term.
Moreover, each marking and each transition has assigned an
information element used for determining the synchronous
composability of transitions and the concurrent compdsabi
ity of process terms. Thus, a set of information elements
I is equipped with partial operatioﬂi\s: dom” — I and

@ : domg, — I, dom,domg;, C I x I, for the concur-
rent and synchronous composition of information elements,
resulting in a partial algebr& = (I, domyj, ||, domy,, ®).

The groupoids7, dom, 1) and(1, dom,, &) are assumed

to be partial closed commutative monoids with neutral ele-
mentsiy andjg. SuchZ is calledsc-partial algebra
Definition 4 (Algebraic (M,Z)-net) Let T
(I, domH, |,domg,®) be an sc-partial algebra,



A = (M, T,pre: T — M,post: T — M) be a Eachs € Step(4,ins) has the forms = vy ... S, for
general algebraic Petri net, anéhf : M UT — I be a transitionsvy, . .., v, € T. We definds| € NT by |s|(t) =
mapping. Ther A, inf) is calledalgebraio M, T)-net {i € {1,...,n} | ¢ = v;}|. Next we define the process
term semantics of algebraid, 7)-nets through sequential
and concurrent composition of markings and synchronous
step terms. Each process term will have assigned a set of
information elements (information set). For markings and
synchronous step terms, the associated information set wil
contain only the information element assigned by the map-
ping inf. The sequential composition of two process terms
) has assigned the union of their respective information sets
and 7 = 27 x 27 x 27. The first two components The concurrent composition of two process terms has as-

?r:ellaest éorfqproer?s:tt ;2) Eievswtl:]ee Fr)s;tdp:] efoarlquazt)'git _'tﬁgie 4 Signed the set of concurrent compositions of the informa-
. ponent . 0| : 9%%i0n elements in their respective information sets. No&t th
tive context which is not in the write part. Consequently

for the example net from Figure 1 we havef(e) — the concurrent compositighis partial, since for concurrent

(Upih, (oo} 0), inf(f) = ({pa} {pa}, {ps}), inf(g) ; composabil_itythe information sets of the two process terms

({p }’ {r }’{p’ D, inf(h) = ({’p ) {’p } {2’) 1. Note have.to be mdepeno!éntConsequently a possible process
5y W6 P71/ 4551755 16 term in the example i§(e @ f) |[{ps}); (g @ h) |[{p3}) (il-

:ihoant ;: t|2|ss f;(s”gzli(')tm's Onscévg ;mgg;t:)r:o\fjvg'cggfzg\%l lustrated in Figure 4). For the technical definitions the sc-
P P y Y reene Y partial algebral = (I, dom, ||, dom., &) is lifted to the

concurrently and which information triples result from _ . _
such a composition. Thereto completely coincident with partial algebra¥ = (2, dom,, {|[}, 2" x 27, U) defined
the occurrence rule of elementary nets with inhibitor arcs py domjy = {(X,Y) € 2l x 2T | X xY C dom”} and

equipped with the a-priori semantics, two information ele- X{H}Y — {z |~| y|z € X Aye Y} Itis easy to verify that

mentsiy, i; € 1 _can be C‘?mposed o X is also a patrtial closed commutative monoid. Two infor-

- c_:oncurrently iff the write part_ of; is disjoint from the mation sets4 and B cancarry the same "information’in

write and the read part 6 and vice versa, the sense that each information ééts either independent

— synchronously iff the write parts @f andi, are disjoint  from both A and B or not independent from both andB.

and thepre-component (first component) of is disjoint  Such sets need not be distinguished and can be technically
from the read part of, and vice versa. identified through a closed congruenceXdn Therefore we

Two transitions can bsynchronously composgétheir as- distinguish information sets only up to the greatest closed
sociated information elements can be synchronously com-congruence € 2/ x 27 on X' (for a concrete construction
posed. Their synchronous composition yields a syn- of = see Section 6). Based on these preparations process
chronous step term, which has associated as informatiorterms of(.A, inf) which represent all its abstract computa-
element the synchronous composition of their information tions are defined inductively as follows:

elements. Accordingly in our example the only pair of tran-

sitions that cannot be composed synchronousfiisth . Definition 6 (Process terms)Theelementary process terms
Note thate and f as well agy andh can be composed syn-  Of (A, inf) are of the formid, : a — a with Inf(id.) =
chronously withinf(e ® f) = ({p1,p2},{ps,ps},0) and  [{inf(a)}]=fora € M (mostly we denotéi, simply bya)
inf(g@h) = ({ps,ps}, {pe. pr}, ). The illustrated prin-  ands : pre(s) — post(s) with Inf (s) = [{inf(s)}|= for

ciple of synchronous composition can be iterated. In this $ € Step(a,ing)-

way alsoe & f @ g ande @ g ® h are defined synchronous If a:a; — agandg : by — by are process terms
step terms. Thus, in general the synchronous step terms ofatisfying(Inf (), Inf(83)) € dom, ,_, their concurrent

an algebrai¢.M, 7)-net are defined inductively as follows. compositioryields the process term|| 5: a1+b; — as+

Definition 5 (Synchronous step terms)he elementary b2 V}"th Iﬁ’f(o‘ 158) = Inf(oa) {”}./g Inf ().

synchronous step termef (A, inf) are its transitions Ifa:a — aandf: by — b are process
t € T. If s and s are synchronous step terms with tgrms satisfyingas = b1, their sequen_nal composition
(inf(s),inf(s")) € domyg, then their synchronous com- yields the process ter; 5 : a1 — by With Inf(o; §) =

position yields thesynchronous step terma s’ with ini- Inf(a) U/%Inf(ﬁ)' . _
tial markingpre(s & s') = pre(s) + pre(s’), final marking The partial algebra of all process termsth the partial

N o / ; ; _
post(s ') = post(s) + post(s') and assignednforma 4Two information setsX andY are calledindependentf each infor-

tion elementinf(s®s') = inf(s) ®inf(s’). Denote by  mation element inX is independent from (i.e. concurrently composable
Step(a,iny) the set of all synchronous step terms. with) each information element ii.

For the example (Figure 1) of elementary nets with in-
hibitor arcs the crucial mappings-e, post andinf for a
corresponding algebraicM, 7)-net (see Section 5 for the
technical definition of corresponding) will be defined as fol
lows: pre(t) = °, post(t) = t°, inf(t) = (%,t°, ~t)
fort € T andinf(m) = (m,m,0) form C P (see
Section 6 for details), ie. M = (2F,U), T = T




operations of synchronous, concurrent and sequential com-

position will be denoted b (A, inf).

{p} {p2}

e 0 f
({p:}h{psh.0) ({p2}{pa}{pa})

{ps} {pa}

{p1.p2} {ps}

o o) | oo
({P1.p2h{papab0) 1 ({Psh {Ps} 0)~ {{pw.p2

{P1.p2,ps}

(eONlI{ps}
Ps}{P3.P4.Ps} 0)}
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goh I {pa} (@0h)[{ps}
{Par ps) {PepA0) ' ({psh {pa} D) {{P3.Pa,Ps}.{Pa,Pe.P7}.0)}

{Ps,p7} {p3} {P3.P4.Ps}
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g
(oo

{pa}

h
({pak{p}{pe})
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Figure 4. Deriving exemplary a process term
of the net from Figure 1 with associated infor-
mation elements resp. information sets.

Compared to [9] and [7], the definition of algebraic
(M, I)-nets is as general as possible. In order to derive

conclusions about process term semantics on the algebrai

level similar as in [7] it is necessary to require certain
properties for the mapping:/ of an algebraid.M, 7)-net
(A, inf), relating the setsZ, domy, [|), (Z, doms;, &) and
M = (M, +). All properties have a simple intuitive inter-

(Conb) (inf(s1),inf(s2)) € domyg, (inf(s1)® inf(s2),
m), (inf (s1), inf (m1)), (inf (s2), inf (m2)) € domyj,
pre(s1) + pre(sz) +m = pre(sy) + ma, post(s1) +

= pre(sa)+mae = (inf (pre(s2)+m), inf(s1)),
(inf (post(s1) +m),inf(s2)) € dom;

(Con6) (inf(s1),inf(s2)) Edom = (in
€ domg and {inf(s)| mf(sz)}
inf (s2), inf (s1) @ inf (s2)}

(Det) (inf (). inf (), (inf (s), inf (1)) € domy, pre(s)+
x = pre(s) + y = post(s) + x = post(s) +y

f(52))

f(s1), n,
= {inf(s1) |

The first two consistency properties (Conl) and (Con2)
are self explanatory. Property (Con3) states that the in-
formation (about concurrent composability) attached to a
synchronous step includes information abouytre(s) and
post(s) and (Con4) tells that it also includes information
about sub-steps of. (Con5) can be interpreted as fol-
lows: if two synchronous step terms, ss can occur syn-
chronously and sequentially in the ordgr — s, in the
same initial marking, then the occurrencespfdoes not de-
pend on the final marking of the occurrencesgpfand the
occurrence of; does not depend on the initial marking of
the occurrence of;. The next condition (Con6) determines
that two synchronous step terms, which can occur concur-
rently, can also occur synchronously and that the informa-
tion associated to their concurrent composition incluties t
information associated to their synchronous composition.
For net classes we are interested in, the occurrence of a step

in a markingm is deterministic in the sense that the fol-
ower markingm’ is unique (Det).

4. Causal semantics of algebrai¢M, 7)-nets

We define explicit causal semantics of algeb(ai¢, 7)-

pretation and for all common net classes (with so-structure
based semantics) it is easy to show that they are fulfilled. "€tS Py @ssociating so-structures to process terms.

In contrast to [9] where no results are obtained on the ab-pefinition 7 (So-structures of process termsye define in-
stract level we have to introduce more specific properties fo dyctivelylabelled so-structurego, = (V, <, Ca,la) Of

inf. We did not include them into the algebraﬁjM,I)-net (or associated to) a process termsgo,,, = ((Z)’ @7 (Z)’ @) for
definition, instead, for each stated result we will explicit ;¢ M7, go, = ({v},0,0,1) with I[(v) = t fort € T, and
mention which properties are required. These propert@sar ,_ .. = (1,UVa,0, =y U Ca U(Vy x Va)U(Vax V4), 11U
for z,y,m,m1,ma € M ands, s1, s € Step(a,iny): I2), for synchronous step terms, sy € Step(a,inys) With
associated so-structurepy = (V4,0,C1,01) and goy, =
(Va,0, =, 12), where the sets of nodés and V5 are as-
sumed to be disjoint (what can be achieved by appropriate
renaming of nodes). Finally, given process temmsandas

with associated so-structures, = (Vi,<1,C1,0;) and

gos = (Vé, <9, 29, ZQ), define

(Conl) (mf(x),mf(y)) € domj = inf(x +y) =
inf () || inf (y)

(Con2) inf (0) = io
(Con3) {inf(s)} = {inf(s), inf (pre(s)), inf (post(s))}

(Con4) (inf(s1),inf(s2)) € domg = {inf(s1 ® s2)} =
{inf(s1 @ s2), inf (s1), inf (s2)}

® J0n |ay = (V1 U VQ, <1 U<, 1 U |:2,l1 Ulg),

® G0aiar, = (ViU Vo, =1 U< U(Vi x Vo), 1 U o
U(Vi x Va), 11 Uly),



again assuming disjoint sets of nodésand V5. abled inm, wherego is an extension ofo’. We denote by

. . MinEnabled ) h f all h minimal en-
Since all labelled so-structures associated to a process inEnabled(A, inf, m) the set of all suc ae

term e are isomorphic (and arbitrary labelled so-structures abled labelled so-structures. For example with this defini-
. o are P rary . tion one can check (intuitively and technically) that tha ru
isomorphic togo,, are also associated tg we mostly dis- from Figure 1 is inMinEnabled(A, inf,m). In the next
tinguish labelled so-structures only up to isomorphism. It L

) . : . definition process terms are identified through an equiva-
Is easy to verify (by an inductive proof) that a labelled so- lence relation. The basic idea is to identify two enabled
structureyo,, of a process term is synchronous closed. :

. e ) so-structures if one is an extension of the other. Carryin
In Figure 2 the principle of so-structures associated to ying

rocess terms is demonstrated. Note that there cannot exi:s?ver this principle to process terms we will show in Theo-
P . ' . . . em 13 that two process terms are equivalent if their asso-
a process term to which the run from Figure 1 is associated

. ) iated so-structures can be identified in the above destribe
because this so-structure is not synchronous closed. Thaﬁ

is why we considered its linearizations (which are always ense. In this context the process terms in Figure 2 should
S ncgronous closed). The fact that in this example it is :;/c— all be equivalent. For algebrajo\l, 7)-nets representing

y . . P concrete Petri nets equivalent process terms will reptesen
tually possible to find such process terms for all of these

. R . L the same commutative process of the Petri net (for details
linearizations (see Figure 2) leads to the next essental id P (

) and examples to commutative processes see [7]). In the ex-
We want to deduce so-structure based semantics of alge- b P [7)

. . . ample all process terms in Figure 2 represent the (commu-

braic (M, Z)-nets from their process term semantics. Easy P process t g P (
. . tative) process in Figure 1.

examples show that single so-structures associated te a pro
cess term in general cannot describe each run of a Petri nepefinition 9 (The congruence-). The relation~ on the
(e.g. as explained the run from Figure 1 is not associatedset of all process terms of an algebrais1, 7)-net is the
to a process term; other examples which are also valid forjeast congruence of the partial algebra of all process terms
the partial order case include so called N-forms [7]). Con- wjith the partial operationss, | and;%, which includes the

sequently the set of so-structures of process terms is notelation given by the following axioms for process terms
expressive enough in order to directly describe the com-,, 3 o, as, a3, as and markingsn, n:

plete causal semantics of algebrajet, 7)-nets. Butwe  (1)q |3~ 8]

can derive the complete causal behaviour from the set of s0{2) (o || 8) | v ~ o ||(3 ]| 7)

structures of process terms in a similar way as in [7] for the (3) (a; B); 7y ~ a; (3;7)

partial order based semantics case. This causal behavioufa) o = ((ay || a); (s || as)) ~ B = (a1 as) || (vz; )
will be represented by the set of so calleabled labelled 5y g3~ 3@ a

so-structures For their definition we denote process terms () (o @ 8) ®+ ~ a ®(3 G )

a of the forma = (s1 || ma1);.. .5 (sn |mn) (S1,..., 80 € (7) (@ B) ~ (|| pre(B)); (post(a) || B)

Step(a,int), M1, ..., mn € M) assynchronous step se-  (8) («; post()) ~ a ~ (pre(a); a)

quence termsand the set of all synchronous step sequence g) iy ~ idm | idy,

terms with initial markingn by Stepseq 4, inf,m)- Itis easy (10)pre(a)+m = pre(a)+n, post(a)+m = post(a)+n
to observe that so-structures associated to synchromeis st —, (|| id,,,) ~ (« || id,,)

sequence terms are total linear. (11) (a || id) ~ «

Definition 8 (Enabled labelled so-structurep labelled if the terms on both sides ef are defined process terms.
so-structurego is enabled to occuin a markingm w.r.t.
(A, inf), if everygo’ € strats,s(go) is associated to some
B € Stepseq(a,inf,m)- Denote byEnabled(A, inf,m)
the set of labelled so-structures enabled to occufnim.r.t.
(A, inf).

(
(
In this definition enabled labelled so-structures are in- (
(
(

E.qg. for the first two process terms in Figure 2 we have
the following equivalence transformation:

(e ) 1{ps}); (9@ ) Il {ps}) ©
(f [{p1}): (e [{pah)) IHps )i (9 @ h) [{ps}) Q
(FIHp1); e IHpa})) 1({ps }: {ps})); (g @ B)[I{ps}) 2

9)

FIHe s (e Ipad [Hps)): (g @ h) [{psh)

[ {1, ps}); (e l{pas ps})): (g h) [{ps}) (note that
| occurring process terms are defined).

Given two ~-equivalent process terms and 3, there
holds pre(a) = pre(8) and post(a) = post(5). The
so-structures associated to process terms are changed only
through the axioms (4) and (7). Regarding (4) we get that

troduced using linearizations. Figure 2 gives an example
how to check if an so-structure is enabled. It shows that
the run from Figure 1 is enabled w.r.t. the marked net in al
the same figure. We will show in Theorem 10, that so-
structures of process terms are always enabled in thelinitia
marking of the process term. Obviously, every extension
of an so-structure enabled in is also enabled inn. A

labelled so-structurgo enabled inm is said to bemini-

mal, if there exists no labelled so-structuj& # go en- 5According to [2] this least congruence exists uniquely.

(
(
(
(




go, IS an extension ofiog with additional<-ordering be- With this theorem we can identify minimal enabled so-
tween events of; anday as well as between events @f structures through their canonical sets (use Remark 12).

andas. Regarding (7) the associated so-structures are not . .
comparable in a similar way. Corollary 14. Let (A, inf) be an algebraic(M, Z)-net

In order to simplify the identification of transitions with the same preconditions as in Theorem 13 and let

of a process term and nodes (events) of an associated? € Enabled(A, inf,m). ThenTg:" C [a].. for some
so-structure it would be helpful to assume that the la- P/OCESS term of (A, inf v )- 115" = [a]~, then
belling function of an so-structurgo,, of « is the id- go € MinEnabled(A, inf,m).

function. In such a case a transition would occur only

once in a process term. To achieve this simplification for 5 The corresponding algebraic( M, T)-net

a given process term, we will identify copies of transi-

tions of the process term with events of the associated so- Despite the differences between classes of Petri nets,
structure: For a se¥” and a surjective labelling function there are some common features of almost all net classes,
[+ V — T we denote by(Ay,,inf () the algebraic  such as the notions afarking(state) fransition, andoccur-

(M, I)-net given by Ay = (M, V,prew,y, postv,y) rence rule(see [4]). Thus, in the next definition we suppose
andinf ;) : MUV — I, wherepre(y,)(v) = pre(l(v)), a Petri net be given by a set of markings, a set of transitions
postypy(v) = post(l(v)), infylu = infln and and an occurrence rule determining whether a synchronous
inf (v (v) = inf(l(v)) for everyv € V. (A, inf (v,)) step (a multi-set) of transitions is enabled to occur in @giv

is called(V, 1)-copy net of A, inf). marking and if yes determining the follower marking. The

The first important theorem of this paper shows that so- occurrence rule of a Petri net with a set of transiti@hsnd
structures of process terms are enabled in the initial mgrki  a set of markingd/ can always be described by a transition
of the process term. system. Accordingly, we suppose that a Petri net is given in

the form of a transition syste/, £, NT') with nodesn ¢
Theorem 10. Let a be a process term of an alge- j/ |apelledarce € £ C M xNT x M and labels € N7,
braic (M, I)-net(A, inf) which fulfills (Con1)-(Con3)and  \yheres is interpreted as a synchronous step of transitions.

(Con). Thengo, € Emnabled(A, inf,m) with m = The notationm — m’ for (m,s,m’) € E means thas

pre(a). In particular, everygo' € stratsos(goa) IS @S- can occur inm with follower markingm/. The notation

sociated to somg € Stepseq(a, ins,m) Satisfyinga ~ 3. mo "3 m,, means that there existy, ..., m,_1 € M,
such thatng =5 ma, ..., Mp_1 — m,.

An enabled so-structuge is uniquely determined by the
set of process terms whose associated so-structures extendefinition 15 (Corresponding net)Let N = (M, E,NT)
go. As we have already seen in the recurring example thepe a Petri net in the form of a transition system. An al-
run (an enabled so-structure) from Figure 1 can be recon-gebraic (M, Z)-net (M, T,pre: T — M, post: T —
structed with the linearizations from Figure 2 which are all )7) inf) = (A, inf) is called acorresponding net tov
associated to certain process terms. if the occurrence rule for synchronous steps is preserved,
i.e. if for every pair of markings:, m’ € M and every syn-
chronous step € N7 there holds:m — m’ if and only
if there existss € Step(a,ins) With |5| = s and a mark-
ing m € M such thate = §||m is a defined process term
fulfilling pre(a) = m andpost(a) = m’'.

Definition 11. Let go = (V,<,,0) €
Enabled(A, inf,m). Then the setryt" of all pro-
cess termsv of (A, inf v,;)) With pre(a) = m whose
associated so-structures exte(id, <, C,id) is called the
canonical setf go.

From the definitions we concluden **3" m/ «—
there existsoe : m — m' € Stepseq(a,ins,m) Of the
form o = s1|m;...;8, | My, wherem, € M and
5; € Step(a,ing) With |8;] = s; for everyi € {1,...,n}.
Then« is calledcorresponding tom “23" m’. More-
The next theorem states that process terms with the sam@Ver, an so-structure associatechits calledassociated to

.Sn

initial marking, whose associated so-structures are all ex ™ —— m'. Altogether this describes the consistency of

Remark 12. Let go = (V,=<,,0) €
Enabled(A, inf,m), a € Tgi" and go, = (V,=q
,Ca,id). Thengo = (V,Nyeyean <asNaerean Cayl) DY
Proposition 2. ! !

tensions of one enabled so-structure,arequivalent. the algebraic approach to operational step semantics.
The construction of corresponding algebraitt, 7)-
Theorem 13. Let (A, inf) be an algebrai¢.M, Z)-net ful- nets provides a general framework to derive causal seman-

filling (Det) and (Conl)-(Conb5) and and § process terms  tics for a wide range of concrete net classes. This is il-
with initial marking m. If go, and gog are extensions of  lustrated in Section 6 for the example of elementary nets
go € Enabled(A, inf,m), then there holds ~ §. with inhibitor arcs equipped with the a-priori semantidee(t



respective ideas were already exemplary developed in the  post(t) = t*, inf(t) = (%,¢*, 7t) (¢t € T) and
previous sections) using the following general scenafip: ( inf(m) = (m,m,0) (m € M).

Give the classical definition of a Petri net class including

their synchronous step occurrence rule. (2) Given a net ® 40ma = {((a,b,¢),(d;e, f)) € I x I'| (aUb)N (dU
N of the considered class, construct a corresponding al- ) =anf=dnc=0}wih (abc)dde, f) =
gebraic(M, Z)-net (A, inf) through definingM, Z, pre, (aUd,bUe, (cUf)\ (bUe)).

poi)t, mJ; aaproprti_ately and der?uctgf,/% arzg)asp?]artiatlhalt- N dom“ = {((a,b,c),(d,e, f)) € I x I | (aUb)N
gebra of information isomorphic ~. ow thai B = B .
(A, inf) satisfies the stated properties of the mapping (d ;J 2 '_d (a U b_) nf d_bc N(dUe) = D} with
(thus ensuring the validity of the theorems of Section 4). (4 (a,b,) [|(dse, f) = (aUd,bUe,cU f)
Now one can derive algebraic semanticé.4f inf ) through and define
process terms and thus causal semanticsVothrough

MinEnabled (A, inf,m). o supp : 2" — 27 x 27, supp (A) = (51(A), s2(4) \
From the considerations of this section we can conclude  s1(A)) wheres; (4) = U, 4 e 4(aUb) andsz (4) =

that the causal semantics of derived with this scheme U(a,b,c)eA c.

are consistent with the operational semanticsN\of be-

cause obviously (using Theorem 1Q)o is associated to o =C 2/ x 2!, A= B <= supp(A) = supp(B).

81...8n

m 5" m/ <= go € stratg.s(go’) for somego’ €
MinEnabled (A, inf, m). Moreover so-structures which
are not enabled never fulfill such a property and thus mini- : ; ;
mal enabled so-structures are the so-structures withaise e forward computation that the algebrdit1, 7)-net defined
causalities guaranteing consistency to the operational ocin th|§ sectl_on fulfllls'all formulated properties of the map
currence rule. These characteristics ensure that theederiy PINg /- Itis shown in [7]:

causal semantics are reasonable and should always COi”Theorem 16. The algebraic (M, T)-net
cide with process based semantics. In [7] this was already (27, T, pre, post), inf) with M, T, pre, post, inf ~as
demonstrated for several Petri net classes with partiarord developed in this section is corresponding N1
based semantics. Moreover if there are no non-sequentiataccording to Definition 15).

semantics based on processes for a given Petri net class,

In [7] it was shown that= is the greatest closed congru-
ence ot = (2/, {|[}, dom ;2" x 27, U). Itis a straight-

they can be straightforwardly given (following the scenari To prove the consistency of the algebraic approach to

above) byMinEnabled (A, inf,m). the process based concept we can use an important result
about activator processes. Corollary 2 in [11] (considgrin

6 Elementary nets with inhibitor arcs the more general case of p/t-nets with inhibitor arcs) reads

in our terminology:

. In t'h|s schop we will now apply the techniques devel- thaorem 17. {900 | o € Stepsequaingm} =
ped in the previous sections to the concrete net class of eIU
ementary nets with inhibitor arcs equipped with the a-prior
semantics. Some of the main ideas, e.g. the definition ofa  As a consequence we directly get tRatn(ENI,m) C
corresponding algebra{o\1, 7)-net, were already partially ~ Enabled(A, inf,m). In order to prove the main result
discussed on the basis of the recurring example netin FigureRun(EN1,m) = MinEnabled(A, inf, m), we funda-
1. Note that the content of this section is based on the pro-mentally need the following lemma.

cess semantics introduced by Janicki and Koutny (see Sec-

tion 2). Similar results as in this section have been derivedL€mma 18. Letgo; = (V, <1, C1,4d) andgoy = (V, <2

in [9]. But in [9] there was only shown a one to one corre- > —2,%d) be labelled so-structures of-equivalent process
spondence between the process term semantics and the préMsa : m — m’ and 5 : m — m' of (A4, inf) and
cess semantics in a complicated lengthy ad-hoc way withoutl€t g0 = (V, <, C,id) € Run(ENI,m) satisfying that
regarding causal behaviour. Here we additionally get the 90 < 902, thengo C gox.

complete consistency of the causal behaviour derived from As a corollary we get that for each run ¢
process terms and the causality of activator processeg USinRun(ENI, m) there isa with T2 = [a]... That means

the general framework from Section 5. Run(ENI,m) C MinEnabled(A, inf,m) (Corol-

Given an elementary n2et with inhibitor argsN7 :d' lary 14). For the reverse statement observe that for
(P, T,F,C_) (see Section 2) we construct a corresponding go € Enabled(A, inf,m) every so-structurgjo’ ¢

algebraiq M, Z)-net analogously as in [7] by stratses(go) is associated taw € Stepseq(a,ing,m)- All
o M = (2P 0), I = 28 x 2P x 2P pre(t) = %, these process termsare ~-equivalent (Theorem 13) and

reRun(ENI,m) Stratsos (T) .
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