
Parallel sorting on Intel Single-Chip Cloud computer

Kenan Avdic1, Nicolas Melot1, Jörg Keller2, and Christoph Kessler1

1 Linköpings Universitet, Dept. of Computer and Inf. Science, 58183 Linköping, Sweden
2 FernUniversität in Hagen, Fac. of Math. and Computer Science, 58084 Hagen, Germany

Abstract. After multicore processors, many core architectures are becoming in-
creasingly popular in research activities. The development of multicoreand many
core processors yields the opportunity to revisit classic sorting algorithms, which
are important subroutines of many other algorithms. The Single-Chip Cloud Com-
puter (SCC) is an experimental processor created by Intel Labs. It introduces 48
IA32 cores linked by an on-chip high performance network. This workintro-
duces the evaluation of the performances this chip provides, regardingaccess to
main memory and mesh network throughput. It also gives implementationsof
several variants of parallel mergesort algorithms, and analyzes the performance
of the merging phase. The results presented in this paper motivate to use on-chip
pipelined mergesort on SCC, which is an issue of ongoing work.

1 Introduction

Processor development is on the way toward the integration of more and more cores
into a single chip. Multicore processors allow both better performance and energy ef-
ficiency [2]. Shortly after the release of the first multicoreprocessors around 2005,
research activity now involvesmany-core architectures such as SCC. The Single-Chip
Cloud Computer (SCC) experimental processor [3] is a 48-core “concept-vehicle” cre-
ated by Intel Labs as a platform for many-core software research. Its 48 IA32 cores in
a single die are synchronized and communicate through a 2D mesh on-chip network,
which also realizes access to the chip-external main memorythrough four memory con-
trollers. Unlike many smaller scale multicore processors,the SCC does not provide any
mechanism of cache consistency for memory shared among the cores.

The raising popularity of such architectures in research yields new considerations
over classic algorithms such as sorting algorithms. Sorting algorithms are important
subroutines in many algorithms and model the class of algorithms with low compute-
communication ratio. Parallelization of sorting algorithms for multi and many-core ar-
chitecture is an active research area. For example some recent work leverages the SPEs
in the Cell Broadband Engine [2] to implement parallel sorting algorithms [4, 6]. How-
ever Hultén et al. [5], Keller and Kessler [8] argue that these implementations suffer
from a performance bottleneck in off-chip memory access. They propose a pipelined
mergesort algorithm relying on Cell’s on-chip network capabilities and show in [5]
that it achieves a speedup of up to 143% over work from [6] and [4]. This perfor-
mance improvement comes thanks to a drastic reduction of off-chip memory accesses
by forwarding intermediate results from core to core in the pipeline through the on-chip
network.



Even if both the SCC and the Cell link their cores through a high-performance inter-
nal network, they differ very much in their communication models as well as available
memory buffers. Implementing a mergesort algorithm on the SCC could reveal the im-
pact of such differences on actual performance. This paper presents an evaluation of the
mappings of the threads to the cores in the chip, and their performance regarding access
to main memory or when communicating with each other. It alsointroduces the imple-
mentation, the evaluation and comparison of several variants of the merging phase of
parallel mergesort algorithms. Mergesort is relatively easy in its structure; as a memory
intensive algorithm, it is a good way for studying the behavior of the processor in case of
memory intensive computation. This work does not focus on the development of high
performance sorting algorithms for the SCC; rather, the implementations introduced
here, in conjunction with the evaluation of on-chip networkand main memory, pinpoint
where the performance bottlenecks are on SCC and define the direction of further work
toward an on-chip pipelined sorting algorithm on this processor. The remainder of this
paper is organized as follow: Section 2 gives a quick description of the SCC. Section 3
describes several parallel mergesort algorithm variants making use of SCC’s cores’ pri-
vate and shared memory, as well as caching. Section 4 describes the evaluation of the
SCC regarding the performance of its on-chip network and main memory access, then it
measures the performance of parallel mergesort algorithms. Finally Section 5 discusses
the results, introduces the ongoing work and concludes thisarticle.

2 The Single Chip Cloud computer

The SCC is the second generation processor issued from the Intel Tera-scale research
program. It provides 48 independent IA32 cores, organized in 24 tiles. Figure 1(a) pro-
vides a global view of the organization of the chip. Each tileembeds a pair of cores, and
tiles are linked together through a 6×4 mesh on-chip network. A tile is represented in
Fig. 1(b): each tile comprises two cores with their cache anda message passing buffer
(MPB) of 16KiB (8KiB for each core); it supports direct core-to-core communications.
The cores are IA32 (P54C) cores running at 533MHz (they can beaccelerated); each of
them has its own individual L1 and L2 caches of size 32KiB (16KiB code + 16KiB data)
and 256KiB, respectively. Since these cores have been designed before Intel introduced
MMX, they provide no SIMD instructions. The mesh network canwork up to 2GHz.
Each of its link is 16 bits wide and exhibits a 4 cycles latency, including the routing
and conveying activity. A group of six tiles share an off-chip DDR3 memory controller
that the cores access through the mesh network. The overall system admits a maximum
of 64GiB of main memory accessible through 4 DDR3 memory controllers evenly dis-
tributed around the mesh. Each core is attributed a private domain in this main memory
whose size depends on the total memory available (682 MiB in the system used here).
Furthermore, a common small part of the main memory (32 MiB) is shared between
all cores; this small amount of shared memory may be increased to several hundred
megabytes. Note that private memory is cached on cores’ L2 cache but cache support
for shared memory is not activated by default in Intel framework RCCE. When acti-
vated, no automatic management for cache coherency among all cores is offered to the
programmer. This functionality must be provided through a software implementation.



0
0

10
1

2
3

4
5

6
7

SCC die

D
IM

M

R

tiletile

R

tile

R

tile

R

tile

R

tile

RMC MC

D
IM

M

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

RMC MC

D
IM

M

D
IM

M

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

(a) Global organization of the 24 tiles linked by an on-
chip mesh network.

L2

256 KiB

P54C
L1

16 KiB

MPB

16 KiB

P54C
L1

16 KiB

L2

256 KiB

traffic

gen

mesh

I/F R

(b) A tile in SCC with two cores and
their individual memory and MPB.

Fig. 1: Organization of SCC.

The SCC can be programmed in two ways: a baremetal version forOS development,
and using Linux. In the latter setting, the cores run an individual Linux kernel on top of
which any Linux program can be loaded. Also, Intel provides the RCCE library which
contains MPI-like routines to synchronize cores and allowsthem to communicate data
to each other, as well as the management of voltage and frequency scaling. Because of
its architecture consisting of a network that links all cores and each core running a Linux
kernel, programming on the SCC is very similar to programming parallel algorithms for
clusters (for instance) on top of a MPI library.

3 Mergesort algorithms

Parallel sorting algorithms have been investigated since about half a century for all kinds
of platforms, sorting being an important subroutine for other applications, and being a
good model for non-numeric algorithms with a low computation-to-communication ra-
tio. For an overview cf. [1] or [7]. Mergesort originated as an external sorting algorithm,
with data held on the hard disks and merging done in main memory. A similar situation
occurs with multiple cores on a chip, connected by an on-chipnetwork, and the main
memory being chip-external. Furthermore, mergesort has a simple control structure, is
cache-friendly as the blocks to be merged are accessed consecutively from front to end,
and is largely insensitive to distribution of values or occurrences of duplicates. For this
reason, we chose mergesort for implementation on SCC.

The mergesort algorithm sorts values using a recursive method. The array to be
sorted is recursively split into chunks that are trivial to sort then merged together to
obtain larger sorted blocks. Figure 2 gives an example of thesplit/merge phases of the
mergesort algorithm, where the split operation is actuallytrivial. The chunks issued
from blocks split can be treated separately and independently. This separation enables
parallelization of the algorithm thus leading to aparallel mergesort algorithm. When
the block has been divided into as many chunks as there are cores available, the chunks
are sorted sequentially and then merged pairwise on different cores. Experiments with
larger problem sizes show that the merging phase dominates overall sorting time; for



instance, when sorting 32 Mi integers on 32 cores with the fastest of our mergesort
implementations, local sorting accounts for less than 10% of the overall time. For this
reason, focus will be on the merging phase in the remainder ofthis paper.

1 2 3 4 5 6 7 8

23

23

2 3

4 6

4 6

4 6

2 3 4 6

234 6

15

15

1 5

78

78

7 8

1 5 7 8

1578

1 2345 678

Fig. 2: Data-flow graph of the mergesort algorithm.

The first variant of our parallel mergesort, namely “privatememory mergesort algo-
rithm”, is an adaptation to the SCC’s architecture. It uses cores’ private memory to store
integer blocks and shared memory to transfer these blocks from a core to another. Each
core starts the algorithm by generating two blocks of sizeprivate_memory_size

4·number_o f _cores of pseudo-
random non-decreasing values. This size is chosen so that the processor that performs
the last recursive merge operation can fit both input and output buffer in its private main
memory. Then the algorithm enters a sequence ofrounds as follows: A core merges its
two blocks into a larger one and either sends it to another core or waits for a block to be
received. All cores whose ID is lower than or equal to half thenumber of active cores in
this round wait for a block to be received. All other cores send their blocks to a recipient
core whose ID is⌊ id

2 ⌋, through shared main memory and then turn idle. At the end of a
round, the remaining active core number is divided by two. Atthe last round, only one
core is still active and the algorithm ends when this core finishes the merging of both of
its blocks. Figure 3(a) provides an illustration of this algorithm.

The communication process is shown in Fig. 3(b). Forwardingblocks uses shared
memory for buffering: at every round, the shared memory is divided into buffers of size
2·total_shared_memory
number_o f _active_cores . This value maximizes the buffer size for block transfers because
half of the active cores have to send a block in a round. Both sending and receiving
cores can calculate to which shared main memory buffer they should read or write the
block to be transferred, from their ID and active round number. A core sends its block
to another core by writing a portion of this block in its dedicated buffer in shared main
memory. When this shared memory buffer is full, the sending core sets a flag to the
recipient core and waits for it to reply another flag stating it is ready to take more. Both
sender and receiver can determine the amount of data to be sent and received from to
the total amount of values to be sorted and the number of the active round. Then the
process restarts until the whole block has been transferred.

Flags and barriers used for synchronization are sent through the on-chip network.
Also in the communication phase, each processor can calculate to what portion of main
memory it should read or write. Therefore there is no two cores writing at the same



address in shared memory. For each core writing in shared memory, exactly one other
reads the same address after both cores have synchronized using a flag and on-chip
network. Finally, the shared memory used for this algorithmis not cached, thus there is
no need any shared memory coherency protocol.

core 0 core 2core 1 core 3

Round 1

Round 2

Round 3

merge

communicate

Round 0
generate

non-decreasing

(a) Cores merge their blocks
into one larger block and then
send it to another core to merge
it.

core 2 core 0

blocking

blocking

blocking

transfer to

shared memory

transfer from 

shared memory

data written to

shared memory

data read fro
m

shared memory

(b) One iteration of the block communication
process.

Fig. 3: Private memory mergesort algorithm.

A variant of the private memory mergesort algorithm uses theon-die network mesh
to communicate blocks between cores. The process of “MPB private memory algo-
rithm” is the same as the one described above but individual core’s MPB memory buffer
is used in place of shared memory as transfer buffer. This uses the high speed on-die
network and reduces accesses to main memory when it comes to transfer data blocks
from one core to another. The other two variants of parallel mergesort are similar to
the one described above, except that they work directly on shared memory as storage
for input and output blocks. Their implementation here actually relies on SCC’s shared
memory. Since they work directly on shared memory, they don’t need any transfer phase
in the algorithm. The two shared memory versions of mergesort differ in that one uses
L1 and L2 cache and the second one does not use caches at all. Similarly to the private
memory algorithm, each core can determine its own chunk in main memory thanks to
its ID and the number of the round being run. Thus no coherencyprotocol is required
here. In the case of cached shared memory, the cache is flushedbefore and after each
round in order to make sure that no value cached in a round is considered valid and is
read again from the cache in the next round; instead, it is forced to be actually loaded
from main memory.

A significant difference between private memory and shared memory variants is that
the private memory variant needs a communication phase between all rounds, which
requires more or less accesses to main memory, while the shared memory variant does
need any transfer phase. This difference gives a performance advantage to the shared
memory variants over the private memory based algorithms.



4 Experimental evaluation

We first analyze the influence of the core placement on memory access performance and
communication latency and bandwidth, using a smaller part of the algorithm and a mi-
crobenchmark, respectively. Then we evaluate the performance of the overall merging
algorithm implementations on SCC.

4.1 Access to main memory

In the following, the length of the first merge round is compared in experiments with
2k cores, wherek = 0, . . . ,5, and initial block size of 220 integers. This is done for the
private memory variant, the uncached shared memory variant, and the cached shared
memory variant, as described before. Each setting is run 20 times to reduce influences
such as the operating system’s scheduler. The averaged timeis computed for each core,
as well as the minimum, maximum, and average times over all cores. The results are
depicted in Fig. 4.

Fig. 4: Runtime differences with increasing core count

The measurements show that placement of cores on the die has asignificant impact
on performance while accessing main memory or when communicating to each other.



When accessing to main memory, Fig. 6(a) demonstrates that the closer a core is to the
relevant memory controller, the faster it is loading or writing data. It shows a linearly
growing minimum time bound to complete round 1 of private memory mergesort algo-
rithm. That round is quite an intensive main memory user (private and shared). In each
setting, Fig. 4 shows that the runtime increases with the growing number of cores. This
indicates contention and/or saturation at the memory controllers, as the code executed is
the same in all cases. This effect is very prominent in the shared memory variants. Con-
sequently, on-chip pipelining might help to relieve the memory controllers, especially
in applications where the computation-to-communication ratio is low. Figure 4 also
shows that the difference between the fastest and the slowest core in a round increases
with growing core count, especially for the shared memory variants. This indicates that
the distance of a core to the memory controller has a notable influence on the share of
the controller’s bandwidth that the core gets. Yet, as the distribution of the times is not
similar to the distribution of the distances, there must be some other influence as well,
which however so far is unknown to us.

4.2 Communication latency and bandwidth

The on-chip network is also of interest, as a future pipelined mergesort implementation
would make heavy use of it. The evaluation method proposed here consists in inves-
tigating latency by making a core to send several blocks to another core, and monitor
the average time these blocks take to be totally transferred. This test is repeated with
growing block sizes and with pairs of cores at a growing distance. Figure 5 illustrates
how the pairs are chosen to increase the distance to its maximum.

71

(a) 3 hops between
cores.

111

(b) 5 hops between
cores.

23

1

(c) 6 hops between
cores.

47

1

(d) 8 hops between
cores.

Fig. 5: Four different mappings of core pairs with a different and growing distance.

Figure 6(b) pinpoints that the communication speed is a linear function of the dis-
tance between cores, and the low standard deviation indicates that this speed is stable.
However, when the block size reaches 256KiB this linear behavior does not hold any-
more and the standard deviation gets much higher. 256KiB is the size of L2 cache and
transferring such blocks may generate much more cache misses when storing received
values, thus drastically slowing down the communication.



(a) Execution times for round 1 of pri-
vate memory mergesort algorithm, where
nodes manage 1 million integers, de-
pending on the distance from a core to
its memory controller.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s

Hamming distance in hops

Block transfer time and distance between cores

64KiB
 128KiB
 256KiB

(b) Average time to transfer 64, 128 and 256 KiB
blocks as function of the distance between cores.

Fig. 6: Impact of the distance from a core to its main memory controller and between
two cores.

4.3 Overall mergesort performance

The merging algorithms described in Section 3 are evaluatedby monitoring the time
they take to sort different amounts of integers. The stopwatch is started as soon as all
data is ready and cores are synchronized by a barrier. Then the cores run the algorithm
after which the stopwatch is stopped. Every algorithm is runa hundred times with the
same amount of randomly generated integers to be sorted and the mean sorting time is
plotted in Fig. 7.

The private memory mergesort algorithm requires the blocksto be copied to shared
memory, and then to a different private memory. This doublesaccess to main memory
and significantly slows down the private memory mergesort variant. Figures 7(a) and
7(b) show slightly better performance for the private memory variant compared to the
cached shared memory variant but this does not scale with number of cores. As soon
as more than 2 processors are used, the private memory gets the worst performances of
all algorithms implemented. As expected, the private memory variant using the MPB
is faster than its equivalent using shared memory to transfer blocks, as it requires less
than half the number of main memory access when transferringa block from one core
to another. This latter variant competes very well with the cached shared memory al-
gorithm even though it still requires a communication phasebetween all rounds. The
cached shared memory is the fastest of all algorithms studied here.

However the good performance of the MBP private memory algorithm shows that
transferring data from core to core using MPBs and on-die network brings little penalty



(a) Merging time using 1 processor. (b) Merging time using 2 processors.

(c) Merging time using 4 processors. (d) Merging time using 8 processors.

(e) Merging time using 16 processors. (f) Merging time using 32 processors.

Fig. 7: Performance of the four mergesort variants on SCC, sorting integer blocks with
randomly generated data of different size and using different numbers of cores.



Fig. 8: Performance of the four algorithms merging blocks ofconstant values, identical
among different blocks.

to the mergesort algorithms studied, and much less accessesto main memory. It demon-
strates the high capacity of this on-die network, which encourages the implementation
of a pipelined mergesort algorithm using this network.

Another setting alters the algorithms to generate blocks ofconstant, identical value
among blocks and merges them using the same four techniques.This different pattern
of data to be merge-sorted aims at showing the behavior of thealgorithms in an ex-
treme case of input. Constant, identical values in all blocks denote the case of uniform
input as well as an input already sorted. The results of this latter setting are shown in
Fig. 8. It shows better performance of the mergesort algorithms with an input of already
sorted data. However, when compared to Fig. 7(f), the ratio between times of algorithms
merging random and constant input blocks is constant and canthus be neglected. Such
absence of significant difference is a characteristic of mergesort algorithms, which are
insensitive to distribution of values or occurrences of duplicates.

5 Conclusion and ongoing work

Mergesort (and in particular its global merging phase) is aninteresting case of a memory-
access intensive algorithm. We have implemented four versions of mergesort on SCC,
and evaluated their performance. Beyond the mergesort algorithms themselves, our ex-
periments enlighten important factors that influence performance on SCC.

Our results motivate that on-chip pipelining would make sense also for SCC; this
is an issue of on-going implementation work. Because the pipeline trades access to
main memory for heavier use of the on-chip network, the main memory is accessed
only when loading blocks to be sorted and when the final mergedblock is written back.
Also, because off-chip memory access is more expensive thancommunication through
the mesh network, it is expected that the on-chip pipeliningtechnique brings significant
speedup over any of the parallel mergesort implementationsdescribed here. Its perfor-
mance may even be improved thanks to awareness of distance between active cores and
distance to main memory controllers to generate better task-to-processor mappings.



Acknowledgments

The authors are thankful to Intel for providing the opportunity to experiment with the
“concept-vehicle” many cores processor “Single-Chip Cloud computer”, and for the
reviews provided on an earlier version of this paper. We alsothank the A4MMC re-
viewers for their comments. This research is partly funded by Vetenskapsrådet, project
Integrated Software Pipelining.

References

[1] G.S.ja Akl. Parallel sorting algorithms. Academic press, 1985.
[2] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine architecture

and its first implementation - a performance view.IBM Journal of Research and
Development, 51(5):559 –572, 2007.

[3] M.A. Corley. Intel lifts the hood on its single chip cloud
computer. Report from ISSCC-2010, IEEE Spectrum online,
spectrum.ieee.org/semiconductors/processors/intel-lifts-the-hood-on-its-
singlechip-cloud-computer, 2010.

[4] B. Gedik, R.R. Bordawekar, and P.S. Yu. Cellsort: high performance sorting on the
Cell processor. InVLDB ’07 Proceedings of the 33rd international conference on
Very large data bases, 2007.

[5] R. Hultén, J. Keller, and C. Kessler. Optimized on-chip-pipelined mergesort on the
Cell/B.E. InProceedings of Euro-Par 2010, volume 6272, pages 187–198, 2010.

[6] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani. AA-Sort: A new parallel
sorting algorithm for multi-core SIMD processors. InProceedings of the 16th Inter-
national Conference on Parallel Architecture and Compilation Techniques (PACT
’07), 2007.

[7] J. JáJá.An introduction to parallel algorithms. Addison Wesley Longman Publish-
ing Co., Inc., 1992.

[8] J. Keller and C. Kessler. Optimized pipelined parallel merge sort on the Cell BE.
In 2nd international workshop on highly parallel processing on a chip (HPPC −
2008), pages 8–17, 2008.


