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Abstract. After multicore processors, many core architectures are becoming in-
creasingly popular in research activities. The development of multantatenany
core processors yields the opportunity to revisit classic sorting algorjtithish
are important subroutines of many other algorithms. The Single-Chip@om-
puter (SCC) is an experimental processor created by Intel Labsrdtinces 48
IA32 cores linked by an on-chip high performance network. This wotko-
duces the evaluation of the performances this chip provides, regadaggs to
main memory and mesh network throughput. It also gives implementations
several variants of parallel mergesort algorithms, and analyzestfiermance
of the merging phase. The results presented in this paper motivate ta-ggo
pipelined mergesort on SCC, which is an issue of ongoing work.

1 Introduction

Processor development is on the way toward the integrafionooe and more cores
into a single chip. Multicore processors allow both betterfgrmance and energy ef-
ficiency [2]. Shortly after the release of the first multicgm@cessors around 2005,
research activity now involvesiany-core architectures such as SCC. The Single-Chip
Cloud Computer (SCC) experimental processor [3] is a 4&-tmwncept-vehicle” cre-
ated by Intel Labs as a platform for many-core software mebedts 48 1A32 cores in
a single die are synchronized and communicate through a 2h ime-chip network,
which also realizes access to the chip-external main methasygh four memory con-
trollers. Unlike many smaller scale multicore processihis SCC does not provide any
mechanism of cache consistency for memory shared amongtés.c

The raising popularity of such architectures in researefdgi new considerations
over classic algorithms such as sorting algorithms. Sgrélgorithms are important
subroutines in many algorithms and model the class of dlgos with low compute-
communication ratio. Parallelization of sorting algonith for multi and many-core ar-
chitecture is an active research area. For example somet r@oek leverages the SPEs
in the Cell Broadband Engine [2] to implement parallel saytalgorithms [4, 6]. How-
ever Hultén et al. [5], Keller and Kessler [8] argue that thamplementations suffer
from a performance bottleneck in off-chip memory acces®yTpropose a pipelined
mergesort algorithm relying on Cell’s on-chip network daifiies and show in [5]
that it achieves a speedup of up to 143% over work from [6] &jd This perfor-
mance improvement comes thanks to a drastic reduction -ahiff memory accesses
by forwarding intermediate results from core to core in tipline through the on-chip
network.



Even if both the SCC and the Cell link their cores through &hpgrformance inter-
nal network, they differ very much in their communicationadets as well as available
memory buffers. Implementing a mergesort algorithm on t8€ 8ould reveal the im-
pact of such differences on actual performance. This pajgsepts an evaluation of the
mappings of the threads to the cores in the chip, and theioymeance regarding access
to main memory or when communicating with each other. It alf@mduces the imple-
mentation, the evaluation and comparison of several viariainthe merging phase of
parallel mergesort algorithms. Mergesort is relativelgyea its structure; as a memory
intensive algorithm, it is a good way for studying the bebawif the processor in case of
memory intensive computation. This work does not focus endievelopment of high
performance sorting algorithms for the SCC; rather, thelementations introduced
here, in conjunction with the evaluation of on-chip netwarid main memory, pinpoint
where the performance bottlenecks are on SCC and definerdwidn of further work
toward an on-chip pipelined sorting algorithm on this pgsm®. The remainder of this
paper is organized as follow: Section 2 gives a quick desoripf the SCC. Section 3
describes several parallel mergesort algorithm variaatemy use of SCC’s cores’ pri-
vate and shared memory, as well as caching. Section 4 desdhib evaluation of the
SCC regarding the performance of its on-chip network andchmmeimory access, then it
measures the performance of parallel mergesort algorithimally Section 5 discusses
the results, introduces the ongoing work and concludesttiide.

2 TheSingle Chip Cloud computer

The SCC is the second generation processor issued fromttierbra-scale research
program. It provides 48 independent IA32 cores, organinetititiles. Figure 1(a) pro-
vides a global view of the organization of the chip. Eachditebeds a pair of cores, and
tiles are linked together through ax64 mesh on-chip network. A tile is represented in
Fig. 1(b): each tile comprises two cores with their cacheantessage passing buffer
(MPB) of 16KiB (8KiB for each core); it supports direct coi@-core communications.
The cores are IA32 (P54C) cores running at 533MHz (they catbelerated); each of
them has its own individual L1 and L2 caches of size 32KiB (iB5&ode + 16KiB data)
and 256KiB, respectively. Since these cores have beenrdssigefore Intel introduced
MMX, they provide no SIMD instructions. The mesh network egork up to 2GHz.
Each of its link is 16 bits wide and exhibits a 4 cycles latenogluding the routing
and conveying activity. A group of six tiles share an offgBIDR3 memory controller
that the cores access through the mesh network. The ovgstdhs admits a maximum
of 64GiB of main memory accessible through 4 DDR3 memory ratlietrs evenly dis-
tributed around the mesh. Each core is attributed a privateaih in this main memory
whose size depends on the total memory available (682 MiBearsystem used here).
Furthermore, a common small part of the main memory (32 M#B3hared between
all cores; this small amount of shared memory may be incietsseveral hundred
megabytes. Note that private memory is cached on cores’ tRechut cache support
for shared memory is not activated by default in Intel frarmdRCCE. When acti-
vated, no automatic management for cache coherency amiarared is offered to the
programmer. This functionality must be provided througlofvgare implementation.
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Fig. 1: Organization of SCC.

The SCC can be programmed in two ways: a baremetal versi@@Satevelopment,
and using Linux. In the latter setting, the cores run an iidldial Linux kernel on top of
which any Linux program can be loaded. Also, Intel provides RCCE library which
contains MPI-like routines to synchronize cores and alltvesn to communicate data
to each other, as well as the management of voltage and fiegsealing. Because of
its architecture consisting of a network that links all @omed each core running a Linux
kernel, programming on the SCC is very similar to progranghparallel algorithms for
clusters (for instance) on top of a MPI library.

3 Mergesort algorithms

Parallel sorting algorithms have been investigated siboethalf a century for all kinds
of platforms, sorting being an important subroutine forastapplications, and being a
good model for non-numeric algorithms with a low computatio-communication ra-
tio. For an overview cf. [1] or [7]. Mergesort originated asexternal sorting algorithm,
with data held on the hard disks and merging done in main mgraimilar situation
occurs with multiple cores on a chip, connected by an on-okivork, and the main
memory being chip-external. Furthermore, mergesort hasjale control structure, is
cache-friendly as the blocks to be merged are accessedotivsty from front to end,
and is largely insensitive to distribution of values or atences of duplicates. For this
reason, we chose mergesort for implementation on SCC.

The mergesort algorithm sorts values using a recursive adetfihe array to be
sorted is recursively split into chunks that are trivial tot¢hen merged together to
obtain larger sorted blocks. Figure 2 gives an example o§fti€merge phases of the
mergesort algorithm, where the split operation is actutaliyal. The chunks issued
from blocks split can be treated separately and indepelydédihtis separation enables
parallelization of the algorithm thus leading tgarallel mergesort algorithm. When
the block has been divided into as many chunks as there ae awgailable, the chunks
are sorted sequentially and then merged pairwise on diff@e@res. Experiments with
larger problem sizes show that the merging phase dominatslbsorting time; for



instance, when sorting 32 Mi integers on 32 cores with thee§if our mergesort
implementations, local sorting accounts for less than 10%eoverall time. For this
reason, focus will be on the merging phase in the remaindeispaper.
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Fig. 2: Data-flow graph of the mergesort algorithm.

The first variant of our parallel mergesort, namely “privatemory mergesort algo-
rithm”, is an adaptation to the SCC'’s architecture. It usge€ private memory to store
integer blocks and shared memory to transfer these blooks drcore to another. Each
core starts the algorithm by generating two blocks of SEEIETONS2 of pseydo-
random non-decreasing values. This size is chosen so #hatdicessor that performs
the last recursive merge operation can fit both input andubdigffer in its private main
memory. Then the algorithm enters a sequenaewfds as follows: A core merges its
two blocks into a larger one and either sends it to another aowaits for a block to be
received. All cores whose ID is lower than or equal to halfibeber of active cores in
this round wait for a block to be received. All other corescstireir blocks to a recipient
core whose 1D is{%J, through shared main memory and then turn idle. At the end of a
round, the remaining active core number is divided by twoth&tlast round, only one
core is still active and the algorithm ends when this coreffies the merging of both of
its blocks. Figure 3(a) provides an illustration of thisaithm.

The communication process is shown in Fig. 3(b). Forwardilogks uses shared
memory for buffering: at every round, the shared memorwigléd into buffers of size
iﬁi—ﬂ}”ﬁgﬂ;@g{é. This value maximizes the buffer size for block transfersause
half of the active cores have to send a block in a round. Botidiag and receiving
cores can calculate to which shared main memory buffer thewld read or write the
block to be transferred, from their ID and active round numBecore sends its block
to another core by writing a portion of this block in its deatied buffer in shared main
memory. When this shared memory buffer is full, the sending aets a flag to the
recipient core and waits for it to reply another flag statirig ready to take more. Both
sender and receiver can determine the amount of data to barsgémeceived from to
the total amount of values to be sorted and the number of ttieeaound. Then the
process restarts until the whole block has been transferred

Flags and barriers used for synchronization are sent thrthugy on-chip network.
Also in the communication phase, each processor can ctddolavhat portion of main
memory it should read or write. Therefore there is no two saveting at the same




address in shared memory. For each core writing in sharedomyeexactly one other
reads the same address after both cores have synchroningdauag and on-chip
network. Finally, the shared memory used for this algoritemot cached, thus there is
no need any shared memory coherency protocol.
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Fig. 3: Private memory mergesort algorithm.

A variant of the private memory mergesort algorithm useotielie network mesh
to communicate blocks between cores. The process of “MP&ferimemory algo-
rithm” is the same as the one described above but indivicarals MPB memory buffer
is used in place of shared memory as transfer buffer. This tieehigh speed on-die
network and reduces accesses to main memory when it comemgier data blocks
from one core to another. The other two variants of parallefgasort are similar to
the one described above, except that they work directly aneshmemory as storage
for input and output blocks. Their implementation here altjuelies on SCC'’s shared
memory. Since they work directly on shared memory, theytdwed any transfer phase
in the algorithm. The two shared memory versions of mergelkfer in that one uses
L1 and L2 cache and the second one does not use caches amékrigito the private
memory algorithm, each core can determine its own chunk iim mm@mory thanks to
its ID and the number of the round being run. Thus no coherenatpcol is required
here. In the case of cached shared memory, the cache is floefme and after each
round in order to make sure that no value cached in a roundhsidered valid and is
read again from the cache in the next round; instead, it tefbto be actually loaded
from main memory.

A significant difference between private memory and sharechory variants is that
the private memory variant needs a communication phaseeeetall rounds, which
requires more or less accesses to main memory, while thedghamory variant does
need any transfer phase. This difference gives a perforenadeantage to the shared
memory variants over the private memory based algorithms.



4 Experimental evaluation

We first analyze the influence of the core placement on menuasss performance and
communication latency and bandwidth, using a smaller dahealgorithm and a mi-
crobenchmark, respectively. Then we evaluate the perfocmaf the overall merging
algorithm implementations on SCC.

4.1 Accesstomain memory

In the following, the length of the first merge round is congzhin experiments with

2% cores, wher& = 0,...,5, and initial block size of 2 integers. This is done for the
private memory variant, the uncached shared memory va@aat the cached shared
memory variant, as described before. Each setting is ruimgstto reduce influences
such as the operating system'’s scheduler. The averagedtoomputed for each core,
as well as the minimum, maximum, and average times over afiscd he results are
depicted in Fig. 4.
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Fig. 4: Runtime differences with increasing core count

The measurements show that placement of cores on the diesigrsfecant impact
on performance while accessing main memory or when comratingcto each other.



When accessing to main memory, Fig. 6(a) demonstrates thatdbker a core is to the
relevant memory controller, the faster it is loading or imgtdata. It shows a linearly
growing minimum time bound to complete round 1 of private rogyrmergesort algo-
rithm. That round is quite an intensive main memory userv§e and shared). In each
setting, Fig. 4 shows that the runtime increases with thevigpnumber of cores. This
indicates contention and/or saturation at the memory otlets, as the code executed is
the same in all cases. This effect is very prominent in theesh@emory variants. Con-
sequently, on-chip pipelining might help to relieve the nogyncontrollers, especially
in applications where the computation-to-communicatiatioris low. Figure 4 also
shows that the difference between the fastest and the dlomesin a round increases
with growing core count, especially for the shared memonavas. This indicates that
the distance of a core to the memory controller has a notafileence on the share of
the controller's bandwidth that the core gets. Yet, as te&itution of the times is not
similar to the distribution of the distances, there mustdraes other influence as well,
which however so far is unknown to us.

4.2 Communication latency and bandwidth

The on-chip network is also of interest, as a future pipelimergesort implementation
would make heavy use of it. The evaluation method proposesl densists in inves-
tigating latency by making a core to send several blocks tihean core, and monitor
the average time these blocks take to be totally transfeflrieid test is repeated with
growing block sizes and with pairs of cores at a growing dista Figure 5 illustrates
how the pairs are chosen to increase the distance to its maxim

NN 2 DAANNNL AN AN A
NN 2 DAANNNZ AN AN
NN DANN 2 AN B (AN
ANNBN)  BAINN B BN BN
(&) 3 hops between (b) 5 hops between (c) 6 hops between (d) 8 hops between
cores. cores. cores. cores.

Fig. 5: Four different mappings of core pairs with a diffarand growing distance.

Figure 6(b) pinpoints that the communication speed is alifienction of the dis-
tance between cores, and the low standard deviation irdi¢hat this speed is stable.
However, when the block size reaches 256KiB this linear biehaoes not hold any-
more and the standard deviation gets much higher. 256KiBeisize of L2 cache and
transferring such blocks may generate much more cache snigsen storing received
values, thus drastically slowing down the communication.
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Fig. 6: Impact of the distance from a core to its main memonytrmdler and between
two cores.

4.3 Overall mergesort performance

The merging algorithms described in Section 3 are evaluiayeshonitoring the time
they take to sort different amounts of integers. The stophvét started as soon as all
data is ready and cores are synchronized by a barrier. Tleerotles run the algorithm
after which the stopwatch is stopped. Every algorithm isaumundred times with the
same amount of randomly generated integers to be sortechamddan sorting time is
plotted in Fig. 7.

The private memory mergesort algorithm requires the blocke copied to shared
memory, and then to a different private memory. This doubtE®ss to main memory
and significantly slows down the private memory mergesatima Figures 7(a) and
7(b) show slightly better performance for the private memariant compared to the
cached shared memory variant but this does not scale witlbeuof cores. As soon
as more than 2 processors are used, the private memory get®thst performances of
all algorithms implemented. As expected, the private mgmvariant using the MPB
is faster than its equivalent using shared memory to traméeks, as it requires less
than half the number of main memory access when transfegrivigck from one core
to another. This latter variant competes very well with thehed shared memory al-
gorithm even though it still requires a communication phaseveen all rounds. The
cached shared memory is the fastest of all algorithms siutbee.

However the good performance of the MBP private memory &lgorshows that
transferring data from core to core using MPBs and on-dieodt brings little penalty
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Fig. 7: Performance of the four mergesort variants on SC@ingpinteger blocks with
randomly generated data of different size and using diffemembers of cores.
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to the mergesort algorithms studied, and much less accessesgn memory. It demon-
strates the high capacity of this on-die network, which emages the implementation
of a pipelined mergesort algorithm using this network.

Another setting alters the algorithms to generate blockaotant, identical value
among blocks and merges them using the same four technifissdifferent pattern
of data to be merge-sorted aims at showing the behavior oélg@ithms in an ex-
treme case of input. Constant, identical values in all bdaadnote the case of uniform
input as well as an input already sorted. The results of #tted setting are shown in
Fig. 8. It shows better performance of the mergesort algmstwith an input of already
sorted data. However, when compared to Fig. 7(f), the ratizveen times of algorithms
merging random and constant input blocks is constant anthesnbe neglected. Such
absence of significant difference is a characteristic ofgesurt algorithms, which are
insensitive to distribution of values or occurrences oflapes.

5 Conclusion and ongoing wor k

Mergesort (and in particular its global merging phase) imteresting case of a memory-
access intensive algorithm. We have implemented four messbof mergesort on SCC,
and evaluated their performance. Beyond the mergesontithiges themselves, our ex-
periments enlighten important factors that influence perémce on SCC.

Our results motivate that on-chip pipelining would makessealso for SCC; this
is an issue of on-going implementation work. Because thelipip trades access to
main memory for heavier use of the on-chip network, the magmory is accessed
only when loading blocks to be sorted and when the final melopek is written back.
Also, because off-chip memory access is more expensivecttramunication through
the mesh network, it is expected that the on-chip pipelinéetinique brings significant
speedup over any of the parallel mergesort implementatiessribed here. Its perfor-
mance may even be improved thanks to awareness of distatveedreactive cores and
distance to main memory controllers to generate bettertagkocessor mappings.
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