

 Int. J. Critical Computer-Based Systems, Vol. 1, Nos. 1/2/3, 2010 267

 Copyright © 2010 Inderscience Enterprises Ltd.

A meta-level true random number generator

Bernhard Fechner*
Department of Mathematics and Computer Science,
Parallel Computing and VLSI Group,
University of Hagen,
Universitätsstraße 1, 58084 Hagen, Germany
E-mail: Bernhard.Fechner@fernuni-hagen.de
*Corresponding author

Andre Osterloh
BTC AG,
Escherweg 5, 26121 Oldenburg, Germany
E-mail: andre.osterloh@btc-ag.com
Abstract: True random number generators (TRNGs) are extensively used in
cryptography, simulations and statistics. In this work, we introduce, extend and
analyse the concept of the randomised bit cell (RBC), introducing a second
meta-level of randomisation, being able to simultaneously produce random
numbers and detect active non-intrusive attacks. The concept is extended by
using a corrector. Meta-stability is one way to generate true random numbers.
By using electromagnetic radiation, a flip-flop (ff) in a meta-stable state can be
manipulated to a known state. We clarify and comprehend open issues of
meta-stable ffs such as power consumption and electromagnetic field strength.
The experimental comparison though a software simulation with a standard
TRNG yields a 17.69 times better distribution of zeros and ones while the
TRNGs are under attack at the expense of a delay which is proportional to the
quality of the random source.

Keywords: meta-level; true random number generator; TRNG; corrector.

Reference to this paper should be made as follows: Fechner, B. and
Osterloh, A. (2010) ‘A meta-level true random number generator’, Int. J.
Critical Computer-Based Systems, Vol. 1, Nos. 1/2/3, pp.267–279.

Biographical notes: Bernhard Fechner has an accident insurance education. He
obtained his Master’s and PhD in Computer Science from the University of
Hagen. He worked several years as a Consultant and was involved in the
conception and realisation of the first telematic and virtual computer
architecture lab for the University of Hagen, Germany. He is an Assistant
Professor at the Chair of Parallel Computing and VLSI (Prof. Dr. J. Keller). His
research interests include (fault-tolerant) micro-architectures, their realisation
and computer graphics.

Andre Osterloh received his Master’s in Computer Science from the Carl von
Ossietzky University Oldenburg and his PhD in Computer Science from the
Technical University of Ilmenau. He worked several years as a Software
Engineer in two consulting firms. Furthermore, he worked for more than ten
years as a Lecturer and Scientist for the Universities of Oldenburg, Ilmenau,
Hagen and Darmstadt. He is a Software-Engineer at BTC AG Renewable
Energies and a member of the eTelligence team.

 268 B. Fechner and A. Osterloh

1 Introduction

Random numbers are needed and used in our everyday lives. The generation of random
numbers is an essential component to generate passwords, session keys for secure socket
layer (SSL). They are also used in simulations such as nuclear physics, weather forecasts,
traffic simulations or Monte-Carlo approximations. The quality of a random number
generator (RNG) substantially determines the security of the underlying communication.
A manipulation leads to predictable random numbers and causes unsafe communication
channels. We have to clarify what a good random number is. In our case, a good random
number is a binary number where zeros and ones are discretely and uniformly distributed.
A discrete random variable X with a finite number of characteristics x = {0,1} is
uniformly distributed, if the probability of each characteristic x = xi (i = 1,2) is equal:

1 for ,
() 2

0 else.

ix x
P X x

⎧ =⎪= = ⎨
⎪⎩

P is the probability mass function of X, the entropy is

2 2 1 1 2 2
1 1 1 1() (()) () () () () log log
2 2 2 2

H X E I X p x I x p x I x ⎛ ⎞= = + = − +⎜ ⎟
⎝ ⎠

Since H(X) = 1 the entropy is maximal – a fair distribution.
A future sequence of bits must not be predicted. Thus, from the knowledge on time t0,

we cannot forecast any characteristic on time t1>t0. Let S(t0) be the sequence of
characteristics on time t0. If we cannot deduct S(t1) from S(t0) with any function f, we
have a random result. Thus, if: S(t1) = f(S(t0)) we have no randomisation.

This article is organised as follows: in Section 2, we review related work. In
Section 3, we introduce the concept of the randomised bit cell (RBC). In Section 4, we
discuss important measures like the mean time between failures (MTBF), open issues
with electromagnetic radiation and power consumption of RBCs based on meta-stable
flip-flops (ffs). We extend the RBC to that of the smoothing bit cell (SBC) in Section 5
by using a corrector and theoretically examine and compare the SBC with other concepts.
Section 6 presents the results of various software fault-injection experiments we
conducted to show the different distributions of characteristics. Section 7 concludes the
article.

2 Related work

In Chapter 5 of Menezes et al. (1997), it is shown that it is impossible to give a
mathematical proof whether a RNG creates real random numbers or not. The only
possibility to test a RNG is to use statistical tests to check whether the generator has one
or more of the desired properties. If the generator fails in a test the result could be
discarded or – in the case of an online test – a warning could be given. But even if all
tests are successful, this is only a probabilistic proof that the generated random sequence
has some desired properties of a real random sequence. A statistical test is a method that

 A meta-level true random number generator 269

tests whether a statistical hypothesis holds or not. A statistical hypothesis is an
assumption about the distribution of a random source. In Neuenschwander (2004, p.89), a
list of constraints is given which could be tested. In the case of RNGs, such a hypothesis
is the assumption that the produced random sequence is uniformly distributed and
independent. A simple example for a statistical test of a RNG is to count the number of
zeros in the generated random sequence. Common statistical tests are the frequency,
serial, poker, autocorrelation, run and long run test which are described in Knuth (1997)
and Beker and Piper (1982).

This work deals with TRNG and is an extension and abstraction to the paper
presented by Fechner (2008). In contrary to pseudo RNGs (PRNGs), e.g., based on linear
congruency (Knuth, 1997) or the Mersenne Twister (Matsumoto and Kurita, 1992),
TRNGs are able to produce a non-periodic sequence of bits. Numerous TRNGs have
been developed, some of them with industrial background, e.g., the RNG based on
thermal noise within the Intel i810 chipset (Hoffman, 1998). Other TRNGs are
based on radioactive decay (http://www.fourmilab.ch/hotbits), atmospheric noise
(http://www.random.org/randomness), ring oscillators (Sunar et al., 2007), the
photoelectric effect or other quantum phenomena (http://random.irb.hr/). In Walker and
Foo (2001), an analog-digital converter is used to produce random numbers from the
output of a ff being in a meta-stable state although it is unclear on which voltage levels
the ff will toggle. We are aware of the fact, that a TRNG can be subordinated to physical
influences. Therefore, one should carry out tests like DIEHARD (Marsaglia, 1996) or
NIST tests (Rukhin et al., 2000) to evaluate the RNG. These tests require a huge amount
of random numbers to gain statistical significance and thus a long time to determine the
actual quality of the RNG. For fast online tests as in this work, others methods have to be
regarded.

Figure 1 Randomised bit cell (RBC)

 270 B. Fechner and A. Osterloh

3 Randomised bit cells

Figure 1 shows the basic RBC. All square elements are random state generators (RSGs),
producing random sequences of zeroes and ones. In the next section, we discuss an
implementation of RSGs, ffs which have a random state due to a previous meta-stable
period. Naturally, in this case, clock signals have to be introduced. The main idea is clear:
the RSGs controlling the decoders are generating random numbers, selecting random
elements out of the bit cell matrix which are also randomised. Thus, the TRNG is
completely self-sustaining. In the example in Figure 1 we have five random outputs b1
and c1–c4. The main output is a single bit b1. The bits c1–c4, b1 are used for attack
detection. If we assume the number of RSGs as 22k arranged in a (2k, 2k)-matrix,
we have 2k bits for the selection of a single bit cell. The RBC with k selection bits is
called RBCk.

The advantage of the scheme in Figure 1 is that, the second level (the RSGs at the
inputs of the decoder) introduces a meta-level of randomisation. If an attacker is able to
disturb the contents of the decoder RSGs, there is still a randomisation, because a
dedicated bit cell will be selected, which is again randomised. If the attacker tries to
influence the function of a single bit cell, the randomisation to select the bit cell will

decrease the probability for a successful attack. This probability computes to 2
1 .

2 k One

could think of XORing the outputs of the RSGs to a single value. Here, the circuit depth
is growing with k due to faniin problems. The logical depth of the RBC is always the
same. A single and most common case of a non-invasive attack is left: the influence of all
RSGs within the RBC. For example, energy in the form of electromagnetic radiation will
toggle the RSGs to a fixed and known state. We can detect these attacks by comparing
the outputs c1–c4 and b1. Figure 2 shows a way to detect manipulations by comparing
RBC signals. Every output within the array of RBCs is compared locally.

Figure 2 An n-bit RNG with attack detection

 A meta-level true random number generator 271

Note, that the number of false positives can be reduced if a history of c1–c4, b1 values is
introduced. If we have a global matching, an attack is signalled. Note, that we are also
able to detect local manipulations. A mechanism to detect permanent faults through
manipulation of the attack signal is use dual-rail-logic (Fechner and Osterloh, 2008). In
this case, every stuck-at fault is detected by comparing both signals by using an external
circuit within the perfection core.

4 Open issues with meta-stability

One way to generate random numbers is the violation of setup and hold times within a ff.
This leads to an unpredictable behaviour called meta-stable state. For the generation of
n-bit random numbers in this work, we use the final state of a ff being metastable once.
The probability that the ff will be meta-stable is an exponentially decreasing function
(Philips, 1989).

Three things must be known about meta-stability (Philips, 1989):

• What is the likelihood T0 that the ff will enter a meta-stable state?

• How long will it be expected to remain in that state (τ)?

• What is the propagation delay of the ff?

Figure 3 MTBF of meta-stable ffs

The MTBF of a ff in a meta-stable state results from empirical observations (Walker and
Foo, 2001) to

() ()0
,

t

clk in

eMTBF t
T f f

τ
=

⋅ ⋅

 272 B. Fechner and A. Osterloh

where t is the time, a digital output can remain in a meta-stable state without causing a
synchroniser failure, fclk the system clock frequency and fin the frequency of the incoming
data. In addition – among many others – the technology and ambient temperature
determine how long it takes the ff to settle down. Remember, that in contrary to e.g.,
Chaney (1983), we want to have meta-stable states to produce random numbers. Thus,
the aim is a short MTBF. Figure 3 depicts the MTBF (fclk from top to bottom 100 MHz to
1 GHz in steps of 100 MHz), whereas the frequencies fin were varied from 100 MHz up to
1 GHz in steps of 100 MHz.

Before we continue, we have to discuss an open issue with meta-stability. The ffs
being in a meta-stable state cause electromagnetic radiation which could influence other

ffs. The wavelength c
f

λ = in metres of an electromagnetic wave is dependent from the

phase speed (here: the speed of light in vacuum c =299792458 m/s) and the frequency f.
If the wavelength is larger than the chip or the distance of ffs assumed to interact, there
will be no issue. Today, feature sizes of 45 nm and below are implemented. As an actual
example, we take a six-transistor SRAM in 26 nm process technology that consumes as
less as 0.122 µm2 area (http://electronicsweekly.com). Assuming that the signal will
travel exactly one side of the area of the ff, the maximal frequency such a circuit can

toggle at is 6 299792458 m s0.122 10 m ./
f

−⋅ = Solving the equation results to

f ≈ 36.84 THz. In the real world, the frequency will be much lower, since it is influenced
from temperature, technology and other effects. The probability that ffs can influence
each other depends on the energy of the signal depending on distance and frequency of
the ffs. If the distance is large enough, ffs cannot interact. The magnitude of the electric
field ,far nearE decreases with the distance, according to the solution of Maxwell’s

equations for an ideal magnetic dipole, modified to show the field magnitude (Johnson

and Graham, 1993) in the far field
()

2
0

2 22
1 sin V/m,

2
far

IA
E

r r

η π λ θ
λ π

= + where

0 120 377η π= ≈ Ω is the intrinsic impedance of the free space, l the current in amperes,

6 20.122 10 mA −= ⋅ the area, r the distance from the centre,
2
πθ = the angle from the

z-axis and λ the wavelength in meters. Note, that we have chosen sin sin 1
2
πθ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 to

produce maximal field strength. In the near field this simplifies (Hall, 2000) to

34.8 V/m.near
IAE
r
λ

= Figure 4 and Figure 5 show the field strength of the mentioned

SRAM in V/m for the near and far field, respectively. The wavelength λ in Hz was set to
{109, 1010, 1011, 1012} (from top to bottom) to cover the terahertz range, r the distance
was varied between A and 2 .A⋅

The energy is reduced with the distance and decreasing wavelength. By using current
technology, the electrical field of meta-stable ffs is not strong enough to induce energy to
toggle faults in adjacent ffs.

 A meta-level true random number generator 273

Figure 4 The field strength of a six-transistor SRAM in V/m (near field)

Figure 5 The field strength of a six-transistor SRAM in V/m (far field)

λ = 109

λ = 1010

λ = 1011

λ = 1012

λ = 109

λ = 1010

λ = 1011

λ = 1012

 274 B. Fechner and A. Osterloh

5 Improving the quality of randomness with the SBC

In this section, we assume that our random source is not perfect, i.e., the probability that
the source produces a zero differs from the probability that it produces a one. Such effects
can occur due to the production process or by external circumstances (e.g., a
non-intrusive attack). In our fault model, we assume that the attacker is able to change the
state of one or more ffs systematically. Therefore, we propose the online injection of a
burst of one to n stuck-at-0 or stuck-at-1 faults. We assume stuck-at-0 and stuck-at-1
faults to occur with equal probabilities. The observation interval is the time to generate a
single random number of length n. We introduce the SBC to reduce such effects and
discuss its assets and drawbacks. The SBC is a simple extension of a RBC by using a
corrector. In our case, we use a von-Neumann corrector (Jun and Kocher, 1999). To
avoid misunderstandings, we call ones and zeros produced by the random source zero and
one-bit (random bits) and the zeros and ones produced by the proposed method as zeros
and ones (random numbers). Let 0 < p0, p1 < 1, p0 + p1 = 1 the probability that the
random source produces a zero or one, respectively. We get the probabilities listed in
Table 1 for sequences of length two.
Table 1 Sequences and probabilities

Sequence Probability

00 p02
01 p0p1
10 p1p0
11 p12

Note that the probability for ‘01’ is the same as for ‘10’. We exclude the sequences ‘00’
and ‘11’. The drawback is that, in case of long sequences of zero or one-bit no random
numbers are generated. The expected number of bits, we have to wait to create a zero or a
one is

() 1

0

22 1 ,n

n

nq q q

∞
−

=

− =∑

where q = 2p0p1. If the source produces a zero-bit with probability 2/5, i.e., q = 6/25, the
expected number of bits we have to wait for is 25/6 ≈ 4.167. If we assume a very bad
random source producing a zero-bit with probability 10–k, the expected number is
approximately 10k. An advantage is that, we are able to detect stuck-at-0 and stuck-at-1
faults or alleviate manipulations of the random source through a timer, measuring the
output frequency.

Now we discuss whether this approach can be extended to a sequence of length n > 2.
The main idea in case of n = 2 was that we have to identify sequences with equal
probabilities. The only possibility to do this is to take sequences where the number of
zeros and ones is equal. Hence, we have to restrict our attention to even n. The
probability that a sequence of length n exactly contains n/2 zeros is

() () ()2 2 20 1 2 0 1 .
2

n n nn
p p p pn

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

 A meta-level true random number generator 275

Thus, we get ()22 0 1
n

q p p= in this case. Thus, n = 2 is the best choice.
The number of bits necessary to produce a one or a zero could be seen as a measure

for the time needed to produce a random number. To reduce this time, we can produce
random numbers of k random sources in a synchronised and parallel fashion. The
question is how long, i.e., how many steps we have to wait until we get a one or a zero.
First, we have to describe how zeros and ones are produced and what will be a step in our
model. In one step, each of the k sources produces one bit. If at least one of k sources
separately produces ‘01’ or ‘10’ after two steps, we have an output of zero or one. In case
that all k sources produce ‘00’ or ‘11’, we have no output. The probability that there is no

output after two steps is
1
(1 2 0 1),

k
i ii

p p
=

−∏ where p0i (p1i) is the probability that the

random source i produces a zero (one). The expected number of steps we have to wait is

1 1

2 2 ,
1 (1 2 0 1) 1

k k
i i ii i

p p q
= =

=
− − −∏ ∏

where qi = 1 – 2p0ip1i. If we assume two random sources with q1 = q2 = 6/25, the expected
number of steps we have to wait is approximately 2.122.

Now we assume that we have one faulty ff and we want to determine the probability
that the produced random number is affected by this fault (i.e., a worst-case fault).
Obviously the result is affected with probability one. Table 2 shows the probabilities for
this case.
Table 2 Worst-case results

Number of ffs in matrix Total number of ffs Probability Name

4 6 = 4 + 2 1/6 RBC1
16 20 = 16 + 4 1/20 RBC2
22k 22k + 2k 1/(22k + 2k) RBCk

For the case where we have k ffs in parallel, the probability depends on the way we
implement the choice when two or more random numbers are produced by the k random
sources. Under the assumption that one from k random numbers is chosen with
probability 1/k and that p0 = p0i and p1 = p1i for all i, we get a probability of

()
1

1

0

1 1 1 ,
1

k
k ii

i

k
p p

i i

−
− −

=

−⎛ ⎞
−⎜ ⎟ +⎝ ⎠

∑

where p = 2p0p1.

6 Experimental results

For a qualitative comparison we conducted software fault-injection experiments. Faults
were injected according to the fault-model in Section 5. For all methods, we injected
burst faults at random positions, since this is likely to match a physical injection
modelling an attack. Therefore, a burst of length n is able to influence n or less bits.

 276 B. Fechner and A. Osterloh

Numerous combinations of RSGs, RBCs and SBCs are possible. For a better overview,
we introduce the nomenclature shown in Table 3.
Table 3 Nomenclature for fault-injection experiments

Decoder

D0 Non-smoothing

D1 Smoothing

-- No decoder

Contents

N Normal meta-stable ffs

R RBCs

S Smoothed, RBCs

The description is read from top to bottom. For example: --N means an array of normal
RSGs, naturally without decoder. Table 4 shows the abbreviations and the meaning of the
structures considered for the fault-injection. Note, that the matrix with normal/smoothing
decoder and normal RSGs is not reasonable, since the decoder inputs will be unclear.
Table 4 Simulated structures

Abbrev. Meaning

__N Array with normal RSGs, reference

__S Array with smoothed, RBCs

D0R Array with RBCs and normal decoder

D0S Matrix with normal decoder and SBCs

D1R Matrix with smoothing decoder and RBCs

D1S Matrix with smoothing decoder and SBCs

As mentioned, the SBC uses an additional bit holding the previous random result. If the
current result differs from the last content, we output a random bit according to a fixed
coding like (10)→0 or (01)→1, whereas the values on the right occur later. Other results
are retained. Figure 6 shows the development of distributions for all structures from
Table 4, 1–39 stuck-at-0 bursts, a 16 × 16 (k = 8) matrix, averaged over 1000
fault-injection runs. We do not show the results for other values of k, because the results
were very similar. The array holding the structures had the length of 40 bits, since the
typical length for session keys ranges from 40–128 bit or 160 bit (Baugher et al., 2004).
For larger session keys, the results can be easily interpolated since they are very regular.
The number of zeros and ones was counted for each method. The one-bit frequencies
were divided by the zero-bit frequencies, resulting in the data points in Figure 6.

We compute the standard deviation of all 1/0 distributions for all matrix sizes {2, 4, 8,
16, 32}. The D0R gives a 17.69 times better distribution than the reference. Figure 7
shows the improvement of the standard deviation in comparison with the __N reference
for different matrix sizes N. Note, that N is the input size of the decoder. If N = 2, the
actual matrix size is 2N = 4.

 A meta-level true random number generator 277

Figure 6 Development of distributions over 1–39 burst faults

Figure 7 Standard deviations for different matrix sizes

 278 B. Fechner and A. Osterloh

The better distribution comes at the cost of the delay mentioned in the previous section.
Figure 8 shows the delay of the SBC structures in clock cycles, relative to the MTBF of
the RSGs used. Naturally, the delay of a linear structure like __S is constant since the
RSGs can work in parallel. The delay Del__S, DelD0S, Del D1S of the matrix structures
D0S and D1S grows linear with the size. D0S has the worst delay.

Figure 8 Delay of SBC structures

7 Conclusions

In this work, we introduced the abstract concept of a meta-level design for TRNGs, the
RBC. The concept was extended by using a corrector to the SBC. Both concepts and
combinations were experimentally studied and compared with the reference, an array of
RSG. In addition, the SBC was theoretically examined. The results show that the SBC
gives an equal distribution of zeros and ones to the expense of a delay equal to 1 ,0 1p p

where p0 and p1 is the probability that a physical random source produces a zero or
one-bit. For size N = 2, D1S gives the best distributions during the injection of 1 – n
stuck-at faults. On average, the D0R with N = 32 has the best distribution in comparison
with the reference, maximal 17.69 times better. The interesting result is that the SBCs
only have relevance for small sizes. Bigger sizes do not result in a better distribution, but
more delay. Thus, we can recommend that one should use the D0R for bigger sizes and
the D1S or D0S for very small sizes where the delay does not matter. As future work, we
consider a hardware implementation to get figures for the footprint and heat dissipation
of different RBCs.

 A meta-level true random number generator 279

References
Baugher, M., McGrew, D., Naslund, M., Carrara, E. and Norrman, K. (2004) The Secure Real-time

Transport Protocol (SRTP), Request for Comments 3711, The Internet Society.
Beker, h. and Piper, F. (1982) Cipher Systems, Northwood Books, London.
Chaney, T.J. (1983) ‘Measured flip-flop responses to marginal triggering”, IEEE Transactions on

Computers, December, Vol. C-32, No. 12, pp.1207–1209.
Fechner, B. and Osterloh, A. (2008) ‘A true random number generator with built-in attack

detection’, Proc. of the 2008 3rd Int’l. Conf. on Dependability of Computer Systems,
pp.111–118.

Hall, S,H. (2000) High Speed Digital System Design: A Handbook of Interconnect Theory and
Design Practices, Wiley, 0-471-36090-2.

Hoffman, E. (1998) Random Number Generator, 5706218 USA.
http://www.electronicsweekly.com/Articles/2008/10/28/44806/umc-produces-first-28nm-sram-

chips.htm (accessed on 11/12/08).
http://www.fourmilab.ch/hotbits/ (accessed on 11/12/08).
http://www.random.org/randomness/ (accessed on 11/12/08).
Johnson, J.W. and Graham, H. (1993) High Speed Digital Design: A Handbook of Black Magic,

Prentice Hall, 978-0133957242.
Knuth, D. (1997) ‘The art of computer programming’, Seminumerical Algorithms, 3rd ed., Vol. 2,

Addison-Wesley, ISBN0-201-89684-2.
Jun, B. and Kocher, P. (1999) ‘The Intel random number generator’, s.l., Intel, April.
Marsaglia, G. (1996) ‘DIEHARD: a battery of tests of randomness’, The Marsaglia random number

CDROM including the ‘Diehard battery of tests of randomness, available at:
http://www.stat.fsu.edu/pub/diehard/, accessed on 11/22/07.

Matsumoto, M. and Kurita, Y. (1992) ‘Twisted GFSR generators’, ACM Trans. Model. Comput.
Simul., Vol. 2, No. 3, pp.179–194.

Menezes, A.J., Vanoorschot, P.C. and Vanstone, S.A. (1997) Handbook of Applied Cryptography,
CRC Press.

Neuenschwander, D. (2004) Probabiblistic and Statistic Methods in Cryptology, Springer, LNCS
3028.

Philips (1989) ‘A metastability primer’, Application Note 219. s.l., Philips Semiconductors.
Quantum Random Bit Generator Service (2007) http://random.irb.hr/ (accessed on 12/12/07).
Rukhin, A., Soto, J., Nechvatal, J. Smid, M., Barker, E, Leigh, S., Levenson, M., Vangel, M.,

Banks, D., Heckert, A., Dray, J. and Vo, S. (2000) ‘A statistical test suite for random and
pseudorandom number generators for cryptographic applications’, Special Publication,
Vol. 800, No. 22

Sunar, B., Martin, W.J. and Stinson, D.R. (2007) ‘A provable secure true random number generator
with build-in tolerance to active attacks’, IEEE Transactions on Computers, Vol. 56, No. 1.

Walker, S. and Foo, S. (2001) ‘Evaluating metastability in electronic circuits for random number
generation’, Workshop on VLSI.

