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Abstract: True random number generators (TRNGs) are extensively used in 
cryptography, simulations and statistics. In this work, we introduce, extend and 
analyse the concept of the randomised bit cell (RBC), introducing a second 
meta-level of randomisation, being able to simultaneously produce random 
numbers and detect active non-intrusive attacks. The concept is extended by 
using a corrector. Meta-stability is one way to generate true random numbers. 
By using electromagnetic radiation, a flip-flop (ff) in a meta-stable state can be 
manipulated to a known state. We clarify and comprehend open issues of  
meta-stable ffs such as power consumption and electromagnetic field strength. 
The experimental comparison though a software simulation with a standard 
TRNG yields a 17.69 times better distribution of zeros and ones while the 
TRNGs are under attack at the expense of a delay which is proportional to the 
quality of the random source. 
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1 Introduction 

Random numbers are needed and used in our everyday lives. The generation of random 
numbers is an essential component to generate passwords, session keys for secure socket 
layer (SSL). They are also used in simulations such as nuclear physics, weather forecasts, 
traffic simulations or Monte-Carlo approximations. The quality of a random number 
generator (RNG) substantially determines the security of the underlying communication. 
A manipulation leads to predictable random numbers and causes unsafe communication 
channels. We have to clarify what a good random number is. In our case, a good random 
number is a binary number where zeros and ones are discretely and uniformly distributed. 
A discrete random variable X with a finite number of characteristics x = {0,1} is 
uniformly distributed, if the probability of each characteristic x = xi (i = 1,2) is equal: 

1  for ,
( ) 2

0 else.                         

ix x
P X x

⎧ =⎪= = ⎨
⎪⎩  

P is the probability mass function of X, the entropy is 

2 2 1 1 2 2
1 1 1 1( ) ( ( )) ( ) ( ) ( ) ( ) log log
2 2 2 2
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⎝ ⎠

 

Since H(X) = 1 the entropy is maximal – a fair distribution. 
A future sequence of bits must not be predicted. Thus, from the knowledge on time t0, 

we cannot forecast any characteristic on time t1>t0. Let S(t0) be the sequence of 
characteristics on time t0. If we cannot deduct S(t1) from S(t0) with any function f, we 
have a random result. Thus, if: S(t1) = f(S(t0)) we have no randomisation. 

This article is organised as follows: in Section 2, we review related work. In  
Section 3, we introduce the concept of the randomised bit cell (RBC). In Section 4, we 
discuss important measures like the mean time between failures (MTBF), open issues 
with electromagnetic radiation and power consumption of RBCs based on meta-stable 
flip-flops (ffs). We extend the RBC to that of the smoothing bit cell (SBC) in Section 5 
by using a corrector and theoretically examine and compare the SBC with other concepts. 
Section 6 presents the results of various software fault-injection experiments we 
conducted to show the different distributions of characteristics. Section 7 concludes the 
article. 

2 Related work 

In Chapter 5 of Menezes et al. (1997), it is shown that it is impossible to give a 
mathematical proof whether a RNG creates real random numbers or not. The only 
possibility to test a RNG is to use statistical tests to check whether the generator has one 
or more of the desired properties. If the generator fails in a test the result could be 
discarded or – in the case of an online test – a warning could be given. But even if all 
tests are successful, this is only a probabilistic proof that the generated random sequence 
has some desired properties of a real random sequence. A statistical test is a method that  
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tests whether a statistical hypothesis holds or not. A statistical hypothesis is an 
assumption about the distribution of a random source. In Neuenschwander (2004, p.89), a 
list of constraints is given which could be tested. In the case of RNGs, such a hypothesis 
is the assumption that the produced random sequence is uniformly distributed and 
independent. A simple example for a statistical test of a RNG is to count the number of 
zeros in the generated random sequence. Common statistical tests are the frequency, 
serial, poker, autocorrelation, run and long run test which are described in Knuth (1997) 
and Beker and Piper (1982). 

This work deals with TRNG and is an extension and abstraction to the paper 
presented by Fechner (2008). In contrary to pseudo RNGs (PRNGs), e.g., based on linear 
congruency (Knuth, 1997) or the Mersenne Twister (Matsumoto and Kurita, 1992), 
TRNGs are able to produce a non-periodic sequence of bits. Numerous TRNGs have 
been developed, some of them with industrial background, e.g., the RNG based on 
thermal noise within the Intel i810 chipset (Hoffman, 1998). Other TRNGs are  
based on radioactive decay (http://www.fourmilab.ch/hotbits), atmospheric noise 
(http://www.random.org/randomness), ring oscillators (Sunar et al., 2007), the 
photoelectric effect or other quantum phenomena (http://random.irb.hr/). In Walker and 
Foo (2001), an analog-digital converter is used to produce random numbers from the 
output of a ff being in a meta-stable state although it is unclear on which voltage levels 
the ff will toggle. We are aware of the fact, that a TRNG can be subordinated to physical 
influences. Therefore, one should carry out tests like DIEHARD (Marsaglia, 1996) or 
NIST tests (Rukhin et al., 2000) to evaluate the RNG. These tests require a huge amount 
of random numbers to gain statistical significance and thus a long time to determine the 
actual quality of the RNG. For fast online tests as in this work, others methods have to be 
regarded. 

Figure 1 Randomised bit cell (RBC) 
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3 Randomised bit cells 

Figure 1 shows the basic RBC. All square elements are random state generators (RSGs), 
producing random sequences of zeroes and ones. In the next section, we discuss an 
implementation of RSGs, ffs which have a random state due to a previous meta-stable 
period. Naturally, in this case, clock signals have to be introduced. The main idea is clear: 
the RSGs controlling the decoders are generating random numbers, selecting random 
elements out of the bit cell matrix which are also randomised. Thus, the TRNG is 
completely self-sustaining. In the example in Figure 1 we have five random outputs b1 
and c1–c4. The main output is a single bit b1. The bits c1–c4, b1 are used for attack 
detection. If we assume the number of RSGs as 22k arranged in a (2k, 2k)-matrix,  
we have 2k bits for the selection of a single bit cell. The RBC with k selection bits is 
called RBCk. 

The advantage of the scheme in Figure 1 is that, the second level (the RSGs at the 
inputs of the decoder) introduces a meta-level of randomisation. If an attacker is able to 
disturb the contents of the decoder RSGs, there is still a randomisation, because a 
dedicated bit cell will be selected, which is again randomised. If the attacker tries to 
influence the function of a single bit cell, the randomisation to select the bit cell will 

decrease the probability for a successful attack. This probability computes to 2
1 .

2 k  One 

could think of XORing the outputs of the RSGs to a single value. Here, the circuit depth 
is growing with k due to faniin problems. The logical depth of the RBC is always the 
same. A single and most common case of a non-invasive attack is left: the influence of all 
RSGs within the RBC. For example, energy in the form of electromagnetic radiation will 
toggle the RSGs to a fixed and known state. We can detect these attacks by comparing 
the outputs c1–c4 and b1. Figure 2 shows a way to detect manipulations by comparing 
RBC signals. Every output within the array of RBCs is compared locally. 

Figure 2 An n-bit RNG with attack detection 
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Note, that the number of false positives can be reduced if a history of c1–c4, b1 values is 
introduced. If we have a global matching, an attack is signalled. Note, that we are also 
able to detect local manipulations. A mechanism to detect permanent faults through 
manipulation of the attack signal is use dual-rail-logic (Fechner and Osterloh, 2008). In 
this case, every stuck-at fault is detected by comparing both signals by using an external 
circuit within the perfection core. 

4 Open issues with meta-stability 

One way to generate random numbers is the violation of setup and hold times within a ff. 
This leads to an unpredictable behaviour called meta-stable state. For the generation of  
n-bit random numbers in this work, we use the final state of a ff being metastable once. 
The probability that the ff will be meta-stable is an exponentially decreasing function 
(Philips, 1989). 

Three things must be known about meta-stability (Philips, 1989): 

• What is the likelihood T0 that the ff will enter a meta-stable state? 

• How long will it be expected to remain in that state (τ)? 

• What is the propagation delay of the ff? 

Figure 3 MTBF of meta-stable ffs 

 

The MTBF of a ff in a meta-stable state results from empirical observations (Walker and 
Foo, 2001) to 
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where t is the time, a digital output can remain in a meta-stable state without causing a 
synchroniser failure, fclk the system clock frequency and fin the frequency of the incoming 
data. In addition – among many others – the technology and ambient temperature 
determine how long it takes the ff to settle down. Remember, that in contrary to e.g., 
Chaney (1983), we want to have meta-stable states to produce random numbers. Thus, 
the aim is a short MTBF. Figure 3 depicts the MTBF (fclk from top to bottom 100 MHz to 
1 GHz in steps of 100 MHz), whereas the frequencies fin were varied from 100 MHz up to 
1 GHz in steps of 100 MHz. 

Before we continue, we have to discuss an open issue with meta-stability. The ffs 
being in a meta-stable state cause electromagnetic radiation which could influence other 

ffs. The wavelength c
f

λ =  in metres of an electromagnetic wave is dependent from the 

phase speed (here: the speed of light in vacuum c =299792458 m/s) and the frequency f. 
If the wavelength is larger than the chip or the distance of ffs assumed to interact, there 
will be no issue. Today, feature sizes of 45 nm and below are implemented. As an actual 
example, we take a six-transistor SRAM in 26 nm process technology that consumes as 
less as 0.122 µm2 area (http://electronicsweekly.com). Assuming that the signal will 
travel exactly one side of the area of the ff, the maximal frequency such a circuit can 

toggle at is 6 299792458 m s0.122 10 m ./
f

−⋅ =  Solving the equation results to  

f ≈ 36.84 THz. In the real world, the frequency will be much lower, since it is influenced 
from temperature, technology and other effects. The probability that ffs can influence 
each other depends on the energy of the signal depending on distance and frequency of 
the ffs. If the distance is large enough, ffs cannot interact. The magnitude of the electric 
field ,far nearE  decreases with the distance, according to the solution of Maxwell’s 

equations for an ideal magnetic dipole, modified to show the field magnitude (Johnson 

and Graham, 1993) in the far field 
( )

2
0

2 22
1 sin  V/m,

2
far

IA
E

r r

η π λ θ
λ π

= +  where 

0 120 377η π= ≈ Ω  is the intrinsic impedance of the free space, l the current in amperes, 

6 20.122 10 mA −= ⋅  the area, r the distance from the centre, 
2
πθ =  the angle from the  

z-axis and λ the wavelength in meters. Note, that we have chosen sin sin 1
2
πθ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 to 

produce maximal field strength. In the near field this simplifies (Hall, 2000) to 

34.8 V/m.near
IAE
r
λ

=  Figure 4 and Figure 5 show the field strength of the mentioned 

SRAM in V/m for the near and far field, respectively. The wavelength λ in Hz was set to 
{109, 1010, 1011, 1012} (from top to bottom) to cover the terahertz range, r the distance 
was varied between A and 2 .A⋅  

The energy is reduced with the distance and decreasing wavelength. By using current 
technology, the electrical field of meta-stable ffs is not strong enough to induce energy to 
toggle faults in adjacent ffs. 
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Figure 4 The field strength of a six-transistor SRAM in V/m (near field) 

 

Figure 5 The field strength of a six-transistor SRAM in V/m (far field) 
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5 Improving the quality of randomness with the SBC 

In this section, we assume that our random source is not perfect, i.e., the probability that 
the source produces a zero differs from the probability that it produces a one. Such effects 
can occur due to the production process or by external circumstances (e.g., a  
non-intrusive attack). In our fault model, we assume that the attacker is able to change the 
state of one or more ffs systematically. Therefore, we propose the online injection of a 
burst of one to n stuck-at-0 or stuck-at-1 faults. We assume stuck-at-0 and stuck-at-1 
faults to occur with equal probabilities. The observation interval is the time to generate a 
single random number of length n. We introduce the SBC to reduce such effects and 
discuss its assets and drawbacks. The SBC is a simple extension of a RBC by using a 
corrector. In our case, we use a von-Neumann corrector (Jun and Kocher, 1999). To 
avoid misunderstandings, we call ones and zeros produced by the random source zero and  
one-bit (random bits) and the zeros and ones produced by the proposed method as zeros 
and ones (random numbers). Let 0 < p0, p1 < 1, p0 + p1 = 1 the probability that the 
random source produces a zero or one, respectively. We get the probabilities listed in 
Table 1 for sequences of length two. 
Table 1 Sequences and probabilities 

Sequence Probability 

00 p02 
01 p0p1 
10 p1p0 
11 p12 

Note that the probability for ‘01’ is the same as for ‘10’. We exclude the sequences ‘00’ 
and ‘11’. The drawback is that, in case of long sequences of zero or one-bit no random 
numbers are generated. The expected number of bits, we have to wait to create a zero or a 
one is 

( ) 1

0

22 1 ,n

n

nq q q

∞
−

=

− =∑  

where q = 2p0p1. If the source produces a zero-bit with probability 2/5, i.e., q = 6/25, the 
expected number of bits we have to wait for is 25/6 ≈  4.167. If we assume a very bad 
random source producing a zero-bit with probability 10–k, the expected number is 
approximately 10k. An advantage is that, we are able to detect stuck-at-0 and stuck-at-1 
faults or alleviate manipulations of the random source through a timer, measuring the 
output frequency. 

Now we discuss whether this approach can be extended to a sequence of length n > 2. 
The main idea in case of n = 2 was that we have to identify sequences with equal 
probabilities. The only possibility to do this is to take sequences where the number of 
zeros and ones is equal. Hence, we have to restrict our attention to even n. The 
probability that a sequence of length n exactly contains n/2 zeros is 

( ) ( ) ( )2 2 20 1 2 0 1 .
2

n n nn
p p p pn

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

 



   

 

   

   
 

   

   

 

   

    A meta-level true random number generator 275    
 

    
 
 

   

   
 

   

   

 

   

       
 

Thus, we get ( )22 0 1
n

q p p=  in this case. Thus, n = 2 is the best choice. 
The number of bits necessary to produce a one or a zero could be seen as a measure 

for the time needed to produce a random number. To reduce this time, we can produce 
random numbers of k random sources in a synchronised and parallel fashion. The 
question is how long, i.e., how many steps we have to wait until we get a one or a zero. 
First, we have to describe how zeros and ones are produced and what will be a step in our 
model. In one step, each of the k sources produces one bit. If at least one of k sources 
separately produces ‘01’ or ‘10’ after two steps, we have an output of zero or one. In case 
that all k sources produce ‘00’ or ‘11’, we have no output. The probability that there is no 

output after two steps is 
1
(1 2 0 1 ),

k
i ii

p p
=

−∏  where p0i (p1i) is the probability that the 

random source i produces a zero (one). The expected number of steps we have to wait is 

1 1

2 2 ,
1 (1 2 0 1 ) 1

k k
i i ii i

p p q
= =

=
− − −∏ ∏

 

where qi = 1 – 2p0ip1i. If we assume two random sources with q1 = q2 = 6/25, the expected 
number of steps we have to wait is approximately 2.122. 

Now we assume that we have one faulty ff and we want to determine the probability 
that the produced random number is affected by this fault (i.e., a worst-case fault). 
Obviously the result is affected with probability one. Table 2 shows the probabilities for 
this case. 
Table 2 Worst-case results 

Number of ffs in matrix Total number of ffs Probability Name 

4 6 = 4 + 2 1/6 RBC1 
16 20 = 16 + 4 1/20 RBC2 
22k 22k  + 2k 1/(22k + 2k) RBCk 

For the case where we have k ffs in parallel, the probability depends on the way we 
implement the choice when two or more random numbers are produced by the k random 
sources. Under the assumption that one from k random numbers is chosen with 
probability 1/k and that p0 = p0i and p1 = p1i for all i, we get a probability of 

( )
1

1

0

1 1 1 ,
1

k
k ii

i

k
p p

i i

−
− −

=

−⎛ ⎞
−⎜ ⎟ +⎝ ⎠

∑  

where p = 2p0p1. 

6 Experimental results 

For a qualitative comparison we conducted software fault-injection experiments. Faults 
were injected according to the fault-model in Section 5. For all methods, we injected 
burst faults at random positions, since this is likely to match a physical injection 
modelling an attack. Therefore, a burst of length n is able to influence n or less bits. 
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Numerous combinations of RSGs, RBCs and SBCs are possible. For a better overview, 
we introduce the nomenclature shown in Table 3. 
Table 3 Nomenclature for fault-injection experiments 

Decoder 

D0 Non-smoothing 

D1 Smoothing 

-- No decoder 

Contents 

N Normal meta-stable ffs 

R RBCs 

S Smoothed, RBCs 

The description is read from top to bottom. For example: --N means an array of normal 
RSGs, naturally without decoder. Table 4 shows the abbreviations and the meaning of the 
structures considered for the fault-injection. Note, that the matrix with normal/smoothing 
decoder and normal RSGs is not reasonable, since the decoder inputs will be unclear. 
Table 4 Simulated structures 

Abbrev. Meaning 

__N Array with normal RSGs, reference 

__S Array with smoothed, RBCs 

D0R Array with RBCs and normal decoder 

D0S Matrix with normal decoder and SBCs 

D1R Matrix with smoothing decoder and RBCs 

D1S Matrix with smoothing decoder and SBCs 

As mentioned, the SBC uses an additional bit holding the previous random result. If the 
current result differs from the last content, we output a random bit according to a fixed 
coding like (10)→0 or (01)→1, whereas the values on the right occur later. Other results 
are retained. Figure 6 shows the development of distributions for all structures from 
Table 4, 1–39 stuck-at-0 bursts, a 16 × 16 (k = 8) matrix, averaged over 1000  
fault-injection runs. We do not show the results for other values of k, because the results 
were very similar. The array holding the structures had the length of 40 bits, since the 
typical length for session keys ranges from 40–128 bit or 160 bit (Baugher et al., 2004). 
For larger session keys, the results can be easily interpolated since they are very regular. 
The number of zeros and ones was counted for each method. The one-bit frequencies 
were divided by the zero-bit frequencies, resulting in the data points in Figure 6. 

We compute the standard deviation of all 1/0 distributions for all matrix sizes {2, 4, 8, 
16, 32}. The D0R gives a 17.69 times better distribution than the reference. Figure 7 
shows the improvement of the standard deviation in comparison with the __N reference 
for different matrix sizes N. Note, that N is the input size of the decoder. If N = 2, the 
actual matrix size is 2N = 4. 
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Figure 6 Development of distributions over 1–39 burst faults 

 

Figure 7 Standard deviations for different matrix sizes 
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The better distribution comes at the cost of the delay mentioned in the previous section. 
Figure 8 shows the delay of the SBC structures in clock cycles, relative to the MTBF of 
the RSGs used. Naturally, the delay of a linear structure like __S is constant since the 
RSGs can work in parallel. The delay Del__S, DelD0S, Del D1S of the matrix structures 
D0S and D1S grows linear with the size. D0S has the worst delay. 

Figure 8 Delay of SBC structures 

 

7 Conclusions 

In this work, we introduced the abstract concept of a meta-level design for TRNGs, the 
RBC. The concept was extended by using a corrector to the SBC. Both concepts and 
combinations were experimentally studied and compared with the reference, an array of 
RSG. In addition, the SBC was theoretically examined. The results show that the SBC 
gives an equal distribution of zeros and ones to the expense of a delay equal to 1 ,0 1p p  

where p0 and p1 is the probability that a physical random source produces a zero or  
one-bit. For size N = 2, D1S gives the best distributions during the injection of 1 – n 
stuck-at faults. On average, the D0R with N = 32 has the best distribution in comparison 
with the reference, maximal 17.69 times better. The interesting result is that the SBCs 
only have relevance for small sizes. Bigger sizes do not result in a better distribution, but 
more delay. Thus, we can recommend that one should use the D0R for bigger sizes and 
the D1S or D0S for very small sizes where the delay does not matter. As future work, we 
consider a hardware implementation to get figures for the footprint and heat dissipation 
of different RBCs. 
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