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Abstract

We present and analyze an improved parallel algorithm to compute the structure of a graph induced by
a randomly chosen function on a finite set. The improvements center around how to use the vast memory
resources of a parallel computer to store intermediate results, i.e. knowledge about graph nodes that have
already been visited. Further improvements and extensions are pointed out. Experiments are presented that
confirm the theoretical analysis.

1 Introduction

We consider a functionf : D → D and the directed graphGf = (V = D,E = {(x, f(x)) | x ∈ D}) induced
by it. Such a graph is called amappingin the literature [3]. Each weakly connected component of that graph
consists of a cycle and a number of trees directed towards theroot, the root being a node on the cycle. The
problem to be solved is, given a functionf , to determine thestructureof the graphGf , i.e. the number and size
of the components, the length of the cycles, the heights of the trees, and so on. Because of the size ofn = |D|,
the graph cannot be explicitly constructed in memory, and thus algorithmic techniques like pointer doubling
cannot be applied. The size ofn calls for a parallel algorithm.

Examples of graphs induced by functions are the state spacesand their state transition functions in pseudo-
random number generators or cryptographic stream cipher generators. Especially the latter shall behave like
a randommapping, of which expected values for many properties like the size of the largest component are
known from literature [3]. A widely used stream cipher is theA5/1 algorithm used for encrypting the commu-
nication between a cellular phone and the base station in theGSM network [2, Sec. 6.3.4]. If the graph induced
on A5/1’sn = 264 states by its transition function (see e.g. [1] for a description) differs considerably from what
is expected, this may hint towards a weakness.

In [4], a parallel algorithm is described which computes thestructure of induced graphs, and has expected
runtimeO(n

√
n/p) on a cluster withp processors. While this algorithm achieves a good load balancing and

fully exploits the computational resources available, it does not make use of the vast memory resources avail-
able. For each nodev of the graph, the algorithm simply follows the path startingin v until it reaches a cycle,
which uniquely determines the component. As there aren nodes to start from, and as each run has an expected
length ofO(

√
n) [3], we get the runtime bound above. As the expected size of the largest cycle and the ex-

pected depth of the largest tree isO(
√

n) with coefficients between 1 and 2, and the size of the largest tree is
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Figure 1: Example of induced graph forn = 9.

expected to be approximately0.48 · n (with a fraction of1/e being leaves), we also see that most time is spent
in running towards tree roots.

We consider how to exploit the memory resources of a cluster in order to reduce the runtime. We assume
that the cluster consists ofp processing units, each with a microprocessor, a main memoryof sizem and a hard
disk of sizeM . The processing units are connected by a switched interconnection network, e.g. a switched
gigabit ethernet.

In order to decrease the length of then runs we provide tree nodes (so calledanchors) from which we
already know the number of the component, the tree root, and the distance to the root. As soon as an anchor is
reached while following a path, one can stop. Those anchor nodes could be either “cached” from previous runs,
or could be chosen in advance in a manner that minimizes runtime. Caching schemes have the advantage that
they are completely dynamic, but they cannot guarantee optimal placement. Offline schemes could do better,
but to the best of our knowledge, we do not know any good ones.

In this paper, we will present an anchor placement based on a caching scheme that is provably good, even
if we do not know whether it is optimal. We will derive all parameters that influence overall runtime, and how
the parameter values have to be chosen. We will also present data structures to store the anchors in the cluster.
Finally we will validate our proposal with experiments.

The remainder of the paper is organized as follows. In Sect. 2we will briefly summarize the necessary
facts about random functions and the structure of their induced graphs. In Sect. 3 we introduce the concept of
anchors to exploit the memory in a cluster, and analyze the improvements. In Sect. 4 we present experiments
conducted to validate our analysis. Section 5 presents somepossible extensions of our algorithms, and issues
of further research. Section 6 concludes.

2 Random Functions and Their Properties

We consider a finite setD of sizen, and the setF of all functions fromD to itself. Let us assume that we
randomly pick a functionf from F , such that each function inF is equally probable. Now we consider the
graphGf induced byf . An example of such a graph forn = 9 can be seen in Fig. 1. The graph consists of two
components, of sizes 7 and 2, respectively, and cycle lengths 4 and 2, respectively. Flajolet and Odlyzko [3]
investigated the average case behaviour of such graphs. They found that the expected number of components is
O(log n) with a constant close to 1, that the expected size of the largest cycle is O(

√
n) with a constant close

to 1, that the largest component has an expected size of about0.7 · n, that the largest tree has an expected size
of about0.5 · n and expected depth0.6 · √n, and that the expected fraction of leaves in that graph is1/e.

Graphs of such a structure are for example found in pseudo-random number generators (PRNG) and gener-
ators for stream cipher encryption. Here,D is the state space of the generator,f is the state transition function,
and the length of the cycle in the largest component is the main period of the generator. The set of nodes of the



other components is the set of unwanted start states, as theyresult in shorter periods, which is not wanted. If a
functionf is chosen to be the basis of such a generator, one would expectthat it behaves as if randomly picked
from the set of all functions onD, in order not to be predictable. Hence, the structure of the graph induced byf
should not deviate too much from the expected values given above. Otherwise, this may hint to a weakness in
the generator, which is especially undesirable if it compromises security of the application where the generator
is deployed.

However, for interesting functionsf , such as A5/1 stream cipher which is used to encrypt the voicedata
between GSM mobile phones and their base station [1, 2], it isnot known how to derive the graph structure
analytically. As the state spaces are often quite large (forA5/1 n = 264), it is also not possible to construct
a representation of such a graph in memory and apply well-known graph algorithms in order to derive the
structure. Hence, the only method possible is to explore thegraph. By this we mean to start at a nodex, and
follow the edge(x, f(x)) that leavesx. By following the pathx, f(x), f2(x), f3(x), . . ., we finally reach the
cycle of the component to whichx belongs2. By the simple method of remembering which node was met after
2, 4, 8, . . . steps, it is possible to detect that one is on a cycle, the cycle length, the cycle leader3, the node at
which the cycle was entered, and how many steps were necessary to reach the cycle, with a number of steps
linear in the path length [4]. Now starting from each node inD, we find out which component it is in, and
so after followingn paths we have the component sizes, and the average and maximum tree heights for each
component. The cycle length and cycle leader is known as soonas the component is encountered the first time.

As each path is expected to have a length of sizeO(
√

n) [3], the expected runtime of this simple algorithm is
O(n

√
n). On a cluster computer withp processing units, each processor could follown/p paths, thus resulting

in a speedup ofp, if we neglect the small overhead of merging the component informations from different
processors at the end [4].

3 Placement of Anchors

The simple algorithm of the previous section does not use thevast memory resources, both main memory and
hard disk memory, of a cluster computer. This memory could beused to store information about nodes that
have already been visited. We will denote such nodes asanchors. For a nodev in a tree, it suffices to store its
distancedv to the tree root and the numberc of the component it belongs to. If a path from nodex reaches
nodev afterd steps, we know that it belongs to componentc and has distanced + dv to the tree root, i.e. to the
cycle. As a consequence, when following a path, one must check after each step whether an anchor is met, and
if so, one can stop following that path.

The difficult question is, given a certain memory resource, how the anchors should be placed in order to
minimize runtime. We assume that the runtime is minimized byminimizing the sum of the lengths of the paths
from each node to an anchor or a cycle. We restrict our investigation to trees, as almost all nodes in an induced
graph sit in trees, and almost all tree nodes belong to a smallnumber of trees. However, as our trees are far
from balanced (see next subsection), we are not aware of any algorithm that, given such a tree, could place a
given number of anchors such that the sum of the path lengths is optimized. Moreover, we do not know the
trees in advance. Hence, an offline algorithm is not available. Another possibility would be to place the anchors
randomly on nodes of the graph. However, as a fraction of1/e ≈ 36.8% of the nodes are expected to be leaves,
more than one third of the anchors would be wasted, as obviously an anchor on a node is not of much help.

3.1 Caching Scheme

A further possibility is to place anchors from time to time aswe follow paths. This is at least a feasible solution,
after we have decided at which distances we have to place anchors in order to minimize runtime. From time to
time we may even evaluate how often anchors have been met, remove those that have not been of much use, and

2This means that we treatf as an oracle. By givingx, we receivef(x), but have no further knowledge aboutf except
n = |D|. The only exception to this rule is handled in Sect. 5.

3Each component can be uniquely identified by the node on its cycle with the smallest number. We call this nodeleader.
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Figure 2: Distribution of nodes vs. depth in a tree.
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Figure 3: Fraction of leaves vs. depth in a tree.

place some more as long there is free memory. This would constitute a kind of caching scheme. Additionally,
there is also a theoretical foundation behind this placement.

We have made a study about the structure of the largest tree inan induced graph, averaged over 1000
randomly chosen functions on a domainD of sizesn = 220, 222. Figure 2 depicts the fraction of nodes on such
a tree having a certain depth, where we normalized with the height of the tree. We see that between 30% and
70% of the depth, the number of nodes in a certain depth is almost constant, if we approximate the curve by a
trapezoid. We also see that a considerable fraction of the nodes in a tree is very far away from the root. Finally,
we see in Fig. 3 that the ratio of leaves to nodes is constantly1/e over all depths, only close to the root there
are less, and in the deepest depths there are some more.

Assume that we are somewhere in the middle of a tree with respect to its height. We assume thatk nodes
are in depthi, i − 1, andi − 2, respectively, as shown in Fig. 4. Then we can assume thatk/e nodes in depth
i−1 are leaves, such that only(1−1/e)k ≈ 0.64 ·k nodes in that level have ancestors from depthi. If we now
look at leveli − 2, we can conclude that(1 − 1/e) · k/e nodes have ancestors which are leaves in depthi − 1,
and that the remaining(1− 1/e)2 · k ≈ 0.4 · k non-leaf nodes in depthi− 2 have ancestors in depthi. Thus, in
level i− 2 log

2.5 k, we can assume that all paths passing a node in depthi have merged into one path. One may
argue that we were a bit optimistic in the step fromi − 1 to i − 2, because ancestors in depthi − 2 of leaves
and non-leaves from depthi − 1 may not be separate. But one can still assume that the interchange will be in
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Figure 4: Subtree formation in a tree.

proportion to the numbers of those nodes, so that still a reduction of ancestors by a constant factor will occur,
and the number of levels until all paths from depthi will have merged into one path is still logarithmic ink.

We can assumek to be expected less than
√

n, as the largest tree in the induced graph contains0.5n nodes,
has depth0.6

√
n, and has a trapezodial shape. Then at leveli− log n all paths originating in nodes deeper than

i will have merged into one. Now, if any node of the respective tree deeper thani has already served as the
starting node of a path along which anchors were placed, we can conclude that this path will be merged too, and
a path originating in any node at leveli will meet the next anchor on this path. Now, when we are somewhere in
the middle of a tree with respect to its height, then there is agood probability that a path originating from some
node deeper in the tree already passes this point, and hence the number of steps on average will be aboutlog n,
plus the distance to the next anchor. The latter will be half the distance between anchors on average. Hence, the
distance between anchors should be kept constant along the path, and be in the range oflog n as well.

3.2 Quotas

If we introduce anchors, the time for following a path will increase in each step. Besides the timets to evaluate
f(x), we now have to check whetherf(x) is an anchor, taking timetc. No matter which data structure we
choose, the data structure will be large because of the number of anchors, and therefore the timetc may well
dominatets. In order to minimize the runtime, we refrain from checking for an anchor in each step, and search
for the optimum frequency of checks. This is achieved by allowing only a fraction1/d of the nodes to be
candidates for anchors, meaning that on average, we will meet such a candidate everyd steps, and only then
have to check whether such a candidate is really an anchor. Wewill denoted asquota. On average, we will
increase the number of steps byd/2 by this. Therefore, the average runtime for following a pathwill be

T (d) =

(

w +
d

2

)

·
(

ts +
tc
d

)

, (1)

wherew is the average number of steps on a path for a quota ofd = 1. Now the miminum runtime is achieved
by differentiatingT (d) and searching fordopt with T ′(dopt) = 0. We find that

dopt =

√

2wtc
ts

.
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Figure 5: Average number of steps in a path.

Note that the domain ofT (d) is the interval[1 : n/s], wheres is the total number of anchors that can be stored.
If d = 1, then there is no quota, i.e. every node is a candidate. Ifd = n/s then every candidate will become
an anchor, we have a static placement of anchors. Ifdopt is outside that interval, one should choose the closer
border of the interval.

In practice, one will choosed to be a power of 2, and determine candidates by a property thatcan be
computed fast, such as the lowermostlog d bits being zero.

3.3 Data Structure

To store the anchors, several possibilities are possible. The simplest ones would be to store in each processing
unit either the same set of anchors, or an independent set of anchors. Then no communication would be nec-
essary at all. However, the number of anchors is limited by the main memory or hard disk capacity of a single
processing unit. Another possibility would be to distribute the anchors over allp processing units, which allows
a number of anchorsp times as large as before. However, the check whether a candidate is an anchor now
requires a communication between the processing node doingthe check and the processing node that would
store the anchor if that candidate really is an anchor. In practice, the mapping of candidates to processing units
will be static and easy to compute, such as thelog p middle bits of the candidate giving the number of the
processing unit where it will be stored as an anchor.

In order to keep the check timetc per anchor low, we pursue the following scheme. Each processing unit
follows r paths simultaneously, each path until the next candidate isreached. Then all the candidates are sorted
according to the processing unit they will be stored at (if they are anchors), and an all-to-all communication
takes place. Thus, on average only a fraction ofr/p of the communication time contributes to each check.
Each processing unit now receives check requests from all other processing units. It treats them all, and another
all-to-all communication is used to return the answers to the checks, i.e. for each candidate whether it is an
anchor, and if so, the number of component, and its distance to the tree root.

The question of data structure chosen in each processing unit depends on the size ofr. If r is quite small,
then a small number of requests reach a processing unit at onetime, and the best way to store the anchors is a
hash table in main memory. However, ifr is large, then a large number of requests reach a processing unit at
one time, and it might be wiser to keep the anchors in a sorted list, sort all requests, and treat them all together
by a kind of merge procedure.

While a hash table structure is not very suitable for an implementation on a hard disk, a sorted list and a
merge procedure may well be implemented. The use of the hard disks to store the anchors increases the number
of anchors that can be stored by at least one magnitude, but also slows down the check considerably. Hence,
the exact tradeoffs require further research.
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Figure 6: Ratio of anchors to nodes vs. depth.

4 Experiments

In all of the following experiments, anchors were placed on paths from randomly chosen starting points, with
the distance between them as indicated, until the maximum number of anchors has been reached. No update on
anchors has been performed.

Fig. 5 depicts, forn = 220, 222, and
√

n anchors, averaged over 96 randomly chosen functions, the average
number of steps while following a path, until an anchor is reached, for different distances between anchors
and different numbers of anchors. We see that for fixedn, the number of steps converge if enough anchors
are placed. We also see that if the ratio ofn and the number of anchors is fixed, so that an equal coverage is
reached, the number of steps for differentn deviate only slightly. The deviating behavior of distance 128 in
n = 220 can be easily explained: one cannot hope to get to a number of steps below half the distance between
anchors!

Fig. 6 depicts, forn = 220, 222, and
√

n anchors, the ratio of anchors to nodes in the largest tree, over the
depth. An average was taken over 96 randomly chosen functions f . We see that the anchor distribution is as
intended: few anchors near the leaves at the end of the tree, the majority in the middle of the tree where most
nodes are.

Fig. 7 depicts, forn = 222, 224, the relation between quota and runtime for different numbers of anchors.
For the previous experiments, we took randomly chosen functions, with the function table stored in main
memory. Hence, evaluation of functionf required a slow access to main memory, because hit ratio on the
function table is close to zero. In order to concentrate on the influence of the quota, we seek to minimizets,
and therefore took a variant of the A5/1 algorithm as function f . We see the optimum values ofd, that differ
depending on the size of the graph, the number of steps in a path, and the anchor check time. Yet, the image
is somehow distorted as we restricted ourselves to values ofd that were powers of 2. The real optimum values
would have been much closer.

5 Extensions

So far, we have treatedf as a kind of black box. However, there are cases wheref is efficiently invertible, i.e.
where the setf−1(y) = {x | f(x) = y} can be efficiently computed for any giveny ∈ D. The algorithm A5/1
belongs to this category. Now, the problem can be solved oncea weakly connected component is detected: if
the component is known, then also the cycle of the component is known. On the cycle, all the tree roots are
known, they are exactly those nodesy on the cycle with|f−1(y)| ≥ 2. If a tree root is known, then the tree
can be completely explored by a depth first search. So the timecomplexity is the time to find the components,
plus O(n) to explore all trees. However, the only known way to find all the components is to select starting
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nodesv and follow the path starting inv until one can decide whether the component is known or not, i.e. when
the cycle has been reached. Hence, while the structure analysis itself is simpler than in the general case, the
detection of the components remains almost as hard as in the general case. It is only almost as hard as we can
discard starting pointsv with |f−1(v)| ≥ 1, i.e. if v is not a leaf. This reduces the number of starting points by
a factor ofe on the average.

The task at hand gets simpler for both categories of functions, if we do not insist on computing the complete
structure, but are satisfied with an approximation of the structure. This scenario is quite likely for very large
n, as even an algorithm with linear complexity and perfect parallelization may take too long forn ≥ 264. It is
still to be expected that the larger components will be detected fast, i.e. with a sample of starting points with a
feasible size. If a component is detected, the length of its cycle is known exactly. The sizes of the components
can be approximated from the distribution of starting points onto components: if a fractionα of the starting
points from the sample belong to one component, we can approximate the size of that component byαn. The
tree heights of the components can be approximated as the tree heights seen when handling the sample.

For a function that is efficiently invertible, we could get exact results of the components that are detected,
as explained above. However, if even a linear time algorithmtakes too long in the case of very largen, then
one would either stick to the general case, or have to exploreefficient ways to replace a depth first search by an
approximation with less than linear complexity.

6 Conclusions

We have presented an improved parallel algorithm to computethe structure of a graph induced by a random
function. The improvements centered around using the vast memory resources of a cluster computer to store in-
termediate results of our computation, i.e. knowledge about some nodes that were already visited. We presented
several variants that serve to further decrease runtime, and also pointed out possible extensions and issues for
further research. Finally, we reported about some preliminary experiments that confirm our theoretical analysis
of the algorithm.
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