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Abstract

We present and analyze an improved parallel algorithm to compute tlwtuserwof a graph induced by
a randomly chosen function on a finite set. The improvements centencafmw to use the vast memory
resources of a parallel computer to store intermediate results, i.eléagevabout graph nodes that have
already been visited. Further improvements and extensions are pouttdgxperiments are presented that
confirm the theoretical analysis.

1 Introduction

We consider a functiotf : D — D and the directed grapfi; = (V = D, E = {(z, f(z)) | * € D}) induced
by it. Such a graph is calledraappingin the literature [3]. Each weakly connected component af graph
consists of a cycle and a number of trees directed towardeotitethe root being a node on the cycle. The
problem to be solved is, given a functignto determine thstructureof the graphi s, i.e. the number and size
of the components, the length of the cycles, the heightseofrttes, and so on. Because of the size ef | D|,
the graph cannot be explicitly constructed in memory, ang tdgorithmic techniques like pointer doubling
cannot be applied. The size nfcalls for a parallel algorithm.

Examples of graphs induced by functions are the state spadaheir state transition functions in pseudo-
random number generators or cryptographic stream ciphesrgors. Especially the latter shall behave like
arandommapping, of which expected values for many properties liedize of the largest component are
known from literature [3]. A widely used stream cipher is thi&'1 algorithm used for encrypting the commu-
nication between a cellular phone and the base station i@ 8 network [2, Sec. 6.3.4]. If the graph induced
on A5/1'sn = 264 states by its transition function (see e.g. [1] for a desicriy) differs considerably from what
is expected, this may hint towards a weakness.

In [4], a parallel algorithm is described which computesgtrecture of induced graphs, and has expected
runtimeO(n+/n/p) on a cluster withp processors. While this algorithm achieves a good load balgramd
fully exploits the computational resources available oésl not make use of the vast memory resources avail-
able. For each node of the graph, the algorithm simply follows the path starting until it reaches a cycle,
which uniquely determines the component. As therenamedes to start from, and as each run has an expected
length of O(y/n) [3], we get the runtime bound above. As the expected sizeeofatyest cycle and the ex-
pected depth of the largest tree(¥$./n) with coefficients between 1 and 2, and the size of the largestis
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Figure 1: Example of induced graph for= 9.

expected to be approximatehyd8 - n (with a fraction of1 /e being leaves), we also see that most time is spent
in running towards tree roots.

We consider how to exploit the memory resources of a clusterder to reduce the runtime. We assume
that the cluster consists pfprocessing units, each with a microprocessor, a main meofaiyem and a hard
disk of sizeM. The processing units are connected by a switched inteemiom network, e.g. a switched
gigabit ethernet.

In order to decrease the length of theruns we provide tree nodes (so calladchord from which we
already know the number of the component, the tree root,lendistance to the root. As soon as an anchor is
reached while following a path, one can stop. Those anchaesioould be either “cached” from previous runs,
or could be chosen in advance in a manner that minimizesmeniCaching schemes have the advantage that
they are completely dynamic, but they cannot guaranteenapplacement. Offline schemes could do better,
but to the best of our knowledge, we do not know any good ones.

In this paper, we will present an anchor placement based acliing scheme that is provably good, even
if we do not know whether it is optimal. We will derive all panaters that influence overall runtime, and how
the parameter values have to be chosen. We will also preaemsttuctures to store the anchors in the cluster.
Finally we will validate our proposal with experiments.

The remainder of the paper is organized as follows. In Sewte 2vill briefly summarize the necessary
facts about random functions and the structure of theiréedwgraphs. In Sect. 3 we introduce the concept of
anchors to exploit the memory in a cluster, and analyze tipeamements. In Sect. 4 we present experiments
conducted to validate our analysis. Section 5 presents passble extensions of our algorithms, and issues
of further research. Section 6 concludes.

2 Random Functionsand Their Properties

We consider a finite seb of sizen, and the sef of all functions fromD to itself. Let us assume that we
randomly pick a functiory from F', such that each function i is equally probable. Now we consider the
graphG induced byf. An example of such a graph fer= 9 can be seen in Fig. 1. The graph consists of two
components, of sizes 7 and 2, respectively, and cycle lsngtind 2, respectively. Flajolet and Odlyzko [3]
investigated the average case behaviour of such graphg faimed that the expected number of components is
O(logn) with a constant close to 1, that the expected size of thesamyele is @,/n) with a constant close
to 1, that the largest component has an expected size of atyout, that the largest tree has an expected size
of about0.5 - n and expected depth6 - 1/n, and that the expected fraction of leaves in that graghds

Graphs of such a structure are for example found in pseuttbera number generators (PRNG) and gener-
ators for stream cipher encryption. Herfejs the state space of the generafbis the state transition function,
and the length of the cycle in the largest component is tha paiiod of the generator. The set of nodes of the



other components is the set of unwanted start states, asabely in shorter periods, which is not wanted. If a
function f is chosen to be the basis of such a generator, one would akaedtbehaves as if randomly picked
from the set of all functions o, in order not to be predictable. Hence, the structure of taptyinduced by
should not deviate too much from the expected values givemeal®therwise, this may hint to a weakness in
the generator, which is especially undesirable if it compuises security of the application where the generator
is deployed.

However, for interesting functiong, such as A5/1 stream cipher which is used to encrypt the \anate
between GSM mobile phones and their base station [1, 2],nibiknown how to derive the graph structure
analytically. As the state spaces are often quite largeAfdl n = 2%), it is also not possible to construct
a representation of such a graph in memory and apply welivkngraph algorithms in order to derive the
structure. Hence, the only method possible is to explorgythph. By this we mean to start at a nodeand
follow the edge(z, f(x)) that leavese. By following the pathe, f(x), f2(z), f3(z),. .., we finally reach the
cycle of the component to whichbelong$. By the simple method of remembering which node was met after
2,4,8, ... steps, it is possible to detect that one is on a cycle, theedgalgth, the cycle leadgrthe node at
which the cycle was entered, and how many steps were negdesaach the cycle, with a number of steps
linear in the path length [4]. Now starting from each nodelinwe find out which component it is in, and
so after followingn paths we have the component sizes, and the average and matieriheights for each
component. The cycle length and cycle leader is known asastime component is encountered the first time.

As each path is expected to have a length of 6izg/n) [3], the expected runtime of this simple algorithm is
O(n+/n). On a cluster computer withprocessing units, each processor could foltoiw paths, thus resulting
in a speedup op, if we neglect the small overhead of merging the componéuotimations from different
processors at the end [4].

3 Placement of Anchors

The simple algorithm of the previous section does not useasememory resources, both main memory and
hard disk memory, of a cluster computer. This memory couldidrd to store information about nodes that
have already been visited. We will denote such nodemnakors For a nodev in a tree, it suffices to store its
distanced,, to the tree root and the numbeof the component it belongs to. If a path from nadeeaches
nodev afterd steps, we know that it belongs to componeand has distancé-+ d,, to the tree root, i.e. to the
cycle. As a consequence, when following a path, one muskdifeer each step whether an anchor is met, and
if so, one can stop following that path.

The difficult question is, given a certain memory resouraay the anchors should be placed in order to
minimize runtime. We assume that the runtime is minimizediyimizing the sum of the lengths of the paths
from each node to an anchor or a cycle. We restrict our inyatitin to trees, as almost all nodes in an induced
graph sit in trees, and almost all tree nodes belong to a smaiber of trees. However, as our trees are far
from balanced (see next subsection), we are not aware oflgasitam that, given such a tree, could place a
given number of anchors such that the sum of the path lengtbptimized. Moreover, we do not know the
trees in advance. Hence, an offline algorithm is not avalatehother possibility would be to place the anchors
randomly on nodes of the graph. However, as a fractiaryef~ 36.8% of the nodes are expected to be leaves,
more than one third of the anchors would be wasted, as oldyiansanchor on a node is not of much help.

3.1 Caching Scheme

A further possibility is to place anchors from time to timenssfollow paths. This is at least a feasible solution,
after we have decided at which distances we have to placeesithorder to minimize runtime. From time to
time we may even evaluate how often anchors have been metyedimose that have not been of much use, and

2This means that we tregtas an oracle. By giving, we receivef (z), but have no further knowledge abaofiexcept
n = | D|. The only exception to this rule is handled in Sect. 5.
3Each component can be uniquely identified by the node on its cycle with #hilestmumber. We call this nodeader.
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Figure 2: Distribution of nodes vs. depth in a tree.
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Figure 3: Fraction of leaves vs. depth in a tree.

place some more as long there is free memory. This would itotesa kind of caching scheme. Additionally,
there is also a theoretical foundation behind this placéemen

We have made a study about the structure of the largest traa induced graph, averaged over 1000
randomly chosen functions on a domdwof sizesn = 22°, 222, Figure 2 depicts the fraction of nodes on such
a tree having a certain depth, where we normalized with tighbef the tree. We see that between 30% and
70% of the depth, the number of nodes in a certain depth isstloomstant, if we approximate the curve by a
trapezoid. We also see that a considerable fraction of tHesim a tree is very far away from the root. Finally,
we see in Fig. 3 that the ratio of leaves to nodes is constayithover all depths, only close to the root there
are less, and in the deepest depths there are some more.

Assume that we are somewhere in the middle of a tree with cespéts height. We assume thainodes
are in depth;, ¢« — 1, andi — 2, respectively, as shown in Fig. 4. Then we can assumeékthanodes in depth
i — 1 are leaves, such thatonly — 1/e)k =~ 0.64 - k nodes in that level have ancestors from depthwe now
look at level; — 2, we can conclude th&@t — 1/¢) - k/e nodes have ancestors which are leaves in depth,
and that the remainin@ — 1/e)? - k ~ 0.4 - k non-leaf nodes in depth— 2 have ancestors in depthThus, in
leveli — 2log, 5 k, we can assume that all paths passing a node in déythe merged into one path. One may
argue that we were a bit optimistic in the step from 1 to 7 — 2, because ancestors in depth 2 of leaves
and non-leaves from depth- 1 may not be separate. But one can still assume that the imtegehwill be in
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Figure 4: Subtree formation in a tree.

proportion to the numbers of those nodes, so that still aatimluof ancestors by a constant factor will occur,
and the number of levels until all paths from depthill have merged into one path is still logarithmic/n

We can assumk to be expected less thamn, as the largest tree in the induced graph cont@ifs nodes,
has deptl®.6,/n, and has a trapezodial shape. Then at levelog n all paths originating in nodes deeper than
+ will have merged into one. Now, if any node of the respectiee tdeeper thanhas already served as the
starting node of a path along which anchors were placed, wearclude that this path will be merged too, and
a path originating in any node at levielill meet the next anchor on this path. Now, when we are sorsesim
the middle of a tree with respect to its height, then theregead probability that a path originating from some
node deeper in the tree already passes this point, and Hennarmber of steps on average will be ablogtn,
plus the distance to the next anchor. The latter will be Hedfdistance between anchors on average. Hence, the
distance between anchors should be kept constant alongtheamd be in the range tfg n as well.

3.2 Quotas

If we introduce anchors, the time for following a path wiltiease in each step. Besides the timnt evaluate
f(z), we now have to check whethgfz) is an anchor, taking timé.. No matter which data structure we
choose, the data structure will be large because of the nuofilzechors, and therefore the timemay well
dominatet,. In order to minimize the runtime, we refrain from checking &n anchor in each step, and search
for the optimum frequency of checks. This is achieved bywatig only a fractionl/d of the nodes to be
candidates for anchors, meaning that on average, we wilt med a candidate everysteps, and only then
have to check whether such a candidate is really an anchowilMdenoted asquota On average, we will
increase the number of steps &y2 by this. Therefore, the average runtime for following a patbe

T(d) = <w+g) ~ <ts+%> : 1)

wherew is the average number of steps on a path for a quotla=ofl. Now the miminum runtime is achieved
by differentiatingZ’(d) and searching fad,,; with T"(d,,:) = 0. We find that

2wt
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Figure 5: Average number of steps in a path.

Note that the domain df (d) is the intervall : n/s], wheres is the total number of anchors that can be stored.
If d = 1, then there is no quota, i.e. every node is a candidate=fn/s then every candidate will become
an anchor, we have a static placement of anchog, Ifis outside that interval, one should choose the closer
border of the interval.

In practice, one will choosd to be a power of 2, and determine candidates by a propertyctirabe
computed fast, such as the lowermbgtd bits being zero.

3.3 Data Structure

To store the anchors, several possibilities are possilble simplest ones would be to store in each processing
unit either the same set of anchors, or an independent sechbes. Then no communication would be nec-
essary at all. However, the number of anchors is limited leyniain memory or hard disk capacity of a single
processing unit. Another possibility would be to distribthie anchors over gllprocessing units, which allows

a number of anchorg times as large as before. However, the check whether a atadilan anchor now
requires a communication between the processing node doéingheck and the processing node that would
store the anchor if that candidate really is an anchor. Intjo®, the mapping of candidates to processing units
will be static and easy to compute, such as lifygp middle bits of the candidate giving the number of the
processing unit where it will be stored as an anchor.

In order to keep the check tintg per anchor low, we pursue the following scheme. Each prougssit
follows r paths simultaneously, each path until the next candidaigaished. Then all the candidates are sorted
according to the processing unit they will be stored at @ytlare anchors), and an all-to-all communication
takes place. Thus, on average only a fractiorr gf of the communication time contributes to each check.
Each processing unit now receives check requests fromhadl processing units. It treats them all, and another
all-to-all communication is used to return the answers todhecks, i.e. for each candidate whether it is an
anchor, and if so, the number of component, and its distanteettree root.

The question of data structure chosen in each processihgepénds on the size of If r is quite small,
then a small number of requests reach a processing unit dimeegand the best way to store the anchors is a
hash table in main memory. Howeveryiis large, then a large number of requests reach a processingtu
one time, and it might be wiser to keep the anchors in a soiggaobrt all requests, and treat them all together
by a kind of merge procedure.

While a hash table structure is not very suitable for an impletation on a hard disk, a sorted list and a
merge procedure may well be implemented. The use of the lisits i store the anchors increases the number
of anchors that can be stored by at least one magnitude, sskdws down the check considerably. Hence,
the exact tradeoffs require further research.
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Figure 6: Ratio of anchors to nodes vs. depth.

4 Experiments

In all of the following experiments, anchors were placed athp from randomly chosen starting points, with
the distance between them as indicated, until the maximunbeu of anchors has been reached. No update on
anchors has been performed.

Fig. 5 depicts, for. = 22°, 222, and,/n anchors, averaged over 96 randomly chosen functions, trage
number of steps while following a path, until an anchor isctes, for different distances between anchors
and different numbers of anchors. We see that for fixgthe number of steps converge if enough anchors
are placed. We also see that if the rationofnd the number of anchors is fixed, so that an equal coverage is
reached, the number of steps for differentleviate only slightly. The deviating behavior of distan@S3 in
n = 220 can be easily explained: one cannot hope to get to a numbeepsf below half the distance between
anchors!

Fig. 6 depicts, fon = 220,222, and./n anchors, the ratio of anchors to nodes in the largest tres,tbe
depth. An average was taken over 96 randomly chosen fuscfiowe see that the anchor distribution is as
intended: few anchors near the leaves at the end of the tre@ajority in the middle of the tree where most
nodes are.

Fig. 7 depicts, fom = 222,224, the relation between quota and runtime for different nurioé anchors.
For the previous experiments, we took randomly chosen ifomst with the function table stored in main
memory. Hence, evaluation of functighrequired a slow access to main memory, because hit ratioen th
function table is close to zero. In order to concentrate enitfiluence of the quota, we seek to minimize
and therefore took a variant of the A5/1 algorithm as functfo We see the optimum values @f that differ
depending on the size of the graph, the number of steps inha @adl the anchor check time. Yet, the image
is somehow distorted as we restricted ourselves to valuéstaft were powers of 2. The real optimum values
would have been much closer.

5 Extensions

So far, we have treateflas a kind of black box. However, there are cases wligseefficiently invertiblei.e.
where the sef ~!(y) = {x | f(x) = y} can be efficiently computed for any givgre D. The algorithm A5/1
belongs to this category. Now, the problem can be solved angeakly connected component is detected: if
the component is known, then also the cycle of the composeknawn. On the cycle, all the tree roots are
known, they are exactly those nodg®n the cycle with f~1(y)| > 2. If a tree root is known, then the tree
can be completely explored by a depth first search. So thedimmplexity is the time to find the components,
plus O(n) to explore all trees. However, the only known way to find aét tomponents is to select starting
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nodesv and follow the path starting inuntil one can decide whether the component is known or motwihen

the cycle has been reached. Hence, while the structuresimdtiself is simpler than in the general case, the
detection of the components remains almost as hard as iretierg case. It is only almost as hard as we can
discard starting points with | f~1(v)| > 1, i.e. if v is not a leaf. This reduces the number of starting points by
a factor ofe on the average.

The task at hand gets simpler for both categories of funstibmwe do not insist on computing the complete
structure, but are satisfied with an approximation of thecstire. This scenario is quite likely for very large
n, as even an algorithm with linear complexity and perfecapelization may take too long far > 264, It is
still to be expected that the larger components will be detkfast, i.e. with a sample of starting points with a
feasible size. If a component is detected, the length ofyitteds known exactly. The sizes of the components
can be approximated from the distribution of starting poioito components: if a fractiom of the starting
points from the sample belong to one component, we can ajppate the size of that component by.. The
tree heights of the components can be approximated as thkdights seen when handling the sample.

For a function that is efficiently invertible, we could gelekresults of the components that are detected,
as explained above. However, if even a linear time algorithkes too long in the case of very largethen
one would either stick to the general case, or have to explfiment ways to replace a depth first search by an
approximation with less than linear complexity.

6 Conclusions

We have presented an improved parallel algorithm to comihatestructure of a graph induced by a random
function. The improvements centered around using the vastary resources of a cluster computer to store in-
termediate results of our computation, i.e. knowledge abone nodes that were already visited. We presented
several variants that serve to further decrease runtintealso pointed out possible extensions and issues for
further research. Finally, we reported about some prelnyiexperiments that confirm our theoretical analysis
of the algorithm.
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