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ABSTRACT
Security in clouds often focuses on preventing clients from
gaining information about other clients’ computations. How-
ever, cloud providers might also be a source for loss of confi-
dentiality. We present a protocol to delegate computations
into clouds with encrypted data. The protocol is based on
homomorphic properties of encryption algorithms. The pro-
tocol can also be used to amend existing applications by
software patches of binaries. We evaluate the protocol by
a proof-of-concept implementation to investigate practica-
bility, and discuss variants and extensions to increase the
prototype’s efficiency.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security, Management

Keywords
Cloud computing, homomorphic encryption, privacy, secure
delegation

1. INTRODUCTION
Cloud Computing is counted among the new advances in
the IT world with the potential to make the access to large
amounts of computing power easier and cheaper. The idea
of near-real time provisioning of services and infrastructures
comes from the increasing need of dynamically scalable re-
sources. Customers have the possibility to purchase the re-
sources they require when they require it. This service ori-
ented billing model makes the decision to adopt such services
very attractive. Although the advantages of this model are
unarguable, there are potential risks involved with the loss
of privacy, integrity and availability of the user data due to
technical failures or even targeted attacks from both outside
and inside the cloud provider’s network. The use of these

new services could bring security problems to computer net-
works extended or entirely composed of cloud computing
services. Users offload the processing of their critical data to
networks that may have different security levels and protec-
tion requirements. Hybrid Clouds that include private and
public clouds intensify the security concerns of cloud com-
puting customers regarding security guarantees in heteroge-
neous environments consisting of multiple service providers.

The security measures provided by the cloud providers to
achieve the protection goals for customer data processed on
their infrastructure are still in an early stage. To address
this problem, a number of cryptographic schemes have been
developed during the last years. Those schemes typically
strive to encapsulate data of different users to provide con-
fidentiality against other users of the cloud. It seems that
the field of securing data or code against the cloud provider
gets less attention, although it seems quite realistic that in-
tellectual property theft is partly done by or supported by
governments that have the power to force a provider to break
privacy rules.

We present an approach for secure delegated computation.
While the code to be executed in the cloud is unencrypted,
data is encrypted before sent to the cloud. Computations on
encrypted data are based on two independent homomorphic
encryption algorithms. The model consists of an agent act-
ing as the delegator and at least one worker in the cloud who
performs the computation. The algorithm can be adopted
to different application scenarios.

Although the computation and communication overhead are
high for the worker, it still seems worthwhile to investigate
whether delegating a complex computation to an untrusted
third party might still be of advantage to the delegator itself.
We therefore study which application properties influence
the overhead of our approach, and how far the overhead
must be reduced to allow wider use. Also, we expect that
advances in homomorphic encryption will directly aid our
protocol.

The remaineder of this article is organised as follows. In Sec-
tion 2, we introduce the concept of delegated computation
based on multiple partly homomorphic public-key cryptosys-
tems. In Section 3, we discuss preliminary runtime measure-
ments and their impact on the usability of the algo- rithm.
In Section 4, we give a conclusion.



Table 1: Homomorphic operations
Algorithm Ciphertext operation Plaintext operation
RSA · ·
Paillier · + mod m

2. OUR CONTRIBUTION
The concept of homomorphic encryption was introduced by
Rivest et. al. [18] and has been adopted in many cryp-
tographic protocols e.g. zero knowledge protocols [14] and
oblivious transfers [11]. Many encryption algorithms sup-
porting either addition or multiplication have been devel-
oped e.g. RSA [19], El-Gamal [10] and Paillier [17]. So-
called fully-homomorphic-encryption was for a long time
“the holy grail” of cryptographers until Craig Gentry an-
nounced in 2009 the first fully-homomorphic encryption sche-
me based on ideal lattice [13]. New developements in fully
homomorphic encryptions [4, 5, 6] improve on performance
and reduce complexity. Fully homomorphic encryption has
been also used in a non interactive verifiable computation
scheme [12] enabling a computationally weak client to out-
source the computation of functions to one or more un-
trusted workers employing fully homomorphic encryption
combined with verifiability techniques. In order to allow
secure outsourcing, many protocols have been developed in
the field of secure computation. Atallah et al. present secure
outsourcing schemes for specific algebraic computations us-
ing Paillier’s homomorphic property [2] or secret sharing [1,
21]. Hohenberger et al. [15] provide protocols for secure out-
sourcing of modular exponentiations used in most public key
encryption operations. Wang et al. [22] have recently pre-
sented an approach to outsource linear programming using
decomposition of the linear programming computation into
public solvers running on the cloud and private parameters
owned by the customer. These aproaches are well studied in
terms of security and complexity and provide special solu-
tions that can be adopted for cloud computing. We present
an approach based on asymmetric encryption algorithms to
securely outsource integer computations to untrusted cloud
providers.

Let x and y be two bit sequences representing the initial
plaintexts and ◦ a binary operation that can be performed
on x and y to obtain z = x ◦ y. An encryption algo-
rithm is called homomorphic for a defined operation ◦, if
(Enck(x) ◦ Enck(y)) = Enck(x ◦ y).
In other words, with a homomorphic encryption, arithmetic
operations can be performed on ciphertexts and the respec-
tive result can be retrieved after the decryption. Our ap-
proach is based on the use of two different asymmetric en-
cryption algorithms, one for addition and one for multipli-
cation, the two basic arithmetic operations.

Let α be an encryption algorithm with a homomorphic prop-
erty related to addition of integers (denoted by +) and β an
encryption algorithm with a homomorphic property related
to multiplication of integers (denoted by ·). In the following
we use the algorithms from Table 1.

The Delegator (Alice) wants to perform some mathematical
computations on a set of confidential data but unfortunately
has not enough computation power to perform the com-

plex computation by herself. So Alice decides to delegate
the computation to an external party (Bob) with unlimited
computation power, who is not trustworthy with respect to
confidentiality. To delegate the computation and mitigate
her security concerns, Alice wants to provide Bob only with
encrypted data. For this reason, she uses the homomorphic
properties of the public-key encryption algorithms α and β
to achieve this goal.

For x1 and x2 two plaintext elements, r1, r2 ∈ Z∗
n random

numbers and E the encryption function of Paillier with a
valid public key (g, n). The additive homomorphic property
of Paillier is computed as follows:

α(x1) · α(x2) = (gx1rn1 )(g
x2rn2 ) mod n2

= gx1+x2(r1r2)
n mod n2

= α(x1 + x2 mod n) .

Given an RSA public key (n, e) and two plaintext elements
x1 and x2. the multiplicative homomorphic property of RSA
is:

β(x1) · β(x2) = xe
1x

e
2 mod n

= (x1x2)
e mod n

= β(x1 · x2) .

Alice encrypts the initial data according to the operations
that will be later performed by the worker and generates
a program describing the arithmetic operations. The data
and the program are sent to the worker. In the best case
the worker can perform the computation without additional
interaction with Alice. In other cases, encrypted data can’t
be processed without a further “transformation“ of the en-
crypted data.

As an example, we consider that Alice wants to compute
c · (a + b). Alice computes A = α(a), B = α(b), C = β(c)
and sends the data and the following computation scheme
to the worker:

1. D = A ·B

2. D′ = update(D)

3. E = C ·D′

First, the worker computes D = A · B and sends the result
back to Alice in order to update the value. Alice decrypts
the result with α−1(D) to get the new value of d mod n and
encrypts it again with D′ = β(D) and sends D′ again to the
worker. The worker uses the updated value of D to compute
E = C ·D′ and sends E to Alice. Finally, Alice decrypts E
with β−1(E) and gets the final result of the computation.

We see from this example that the practical use of our
scheme depends on interaction with the delegator in order
to switch between addition and multiplication operations on
the ciphertext (using re-encryption). The update-operations
in our protocol are to a certain extent similar to Gentry’s



bootstraping step [13] to refresh ”noisy“ ciphertexts. The
amount of interaction depends largely on the format of the
computation scheme and thus strongly affects the complex-
ity of the whole protocol.

Updates partition the computation into instruction sequences
preceeded by an encryption and followed by a decryption.
A sequence s should be outsourced to the worker if the time
to execute s locally is longer than the time for encryption
and decryption. Otherwise, the sequence could be executed
by the delegator, given that all necessary data are available
locally. Similarly, operations on data other than addition or
multiplication can be treated locally. It might be advanta-
geous not to treat each sequence in isolation, but consider
the overall benefit, even if some sequences are outsourced
although they could be executed faster locally.

Thus, program transformations should be applied to push
updates as far apart as possible. Computation sequences
that are not dependent on further values can be precom-
puted by the worker and thus reduce the total computation
time needed. These measures might be aided by encrypting
only part of the data. Variables used only for control flow,
such as loop variables, need not be encrypted as the code is
not encrypted as well. For other variables, a subset might be
chosen for encryption such that a sufficient level of privacy is
still achieved while reducing the update frequency as far as
possible. The delegator can perform an initial analysis on
the computation scheme to optimize its structure accord-
ing to the proposals above. So far, we focus on reducing
the amount of work for the delegator, and ignore increased
computational effort in the cloud as well as overhead from
network communication.

The security of the proposed protocol depends on the secu-
rity of the employed cryptosystems, in our case El-Gamal
and Paillier, that are ”semantically secure“ under chosen
plaintext attacks and thus ensure the confidentiality of the
data during transmission and computation against passive
attacks. Nevertheless, we inherit also security weaknesses of
those algorithms that can possibly be exploited by malicious
attackers in order to gain access to computation data and
be able to manipulate them. We consider that many cryp-
tographic algorithms used in our protocol do not preserve
their homomorphic properties when padding is used during
the encryption phase. This can lead to security weaknesses
related to adaptive chosen ciphertext attacks [7, 8, 20]. In
our model the worker does not receive the plaintext to en-
crypted messages hence he would have restricted abilities to
perform this kind of attack. Nevertheless, the worker can
perform chosen plaintext attacks against the algorithms in
use if the respective public keys are known or the attacker
is able to request the encryption of chosen plaintext.

An attacker may also try to inject or manipulate packets sent
to or from Alice. We recommend adding digital signatures
for every computation payload to ensure the authenticity of
the transmitted encrypted values. Digital signatures should
be generated with dedicated keys in order to avoid security
weaknesses that may occur for instance when using RSA
and may lead to key attacks allowing to decrypt messages
or generate valid digital signatures for arbitrary input. In
practice, Transport Layer Security (TLS)[9] might be used

Figure 1: A sample delegation scenario involving
three workers. The initial function f is split in to
three functions f ′,f ′′ and f ′′′ computed by the work-
ers. The results are decrypted and merged.

in order to enhance the integrity and confidentiality of the
transmitted data.

Another side effect of the algorithms used that may influ-
ence the security of the presented protocol is the so called
malleability property of Paillier cryptosystem. Let’s con-
sider the case that Alice wants to transfer a message m1 en-
crypted to Bob. She computes Enc(m1) and transfers this
value to Bob. If Mallory can wiretap the connection and re-
trieve the value of Enc(m1) he will be able to compose valid
ciphertext using known variables from Alice’s public key:

Dec(Enc(m1).g
m2 mod n) = m1 +m2 mod n

The Malleability may be exploited by an attacker in order
to inject valid data in computation streams if the public
key used is known. In our protocol architecture the worker
isn’t intended to generate encrypted communication using
the delegator’s public keys. To avoid this kind of theoretical
attack, Alice can keep both parts of Paillier’s asymmetric
keys secret.

3. PROTOCOL IMPLEMENTATION ON X86
CPU

Our prototype implementation of the protocol is written in
C/C++. The protocol is implemented in user mode and
does not require any changes to the operation system. The
implementation performs operations on integers of arbitrary
size based on big number operations. The worker implemen-
tation is based on a network server accepting raw data con-
nections including variables in encrypted form. The server
doesn’t require client authentication.

The delegator is implemented using an interpreter that trans-
lates the source code with arithmetic operations into a ho-
momorphic operation on encrypted operands. The trans-
lation can be achieved in different ways. New applications
can adopt our protocol in their source code to perform se-
cure operations on cloud computing networks. Existing ap-
plications might be extended by the functionality of our



protocol through patching of binaries, see below. In our
proof of concept the translation is achieved using generic
type template functions Htype homomorphic_add (Htype,

Htype) and Htype homomorphic_multiply(Htype, Htype)

that perform homomorphic operations on different numeric
data types. The implementation allows deterministic arith-
metic computation enabling execution state saving. The
template functions for addition and multiplication replace
the operators for addition and multiplication with function-
The functions allocate memory for the argument variables
that will be respectively encrypted and transmitted to the
workers. The values received are classified and decrypted
according to the computation scheme.

In the assembly implementation we use dynamically .ascii

fixed length strings and .string variable length strings to
store big number values of arbitrary size. An existing ap-
plication is read in binary mode and disassembled to assem-
bler code which can be patched with assembly functions that
perform the translations between variable registers and their
corresponding encrypted values.

As an example for the delegated computation we use a pro-
gram that delegates the polynomial evaluation for big inte-
ger numbers. The test programs used are written in C /
C++ and use a native implementation of the protocol on
an x86-64 architecture. After compiling and building the
programs, the delegator transfers the client program to the
cloud in order to perform the computation. The delegator
program initially performs a basic analysis of the computa-
tions that should be outsourced to the cloud. Based on this,
the program generates one or more computation schemes
that can be externally computed by the worker. The corre-
sponding variables are encrypted and sent together with the
computation scheme to one or more workers. The results
of the different computations are consolidated in order to
get the final result or to flow as input for another depend-
ing computation scheme. We note that in this operation
mode the operations performed on the encrypted data must
be disclosed to the worker. A rogue worker may be able to
identify critical data based on the operations performed on
it.

Besides the operation mode described above we propose an-
other operation mode called “anonymous“ that enables the
delegator to perform homomorphic operations without dis-
closing the arithmetic operations performed on the data.
We exploit the fact that the Paillier and RSA homomorphic
properties are achieved with the multiplication of ciphertext
values. In this mode, the worker has no possibility to distin-
guish between addition and multiplication. This operation
mode has the negative side effect that operation results must
be sent back to the delegator after each operation. This leads
to increased network traffic and time overhead.

Figure 3 presents the time needed by a CPU in order to per-
form a homomorphic operation or a translation between two
homomorphic operations on an operand of size n. The graph
figures the average time for the operations simulated on two
systems with Intel Core2 Duo P8700 CPU with 2.53GHz
and Intel Core i5 M520 CPU with 2.40GHz connected via
local network (100-Mbit/s-Ethernet).
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Figure 2: Benchmark of the individual basic opera-
tion’s runtime.

We note that the individual operations involving RSA en-
cryption lead generally to increased computation overhead
compared to addition or update operations from addition to
multiplication.

In Figure 3 we present a visualisation of our polynomial
evaluation example using random 64 bits values. The im-
plementation doesnâĂŹt use any optimisations for Paillier
or RSA such as Montgomery arithmetic [3] or caching of ci-
phertext independent factors. We observe that the runtime
is linear in the number of terms and thus in the underlying
number of operations.

While we recognize that outsourcing leads to more work for
the delegator in our toy example, Figure 2 indicates that
updates must only be apart by 104 instructions to achieve
a reduction, which might for example occur in computa-
tions where large numbers of additions are executed on a
set of data, such as computing different averages of mea-
sured data. Also, the amount of work necessary to make the
scheme practical can be reduced as the delegator could im-
plement efficient data structures (e.g. rainbow chains [16])
to save precomputed values and their appropriate encryption
strings with the algorithms in use. Furthermore, although
we presented our protocol only for one worker, this protocol
can be easily extended to any suitable number of workers
given sufficient independent computation on the delegator
side. The computation might be split, and the results re-
assembled by the delegator, cf. Figure 3.

4. CONCLUSION
We presented an approach to exploit homomorphic prop-
erties of asymmetric encryption algorithms to increase the
security and the trust level in today’s cloud based services.
The experimental results indicate that the computation over-
head can be reduced so far that the scheme is applicable for
practical use. The presented protocol can be implemented
in application source code. Existing applications with no
possibility to modify the source code might be extended by
the functionality through software patches of the binary ex-
ecutables, although the possibility to reduce the number of
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Figure 3: CPU time needed to perform polynomial
evaluation for polynomials of different degrees and
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transfers is strongly reduced.
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