Performance Estimation of Virtual Duplex Systems on Simultaneous
Multithreaded Processors

Bernhard Fechner and Jorg Keller
FernUniversitat Hagen
LG Technische Informatik II
Postfach 940
58084 Hagen, Germany

{bernhard.fechner|joerg.keller } @fernuni-hagen.de

Abstract

Virtual duplex systems provide detection of transient as
well as most permanent hardware faults by executing two
versions of a program on a single processor in a time-
shared manner. Previous studies on virtual duplex systems
have focussed on either improving fault coverage or reduc-
ing overhead. We build upon this work and investigate the
positive influence of an underlying processor architecture
that supports parallelism in the form of multiple threads in
hardware. Such processor architectures are just entering
the market, with a die area only slightly larger than that of
a conventional processor. A performance prediction shows
that those processors allow faster fault detection than con-
ventional processors of the same speed. Moreover, the par-
allelism can be utilized for a recovery that extends the con-
cept of virtual duplex systems. Additionally, we present a
technique that further increases the above mentioned gain
by using prediction of the faulty version in a manner similar
to branch prediction.

1 Introduction

Duplication of processing activity is a proper technique
to detect faults of the underlying hardware. When software
diversity is employed, design faults of the running software
can be covered as well. A particular form of such a du-
plication is a virtual duplex system, where the duplicity is
achieved by temporal redundancy. Virtual duplex systems
(\VDS) were introduced in [1] and have been in the focus of
research from then on. Originally, the temporal redundancy
is obtained by executing the same program with the same
input data twice. One may vary the way of duplication. One
option consists in running entire programs twice, whereby
another option is to execute the duplicated processes in

Peter Sobe
Universitat zu Libeck
Institut fur Technische Informatik
Ratzeburger Allee 160, Haus 33
23538 Liibeck, Germany
sobe@iti.uni-luebeck.de

short rounds and switch between them. The switching in-
troduces extra overhead, but can be used to compare the
intermediate results more often in order to detect a fault
soon after the first effects. Virtual duplex systems can be
extended from only detecting faults to tolerating faults, as
we will show in this article.

Virtual duplex systems are not likely to be applied when
the risk is very high, because they cannot tolerate all per-
manent hardware faults. Yet, in the medium range they
provide a cost advantage over duplex systems because of
reduced hardware requirements. The ability to not only de-
tect but also tolerate faults enables their use in situations
where a speedy repair cannot be supplied after a fault. An
example are soft mission critical systems, e.g. computers
that serve scientific experiments on space missions. Here,
a single experiment is not mission critical, its failure how-
ever still is expensive. In outer space transient faults are
much more frequent due to radiation, and repair is impossi-
ble for obvious reasons. Also, due to increasingly smaller
feature sizes, it is to be expected that transient faults due
to radiation will occur much more frequently on earth mis-
sions, both in memories and in logic [10]. Virtual duplex
systems are already in commercial use in transportation en-
vironments, e.g. in the Copenhagen subway.

We assume a virtual duplex system (VDS) as e.g. defined
in [2]. It consists of three versions of a software with identi-
cal functionalities. Two versions are used to detect transient
faults, the third will be needed for detection of permanent
faults and for recovery. The versions show both design di-
versity and systematic diversity to be able to recover from
transient as well as from many permanent hardware faults
[6]. The diverse versions can be generated automatically
[4].

Our goal is to investigate the advantages of using a mi-
croprocessor that supports multiple threads in hardware.
So-called simultaneous multithreaded processors are just

entering the market, e.g. the new Pentium 4. Intel calls
this microprocessor hyperthreaded, which is synonymous
for 2-way multithreaded. These processors are interesting
because they promise performance gains (runtime reduc-
tion up to 35% has been reported) at a moderate increase
in cost (the die area increases by only 5%) [13]. For a hy-
perthreaded microprocessor we employ a processing model
that is supported by the operating system, i.e. we assume
that it maps user processes onto the hardware threads of the
processor in the same manner as on a two-processor ma-
chine. When talking about threads in the sequel, we mean
hardware threads carrying a user process, unless otherwise
stated.

The remainder of this paper is organized as follows. Sec-
tion 2 specifies the system and fault model and discusses
related work. In Section 3 virtual duplex systems on con-
ventional and multithreaded processors, respectively, are
described and compared. Further improvements on multi-
threaded processors, when taking into account knowledge
about which version is faulty are presented in Section 4.
Section 5 summarizes our work.

2 Préiminaries
2.1 System and fault model

For both architectures that are compared in this paper
— a conventional microprocessor and a simultaneous mul-
tithreaded processor — we assume the same basic system
and fault models. The system models are differentiated in a
few points.

System model:

e \ersions are functions that can be executed as pro-
cesses. A version can be run for a specified number
of rounds. Here a well defined portion of process ac-
tivity is executed and then the function returns. Later,
the version can be continued from the point.

e Classical virtual duplex systems either use processes or
(user) threads. In the latter case, each version/function
operates on a private subspace of a common address
space while no fault occurs. A fault leading to ac-
cesses in a different versions subspace may lead to
data corruption of both versions. The detection of this
case can be covered by applying error detecting codes
for data in the memory. For a virtual duplex system
on a simultaneous multithreaded processor, we restrict
to separate address spaces for all versions, which are
protected against each other by operating system and
hardware means. An access to the data of another ver-
sion then leads to an access violation which is signaled
as a fault but leaves the other version’s data unchanged.

e Recovery is enabled by saving state to a disk from time
to time (checkpointing).

Fault model:
e Transient and permanent faults are assumed.

e A constraint applies for both types of faults: a fault
may not corrupt states/output of any two versions in
the same way. For transient faults this is very likely,
because they can be modeled as bit flips in registers,
and as such only directly affect one version. The ex-
clusion of consequences for other versions has already
been discussed above. For permanent faults, diversity
is used to employ the hardware in different ways and
to make it unlikely that a single fault shows the same
effect on two versions.

e A fault is able to stop a version and also to stop the
entire processor including all versions. In the latter
case, recovery is only possible by rollback (see next
subsection).

2.2 Related work

Much insight related to conventional process duplication
can be used for VDS as well. For instance the effects of
varied check intervals and checkpoint periods on reliability
have been studied in [14]. A main result from that study is
that shortening test intervals improves reliability, because
the likeliness of two processes affected by a fault is de-
creased. Thus, it is advised to test states more often than
saving checkpoints. In common environments, additionally
stable storage access for checkpointing is relatively expen-
sive that is a reason for relative long checkpoint intervals.
As proposed, VDS follows that way by using short rounds
after that the states of the versions are compared and longer
checkpoint intervals.

Using a multithreaded processor to achieve fault de-
tection has been investigated by Reihardt and Mukherjee
[9]. They run two identical versions, and they work in a
cycle-by-cycle lockstep, to reduce detection time to a mini-
mum. The price they pay is a loss in performance and extra
hardware for state comparison after each cycle, and extra
methods (also supported in hardware) to detect multi-cycle
faults.

For recovery of duplex based systems, generally one
may embark on the following strategies:

Rollback recovery- both processes/versions are set back to
the state of the last checkpoint and the processing interval
is retried. If two equal states are reached afterwards, the
processing is continued.

Stop and retry recovery- if a state comparison mis-
matches, both processes/variants are stopped until a third
process/variant computes a third status for the mismatching

round. Then a 2-out-of-3 decision is made to identify the
fault free version that is used to continue duplex processing.
An algorithm for process duplication using stop-and-retry
recovery in computer networks, especially with focus on
message transfer has been given in [12].

Roll-forward checkpoint schemes- can be seen as an
extension of stop-and-retry recovery. Recovery is designed
to exploit parallelism of the system. While the third variant
is executed in order to find the fault free state, simultane-
ously processes/variants 1 and 2 continue processing on the
remaining hardware.

The VDS on a hyperthreaded processor will follow the
concept of the roll-forward checkpointing scheme (a near
variant has been described in [7, 8]).

3 Virtual duplex system implementation
3.1 VDS on aconventional processor

If we employ a conventional processor, the VDS soft-
ware is executed on a single processor in the following way
(see Figure 1(a)). Versions 1 and 2 proceed alternately in
rounds. After both versions have completed a round, the
states of both versions are compared, and only in the case
of identity, processing continues. The proceeding versions
can be imagined as scheduled round robin, with the context
switched when they reach the end of a round. We assume
that the processing of a round for each version always takes
time ¢, i.e. a complete round will take time

Tl,round =2 (t + C) + tl 5 (1)

where t’ < t is the time to compare the states, and ¢ < t is
the time for a context switch.

After every s rounds, the state is saved in the form of a
checkpoint. Now, if two differing states are detected at the
end of round 7 after the last checkpoint, where 1 < ¢ < s,
then version 3 is started with the state from that checkpoint
and executed for ¢ rounds. Then a majority vote over three
available states allows to distinguish the faulty state, and
proceed with the two versions that have correct states (Stop-
and-Retry). Correction thus takes time

Ticorr=1-t4+2-1. 2

Note that in the case of an additional fault during recovery,
or in case of a permanent fault not covered by the diversity
of the versions, we will have three different states, and no
majority vote is possible. In this case, one has to resort
to a rollback scheme, i.e. starting versions 1 and 2 again
from the last checkpoint. However, we will not consider
that situation in the sequel.

t+C .
- maj. vote: V2 faulty

'V3Ri @V1Ri+] I

VaRi+t

IVlR:u [1VLiR2|

'var Y !

P
Tl,round Tl,corr

(a) Virtual Duplex System on a Conventional Microprocessor

maj. vote: V2 faulty

V1RL5i+1

TiARL _[JVAR2 1 T]VLRI [V3RL ;. ' V3Ri
|]
.]]
O O O i it it ! O
V2R1 V2R2 V2Ri V1Ri+1 V2 Ri+1 V3RL5i+1
PR 0.5i rounds 0.5i rounds
THT2,round T,
HT2,corr

(b) Virtual Duplex System on a Multithreaded Processor

End of Round D State Comparison H‘ Fault Detection

‘ Context Switch I State Comp + Checkpoint

Figure 1. Execution models of a virtual duplex
system on different processor architectures.

3.2 VDSon ahyperthreaded processor

Now, if we replace the conventional processor by a pro-
cessor that supports simultaneous multithreading [11] in
hardware, such as the Intel Pentium 4 with Hyperthreading
[3], we can execute two threads, each containing a partic-
ular version in parallel* (see Figure 1(b)). Because of the
improved processor utilization and the absence of a context
switch one round will now take only time

THTQ,round =2-a-t + t/ 5 (3)

with % < a < 1. In the optimal case « = 0.5, the two
threads completely run in parallel. In the worst case o = 1,
the threads are — apart from the context switch — as slow
as on the conventional processor. In the Intel Pentium 4,
a = 0.65 is reported [13]. The extra hardware cost is quite
small, merely a 5% increase in die size [13].

This means that in normal processing periods a speedup
of G,-ounad 1S Obtained.

Tl round
G'r‘ound - —_— 4
THTQ,round ()
2-(t4c)+t

2-a-t+t

Q

1
o

ifc,t/ < t.

1The processor considered supports two threads in hardware. If only
onethread is active, the processor behaves like a conventional processor.

After detection of a fault, we could in principle proceed
as on a conventional processor. Then however, we would
not gain any time (see footnote 1). Therefore, we employ a
slightly more complex scheme. While the first thread exe-
cutes version 3 for ¢ rounds, the other thread is employed in
aroll-forward scheme, i.e. used to proceed versions 1 and 2
beyond round 7. We will consider both a deterministic and
a probabilistic roll-forward scheme.

In order to be able to detect a fault during the roll-
forward, we proceed with versions 1 and 2 starting from a
common state. Here we have the possibility to choose from
the states P and @ of both versions at the end of round 7,
respectively. However, these states are different, and we
do not know which of these states is affected by the fault
just detected. In the probabilistic scheme, we choose one of
the states, and execute both versions for /2 rounds? each,
which needs about the same time as executing ¢ rounds of
version 3 in the first thread. Figure 1(b) depicts this scheme.
If we chose the state of the fault-free version, our roll-
forward is successful. If we chose the state of the faulty
version, we did not gain anything by the roll-forward. Note
that our choice can be random, so that the probability to
choose the correct version is 0.5, or can try to use some pre-
diction scheme which might increase this probability, see
Section 4.

In the deterministic scheme, we start from both states,
and roll-forward /4 rounds of each version, starting from
each state, so that in total we execute 4 rounds, which needs
about the same time as the retry of version 3 in the first
thread.

Note that the roll-forward may have to be shortened due
to the checkpointing interval. If ¢ > 4s/5and ¢ > 2s/3
in the deterministic and probabilistic schemes, respectively,
we only roll forward until round s. Hence, when we in-
tend to roll forward for 2 rounds, then we really do so by
min(z, s — 4) rounds. The latter case happensif i > s — .

During the roll-forward, no state comparisons are per-
formed. In the probabilistic scheme, we first execute /2
rounds of version 2, and then switch to version 1, of which
/2 rounds are executed afterwards. In this way, only a sin-
gle context switch is necessary. In the deterministic scheme,
we first execute /4 rounds of version 2 starting from state
P (the state of version 1 after round 4), then i/4 rounds of
version 1 starting from state P, then /4 rounds of version 1
starting from state @ (the state of version 2 after round 1),
and finally /4 rounds of version 2 starting from state Q. In
this way, only a single context switch is necessary.

After the roll-forward, the final states of the versions are
compared. If those states are different, then an additional
fault has been detected during roll-forward. Hence, the
roll-forward has to be discarded. Figure 2 depicts the flow

2For simplicity, we do not consider the detail that i/2 may not be an
integer.

diagram of normal processing and fault recovery on a mul-
tithreaded processor with the probabilistic scheme. Figure
3 depicts the corresponding diagram for the deterministic
scheme.

The recovery will take time®

THTQ,COTT:2'i'a't+2'tla (5)

assuming that the roll-forward in the second thread does not
take longer than the retry in the first thread. To complete
recovery in case of a successful roll-forward, the state of
the fault-free version (version 1 or 2) is copied to version 3.
So, version 3 is rolled forward to the fault-free version and
forms a new VDS with the remaining fault free version.

3.3 Comparison

We will figure out how much faster our recovery includ-
ing roll-forward is in relation to a VDS on a conventional
processor. We treat the probabilistic and deterministic vari-
ants separately. For the deterministic variant, the gain is

Tl,corr + mln(z/4, s — Z) . Tl,round

Giorn(i) =
() THTQ,COT’T
2 i <4s/5
~ 1o 1=
{ 21> 4s/5. ©)
ifc,t’ < t.

We assume a fault to happen with equal probability in
any round ¢, where 1 < ¢ < s. Hence the average gain is

_ 1 &
det _ det [
Gcorr - g : E Gcorr (2)
=1

1+2In(5/4)
2c0
0.723)

«

Q

ifweuse > " . 1/i~In(m/n).
In the probabilistic case, we have to distinguish whether

our prediction of the faulty case is correct or not. We will

only state the expected gain here, because the computation

will be explained in detail in the next section:

_ 1+2pIn(3/2) 0.405p+0.5

G«prob ~
corr 2 a

(8)

For p = 0.5, a random choice, both expressions (7) and (8)
have approximately equal values, as one would expect. For
p > 0.5, the probabilistic scheme provides a larger gain.
The gain of the deterministic scheme is larger than one for
a < 0.723, i.e. a medium utilization of the processor suf-
fices to gain.

3To be exact, we would have to write max(t’, c) instead of #'.

No: next round

(if no rollback)

Yes P

Resort to
rollback.

Get state from
last checkpoint

Save as
checkpoint

V1 faulty,
cont. V2/V3
V2 faulty,
cont. VINV3
Yes

AN

J

Fail-safe
shutdown

T

No

No ——»|

Fault during
retry

Yes

|

Fault during
roll-forward

Discard
roll-forward

State R
faulty?

Figure 2. Flow chart of VDS on a multithreaded processor with probabilistic roll-forward.

Start
VIV, in
thread 2
with P,
V'V,
with Q

No: next round

(if no rollback)

Yes P

Save as
checkpoint

V1 faulty,
cont. V2/V3
V2 faulty,
cont. V1/V3
Yes

~

(_Hyperthreaded Execution

J

State P=
State S?

Resort to
rollback.
Get state from
last checkpoint

Fail-safe
shutdown

Fault during
retry

T

No

tate V=
tate W2,

No
Tate T= M\
tate U?,

—n v
Fault during
roll-forward.

Discard
roll-forward

Figure 3. Flow chart of VDS on a multithreaded processor with deterministic roll-forward.

4 Using knowledge about faults

If we refrain from the detection of faults during roll-
forward, we can simply execute 4 further rounds of one of
the versions in the second thread while version 3 does the
retry in the first thread. Here again, we have a probabilistic
scheme as in general we do not know for sure which ver-
sion is faulty. However, sometimes there is evidence that a
particular version, is most likely to be the faulty one, e.g. in
the case of a crash fault. If we guessed the faulty version
correctly, we have made much more progress than in pre-
vious schemes. Otherwise, we pay a penalty. Note that we
still have the restriction that the roll-forward will not con-
tinue beyond round s, because of the checkpointing interval.
Hence, we roll forward for min(i, s — ¢) rounds. The latter
oceurs if i > s/2.

4.1 Correct prediction of the fault free version

If we predict and choose the fault-free version, then we
indeed achieve a roll-forward of min(4, s —7) rounds during
the retry. The gain we achieve against a VDS on a conven-
tional processor is

Tl,corr + min(i, s — Z) : Tl,round

hit (- _
Gcorr(l) - T (9)
HT?2,corr
3it+(2+4)t' +2ic | . < s
_ 2iat 2t) (10)
- (25—3)t+(2+s5—3)t' +2(s—i)c . - S s
2ot 2t =g

Nl N|»

3 .
- m 1 S
{ 252/.1(;1 Ci>
4.2 Incorrect prediction of the fault free version

Here, the roll-forward does not provide any benefit. In
the best case, a hyperthreaded system performs equally to a
VDS system on a single processor (o« = %). The loss is

prisspy = Theorr
corr THTQ,COTT
ot + 21
= ; (11)
2-0-a-t+2-t
1
200
In the best case, the hyperthreaded processor loses noth-
ing against the conventional processor, in the worst case it
loses a factor of two.

Q

4.3 Expected gain

If p is the probability of a correct guess of the faulty ver-
sion, the gain is

Glorr(i) = P+ Glgu (i) + (1= p) - Li? (i) (12)

IR I T
2a :

DNIN N0

We assume a fault to occur at any round 7 with equal prob-
ability. Hence the expected gain is

_ 1 &
G = —. G! j 13
corr s ; COT’I‘(Z) ()
_ 1+2pln2
- 20
ifweuse 320 5, 1/i~In2~0.693.
We first note that
Glopy 0 S2EPIZ Gt et

«

if p > 0.5. Notice that p = 0.5 corresponds to a random
guess. Hence, if we do not make intentionally false guesses,
this improvement will on average perform better in the case
of a fault than the previous ones.

We also see that for p > (« — 0.5)/1n2, the gain is
at least one. In the best case @ = 0.5, we always gain
no matter how bad our guesses are. For random guesses
(p = 0.5) we gain for a < (1 4 1n2)/2 ~ 0.85.

We present our results graphically in Figures 4 and 5 for
p = 0.5and p = 1.0, respectively. Here, p = 0.5 represents
a worst case, as we do not expect any strategy to be worse
than a random choice, and p = 1.0 represents a best case.
For both figures, we set

c=t'=p-1t (14)

to reduce the number of unknowns. We assume 0 < 3 < 1,
where 5 = 0 represents the case where overhead can be
neglected, and 3 = 1 represents the (unrealistic) case where
a context switch or a comparison take as much time as a
round. For both figures, we assume s = 20. We obtain the
figures not by using the approximated values that neglect ¢
and ¢/, but by using exact equations (10), (11), (12), (13),
and (14).

Since the time for a context switch is much smaller
than the time for a round, we may set 5 = 0.1. For a
hyperthreaded processor like the Intel Pentium 4, we get
a = 0.65 as its reported gain is 35% [13]. The maximum
gain for these values is obtained by calculating the limit for
s going towards infinity:

_ 923 .1n2 10
Graw = lim G = Pt —
oo coTT 3 PTI3

Note that beyond s = 20, G".,,,... is already very close to the
limit, independently of the values for « and 3. Therefore,
we chose s = 20 in the figures.

If we pessimistically set p = 0.5, we get an acceleration

of G.nae = 1.38 over the non-hyperthreaded version. Even

Figure 4. Gain G',,,.,.(«, 8) for p = 0.5.

if we apply the results from [5], where it was reported that
multithreading improved execution time by less than 10 per-
cent for most of the applications investigated, we still would
not lose as G,,q. ~ 1.0. However, we have to note that
the hardware employed there (Alewife multiprocessor with
Sparcle processor, a modified Sparc) is not a simultaneous
multithreaded processor. Threads were supported by using
different parts of the register file, and context switches were
executed when a thread was waiting for a remote memory
access.

For reasons of fairness, we note that in the conventional
VDS, we may stretch the assumption of no further fault to
the point that after the majority vote, we execute version 3
for another ¢ rounds without context switch, and copy its
state to the other fault-free version while saving the next
checkpoint. However, replacing 71 ,ounq Dy t in equation
(9) does not change much as we assumed so far that ¢, ' <«
t. Even when we put in exact figures, the change will be not
more than a few percent at the best.

5 Summary and outlook

A virtual duplex system is an appropriate technique to
detect and tolerate faults by temporal redundancy. Two pro-
cesses/threads are executed in short time slices one after an-
other. Using modern microprocessors with the ability to
execute two threads in parallel in a super-scalar way, one
can shift time redundancy to spatial redundancy. We have
evaluated the gain by using a hyperthreaded processor ar-
chitecture for such a VDS and shown that even in the case
that a processor does not exhibit the maximum possible per-
formance by hyperthreading, we get a gain for the normal

Figure 5. Gain G',,,...(a, 8) for p = 1.0.

processing and the error correction phases.

Alternatively, if we are already satisfied with the VDS
performance, we could employ a multithreaded processor
with a clock frequency reduced by a factor of at least 1/«
assuming that performance scales linear with clock fre-
quency. This would account for lower cost, lower power
consumption and lower heat dissipation.

For a multithreaded processor supporting more than two
threads in hardware, we are able to boost the variants
with fault detection during roll-forward: in the probabilis-
tic scheme we could execute versions 1 and 2 for i rounds
each in two separate threads (needing 3 threads in total), in
the deterministic scheme we could execute versions 1 and
2, starting from states P and @, for 4 rounds each (needing
5 threads in total).

The prediction probability p could be further improved
using techniques similar to branch prediction in micropro-
cessors: we keep a history of faults. This may be useful in
situations where the probability of transient faults due to ra-
diation is high enough that several of them may occur. If a
particular part of the hardware is more likely to be affected
by faults of this kind due to process variations, this can be
detected. While branch prediction takes a lot of hardware
resources in microprocessors to take no more than one cy-
cle, our fault prediction can be done in software as we are
operating on much larger time scales. For the same reason,
we may be able to apply more sophisticated algorithms.

References

[1] K. Echtle, B. Hinz, and T. Nikolov. On Hardware Fault Di-
agnosis by Diverse Software. In Proceedings of the 13th

(2]

(3]
[4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

International Conference on Fault-Tolerant Systems and Di-
agnostics, pages 362-367. Bulgarian Academy of Science,
Sofia, 1990.

A. Gravinghoff and J. Keller. Fine-Grained Multithreading
on the CRAY T3E. In High-Performance Computing in Sci-
ence and Engineering, LNCS, pages 447-456. Springer Ver-
lag, 2000.

Intel. Hyper-threading technology on the intel xeon proces-
sor family of servers. white paper. 2002.

M. Jochim. Detecting processor hardware faults by means of
automatically generated virtual duplex systems. In Proceed-
ings IEEE International Conference on Dependable Systems
and Networks (DSN’02), pages 399-408, 2002.

B.-H. Lim and R. Bianchini. Limits on the performance
benefits of multithreading and prefetching. In Proceedings
of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’96), pages
37-46, May 1996.

T. Lovri¢. Fault Detection by Systematic Diversity in Time-
Redundant Computing Systems with Design Diversity, and
Their Evaluation by Fault Injection (in German). PhD the-
sis, Univ. Essen, Germany, 1996.

D. Pradhan, D. Sharma, and N. Vaidya. Roll-Forward
Checkpointing Schemes. In M. Banatre and P. Lee,
editors, Hardware and Softwarearchitectures for Fault—
Tolerance, number 774 in Lecture Notes in Computer Sci-
ence. Springer, 1994.

D. Pradhan and N. Vaidya. Roll-Forward Checkpointing
Scheme: A Novel Fault-Tolerant Architecture. IEEE Trans-
actions on Computers, 43(10), October 1994.

S. K. Reinhardt and S. S. Mukherjee. Transient fault detec-
tion via simultaneous multithreading. In Proceedings of the
27th Annual International Symposium on Computer Archi-
tecture, pages 25-36, 2000.

P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on the
soft error rate of combinational logic. In Proceedings IEEE
International Conference on Dependable Systems and Net-
works (DSN’02), pages 389-398, 2002.

D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multi-
threading: Maximizing On-Chip Parallelism. In Proceed-
ings of the 22nd Annual International Symposium on Com-
puter Architecture, pages 392-402, 1995.

N. Vaidya and D. Pradhan. A Fault-Tolerance Scheme for
a System of Duplicated Communicating Processes. In Pro-
ceedings of the IEEE Workshop on Fault Tolerant Parallel
and Distributed Systems, pages 98-104, July 1992.

M. Withopf. Virtual tandem: Hyperthreading in the new
pentium 4 with 3 GHz (in German). c’t, 24:120ff, 2002.

A. Ziv and J. Bruck. Performance Optimization of Check-
pointing Schemes with Task Duplication. |IEEE Transac-
tions on Computers, 46(12):1381-1386, December 1997.

