THREAD-BASED VIRTUAL DUPLEX
SYSTEMS IN EMBEDDED
ENVIRONMENTS

VIRTUAL DUPLEX SYSTEMS PROVIDE THE COST BENEFIT OF REQUIRING ONLY

Jorg Keller
Andreas Gravinghoff
FernUniversitat Hagen

ONE RATHER THAN TWO PROCESSORS. TO LIGHTEN THE SINGLE PROCESSOR'S

BURDEN AND MEET REAL-TIME REQUIREMENTS IN EMBEDDED SYSTEMS, THE

AUTHORS PROPOSE USING EMULATED MULTITHREADING TO REDUCE

OVERHEAD AND ALLOW FASTER FAULT DETECTION.

e e oo oo Embedded systems play an impor-
tant role in our daily lives: We interact, some-
times unknowingly, with embedded systems
in applications ranging from cars, trains, and
aircraft to washing machines and other house-
hold appliances. In an increasing number of
applications, the system’s ability to detect or
tolerate transient and permanent faults is
important. To achieve this goal, a system
requires redundancy, or multiple resources. In
the past, designers have used some form of
duplex system, or structural redundancy, for
these applications.

However, the cost associated with dupli-
cated hardware resources is a major drawback
of duplex systems. For embedded systems,
which are usually deployed in very high vol-
umes in highly competitive products such as
household appliances, there is a strong moti-
vation to lower costs. In this article, we present
a new approach, which avoids the high costs
associated with traditional duplex systems
without sacrificing the ability to detect and
tolerate faults.

The basis of our approach is virtual duplex
systems." Virtual duplex systems use temporal

Published by the IEEE Computer Society

rather than structural redundancy to detect
faults. Experimental results show that such
systems provide excellent fault detection in
the case of transient failures. For permanent
failures, the use of systematic diversity in com-
bination with design diversity produces
encouraging results.? A virtual duplex system
requires only a single processing node, where-
as a traditional duplex system needs two. To
match the performance of a traditional duplex
system utilizing more than 50 percent of each
processor’s performance, a virtual duplex sys-
tem must use a faster processor. However, one
faster processor is usually cheaper than two
slower ones. In addition, a virtual duplex sys-
tem requires only one instance of supporting
circuitry (memory, I/O, and so forth) and uses
a smaller printed circuit board.

Because virtual duplex systems use tempo-
ral redundancy, their use might interfere with
embedded applications’ real-time require-
ments. For example, consider an autonomous
guided vehicle that uses a camera to control
its movements: The embedded system con-
trolling the vehicle must issue instructions at
a rate proportional to the vehicle speed; that

0272-1732/05/$20.00 © 2005 IEEE

is, there is little time for fault detection
because instructions are issued only after the
absence of faults has been asserted.

Virtual duplex systems use several process-
es, so the duration of context switches
between processes is a constraint on fast fault
detection: The percentage of context-switch-
ing time increases relative to user time as the
time available for fault detection decreases.
Context-switching overhead is a well-known
operating-system problem. Modern operat-
ing systems, therefore, support threads, which
share resources (such as address space and
open files) to decrease context-switching time.
Even with threads, however, a context switch
is an expensive operation, and no embedded
processors support hardware multithreading.
Therefore, we propose virtual duplex systems
using emulated multithreading. Originally
developed to hide memory latency in mas-
sively parallel computers,** emulated multi-
threading provides very fast context switches
and thus enables very small grain sizes.

Virtual duplex systems

Structural redundancy in the form of duplex
systems is a common method of supporting
fault detection. During the past two decades,
the use of temporal redundancy emerged, espe-
cially in circuit design areas such as alternat-
ing circuits, alternate data retry, and
recomputing with shifted operands. Design-
ers also have used temporal redundancy in con-
nection with design diversity to detect design
faults through self-reducible functions, certi-
fication trails, and program checking. Echtle,
Hinz, and Nikolov discuss using temporal
redundancy in connection with design diver-
sity to detect permanent as well as transient
hardware failures.! We describe the virtual
duplex systems introduced in their work in the
next paragraphs. In their experiments, such
systems detected design faults and transient
hardware failures with very good fault cover-
age. These systems also provided limited cov-
erage of permanent hardware failures. On the
basis of this work, Lovric used systematic diver-
sity and diverse error-correcting codes to
enhance the fault detection capability of vir-
tual duplex systems.?>¢ This combination of
techniques yielded good results even in the
presence of permanent hardware failures.

Figure 1 shows a virtual duplex system’s

Scheduler

Y

[» |

Error checker

\)
)

Figure 1. Basic structure of virtual duplex
system.

basic structure. The figure does not include
fault-tolerant I/O devices. Following Lovric’s
model,” we make the following assumptions:
The system performs input and output by
reading and writing, respectively, designated
memory areas. Furthermore, computation
proceeds in rounds, with the result of a deter-
ministic function F being calculated in each
round. To facilitate the detection of crash
faults, we place an upper limit on the time
required to calculate F. Using these assump-
tions, we identify the following components
of a virtual duplex system:

o Vjand V, are two different implementa-
tions that compute function F on input
e. The implementations should be
diverse; that is, they should originate
from independent development teams,
also a requirement for conventional
duplex systems. Systematic diversity fur-
ther enhances diversity. The two imple-
mentations encode result F(e) with
different error-correcting codes and
deliver both encoded and both unen-
coded results to the error checker. Result
Fe) is a hash value over the state of the
respective process. The states of V; and

MARCH—APRIL 2005 3

VIRTUAL DUPLEX SYSTEMS

[EEE MICRO

V, are denoted by P and Q.

o The error checker compares results from
V, and V, and signals a fault on non-
equality. First, the error checker ensures
the integrity of the two coded results by
checking that both results are valid code
words. Next, it compares the two results
and signals possible differences as faults.

o The scheduler arranges execution of V,
and V,. In the absence of crash faults, V,
executes after V/ has finished. In the case
of crash faults in V; or V,, S signals an
error to the error checker.

Systematic diversity, an extension of tradi-
tional design diversity, maintains a program’s
semantics. Lovric proposed mechanisms to
improve diversity in design (specification),
tools (compiler switches), and source code
modification (high-level language and assem-
bler). Some of these mechanisms are system
dependent because they use characteristics of
processor hardware and development tools.
An evaluation of systematic diversity on two
medium-complexity programs (quality con-
trol and interconnection network manage-
ment) yielded good results; on average, all
transient as well as 99.94 percent of perma-
nent hardware failures were detected.? Lovric’s
work did not include fault recovery. Howev-
er, well-known techniques uch as check-
pointing can achieve fault recovery in virtual
duplex systems and duplex systems alike. A
simple variant is to store the state from time
to time. In case of a fault—that is, in case of
different states—a third instance of F is exe-
cuted, starting from the last stored (valid)
state. Then a majority vote over the three state
encodings selects two identical states from
which the application can continue.

Emulated multithreading

Until now, virtual duplex systems have used
traditional heavyweight processes associated
with operating systems. Because switching
between these processes is costly, the typical
grain size is on the order of tens of thousands
of executed instructions. Modern operating
systems also support lightweight processes—
threads—which share some of the resources
associated with heavyweight processes, such
as the address space. This resource sharing
makes switching between lightweight process-

es less costly than between heavyweight
processes, so that grain sizes on the order of
thousands of instructions are possible. Posix
threads are a popular form of lightweight
processes supported by almost all modern
operating systems.® Mueller reports context
switch times of 1,480 and 4,920 cycles,
respectively, for Posix threads and processes
under the Solaris operating system, measured
on a Sparcstation IPX.

However, these threads’ overheads and cor-
responding grain sizes are still too high for our
purposes. Fine-grained multithreading—
grain sizes between one and hundreds of
instructions—requires low-overhead context
switches, as provided by emulated multi-
threading. >

In emulated multithreading, each thread is
defined by its context and the program
counter—that is, the thread’s current location
in the program code. The context is defined as
the thread’s processor state—the registers vis-
ible to the application programmer. The con-
text typically contains all general-purpose
registers as well as any special registers such as
condition codes. The program code is divid-
ed into instruction blocks ranging in size from
one to several hundred instructions. These
instruction blocks are modified during com-
pile time as follows: Each modified instruc-
tion block contains the necessary instructions
to save or restore the part of the context that
is modified or read, respectively, by the
instructions in the original instruction block.
In contrast, traditional thread packages save
or restore the whole context when execution
switches between threads. To execute a given
thread, a scheduler program calls and executes
the modified instruction block pointed to by
the thread’s program counter; execution then
switches to the next thread. Virtual duplex
systems don’t require complex scheduling
algorithms, thus ensuring low overhead.
Therefore, the main routine from which all
threads execute consists of a simple loop that
calls the modified instruction blocks in a
round-robin manner.

In addition, the compiler can spread the
operations to save and restore registers along
the instruction block, possibly filling empty
instruction slots: Register saving can be per-
formed directly after the last write to that reg-
ister, whereas register restoring can be

Check Check
—|_ - 1 2 7T 1 2 —|_ 3 . 3
J_ T J- T J- T J_ T T J-
Compare Compare Compare
Compare Compare

Figure 2. Thread scheduling in our approach.

postponed until the first read of that register.
An examination of programs from NASA’s
NAS Parallel Benchmarks 2.0 showed that on
average a register was used last after 70 per-
cent of the instruction block length.'® We can
further decrease the number of save/restore
operations; for example, it is not necessary to
restore a register if the first access to that reg-
ister is a write.

Our current implementation uses several
tools that enable emulated multithreading:

o hllconv, a high-level language converter
that processes the high-level language (C
or Fortran) source code to identify pro-
cedures that must be modified;

e asmconv, an assembler converter that
modifies the corresponding assembler
instruction sequences; and

o emulib, an emulation library that con-
tains a lightweight thread package and is
linked to all programs after modification
by the two converters.

In addition to these tools, we use the standard
development tools (compiler, assembler, and
linker) in the design flow.

Embedded virtual duplex systems

In embedded environments, virtual duplex
systems should work as follows: As in conven-
tional virtual duplex systems, a single node
alternately executes two different implemen-
tations of function F. Instead of processes, the
system uses threads in the form of emulated
multithreading. In total, we provide three dif-
ferent implementations instead of two because
we want to tolerate faults. All implementations
are modified as described earlier. We ensure
diversity between different implementations
in several ways: First, we use traditional design
diversity as well as systematic diversity during
the design phase. If the implementations
already use emulated multithreading (that is,

if they contain calls to the emulation library),
no modifications of the high-level language
source code are necessary. Then, we use sys-
tematic diversity techniques such as transfor-
mations of the high-level language code to
generate assembler sources. We modify these
sources as described in the preceding section.

Next, we apply systematic diversity tech-
niques at the assembler language level and
generate executables. As Lovric proposes, all
implementations use error-correcting codes
and send encoded as well as unencoded data
to the error checker. In addition, a simple sig-
nature function, such as the sum of all inte-
gers modulo 256, calculates a signature of the
thread’s state at the end of each instruction
block. The system uses these signatures later
to detect faults in a single round. Therefore,
we must use a common subset of the state to
calculate the signature. The signature also
serves in checking whether a faulty thread has
modified another thread’s data, which is pos-
sible because there is no memory protection
between threads as there is between processes.

Figure 2 depicts thread scheduling in our
approach. Instruction blocks from the first
two implementations (labeled 1 and 2) exe-
cute alternately. After execution of both
instruction blocks, a signature check (labeled
Compare) compares the state of the two
threads. After a selectable number of instruc-
tion blocks, a checkpoint (labeled Check) is
generated in addition to the normal signature
check Compare; that is, both threads’ states
are saved to disk to enable fault tolerance.
Thus, the system frequently compares the two
states threads without always incurring check-
point generation overhead.

In an application mentioned earlier, the
embedded system controls an automated
guided vehicle that uses a camera to track its
movements. To keep the vehicle on track, the
embedded system constantly issues control
instructions based on the camera input. In the

MARCH—APRIL 2005

5

VIRTUAL DUPLEX SYSTEMS

[EEE MICRO

presence of real-time requirements and mis-
sion-critical control operation, the system
issues the next control instruction only in the
absence of faults. Therefore, the time between
signature checks is bounded by the maximum
time between two control instructions—that
is, by the vehicle speed. This restriction
requires small block sizes, fast context switch-
es, and fast signature generation and compar-
ison. Decreasing the block size while
maintaining the same context-switching time
leads to a proportional overhead increase,
which is usually undesirable.

Frequent comparison leads to faster fault
detection since faults can be detected only at
the end of instruction blocks. Because check-
pointing is an expensive operation, the fre-
quent use of checkpoints could lead to
unacceptably high overhead. This might even
be true of diskless checkpointing, which trades
checkpointing overhead for memory con-
sumption. In the event of errors, the system
enables the third implementation (labeled 3
in Figure 2) and rolls back its state to the last
known checkpoint. After the thread reaches
the point where the previous error was detect-
ed, a majority vote disables the faulty thread.
Because all three threads are diverse imple-
mentations, the remaining two threads are still
diverse and can continue operation.

We can tailor our virtual duplex system to
an application’s requirements with several
parameters: First, we can select the grain size
(an instruction block’s maximum length). Sig-
nature checks occur between instruction
blocks, so grain size determines the frequen-
cy of those checks. We can calculate the max-
imum time required for each block at
compile-time, assuming a worst-case scenario.
Second, the ratio of checkpoints to signature
checks is also selectable. More-frequent check-
points incur more overhead but reduce the
minimum time required to resolve faults. Our
system uses three threads, but only two are
active in the absence of errors. To resolve a
fault, we don’t generate a new thread but acti-
vate the third thread instead.

Because traditional Posix threads as well as
our threads use resource sharing rather than
processes, some problems arise. The first is
that quasi-parallel execution requires syn-
chronization between threads that modify
shared data structures. Otherwise the atom-

icity of updates cannot be ensured. The input
values used by all threads are only read and
therefore require no synchronization. If shared
data structures are used, the design require-
ments must ensure proper synchronization
(locks, semaphores, and so forth) between
threads. Alternatively, synchronization is not
necessary if updates to shared data structures
do not cross instruction block boundaries. For
instance, the programmer can mark such
updates, allowing the assembler-level con-
verter to use this information while generat-
ing instruction blocks. However, there is little
reason to believe that the different threads
require read/write access to shared data struc-
tures, since they are diverse, not cooperating,
implementations of one function F.

The second problem is the lack of protec-
tion between threads. Because threads can
access one another’s’ data structures, a faulty
thread can influence other threads. In our
approach, we partition address space between
threads as follows: We map input values used
by all threads to a portion of the address space
shared by all threads. Because neither the
threads nor the error checker require write
access to these values, the corresponding
memory pages can be mapped as read-only.
Therefore, every write access causes a segment
violation. The same reasoning can be applied
to output values; the corresponding memory
pages can be mapped as write-only, but writes
to wrong outputs can still occur. We cannot
handle self-modifying code, so write access to
the threads’ program code is not required.
Again, the corresponding memory pages are
mapped as read-only, so that threads can only
access one another’s’ data structures, not their
program codes. Every thread, as well as the
error checker and scheduler, uses its own por-
tion of the address space, which contains heap,
stack, and frame information. To protect
accesses, we could separate the different por-
tions of the address space with read-only guard
pages. However, virtual duplex systems don’t
rely on protection between processes anyway,
because they use error-correcting code.”

Modifications at the assembler level can
increase code size by adding instructions asso-
ciated with context switches to the instruc-
tion stream. The number of additional
instructions depends on the grain size. Larg-
er grain sizes lead to less frequent context

switches and therefore fewer additional
instructions. However, instead of using a full-
blown thread library, we use a small library
that can limit the increase in code size.

Evaluation

To evaluate our approach, we pursued two
paths. First, we fixed the processor’s perfor-
mance and calculated how much faster we
could switch contexts in a virtual duplex sys-
tem when we compare emulated threads and
Posix threads. Second, we fixed an application’s
context-switching frequency and calculated
the performance requirements of several types
of duplex and virtual duplex system imple-
mentations. We performed both calculations
in a parameterized way first and applied some
realistic values to these parameters afterwards.
We used the following parameters:

e 4, time required to compute a hash value
of the state;

* &, time required to compute a signature
on unchanged data;

o 1, time required to switch between two
processes;

o 1, time required to switch between two
Posix threads;

e 1, time required to switch between two
emulated threads; and

o 1, time spent on useful work.

All parameters can be expressed as multiples of
tys thatis, £ = Bx £y and # = oy X £y, where X
=S,B T, E, and B and oy = 0 are reals.

Typical parameter values

Concerning the time to compute a signa-
ture, we assume that the methods used are of
similar complexity to those used when com-
puting a hash value of the state. Furthermore,
we assume that the sizes of the state and the
unchanged data are of the same order. Hence,
we assume £ = #; that is, 0 = 1.

Concerning 05, we start by bounding the
absolute time for a context switch, which is %,
> 5 Us, even for a process with a small size.!!
So even if #; should reach a value of 12.5 s,
which is considered large, we would still have
0 = 0.4. Normally, however, we would
assume #, 2 ;. That is, 04 > 1 because com-
puting the hash value consists of browsing
over all memory containing part of the state

and performing some arithmetic on it, while
switching process context involves storing all
memory contents relating to that process.

Concerning the context-switching time for
Posix threads, we assume # < #, because
switching between threads does not involve
more operations than switching between
processes. In Linux, we have #; = #, because
Linux implements each Posix thread as a
process of its own.'" Under Solaris, a value
reported is , = 4 X £."2 Hence, we assume ot
= 0p or O = 0.25 X .

Regarding our own implementation of
threads, the overhead is so small compared
with the times # and ¢, that we dare to assume
t; << t, and thus we assume o = 0.

Parameter 3 models the relationship
between useful work (#) and overhead () in
a duplex system. We assume 3= 10, a 10 per-
cent overhead.

Fixed processor

Let’s assume a processor running a virtual
duplex system with Posix threads, in which a
context switch occurs after a thread has oper-
ated for time z The time needed to compare
states and switch contexts is #, = #; + 5 + .
When we employ a virtual duplex system with
emulated threads instead, this value changes to
1, = tyy + tg + tp. The former system can switch
once in time # + #, whereas the latter system
can switch once in ¢ + t,. Hence, in £ + £,, the
latter system can switch A4 times, where A4 is

A=0+1)(t+1)
(E+ty+ g+)/ (E+ by + o+ 1)
B+1+og+a)(B+1+ 0+ 04)

1

A is the context switch frequency of a virtual
duplex system with emulated threads,
expressed as a multiple of the context switch
frequency of a virtual duplex system with
Posix threads. We assume that # = %, or that
0 = 1; that #; is close to 0, or that ¢ = 0; and
that 8 = 10; then Equation 1 simplifies to

A=1+(eyl12))

Figure 3 depicts Equation 2. For values o
> 3, there is at least a 25 percent gain. Even
for a Posix thread system whose context switch
is quite fast compared with the state compar-
ison, or stated the other way around, whose

MARCH—APRIL 2005]

VIRTUAL DUPLEX SYSTEMS

1.50
1.45
1.40
1.35
1.30
1.25
1.20
1.15

Content-switching frequency A

1.05
1.00

1.10 |-

T 2 3 AR
Relative Posix context switch time o

Figure 3. Relative context-switching frequency A of virtual
duplex systems on fixed processors.

Relative processor
performance requirement

Figure 4. Relative processor performance requirements for various virtual
duplex systems with fixed context-switching frequencies.

H [EEE MICRO

state comparison takes much longer than a
context switch, there is still a noticeable 3.3
percent gain; for 0 = 0.4 we obtain A = 1.03.

Fixed context-switching frequency

To perform this evaluation, we start with a
duplex system consisting of two processors.
Here, the overhead consists of computing a
state hash value. To get a valid starting point,
we must relate the overhead to the amount of
work done between state checks. Therefore,
we specify that in the duplex system, a state
check taking time #; shall occur after time 7=
Bt of useful work.

We express the performance of all other
processors used in this evaluation in relation
to the processors used here. That is, the
processors used here have performance P, = 1

and perform a piece of useful work and a state
check in time 7, = £+ #; = (B + 1),

A virtual duplex system based on processes
must perform, with each of two processes, the
useful work, a state check, and a context
switch. This takes time 7, = 2(¢ + ty +) = 2
(B+ 1 + 04)ty. To perform this work in time
T, the processor needs a relative performance
of P, =T,/T, =2+ (2 x o)/ (B +1). We
implicitly assume that memory bandwidth
scales with processor performance, or that at
least memory bandwidth is not the limiting
performance factor.

For a virtual duplex system based on Posix
threads, overhead increases by # for each
thread, and the context-switching time
changes from 7, to #, leading to

1] =2(r+tH+tS+tT)
=2(ﬁ+1+(xs+o¢T)tH
%:£:2+2(aT+as)
7, Bl

For a virtual duplex system based on emu-
lated multithreading, context-switching time
changes from 7 to #;, leading to

T, =2(t+1t, +t5+1;)
=2(B+1+a5+ay)ty
P :£:2+2(aE+as)
T, B+1

We already see that under Linux, where #;
= #p, an implementation based on Posix
threads will be slower than one based on
processes. When we use typical values o = 1,
o = 0, and o = 4o, we get

P=2+ Sory
B+1

P3—2+M
B+1

PL=2+L 3)
B+1

Figure 4 depicts the curves from Equation
3. Figure 5 shows a cut at 3 = 10, our typical

value. For this value, the denominators in
Equation 3 have a value of 11.

Hence, for our typical values, a virtual
duplex system based on emulated multi-
threading needs a processor only about 2.2 as
fast as the processor a duplex system requires.
However, the duplex system would need two
processors! For a virtual duplex system based
on Posix threads, for 0 < 5, we have P; < 3.
Even this may be an acceptable choice. We
present an overview of the available options
in the next subsection.

The gap between duplex systems and vir-
tual duplex systems narrows if we also con-
sider performance in the event of an error.
Assuming that state is saved after each com-
parison, the presented solutions lose a perfor-
mance factor of 2 during error recovery time
in a duplex system and 1.5 in a virtual duplex
system. The reason for this is that in both sys-
tems, a third instance must be run from the
last checkpoint to reach a valid state again
before normal work can continue.

If we require both systems to recover with
equal speed, P, increases by a factor of 2/1.5
=4/3, and the relative processor performance
requirement of a virtual duplex system based
on emulated multithreading shrinks to about
P, = 1.64. This means that with emulated
multithreading, we need one processor that
must be less than twice as fast as the processor
in a duplex system, which needs two proces-
sors. For a virtual duplex system based on
Posix threads, we obtain ;" < 2 for ot < 8/3.
Hence, for thread-switching times that are not
too large compared with state-checking times,
these virtual duplex systems also require one
processor less than twice as fast as a processor
in a duplex system.

Generally, if we allow performance to shrink
by a factor of s during recovery, where 1 <5<
2, the performance required by a duplex sys-
tem increases by a factor of 2/s, and the per-
formance required by virtual duplex system
increases by a factor of 1.5/s for s< 1.5. Hence,
in this case also, the performance ratio decreas-
es by a factor 0f 0.75 for s< 1.5, leading to sim-
ilar results as those for the preceding described
systems. For s> 1.5, the performance require-
ment decreases by a factor of s/2. For virtual
duplex systems based on Posix and emulated
threads, Figure 6 depicts the relative processor
performances required if performance is

Relative processor

performance requirement

Figure 5. Relative processor performance requirements

from Figure 4 for g = 10.

= NN
DoONPOOND

Relative processor
performance requirements

Figure 6. Relative processor performance requirements for recovery perfor-

mance reduced by s.

allowed to shrink by s during recovery. The fig-
ure reflects this discussion because the func-
tion values are independent of s in the interval
[1...1.5], and from that point on increase lin-
early with sin the interval [1.5 ... 2]. If we per-
form a cut at s = 2, we again obtain Figure 5,
without the curve for P,.

Evaluation summary

Our evaluation indicates that in the case of
a given hardware platform, a virtual duplex
system based on emulated multithreading
might be able to switch contexts more often
than one based on Posix threads. If the speed
of fault detection and recovery is the domi-
nating design goal, emulated multithreading
is preferable. However, if conformity to stan-
dards is an issue, Posix threads are an alterna-
tive if the performance difference can be

MARCH—APRIL 2005

VIRTUAL DUPLEX SYSTEMS

] ” [EEE MICRO

tolerated. Whether a difference is visible at all
depends primarily on f3, the amount of per-
missible overhead. If B is very large and thus
the overhead very small, the gain obtainable
by using emulated multithreading diminish-
es, and Posix threads provide an easier
method. If B is small, emulated multithread-
ing can provide performance benefits of up to
25 percent.

Our evaluation further shows that for a
given context-switching frequency, several
options exist, depending on the optimization
goals and constraints. For a performance seg-
ment in which increasing processor perfor-
mance is expensive—more than doubling the
price—a duplex system is preferable because
it allows for slower processors, two of which
are still cheaper then one fast processor. You
can derive the exact amounts the required
processor performance must be increased
from the P;and P,” curves in Figures 4 and 6.
Those curves in turn depend on parameters
given by the application and the platform:
namely, the complexity of context switches
and signatures and the permissible perfor-
mance degradation during recovery.

However, for a performance segment in
which increasing the processor performance
is cheap, virtual duplex systems are prefer-
able over duplex systems because one faster
processor is cheaper than two slower ones.
Note that price not only means the price of
the processor chip but also includes power
consumption and space on the printed cir-
cuit board.

The decision as to which virtual duplex sys-
tem to use depends on the platform: On
Linux systems, Posix threads are not expected
to be faster than processes. In general, emu-
lated multithreading requires the smallest
increase in performance requirements, but it
requires more software support than stan-
dardized implementations of threads. Hence,
performance and programming constraints
influence the decision.

he relevance of thread-based virtual

duplex systems further increases with the
commercial introduction of multiprocessors
that support multiple threads in hardware,
such as the Intel Pentium 4 Hyperthreading.
Our further work tries to explore the benefits
of using these processors. Hicho

Acknowledgments
We thank Klaus Echtle, Peter Sobe, and the

anonymous reviewers for helpful comments.

References
1. K. Echtle, B. Hinz, and T. Nikolov, “On

Hardware Fault Diagnosis by Diverse
Software,” Proc. 13th Int'l Conf. Fault-
Tolerant Systems and Diagnostics, Verlag
der Bulgarischen Akademie der
Wissenschaften, 1990, pp. 362-367.

2. T. Lovric, “"Detecting Hardware Faults with
Systematic and Design Diversity:
Experimental Results,” Int’l J. Computer
Systems Science and Engineering, vol. 11,
no. 2, 1996, pp. 83-92.

3. A. Gravinghoff and J. Keller, “Fine-Grained
Multithreading on the Cray T3E,” High-
Performance Computing in Science and
Engineering, LNCS, Springer Verlag, 2000,
pp. 447-456.

4. A. Gravinghoff, On the Realization of Fine-
Grained Multithreading in Software, doctoral
dissertation, Universitdt Hagen, Germany,
2002.

5. T. Lovric, "“Systematic and Design
Diversity—Software Techniques for
Hardware Fault Detection,” Proc. T1st
European Dependable Computing Conf.,
Springer Verlag, 1994, pp. 309-326.

6. T. Lovric, “Dynamic Double Virtual Duplex
System: A Cost-Efficient Approach to Fault-
Tolerance,” Proc. 5th Int’| Working Conf.
Dependable Computing for Critical
Applications, IEEE Press, 1995, pp. 35-42.

7. T. Lovric, Fehlererkennung durch
systematische Diversitat in
entwurfsdiversitdren
Rechensystemen und ihre Bewertung
mittels Fehlerinjection (Fault detection
through systematic diversity in design-
diverse time-redundant computing systems,
and its evaluation by fault injection), doctoral
dissertation, Universitdt Essen, Germany,
1996.

8. D.R. Butenhof, Programming with POSIX
Threads, Addison-Wesley, 1997.

9. F. Mueller, “A Library Implementation of
POSIX Threads under UNIX,"” Proc. 1993
Winter USENIX Conf., Usenix Assoc., 1993,
pp. 29-42.

10. A. Gravinghoff and J. Keller, “Virtual Duplex
Systems in Embedded Environments,”

zeitredundanten

Proc. Architecture of Computing Systems
(ARCS 99), Workshop Reliability and Fault
Tolerance, VDE Verlag, 1999, pp. 69-77.

11. B. Chelf, "The Fibers of Threads,” Linux
Magazine, May 2001, pp. 64-73.

12. K. Lai and M. Baker, "A Performance
Comparison of UNIX Operating Systems on
the Pentium,” Proc. USENIX Ann. Tech.
Conf., Usenix Assoc., 1996, pp. 265-278.

Jorg Keller is an associate professor of com-
puter science at FernUniversitit Hagen, Ger-
many. His research interests include parallel
algorithms and architectures, fault tolerance,
IT security, and new media in distance teach-
ing. Keller has MS and PhD degrees in com-
puter science from Universitit des Saarlandes,
Saarbriicken, Germany. He is a member of the
IEEE Computer Society and the German
Society of Informatics (GI).

Andpreas Grivinghoff is a research staff mem-
ber at ETAS GmbH, Stuttgart, Germany. His
research interests include parallel program-
ming systems and hardware design. Griving-
hoff has an MS in computer science from
Universitit des Saarlandes, Saarbriicken, Ger-
many, and a PhD in computer science from
FernUniversitit Hagen, Germany.

Direct questions and comments about this
article to Jorg Keller, FernUniversitit Hagen,
Fachbereich Informatik, LG Parallelitit und
VLSI, 58084 Hagen, Germany; joerg.keller@
fernuni-hagen.de.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

MARCH—APRIL 2005

