
A Distributed Query Structure to Explore Random Mappings in Parallel

Jan Heichler
Martin-Luther-Universiẗat Halle-Wittenberg

Institut für Informatik
Von-Seckendorff-Platz 1, 06120 Halle, Germany

heichler@informatik.uni-halle.de

Jörg Keller
FernUniversiẗat in Hagen
LG Paralleliẗat und VLSI

Postfach 940, 58084 Hagen, Germany
joerg.keller@fernuni-hagen.de

Abstract

We explore the possibilities to organize a query data
structure in the main memories or hard disks of a cluster
computer. The query data structure serves to improve the
performance of a parallel algorithm for the computation
of the structure of a graph induced by a random function.
Tradeoffs between different organizations using main mem-
ory or hard disks are developed and quantified with param-
eters. Thus, for concrete cluster systems with concrete pa-
rameter values, the best organization can be selected.

1. Introduction

We investigate the structure of large but finite, random
looking, directed graphs where each node has outdegree ex-
actly 1. Those graphs serve as models of state spaces with
deterministic transitions. More formally, we consider an ar-
bitrary functionf : D → D and the directed graph

Gf = (V = D,E = {(x, f(x)) | x ∈ D}) (1)

induced by it, whereD is a finite set of sizen. Such a graph
is called amappingin the literature [3]. Each weakly con-
nected component of that graph consists of a cycle and a
number of trees directed towards their roots, the roots be-
ing nodes on the cycle. The problem to be solved is, given
a functionf , to determine thestructureof the graphGf ,
i.e. the number and size of the components, the length of
the cycles, the heights of the trees, and so on. Because
the sizen = |D| of state spaces is typically very large,
the graph cannot be explicitly constructed in memory, and
thus classical techniques from graph algorithms, such as
pointer doubling, cannot be applied. Instead, the graph can
only be explored by starting at nodesx and following paths
x, f(x), f(f(x)), f(f(f(x))), The size ofn calls for a
parallel algorithm. Our parallel machine model is a cluster
of p processing units, each with a processor, a local memory

of sizem, a hard disk of sizeM , and connected by a fast
message-passing network.

Examples of graphs induced by functions are the state
spaces and their state transition functions in pseudo-random
number generators or cryptographic stream cipher genera-
tors. Especially the latter shall behave like arandommap-
ping, of which expected values for many properties like the
size of the largest component are known from literature [3].
A widely used stream cipher is the A5/1 algorithm used
for encrypting the communication between a cellular phone
and the base station in the GSM network [2, Sec. 6.3.4]. If
the graph induced on A5/1’sn = 264 states by its transition
function (see e.g. [1] for a description) differs considerably
from what is expected, this may hint towards a weakness.

In [4], a parallel algorithm is presented which computes
the structure of induced graphs, and has expected runtime
O(n log n/p) on a cluster withp processing units. This
runtime, which considerably improves over previous algo-
rithms, is achieved by using a data structure to store infor-
mation about anchors, i.e. nodes that have already been vis-
ited, in order to stop following a path if an anchor is met.
However, possible implementations of such a data struc-
ture were only briefly sketched in that paper, a gap that the
present research tries to fill. In order to have as much mem-
ory available as possible, the query structure is distributed
over allp processing units. Within each processing unit, ei-
ther the main memory or the hard disk can be used, with
several data organizations possible. The tradeoffs between
the different possibilities can be quantified using parame-
ters, so that for a concrete cluster with concrete parameter
values, the best organization can be selected.

The remainder of the paper is organized as follows. In
Sect. 2, we summarize our previous algorithm so that the
types of queries for the current data structure can be un-
derstood. In Sect. 3, we present and compare the different
possibilities for a query data structure distributed over all
nodes. Section 4 concludes.

2. Parallel exploration of random mappings

We consider a finite setD of sizen, and a functionf
from D to itself. We investigate the graphGf induced by
f , as defined in Eq. (1). Flajolet and Odlyzko [3] investi-
gated the average case behavior of such graphs, if all func-
tions fromD to itself are equally probable. They found that
the expected number of components isO(log n) with a con-
stant close to 1, that the expected size of the largest cycle is
O(

√
n) with a constant close to 1, that the largest compo-

nent has an expected size of about0.7 · n, that the largest
tree has an expected size of about0.5 ·n and expected depth
0.6 · √n, and that the expected fraction of leaves in that
graph is1/e.

In the remainder of this section, we briefly summarize in-
formation from previous papers [4, 5]. In order to compute
the structure of an induced graph, it can only be explored
by repeated evaluation off . The algorithm starts from each
nodex ∈ D, and follows the unique pathx, f(x), f2(x),
f3(x), . . . until either the cycle of the appropriate compo-
nent is reached, or until a node is reached that has been vis-
ited before, and of which the appropriate information has
been stored in memory. Such a node is called ananchor.
By appropriate information we mean:

• the node index (a number between0 andn − 1),

• to which component this anchor belongs (identified by
the cycle leader1),

• what its distance from the tree root is.

Then, when the number of steps gone so far on the path has
been recorded, all relevant information aboutx can be com-
puted. We will assume here that all anchors have already
been placed, and that the set of anchors will not be changed
for the whole exploration. The importance of the anchors
becomes clear when we remember that the length of the
path is expected to beO(

√
n), while a set ofO(

√
n) an-

chors can achieve an expected number of steps ofO(log n)
until an anchor is reached! Hence, also the necessity to store
as many anchors as possible becomes clear.

Fig. 1 depicts an example graph forn = 16. We see that
the graph consists of two weakly connected components, of
sizes 12 and 4 respectively. The larger component has a cy-
cle of length 5, with leader 2. It also comprises two trees
with roots 7 and 15. All tree nodes are shaded, the root is
encircled. The tree with root 7 has height 3, the tree with
root 15 has height 1. The smaller component comprises a
cycle of length 3, with leader 4, and a tree with root 4 and
height 1. If an anchor is placed on node 11, the informa-
tion to be stored would be(11, 2, 1), meaning that the node

1There is only one cycle per component. The unique node on the cycle
with the smallest number is calledcycle leader, it serves to identify the
component.

01

2

3

4

5

67

8

9 10

1112

13

14

15

Figure 1. Example graph induced by a func-
tion.

number is 11, it belongs to the component with cycle leader
2, and its distance to the tree root 7 is 1. If we start follow-
ing a path in node 13, then we would visit nodes 6 and 11,
and stop there after two steps because 11 is an anchor. As
the distance of anchor node 11 to its root is 1, and we have
gone 2 steps, the depth of node 13 in the tree is 3.

In order to avoid to check after each step whether an an-
chor has been reached, only a part of the nodes can become
anchors, those nodes are calledcandidates. Depending on
the query time and the average path length if all nodes
would be candidates, an optimum value for the fraction of
nodes that are candidates can be derived. In practice, the
fraction is a power of two, and a node is a candidate if an
appropriate number of lowermost bits in its binary represen-
tation are zero.

Each time a candidate is reached, the query data structure
is queried whether that candidate is indeed a anchor. It is ob-
vious that the average path length is shorter if more anchors
can be stored. In order to have a query structure as large as
possible, the query structure is to be distributed over allp
processing units. In each processing unit, it is either held
within the memory or on the hard disk. In the next section,
we will explore the tradeoffs between those two possibili-
ties. We will also explain in detail the structure chosen for
main memories and hard disks, respectively. While we re-
strict ourselves to the static case, where the query structure
is initialized at program start and remains unchanged from
then on, we will point out where changes are necessary if
the anchor set is to be updated. That may be an option with
very large graphs to adapt dynamically so that more queries
are answered positively.

A major characteristic of queries to a distributed data

structure is that they involve communications and therefore
take quite a long time. In order to keep the processors busy,
the application therefore does the following. Each process-
ing unit follows a large number of paths simultaneously.
Each path is followed until it reaches a candidate, then the
next path has its turn.. When a processing unit has reached
candidates on all of its active paths, it starts a query for ev-
ery candidate whether it is indeed an anchor or not. Thus,
the queries can be performed in batches, i.e. each processing
unit i sends packets to all other processing units. A packet
from i to j contains all queries ofi that can be answered by
j. This serves to amortize the query time per path. For the
data structure the necessity arises to deal with larger number
of simultaneous queries.

3. Data organization

3.1. Main memory

An anchor requires 24 bytes if we want to be able to
handle functions withn up to 264: 8 bytes for the node
number, 8 bytes for the distance to the root, and 8 bytes for
the component number. As the number of components will
be quite low, 4 bytes or even 2 bytes would be sufficient
in practice for the component number. However, 8 bytes
seem preferable in order to achieve alignment with cache
lines. A pointer to an anchor will require 4 bytes on a 32-bit
architecture.

When using the main memory of a processing unit to
stores anchors, the obvious data structures are a hash ta-
ble and a binary search tree. For the static case considered
here, we have simplified the search tree in the following
way: we use a sorted array of the anchors, and perform a
binary search on that array. For the hash table we uses en-
tries, and handle collisions by linear lists. The hash function
is simply a computation modulos, which can be evaluated
fast if s is a power of 2, as it only requires masking of the
log2 s lowermost bits in that case. This simple hash func-
tion is sufficient as we expect our queries to be random.

We see that the sorted array requires no memory over-
head, while the hash table requires overhead for resolving
collisions. The overhead is one pointer per entry, plus one
pointer for each collision. As our experiments suggest that
about one third of the elements are involved in collisions,
the overhead will be(s + s/3) · 4 = 16s/3 bytes, which
is a proportion of(16s/3)/(24s) = 2/9. As a hash table
with s anchors requires11/9 of the memory for a sorted
array with s anchors, a sorted array requiring the same
memory resources as a hash table withs anchors can store
11/9 ≈ 122.2% as many anchors. As long as the number of
anchors is below

√
n (non-saturated case), this will linearly

decrease the number of steps and query rounds necessary in
case of the sorted array.

ru
nt

im
e

/s
ec

.

no. of anchors
0

0
1000 2000 3000 4000 5000 6000 7000

50

100

150

200

250
Hash table

Sorted array

Figure 2. Hash table vs. sorted array perfor-
mance.

On the other hand, the sorted array requireslog s mem-
ory accesses, while the hash table will need at most about
log s/ log log s accesses (expected maximum number of
balls in any box when throwings balls intos boxes) and
about 2 to 3 accesses on the average. Ass = 223 on a pro-
cessing unit withm = 256 MByte of main memory, the
hash table still leads to shorter runtimes. This is confirmed
by our experiments for 64 randomly chosen functions with
n = 220, as Fig. 2 indicates. We see that the average run-
time with a sorted array is always higher than with a hash
table, no matter how many anchors we place in the structure.
We even see that the runtime with a sorted array increases
for numbers of anchors well beyond

√
n, as the linear re-

lationship between anchor count and runtime decrease does
not hold anymore (saturated case), and the increased search
time cannot be compensated for by an appropriate reduction
in the number of steps, i.e. path lengths.

If dynamic insertions and deletions shall be taken into
account, there are two possibilities. Either, changes for sin-
gle anchors happen quite frequently, or a bulk update with
many anchors exchanged happens quite seldom. In both
cases, the anchors have to be extended by a usage count.
In the latter case, the data structures could remain as they
are, as an update is a seldom event, and hence it is possi-
ble to construct an updated data structure completely anew
and treat the situation as static until the next update. As
the anchors get larger, the relative overhead for a hash table
decreases and it performs even better compared to a sorted
array. In the former case, the anchor data structure has to
be further extended by a priority queue-like index structure
according to the usage count, as the anchor with the lowest
usage count has to be removed.

So far, we have considered each query separately, and
both data structures described so far cannot take any ad-

vantage from the fact that in our application many queries
arrive at once2. Therefore we also investigate a third data
structure specifically for large batches of queries. This data
structure also uses a sorted array of anchors in main mem-
ory. If the queries arrive, they get also sorted, and then a
kind of set comparison is performed sequentially, i.e. it is
checked which candidate is an anchor. The sorting of ther
queries takes timeO(r log r). As both sets are now sorted,
the comparison takes times + r. As r will be considerably
less thans, we neglect the time to sort.

Compared to3r memory accesses that a hash table needs
to handler queries on average, the performance of sequen-
tial comparison looks bad. However, the3r accesses each
need a full memory access timeta, while thes + r memory
accesses are at adjacent addresses, and hence can be served
basically from the 1st level cache. Thus, for each access in
sequential comparison we need only count the transfer time
from memory to cachetc. As the ratio between transfer
time and main memory access time in current computers is
aboutta/tc ≈ 10, a sequential comparison will outperform
a hash table if

3r · ta ≥ (r + s) · tc ,

i.e. if r ≥ s/29. To produce such a numberr of queries
would mean that each processing unit also would have to
follow such a large number of paths simultaneously. This
is unrealistic as a processing node needs memory to store
the state of each path that is followed simultaneously, an
overhead whose size is comparable to the overhead of the
hash table, and that reduces the number of anchors that can
be stored. Also, such a large number of paths may only be
of advantage ifn is very large. Yet, this data structure is
still interesting because it can also be used for a hard disk.

The sequential comparison is not well suited for a fre-
quent dynamic update of single anchors. However, for a
seldom bulk update, it can be treated similar to the sorted
array with binary search.

3.2. Hard disk

When we use hard disks, our memory resource increases
by a factor ofβ = M/m which ranges from40 (M =
40 GByte, m = 1 GByte) to 640 (M = 160 GByte,
m = 256 MByte). At the same time, the access time of hard
disks is much longer than the access time to main mem-
ory, typically 10 ms versus10 ns, i.e. a factorfa ≈ 106.
Also the transfer rate to and from a hard disk is lower than
that between main memory and processor, typically20 to
60 MByte/s versus≥ 1 GByte/s, i.e. a factorft ≈ 16 to 50.

This means, if we use the hard disk instead of the main
memory to store the anchors, the performance will change

2They can only take advantage if two paths happen to reach the same
candidate, an event that will be quite unlikely.

accordingly. For a hash table (data structure 1), the perfor-
mance will be worse by a factor ofα1 = fa, as long as the
collision chains do not increase significantly. For a sorted
array with binary search (data structure 2), the performance
will be slightly worse, as each access (except the last 8 or
9, where we remain within one disk page) is slower by a
factor of fa, and the number of accesses needed increases
by log β = log(M/m). Hence, the performance is slower
by

α2 =
(log (β · s) − 9) · fa + 9

log s

≈ fa ·
(

1 +
log (β) − 9

log s

)

.

The performance of a sequential comparison (data structure
3) is slower by a factor ofα3 = ft · β, as the number of
comparisons increase by a factor ofβ, and the access to the
data is slower by a factor offt.

In the case that the total number of anchors on hard disks,
i.e.stot = p·s·M/m, is still less than

√
n, i.e. one is not yet

in a saturation, then the number of steps and thus the num-
ber of query rounds will reduce by a factor ofβ = M/m.
We assume that a fractionγ of the runtimettot has been
spent with the query processing when using main memory
to store anchors. When we switch over to using the hard
disks with data structurei, the time spent to handle queries
increases by a factor ofαi. Hence the new runtimet′tot will
be

t′tot = γ · ttot

β
· αi + (1 − γ) · ttot

β
,

and the runtime changes by a factor

q =
t′tot

ttot

=
1 + γ · (αi − 1)

β
.

The runtime decreases ifq < 1, i.e. if

αi ≤
β − 1

γ
+ 1 . (2)

A lower bound on the right hand side of Eq. (2) is reached
whenγ approaches 1, i.e. if almost all time is spent with
query processing. In that case, Eq. (2) reduces to

αi ≤ β .

This could only be achieved by data structures 1 and 2, if
fa < β, which typically is not the case.

Eq. 2 also reveals that in general, a runtime advantage by
using hard disks can be achieved for

γ <
β − 1

αi − 1
≈ β

αi

.

For data structures 1 and 2, this is achieved ifγ < β/fa.
For data structure 3 this is achieved ifγ < 1/ft. The right

hand side in the first term is about1/25, 000 for β = 40 and
fa = 106, the right hand side of the second term is about
1/16 for ft = 16.

Under this prospect, the sequential comparison is the
only organization with a chance for hard disks to outper-
form main memory. However, this is only worthwhile ifn
is sufficiently large, i.e. ifn ≥ s2

tot. Forp = 25 ands = 225

(fits in m = 1 GByte of main memory),n would have to be
larger than287 to be in the non-saturated case.

4. Conclusions

We have presented a study on different organizations of
a distributed data structure suitable to handle large num-
bers of simultaneous queries. We have pointed out how
these organizations would have to be extended to support
dynamic insertions and deletions. The parameterized com-
parison allows to select the appropriate organization given
a concrete cluster computer and a concrete problem size.
Further work will center around implementations for hard-
disk-based organizations and extended experimental work.
For example, using aB+ tree3 organization could be an al-
ternative to sequential search, as the number of accesses is
reduced tologk s, and after each access ak-ary decision is
done instead of a binary decision. As the disk pages are
large enough, each node still fits into one page so that the
time for each access remains constant, while the number of
accesses reduces by a factor of

log2(s) − 9

logk s
= log2 k − 9

logk s
.

E.g., fors = 224 andk = 16, the number of disk accesses
reduces from 15 to 8.

Acknowledgements

We are deeply indebted to Jop Sibeyn. The investiga-
tion of different organisations was suggested by him. He is
posted as missing since a ski trip in March 2005.

References

[1] A. Birykov, A. Shamir, D. Wagner. Real Time
Cryptanalysis of A5/1 on a PC. Presented at
the Fast Software Encryption Workshop, April
10-12, 2000, New York, NY. Available at
http://cryptome.org/a51-bsw.htm

3A data structure where each internal tree node hask ≥ 3 children.
The depth for a tree withs leaves islogk s, compared tolog

2
s in a binary

tree.

[2] J. Ebersp̈acher, H.-J. V̈ogel, C. Bettstetter.GSM —
Global System for Mobile Communication. 3rd Edi-
tion, Teubner-Verlag 2001.

[3] P. Flajolet, A. M. Odlyzko. Random mapping statis-
tics. In Proc.EUROCRYPT’89, LNCS 434, Springer-
Verlag, 1990, pp. 329–354.

[4] J. Heichler, J. Keller, J. F. Sibeyn. Parallel Storage Al-
location for Intermediate Results During Exploration
of Random Mappings. In Proc.PARS 2005, Lübeck,
June 2005.

[5] J. Keller. Parallel Exploration of the Structure of Ran-
dom Functions. In Proc.PASA 2002, Karlsruhe, April
2002, pp. 233-236, VDE Verlag 2002.

