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Abstract: We investigate the computation and implementation of fisheye views of 2D
graphs and 3D objects. Fisheye views display a graphics just like we see it through a
wide angle fisheye lens. They provide new ways to display the graphics such that one
part of the graphics is enlarged while a view of the whole graphics is still maintained.
In a fisheye view of a 2D graph, a fisheye focus point or a focus polygon is defined and
the necessary computations are provided to transform every node in the 2D graph with
respect to its euclidean distance from the focus point or the focus polygon. In a fisheye
view of a 3D object, a fisheye focus point and a focus direction are defined and the
computations are discussed to transform every vertex in the 3D object with respect to
its relative position to the focus point and the focus direction. The fisheye views can be
displayed based on the transformed nodes and vertices. We have implemented fisheye
views to 2D graphs and 3D objects because 2D graphs and 3D objects are typical 2D
and 3D graphics. Our implementation allows to change the fisheye view parameters
interactively.
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1 Introduction

A Fisheye view, as the name suggests, is a particular type of view to an image.
Its visual effect is similar to a view produced by a very wide angle fisheye lens.
The fisheye lens distorts the view so that objects close to the centre of the lens
are magnified greatly. This magnification drops rapidly to the objects farther
from the centre of the lens. This view results in objects which are the centre
of attention being shown in great detail, whereas objects on the periphery are
shown in lesser detail. This allows objects of interest to be studied in detail,
while still maintaining a view of the context to other objects.

Fisheye views can be used in data visualizations and nonlinear magnification
of graphics. They provide special distorted displays of 2D or 3D graphics. Com-
pared to the normal view of the graphics, the fisheye view has the advantage of
zooming part of the graphics and overviewing the whole graphics at the same
time.

In fisheye view of 2D graphics, a fisheye focus point is defined and every
coordinate point in the 2D graphics is transformed with respect to its euclidean
distance from the focus point [see Sarkar and Brown 1994]. Then the fisheye
view can be displayed based on the transformed coordinate points. Often one
is interested in details of a particular region of the graphics. This demand can



be accomplished by defining a focus region instead of a focus point. The focus
region can be specified by a simple polygon [see Formella and Keller 1995].

We extend the notion of fisheye views to 3D graphics. Here a fisheye focus
point and a focus direction are defined and every coordinate point in the 3D
graphics is transformed with respect to its relative position to the focus point
and the focus direction. And the fisheye view can be displayed based on the
transformed coordinate points.

The remainder of this paper is arranged as follows:

In section 2, we discuss fisheye views of graphs layouted in 2D. The data
structure of graphs is presented. The fisheye focus point and the focus polygon
are defined. Then the computations of fisheye views to 2D graphs are derived.

In section 3, we discuss fisheye views of 3D objects. The data structure of solid
objects is introduced. The fisheye focus point and focus direction are defined.
Then the computations of fisheye views to 3D objects are derived.

In section 4, we discuss a implementation of fisheye views. Java is used to
implement the fisheye views of 2D graphs and 3D objects. We can interactively
change the fisheye focus point, the focus region and the focus direction. We
can display the normal views and fisheye views of 2D graphs and 3D objects
respectively.

In section 5, we give a conclusion.

2 Fisheye Views of 2D Graphs

Graphs layouted in 2D are widely used in CAD systems, electronic maps and
other application fields. Here we are concerned about how to apply fisheye views
to the graphs.

First we represent a graph with a data structure. We briefly review fisheye
views based on a focus point [see Sarkar and Brown 1993] because they form the
basis of our work. Then we derive the computations for the fisheye views of the
graph based on a focus polygon, which are partly given in [Formella and Keller
1995].

2.1 The Data Structure of 2D Graph

A layout graph is a group of nodes and edges which connect the nodes. Each
node is represented by a coordinate point. Each edge is represented by two node
indices. The data structure of a graph can be represented as follows:

2D Graph = {NodeList,EdgeList}
NodeList = {Ny,Na,...,N, }
N1:(xlyyl)""’Nn:(xnyyn)

EdgeList = {{vi,w },{v2,w2},...,{vm,wm }}
v,w; € {1,2,...,n}

To provide a fisheye view to the graph, we must transform each node position
in the graph based on a fisheye focus point and then use the transformed nodes
to display the distorted graph. The graph is displayed by using squares for nodes
and straight lines for edges. Edges remain straight lines in the transformed graph
due to our representation. It is however possible to partition longer edges into



line segments by introducing pseudopoints which are transformed as well. The
transformed edges then will have a curved shape.

2.2 Computation of Fisheye Views Based on a Focus Point

To provide a fisheye view to a graph based on a focus point, we should restrict
the fisheye view transformation to a finite area, i.e. we should define a bounding
frame for the fisheye view transformation. Each node of the graph is moved away
from the focus point up to the frame. The closer a node is to the focus point the
farther away should it be moved.

We define the frame to be the smallest axis parallel rectangle containing all
the nodes of the graph. We also define a focus point to be a coordinate point
within the frame. Note that the frame could very well be defined as a circle or
other convex, simple closed curve (at least for polar transformation). The frame
could also be larger or smaller than the graph. In the latter case, we restrict the
transformation to a part of the graph.

Let the focus point be f and the node be n. Two types of transformations
are possible: polar and cartesian transformation. The different applications of
both types are discussed in [Sarkar and Brown 1994].

2.2.1 Polar Transformation

As shown in Figure 1(a), we connect a line which start from f and go through
n and intersect with the frame at ¢. The node n can be represented by the focus
point f and the vector (i — f):

n=f+Ali—f) Ael0:1]

A fisheye view of a graph moves the node to n' along the line such that the
node n is moved away from the focus point f but does not leave the frame.
Thus, the moved node n’ can also be represented by the focus point f and

the vector (i — f):
n'=f+hA)i-f)

where h :[0: 1] — [0: 1] is a bijective mapping fuction.
According to the fisheye view characteristic, the function h should satisfy the
following requirements:

) = 0: The focus point itself is not moved.

) = 1: Points on the frame are not moved.

z) > z for all z in (0: 1): All other points are moved away from f.

z) be strictly monotonous increasing: Points cannot overtake during the
transformation, i.e. points being closer to f before the transformation must
be closer afterwards as well.

(h(z) — z)/z be strictly monotonous decreasing: The closer a point is to

f, the farther away should it be moved. The moving distance is taken relative

to the point’s distance of f before the transformation.

h(0
h(1
h(
h(



(a) Definition (b) Sample fisheye view of a grid

Figure 1: Polar transformation of a fisheye view based on a focus point

h(z) = (d+ 1)z/(dz + 1) is a possible solution, where d > 0 controls the
amount of movement [see Sarkar and Brown 1994].
To parameterize the distortion as a percentage p € [0 : 1), we define:

p

See Figure 1(b) for a sample fisheye view of a grid. It is transformed with
p = 0.6,d = 1.5, the nodes are filled squares and the edges are straight lines
between nodes. The focus point is shown in black.

2.2.2 Cartesian Transformation

Assume the coordinate of f = (f;, fy) and the coordinate of n = (ng,n,). We
apply the fisheye view distortion along horizontal and vertical direction. We
project n onto a horizontal line through f, and intersect the line with the frame
at 41 = (i, fy). We proceed similarly with a vertical line through f and obtain
an intersection point at iy = (f;,,) as shown in Figure 2(a).

The coordinates of the transformed node n' = (nj,n;) are computed by:

Ng = fz +Bz(i1 - fz)’ nlz = fz +h(Bz)(i1 - fz)
ny = fy + By(i2 — fy); n; = fy + h(By)(i2 — fy)

See Figure 2(b) for a sample fisheye view of a grid. It is transformed with
p = 0.6,d = 1.5, the nodes are filled squares and the edges are straight lines
between nodes. The focus point is shown in black.
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(a) Definition (b) Sample fisheye view of a grid

Figure 2: Cartesian transformation of a fisheye view based on a focus point

2.3 Computation of Fisheye views based on a focus polygon

To define transformations based on a focus polygon P, we will first deal with
nodes that are positioned within the polygon. To derive transformations for
nodes outside the polygon, we will define focus points on the polygon and apply
the techniques from the previous section. For both transformations to be devel-
oped, the case of a focus point is obtained if the polygon consists of only one
point.

2.3.1 Scaling the Polygon

The focus region itself should be enlarged, but it should not be deformed, because
it is the center of our interest. Therefore, we scale the focus region. To do this, we
define a center point ¢ of P by barycentric combination of the polygon corners
and compute a scaling factor S. Then any node n that is within the polygon can
be represented as:
n=c+(n—-c
And will be moved to:
n'=c+S(n—c)

For the polygon P with n corners py, ...p,, we define the center point c as follows:

1 n
C:E'izzlpi

The scaling factor must guarantee that the scaled polygon still lies whihin
the frame. For each corner p; # c of polygon P, we intersect a line starting from
¢, through p; with the frame at 7;. We get the maximum scaling factor for each
corner point:

1 — C

pbi—c¢C

Si =



So the maximum scaling factor for the polygon P is as follows:
Smaz = min{S;,1 <7< n}

We must choose a scaling factor S > 1 which is less than Sy,4;.
To parameterize the scaling as a percentage p € [0: 1), we define:

S:1+p(5maz_]-)
In the case of a single point we define:

S = Smaz =0

2.3.2 Polar Transformation

For each node n outside P, we define its focus point f to be the point on P with
minumum distance to n. This might either be a corner of P or the intersection
point of one edge of P and the perpendicular line through n.

The voronoi diagram V D(P) of a simple polygon P partitions the plane
outside the polygon in regions such that all points in one region are closer to one
edge or corner of the polygon than to all other edges and corners. We can make
all regions finite by intersecting V D(P) with the frame. We denote by V R(n, P)
the outline of the enclosed voronoi region that contains point n as shown in
Figure 3(a).

We intersect a line L starting from f, through n with V R(n, P) at point :.
Then

n=f+AGE—f) Ae€[0:1]

When the polygon P is scaled to polygon P’ the focus point f is scaled to f'.
We intersect a line starting from f’, parallel to previous line L with VR(f', P')
at point 7. Then the moved node n' is defined as:

n'=f'+hA)E - f)

Here we must choose h such that the behaviour at the border of the polygon
h(A)

is in some sense continuous, i.e. —;— is close to S when A is close to zero:

h(z)

lim —= =5
z—0
As h(0) = 0, we can derive:
lim hz) _ lim h(z) — h(0) _ K (0) = S
z—0 I z—0 z—0

Because the first derivative of h is h'(z) = (éiii))z, we obtain h'(0) = d + 1.
So we choose
d=5-1

See Figure 3(b) for a sample fisheye view of a grid. It is transformed with
p=0.6,5 = 1.5,d = 0.5, the polygon is a circle formed with 64 corners.



(a) Definition (b)
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Figure 3: Polar transformation of a fisheye view based on a focus polygon

2.3.3 Cartesian Transformation

For each node n = (ng,n,) that is positioned outside P, we first find its hori-
zontal focus point and its vertical focus point on the polygon.

Here we only discuss y dimension. The x dimension is handled similarly. As
shown in Figure 4(a), we use a vertical line z = n, to intersect polygon P. If
it does not intersect with P, we choose the closest line x = ¢, that intersects
with P and project n onto this line. On line £ = n, or x = c;, we choose the
intersection point closest to n as the focus point f = (z, fy).

If P is convex the line intersects with P in at most two points and n is
located between its focus point and the frame. We intersect the vertical line
starting from f with the frame at ¢,,. We get:

ny = fy + By(iy — fy) By €[0,1]

If P is not convex the number of intersection points is a multiple of two. If
n is above or below all of the intersection points we obtain 4, as before. If n
is between two intersection points j = (z,j,) and k = (z,k,), we choose the
middle point as the end point of fisheye view, i.e. we define i, = (j, + k,)/2. We

still get:
ny = fy + By(iy — fy)

When the polygon P is scaled to polygon P’ the focus point f is scaled to
f'. If n is not between intersection points ¢ and j, the end point is on the frame
and i;:iy is not changed. If n is between intersection points 7 and j, ¢ and j are

scaled to ' and j' and iy, = (j, + ky)/2.
Let the moved node be n’ = (n;,n;). We define:

ny = fy + h(By) (i, — f))
Similarly, we compute:

Ng = fm +Bm(lz - fa:)
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(a) Definition (b) Sample fisheye view of a grid

Figure 4: Cartesian transformation of a fisheye view based on a focus polygon

Ny = fo +h(Bo) (i — f2)
See Figure 4(b) for a sample fisheye view of a grid. It is transformed with
p=0.6, S=1.5, d=0.5, the polygon is a circle formed with 64 corners.

3 Fisheye Views of 3D objects

Now we consider how to apply fisheye view to 3D objects. 3D graphics is more
complicated than 2D graphics. In 2D graphics the basic elements are points and
line segments. But in 3D graphics the basic elements are points and little faces.
Solid objects are composed of vertices and outside faces. They are building blocks
of 3D graphics. They are widely used in 3D games, virtual reality systems and
other application fields. So we are concerned about how to apply fisheye views
to the 3D objects. First we should represent an object by a data structure. Then
we derive the computations for the fisheye views of the objects based on a focus
point and a focus direction.

Why should we define a focus direction here in fisheye view of 3D graphics?
To apply a fisheye view is just like we look forward through a fisheye lens, the
object in front of the lens is zoomed. In the 2D plane we always look at objects
with the viewing direction perpendicular to the plane. So the focus direction
need not to be defined. But In 3D space we always need to look at objects from
different viewpoints and different viewing directions. So it is necessary to define
a focus direction to apply fisheye views to 3D graphics.

3.1 The Data Structure of 3D object

An object is a group of vertices and facets. Each vertex is represented by a 3D
coordinate point. Each facet is represented by a polygon or simply a triangle. So
each facet can be represented by a list of three vertex indices. The data structure
of an object can be represented as follows:



3D object = { VertexList, FacetList}

VertexList = {V1,Va,...,V,}

Vl:(xl?yl ’21)7"'7Vn:(xn’yn’zn)

FacetList = {{u1,v1,w1},{us,v2,wa} ,....,{Um,Vm,wm}}
Ui, Vi, W; € {1,2,...,1%}

To provide a fisheye view to the solid object, we must transform each vertex
in the object based on the fisheye focus point and the focus direction and then
use the transformed vertices and facets to display the distorted object.

3.2 Computation of Fisheye Views Based on a Focus Point and a
focus Direction

We define a focus point which is a 3D coordinate point outside the object. We
also define a focus direction which is a vector starting from the focus point.

To provide a fisheye view to the object based on the focus point and focus
direction, each vertex in the object is moved towards the focus point along the
focus direction. The closer a vertex is to the focus point the farther should it be
moved. Vertices which are closer to the focus point before the transformation
must be closer afterwards as well.

Let the focus point be f = (fz, fy, f>), the vertex be v = (v;,vy,v.) and the
fisheye view moved vertex be v’ = (v;,v,,v;). We derive our computation for
the special case that the focus direction is parallel to the z axis. For an arbitrary
focus directions, we apply 3D transformations before and after the fisheye view
computation such that the general case is reduced to the special case.

We define a frame which is an axis parallel cube containing all the vertices
and facets of the object. For the moved vertex v' = (v;,v,,v.), we first discuss
how to compute v/,. Suppose we connect a line along the focus direction which
start from f and go through v(in z dimension) and intersect with the frame at
i = (fz, fy,12). Because the vertex v is to be moved towards f we compute:

v, =1, + C(fz - Z.z)§ 'Ulz =i, + h(C)(fz - iz)

For the computation of v, and v, we project the vertex and the bounding
cube to the xy plane. We can use the same computation techniques that we have
derived for 2D graphs.

See Figure 5 for a sample normal view and a sample fisheye view of a cylinder.
They are rendered by a VRML browser. The fisheye view is transformed with
p=20.6,d=1.5.

4 Implementation in Java

So far we have discussed how to apply fisheye views to 2D graphs and 3D objects.
Now we discuss a software implementation of fisheye views. We choose java for
our implementation because the java program support windowing and network-
ing on all major OS platforms without specialized tailoring or even recompilation
and java is also simple, object-oriented and extendible.



(a) Normal view (b) Fisheye view

Figure 5: Sample views of a cylinder with a focus point and a focus direction

4.1 Software Design

The objective of the program is to develop a software tool to display normal view
and fisheye view of 2D graphs and 3D objects interactively. With this objective
in mind, We want to develop a java application which has a GUI and a menu
system to manipulate the fisheye views interactively.

For 2D graphs, we use windows to display a normal view and a fisheye view
of the graph. The size of the window can be changed and the displayed graphics
is scaled interactively with the mouse .

For 3D objects, we first convert the object data into VRML files and then
run a VRML browser to display the normal view and fisheye view of the 3D
objects. The menu system should include the following commands:

— Load the graph data files and the object data files.

Load the focus point, focus polygon, focus direction.

Save the fisheye view transformed graph data files and object data files.
Open a dialog box to change the fisheye view parameters.

— Display a normal view or a fisheye view of graphs.

Run a VRML browser to render a normal view or fisheye view of objects.

4.2 Software Implementation

The implementation is done under SOLARIS 2.6. The java programs are com-
piled by JDK2. The major programs are FishEyeView.java, Graph.java and Ob-
ject.java.

FishEyeView.java is the main class which setup the window and respond to
the various menu commands.

Graph.java is the supporting class which process the loading and saving of
2D graphs data, computations of fisheye views transformation to the 2D graphs
and displaying of the normal view and fisheye view of the graphs.
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Object.java is the supporting class which process the loading and saving of 3D
objects data, computations of fisheye views transformation to the 3D objects,
convertion of object data into VRML file and rendering of normal view and
fisheye view of the objects by a VRML browser.

5 Conclusion

Fisheye views provide new ways to display 2D and 3D graphics. In previous
works, the fisheye views of 2D graphs were introduced. We adopted the basic
ideas and extended it to focus polygons. We have put some new ideas into the
fisheye views of 3D graphics. For the first time, we have introduced how to apply
fisheye views to the 3D graphics. In addition to the focus point, we introduced
the focus direction as a new element to apply fisheye views to 3D graphics. Now
we can render 3D graphics in a new way.

In our implementation we have developed an interactive program to display
normal view and fisheye view of 2D graphs and 3D objects. We can change the
focus point, the focus polygon and the focus direction interactively and easily.
It is a useful tool to show how to apply fisheye views to 2D and 3D graphics.

Our program can be extended to deal with more general 2D and 3D data
structures. Because the display of almost all the 2D and 3D graphics are based
on their coordinate points, all we need is more complicated data structures to
define the 2D and 3D graphics and more computations to display the fisheye
views of the 2D and 3D graphics.

Our implementation is a java application. It can also be converted into a
java applet so that we can show how to provide fisheye views to the 2D and 3D
graphics directly in the web pages.

In our program the 3D graphics data is converted into a VRML file first
and then rendered by a VRML browser. This approach is easy to render the 3D
graphics but the 3D graphics can not be controlled by the program. So it might
be advantageous to use a 3D API such as java3d to render 3D graphics directly
in the program.
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