

A fault-tolerant voting scheme for multithreaded environments

Bernhard Fechner, Jörg Keller

FernUniversität Hagen, Fachbereich Informatik,
Lehrgebiet Parallelität und VLSI, 58084 Hagen

{Bernhard.Fechner|Joerg.Keller}@fernuni-hagen.de

Abstract

Voting schemes are widely used in fault-tolerant sys-
tems, mainly systems which imply temporal or component
redundancy.

We present a voting scheme for multithreaded envi-
ronments which is based on the observation that a fault-
tolerant system which does not know its history can not
distinguish between transient (SEUs) and permanent er-
rors, caused by use of a faulty component. The history of
errors is used to predict future errors and to determine if
a permanent or transient error occurred. Only in the for-
mer case a repair is necessary; in the latter case recovery
is sufficient. Using prediction and credibility points we
are able to tell if a system failure is likely to occur soon.
The more credibility a version has, the more likely it will
compute a correct result. Therefore we can use credibility
points in connection with thread priorisation to increase
performance.

1. Introduction

Voting schemes are essential for fault-tolerant systems
which imply temporal or component redundancy. Starting
from simple spare systems up to triple modular redundant
systems, the provision of redundancy, especially hot re-
serve, is useless if one cannot determine quickly enough
which system is faulty. In the case of two systems, a state
comparator can be used to detect errors. For three or more
components, a voter is used. Simultaneous multithreading
is a microarchitecture for superscalar processors which
tries to hide latencies, e.g. caused by control dependen-
cies by two or more threads either sharing the same hard-
ware or using different hardware simultaneously. For this
type of architecture both types of redundancy apply. On a
simultaneous multithreaded processor execution units,
register sets, etc. are replicated. With this on-chip level of
parallelism, used of n threads for redundancy it closely
matches the definition of an NMR (N-Modular Redun-
dancy) system.

A voter for multithreaded systems must accomplish three
main requirements in a short time:
� To detect and to report an error,
� to localize the source of the error (thread num-

ber, component, etc.) and
� reliably and correctly choose one or more non-

faulty systems among n systems.
Let I be the set of inputs, R the set of outputs. To obtain
fault tolerance by multithreading, INn∈ versions

ni RIf →: , INi∈ of the same algorithm are executed.
We denote by a version a function or program which is
executed in a hardware-thread. The final output is ob-
tained by voting among the results from different threads.
Generally a voter has to choose from a set of n functions

Ffi ∈ a set FC ⊆ of one or more functions Cf j ∈ ,

nINj∈ which are correctly computed.
A comparison among various voting schemes is re-

ported in [1]. We present an alternative fault-tolerant vot-
ing scheme for time-redundant systems such as virtual
duplex systems for multithreaded environments [2].
The remainder of this paper is organized as follows. Sec-
tion 2 describes the new predicative history voting. In
Section 3 we suggest some sample application scenarios
where our voting scheme can be used. Section 4 con-
cludes the paper.

2. Predicative History Voting

The main idea behind predicative history voting is the
observation that a fault-tolerant system which does not
know its history can not distinguish between transient
(SEUs) and permanent errors, caused by use of a faulty
component. In [3] the history of an N-Modular Redundant
(NMR) system helps to identify the most erroneous/faulty
modules of a system. In our voting scheme a history is
used to predict future errors, to determine if a permanent
or transient error occurred and which thread is more
likely to become faulty.

For the prediction, one can use neural nets, linear
predicators or methods similar to branch prediction. The
environment for the algorithm can be a network with an
atomic broadcast capability and bounded message delay
(e.g. a local area network, SMP, on-chip-wiring). It is
assumed that a fair-use policy is enforced, so that no host
can indefinitely block the broadcast medium [4]. We use
majority voting as (meta-) voting algorithm. For clarity
we look at two common examples.

Table 1 shows the structure of a history in the case of
a permanent failure of version 2, including a transient
error of version 3. Each column represents the result of
version 1,2 and 3 at time t, encoded by the numbers 1,2
and 3, where F means a fault of unknown source, P(Vx) a
permanent fault of version x and T(Vx) a transient fault of
version x. N indicates no fault, F(Vx) a fault of version x
(cause unknown) and pt the threshold value for the inter-
pretation of a permanent error. Equal numbers of different
versions mean that the same result was computed. For
each version, credibility points are used. The more credi-
bility a version has, the higher the probability that it
works correctly. The more faults a version has, the less
credibility it gets. The row ‘next’ gives information about
the forecasted error type and version-number. The award-
ing of credibility points (cp) is done with the algorithm
shown below. It can be easily extended to a n-component
version.
∀i∈{1,2,3}; cpi:=15;
while (execution) {
 if (fi∉C): cpi>>1
 else
 if (cpi<15) cpi++;
 if (cpi<pt): version i has a permanent
 failure;
 # change pt for system tuning
}

Table 1. History with a permanent fault of V2 and
a transient error of V3 (pt=0)
Time 1 2 3 4
V1 1 1 1 1
V2 1 2 2 2
V3 1 1 1 1
Result N F(V2) F(V2) F(V2)
Cred.1 15 15 15 15
Cred.2 15 7 3 1
Cred.3 15 15 15 15
Next N N F(V2) F(V2)

Time 5 6 7
V1
V2
V3

1
2
1

1
2
3

1
2
1

Result P(V2) F/P(V2) P(V2)
Cred.1
Cred.2
Cred.3

15
0
15

14
0
14

15
0
15

Next P(V2) P(V2)/T(V2) P(V2)

At time 2 we get a fault of version 2, which can be identi-
fied by the 2-of-3 voter. When cp2==pt version 2 turns
into a permanent error. Although the error type of version
2 was identified as permanent, we are (in step 7) still able
to recognize the transient failure of version 3 occurring in
step 6. Table 2 shows a frequently occurring fault of ver-
sion 3 which turns into a permanent failure.

Table 2. Frequently occurring fault of V3 – evolv-
ing into a permanent fault (pt=0)
Time 1 2 3 4
V1 2 2 2 2
V2 2 2 2 2
V3 2 3 2 3
Result N F(V3) N F(V3)
Cred. 1 15 15 15 15
Cred. 2 15 15 15 15
Cred. 3 15 7 8 4
Next N N F(V3) N

Time 5 6 7
V1
V2
V3

2
2
2

2
2
3

2
2
3

Result N F(V3) F(V3)
Cred. 1
Cred. 2
Cred. 3

15
15
5

15
15
1

15
15
0

Next F(V3) N P(V3)

At times {2,4,6} we get a fault of version 3, which is
identified by the 2-of-3 voter. Using prediction the faults
at time 4 and 6 can be forecasted. When cp3==pt version
3 turns into a permanent fault in step 7.

3. Applications

There exist many applications for our voting scheme,
e.g. in situations where a speedy repair cannot be supplied
after a fault. An example are soft mission critical systems,
e.g. computers that serve scientific experiments on space
missions. Here, a single experiment is not mission critical,
its failure however still is expensive. In outer space tran-
sient faults are much more frequent due to radiation, and
repair is impossible for obvious reasons. Also, due to in-
creasingly smaller feature sizes, it is to be expected that
transient faults due to radiation will occur much more
frequently on earth missions, both in memories and in
logic [5].

Since our voting scheme is general enough, it cannot
only be used on a single multithreaded processor but also
in symmetric multiprocessing or even in distributed com-
puting. It could replace simple existing schemes in hard-
ware. One example is the ABS (anti-blocking system) in a
car.

Here components are triplicated, the results from vari-
ous redundant sensors must be compared in real-time by a
voter. If we would use standard majority voting in this
case, we were only able to tell if an error occurred and
which component caused the error. If we apply our voting
scheme, we are furthermore able to tell:
- If a system failure is likely to occur in the future,
- if a faulty component which is accessed frequently

causes an error,
- after an error, if the system will be able to work in

real-time,
- if an error by a frequently accessed component or a

transient error occurred,
- how to boost performance of threads or processes

which show system-conformant behavior.

4. Conclusion/ extensions

We presented a voting technique which – in contrary
to simpler voting schemes – is able to recognize and dis-
tinguish transient and permanent faults. Using prediction
we are able to tell if a system failure will soon occur.

The more credibility a version has, the more likely it
will compute a correct result. So the credibility points can
be used for thread priorisation and to increase perform-
ance. The voter described in this paper can be combined
with other voters to hybrid voting systems. Instead of
credibility points, permanencies of observed permanent
and transient errors can be used to increase prediction
accuracy.

5. References

[1] Bass, J.M.; Latif-Shabgahi, G.; Bennett, S.: Experimental

Comparison of Voting Algorithms in Cases of Disagree-
ment, Proceeding of the 23rd Euromicro Conference, pp.
516-523, 1997

[2] Fechner, B.; Keller, J.; Sobe, P.: Performance Estimation
of Virtual Duplex Systems on Simultaneous Multi-
threaded Processors. IPDPS2004, Workshop on Fault-
Tolerant Parallel and Distributed Systems, 2004

[3] Latif-Shabgahi, G.; Bennett S.: Adaptive Majority Voter:
A Novel Voting Algorithm for Real-Time Fault-Tolerant
Control Systems, 25th Euromicro Conference (EU-
ROMICRO '99), Vol. 2, p. 2113, 1999

[4] Tanenbaum, A.: Computer Networks, Prentice Hall, 1989
[5] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and

L. Alvisi. Modeling the effect of technology trends on the
soft error rate of combinational logic. In Proceedings
IEEE International Conference on Dependable Systems
and Networks (DSN’02), pp. 389–398, 2002

