Improving Http-Server Performance by Adapted Multithreading

Jorg Keller
LG Technische Informatik 1
FernUniversiat Hagen
58084 Hagen, Germany
email: joerg.keller@fernuni-hagen.de

ABSTRACT

It is wellknown that http servers can be programmed easier
by using multithreading, i.e. each connection is dealt with
by a separate thread. It is also known, e.g. from massively
parallel programming, that multithreading can be used to
hide the long latency of a remote memory access. How-
ever, the two techniques do not readily complement each
other because context switches do not necessarily occur
when latencies would suggest them. We present an http
server that combines these two features: as soon as an event
with a longer latency is encountered, such as the server can-
not send all data with one buffer, the context is switched.
The implementation is based on the replacement of threads
in the http library Indy by an own implementation that al-
lows explicit context switch as in fibers. We benchmark
our http server with the apache benchmark against the orig-
inal thread-based implementation, with different file sizes
and different load levels. We find that if the server’s net-
work connection is fully utilized, our implementation needs
about one third of CPU time to handle the same throughput.
If the network connection is not the bottleneck, then our
implementation achieves a 26% higher throughput, given a
100% CPU utilization in both servers. The application of
fiber-based multithreading is a technique similar to using
assembler: it is not feasible on a large scale, but use in a
library provides enormous performance benefits transpar-
ently to the user.

KEY WORDS
Multithreading, Parallel Processing, Web Technologies,
Performance Evaluation

1 Introduction

An http server is an important software application on to-
days server (hardware) platforms, which possesses an enor-
mous amount of parallelism. It handles multiple — often
thousands of — connections simultaneously. Hence, it is
appropriate to program them in a parallel manner: each
connection is handled by its own thread. Moreover, the per-
formance requirements (especially concerning the through-
put) are high. Hence we concentrate on how to improve
web server performance.

*Work done as part of Master’s thesis at FernUnivétsit

Olaf Monien®
Thilo Lardon Computertechnik
Fullenbachstrasse 4
40474 Dusseldorf, Germany
email: olaf@monien.net

In each thread, events with a long latency can occur.
An example is a connecting client that requests a file, which
can be (almost) arbitrarily large, while it has to be trans-
ferred via a send buffer that has a fixed finite size. Thus,
the data to be sent will not fit completely in the buffer. In
this case the thread must wait until the buffer content has
been sent over the network before it can fill the buffer again
with the remaining data.

These latencies can potentially be hidden by a context
switch to execute another thread while the former thread is
waiting. However, for typical thread packages, the appli-
cation has no possibility to enforce a context switch at a
particular instant. In addition, although thread switch time
in modern operating systems has become quite small com-
pared to process switch time, the context switch time for
threads is still rather long in comparison to the latencies
incurred. Therefore, the gain would be quite small.

Latency hiding by multithreading has been explored
e.g. in the context of the massively-parallel Cray T3E ar-
chitecture [1, 2]. There, the calls for a remote memory ac-
cess were detected during compilation and extended with a
context-switch. Also, the standard POSIX thread calls were
replaced by inserting code of a re-implementation that de-
livered a much higher performance. This was achieved by
keeping the context as small as possible, avoiding operat-
ing system calls, and inlining the context-switch code. The
latter measure had the advantage that by a compile-time
analysis, only parts of the context that are needed in the
next section must be loaded, and only parts of the context
that were changed in the last section must be stored.

We try to use this idea in the area of http servers. As
we want to initiate a context switch at particular places, we
look at fiber$ as used by the Windows operating system,
that are related to coroutines which were popular in the
eighties [3]. As the Windows fibers are not fast enough, we
do a re-implementation (see Section 2). We integrate our
fibers into a multithreaded http server of the open source
protocol suite Indy [4] and show that only a handful of
code modifications are necessary (see Section 3). We eval-
uate our concept by measuring performance of our http
server and the unmodified http server of the Indy suite (see
Section 4). We also compare these results to the popular
apache http server.

IFibers are similar to threads, but the user can specify when a fiber
shall transfer control to another fiber.

ETEMUNE nager k7 ETEI’\!UThr&ad List

ES\ spendedibers

ETen'nil atedFizen
‘ [F]TEMUSChedulerThread

EFCU At ber

ETEMUFib&rList n‘. ETEMUFibe-r

Figure 1. Class concept of EMUfibers

While our concept may seem quite specialized, we
once again mention that web applications are a major ap-
plication area, and that the changes to the http server code
happen in the Indy library linked to the application. The
changes to Indy are minor. The fiber implementation itself
is a library of its own. Our idea in a sense is similar to
using assembler: this is not feasible on a large scale, but
still done in libraries when performance is a serious issue.
The implementation within a library also allows to apply
the same idea in other performance sensitive fields as well,
may it be in the same library or by applying this technique
to another library.

Finally, in contrast to the idea by @vinghoff, we do
not need specialized compiler tools. Therefore we can rely
on standard compilers and enjoy all their possibilities for
optimization as well.

2 Re-Implementing Fibers

Fibers in the Windows operating system have some dis-
advantages. First, their documentation is not very good.
Second, creating or destructing a larger number of fibers
produces a high CPU load, which is not desired because
this frequently will happen in an http server, although the
concept of thread pools partially alleviates this disadvan-
tage. Third, the fibers are not object-oriented, while the http
server we want to use them is written in Delphi, Borland’s
object-oriented development tool based on the Pascal pro-
gramming language. Therefore, we decided to implement
a fiber class ourselves. We call these EMUfibers in tribute
to the EMU system [1] that inspired them.

Necessary was to create code for creating and destruc-
ting a fiber, ayield -call that switches context from the
current fiber so that another fiber can continue, and a man-
ager that schedules the fibers. Additionally, calls for syn-
chronization are implemented, so that the fibers can access
the graphical user interface, which in Delphi runs under the
MainThread and is not thread-safe. The software construc-
tion is shown in Figure 1.

During initialization, we create one Manager in-

remoes topmo st EMUFiber
1-n Scheduler
Threads

EMUFiber.
State =
Yielded

Agplication

Sugpended
Fibers

Resume /Suspend
Fiber
creates EMUFibers ———

Destroys terminated Fibers

Yes

Fiber.Unyield
Mo Fiber gets
exceculed

Fisber calls Yield or runs completely

e
Terminated
Fibers

Fiber completed (i.e. did not call
Yield)?

Yes

v

Fiber is setto destroy
automatically

Figure 2. Flow diagramm of EMUfiber control

stance. The manager maintains two lists: SuspendedFibers
and TerminatedFibers. The former contains all fibers to be
executed, and the latter contains all fibers that have termi-
nated but are not yet freed, e.g. because another fiber might
need some result data from them. The manager also starts
and controls one or several threads, onto which the EMU-
fibers from the list SuspendedFibers are scheduled. See
Figure 2 for a complete flow diagramm.

A thread which is given an EMUfiber first checks
whether the fiber is ready to run, i.e. in stafelded
If so, it is unyielded and executed until the fiber terminates
or calls theYield function. In the former case, the fiber is
transferred to the list TerminatedFibers, or freed if it is not
to provide any result to another fiber. In the latter case, itis
transferred to the list SuspendedFibers.

If the application creates a new EMUfiber, itis in state
Suspended . If the fiber is resumed by the application,
then it takes statielded In both states, the fiber is
in list SuspendedFibers. The difference between these two
states is due to compatibility with Windows threads. In our
application, a newly created fiber is immediately resumed,
and never suspended. With a calltmYield , the state
changes tdexecuting . For a complete state diagramm,
see Figure 3.

The Yield and Unyield methods were pro-
grammed in Delphi inline assembler for performance rea-
sons. As the methods are normals procedure calls, most
of the context, ie. the registers, need not be saved explic-
itly. As the thread where the fiber is executed in remains
the same, this is possible. Additionally, the base and stack
pointers of the fiber and the thread and the return address

Suspended Run Yielded Stop o
Create Destroy

Yield Resume Stop

Figure 3. State Diagramm of an EMUfiber

must be stored. Hence, the fiber context is very small. The
Yield method consists of about 20 assembler instructions,
which is much faster than current thread implementations.

The scheduling strategy used is a simple first-in-first-
out strategy. Besides the obvious performance advantage,
we believe this strategy to be sufficient in our application
environment, for the following reasons. First, almost all
fibers deal with a client connection, and therefore have
identical priorities. If there are many connections, then the
probability is quite small that a fiber is scheduled again
while its send buffer is not yet cleared. This normally
only happens if the communication bandwidth is the bot-
tleneck. In the case that the communication bandwidth is
sufficient, then fibers may still experience differing times
to clear their buffers because some of them are subject to
bandwidth bottlenecks on the side of their client (or in the
network). Then a further increase in throughput might be
possible if fibers whose connections experience a higher
bandwidth get higher priority. As, however, the penalty for
scheduling a fiber and immediately yielding it again is quite
small, we believe this increase to be small.

The detailed description of the procedures imple-
mented, together with the assembler code listing, can be
found in [5], or obtained by contacting the authors.

3 Integration into an http Server

The Indy (Internet direct) library [4] provides implementa-
tions for a number of internet protocols, among them http,
both for the server and the client side. It is open source
and included in Delphi. As Delphi is available for Linux
under the name Kylix, our code can also be used for that
operating system after a small number of operating-system
specific changes.

The http server in Indy uses two types of threads: a so-
called ListenerThread waits for incoming connections on
port 80, and a so-called PeerThread is created for each new
connection. The latter handles the communication between
the server and the client, and is terminated upon the end of
the connection.

The exchange of the threads for our fibers is simpli-
fied by the fact that the Indy library does not use the Delphi
threads directly but uses a derivation. By changing only a
few code lines, our fibers can be used. What remains to
be done is the insertion dofield statements at the appro-
priate places. In fact, only one statement must be added,
namely during the write of a data stream. If the data does

Creating 1000 EMUFibers (Stack size:
byte)...

1000 EMUFibers created in 8,58 ms.
Destroying 1000 EMUFibers...

1000 EMUFibers destroxed in 9,02 ms.

4000

Creating 1000 WinFibers...

1000 WinFibers created in 12,96 ms.
Destroying 1000 WinFibers...

1000 WinFibers destroxed in 31,91 ms.

Figure 4. Comparing EMUfibers and Windows fibers

7 Emububble —1Of x|
File Test History Tools Help

ALL | CAT .

Al Name | Status | Time | Message
Benchmarks (EMUFiber create Passed 8,16

CriticalSection Thread create Paszed 104,29

Exceptions

Run

4| | i

~Bubhble Detail
Erzeugen von n TEMUFibers
[&nzahl per GlobalParams)

Testz | Global Params I

[Y

Figure 5. Benchmarking EMUfibers against threads

not fit into the buffer, then the context is switched by call-
ing Yield . Then the socket responsible for sending the
data gets time to transmit the buffer content, until the fiber
is scheduled again.

An additional, although minor, problem is that the
ListenerThread, which is now a fiber, blocks until a new
connection is recognized, and hence no other fibers could
be executed. A simple solution is to use two scheduler
threads, of which one blocks with the Listener fiber, and
the other executes the remaining fibers.

We have created a web server executable, that listens
on two ports. Port 80 is used for the http server with our
fibers, port 8080 is used for the original http server with
threads. The server creates a simple graphical user inter-
face for display in the client browser.

4 Experiments

We first compare the performance of our fiber implementa-
tion against the original Windows fibers with the help of a
simple test programm that only creates and destroys fibers.
We find that creation and destruction of 1000 EMUfibers
takes only 66.2% and 28.3%, respectively, of the time that
Windows fibers need, see Figure 4.

Then, we compare EMUfibers against threads. There,
creation of 1000 EMUthreads needs only 7.8% of the time
for threads, see Figure 5.

L ‘5: Eingabeaufforderung

C:“FProgramme~Apache Group-Apache2~hin*ab -¢ 1 —n 1 localhost:8888/changes.html
2.0._48-dev {%Revision: 1.121
Copyright <c> 1?96 Adam Twiss. Zeus Technology Ltd,. http:/ www.zeustech.net/

Copyright (c> 1998-2082 The Apache Software Foundation. http:/suuww.apache.org/

Thiz iz ApacheBench, Uersion

Benchmarking localhost <he patient>

Server Software:
Server Hostname:
Server Port:

EMU-Indy/?.668.11
localhost
8888

Document Path:
Document Length:

schanges .html
816378 hytes

Concurrency Level:
Time taken for

Complete regu H
Failed requests: a

lrite error a
816491 hytes

816378 bytes
A.63 [#/sec] (mean)

seconds

1
1.578125
1

Requests per
Time per reguest:
Time per request:
Transfer rate: 5@85.83 [Kbytesrsecl
Connection Times (ms)
min mean[+/-sd] median
15 .8 15
1547 1547 1547
10608 1008 19688
1562 1562 1562

Connect:

Processing:
Maiting: 3
1562

1578.125 [ms] (meand
1578.125 I[ms1 (mean.,
received

2.1 > apache-2.0

across all concurrent requests)

Figure 6. Example output of the Apache benchmark

Now, we compare a http server based on our fiber im-
plementation with the original multithreaded http server of
the Indy suite. The platform uses an AMD K&6-11l processor
at 400 MHz with 512 MByte memory, running under the
Windows NT4 Server operating system. We usefhache
Benchmarkab [6]. For our tests, we use two files of sizes
10,541 bytesKlaewelmann.html) and 4 bytesdcho,
generated by the server’'s echo function) respectively, to re-
flect the varying file sizes on the web. The first file reflects
a typical html page, while the second reflects the answer
to a generated request. Note that the transferred amount of
data is about 100 bytes more because oftitie proto-
col overhead. We also experimented with a file of about
800 KBytes thanges.html), but there the data transfer
times dominate. Consequently, the differences between the
two http servers diminish.

For each server and each file, we performed the fol-
lowing tests: Either alocal client or a 10 MBit network con-
nection was used. Concurrency levels of 1, 10, and 50 were
used. In the Apache Benchmark, the concurrency level de-
notes the number of requests that are posed in a very short
time before a response is expected. This is used to simulate
multiple clients. Figure 6 depicts a sample outpuabf

If alocal client is used, the communication bandwidth
is not the limit. Hence, if the concurrency is high enough,
the server CPU will be fully utilized. In this case, we com-
pare the throughputs achieved by the two servers. If a net-
work connection is used, it will saturate when the concur-
rency is high enough. In this case we compare the CPU uti-
lizations, and in addition the throughput to check whether
a lower CPU utilization sacrifices performance.

For the situation of a local client, we find that our
throughput is 26% and 50% higher, respectively, for the
two files, if the concurrency is at least 5, to achieve 100%
CPU utilization; see Figure 8.

For the situation of a network connection, we find
that our CPU utilization is 40% and 80%, respectively, of
the other http server’s, if the concurrency is at least 5, to
achieve 100% network utilization; see Figure 9.

At the same time we find that our throughput is identi-
cal for the larger file and about 30% higher for the short file;
see Figure 10. This indicates that the original http server
was not able to fully utilize the network bandwidth in this
case due to local performance problems (its CPU utilization
is about 90%). It hence seems that our implementation may
be especially suited for large numbers of short requests.

Last, we compare our implementation against the
Apache web server 2.0.45, which is one of the most pop-
ular open source products for web servers. As server plat-
form, we use an 1.3 GHz Celeron processor with 1 GByte
memory, running under the Windows 2000 professional op-
erating system. We apply the apache benchmark with the
file haewelmann.html and concurrendy5 for a local
client, because this file represents a typical web page size,
and the differences between the servers should be most
prominent without the influence of network bandwidth.

Figure 7 depicts that the EMUfiber-based web server
achieves a throughput which is slightly higher than the
Apache web server. The original Indy web server achieves
about 3,000 KByte/sec, as to be expected in similarity to
Figure 8.

Note that this comparison still is somewhat unfair to-
wards our implementation, as the Apache web server is a
product designed solely for that purpose, i.e. a stand-alone
standard web server, while the Indy suite contains a cus-
tom http server, i.e. an http server that is easily embeddable
into a larger application (see also section 5 for an example).

2For Windows 2000 professional, there seems to be a limitation of
the allowed number of requests to 5. Higher concurrency values lead to
request rejection.

Connection: localhost

EMU ‘ ‘ 3761,00
Indy ‘ ‘ 3011,00
Apache ‘ ‘ 3482,00
0,00 1000,00 2000,00 3000,00 4000,00

Throughput [KB/s]

Figure 7. Comparison with Apache web server

Yet, in the latter case, efficiency of the http server software
may be more important because the hardware for an appli-
cation containing a web server often is less powerful than
the hardware solely bought for running a web server.

5 Conclusions

We presented a re-implementation of Windows fibers, us-
able under the Windows and under the Linux operating
systems. We presented how to easily modify the open
source http server librarindy to replace threads for our
fibers. We benchmarked our server against the original
Indy server. We found that it achieves lower CPU utiliza-
tion in a setting where the network connection is the bot-
tleneck, and that it achieves higher throughput in a setting
where the processing power is the bottleneck. For short
requests, it even achieves both. We also compared our so-
lution to the apache web server and achieved comparable
throughput.

While our solution is not the method of choice for use
on alarge scale, it is well suited for use in a software library
setting. In this sense it resembles the use of assembler: use
it in libraries where performance counts.

The proposed solution is to be included as an optional
module in the next revision of the Indy suite, and on that
basis, in IntraWeb [7], a commercial software package for
the construction of web-based applications.

References

[1] A. Gravinghoff, On the Realization of Fine-Grained
Multithreading in Software (PdD Thesis) (Hagen:
FernUniversiat, 2002).

[2] A. Gravinghoff and J. Keller, Fine-Grained Multi-
threading on the Cray T3E, iRligh-Performance
Computing in Science and EngineerjngBerlin:
Springer-Verlag, 2000) 447-456.

[3] C.D. Marlin, Coroutines, (Berlin: Springer-Verlag,
1980).

[4] Indy Pit Crew,
http://www.indyproject.org/
indy.html | 2003.

Indy,

[5] O. Monien, Implementation of an Http Server with
Increased Latency Tolerance on IA32 Plattform (Mas-
ter's Thesis in German), (Hagen: FernUniveikit
2003).

[6] Apache Software Foundation, Apache http Server

Project, http://httpd.apache.org , 2003.

[7] Atozed Software Ltd., IntraWeb,
http://lwww.atozedsoftware.com/
intraweb , 2003.

Concurrency
o 3

E |
Iy
[=
[
55
o
[=
o
(&)
1
I T T T 1 T T
0 500 1000 1500 2000 0,00 500 1000 1500 20,00 2500 30,00
Throughput [KB/s] Throughput [KB/s]

Figure 8. Throughput foHaewelmann (left) andecho (right) with a local client

50 50

Concurrency
o

Concurrency
o

1
r T T T T T 1 r T T T T 1
0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

CPU Load [%] CPU Load [%]

Figure 9. CPU load foHaewelmann (left) andecho (right) over a 10MBit connection

o
o

N

Concurrency
o

Concurrency
[3,]

T T T T T T 1
0,00 250,00 500,00 750,00 1000,00 1250,00 0,00 500 10,00 1500 20,00 2500 30,00
Throughput [KB/s] Throughput [KB/s]

Figure 10. Throughput fadaewelmann (left) andecho (right) over a 10MBit connection

