Realization of PRAMs: Processor Design*

Jorg Keller, Wolfgang J. Paul, and Dieter Scheerer

Universitat des Saarlandes, Computer Science Department
Im Stadtwald, 66123 Saarbricken, Germany

Abstract. We present a processor architecture for SB-PRAM, a paral-
lel machine with shared address space and uniform memory access time.
The processor uses a reduced instruction set and provides in hardware
mechanisms for the emulation of shared memory: random hashing to
avoid hot spots, multiple contexts with regular scheduling to hide net-
work latency and fast context switch to minimize overhead. Furthermore
it provides hardware support for parallel operating systems and for the
efficient compilation of parallel high level languages. We give technical
data for a prototype VLSI implementation with a floating point unit.

1 Introduction

Parallel programming imposes more burdens on the programmer than program-
ming in a sequential setting, but is necessary as long as automatic paralleliza-
tion does not show satisfying results for all problem fields. Programming with
the view of a shared memory has become popular, because it frees the program-
mer at least from the mapping of data and from programming communication
between processors (or processes).

For small scale machines, a physical shared memory is possible and several
machines of this kind have been built, e.g. Encore Multimax and Alliant FX/8
[2]. For larger numbers of processors however, a physical shared memory quickly
becomes a bottleneck, and hence these architectures follow another idea. Memory
is physically distributed into modules, the address space is mapped onto modules
by a hash function h. If a processor wants to read the content of address z it
sends a request to module h(z) to send back the content of the cell to which
1s mapped. If all processors access memory at the same time, the hash function
should be such that with very high probability hot spots are avoided. A hot spot
is the event that many requests are sent to one memory module, which leads to
large access times.

Even if no hot spots occur, network latency makes access to remote modules
slow. Architectures like DASH or KSR1 [2] try to avoid access to remote modules
by employing caches and allowing multiple copies of cells. This however causes
a variety of access times, furthermore cache coherency must be ensured. We will
not use caches. If caches are used in our design, they should be at the memory
modules and cache lines should be one word long [3].

* This work was supported by the German Science Foundation (DFG) in SFB 124.

The latency can be hidden by running several jobs or wirtual processors on
each physical processor. A job that accesses memory 1s de-scheduled until the
answer from the remote module is back. This requires a minimum number of
ready-to-run processes. Valiant calls this parallel slackness [8], Smith used this
idea for the HEP and the TERA [3], Abolhassan et. al. [1] used this idea in an
architecture called SB-PRAM when investigating whether PRAM emulations
are feasible with todays technology. There the access time is uniformly large
which makes scheduling much simpler.

We will present a processor architecture for the SB-PRAM. There were sev-
eral design goals:

— mechanisms necessary for shared memory emulation should be provided in
hardware,

— parallel operating systems and compilation of parallel high level languages
should be supported,

— a floating-point unit should be supported to be able to run numerically
intensive programs efficiently,

— a prototype should be produced in semi-custom technology.

The remainder of the article is organized as follows. In section 2 we will
review some features of the SB-PRAM architecture. In section 3 we present
the processor architecture with a focus on hardware support for shared memory
emulation and for parallel operating systems (process management, memory pro-
tection). Section 4 presents the concept of logical processors which supports the
efficient execution of programs in a process oriented programming environment.
In section 5 we sketch the processor board.

2 SB-PRAM Architecture

The SB-PRAM is an example of the shared memory emulations described in the
introduction. Here we will sketch some of its features necessary to understand
the processor architecture. A more detailed description can be found in [1].

The SB-PRAM uses a linear hash function of the form H(z) = a - # mod m
where m, the size of the shared address space, is assumed to be a power of two.
The factor a 1s an odd integer between 1 and m — 1, that is chosen randomly
before the start of an application. The module h(z) that contains address x is
determined by h(z) = [H(x)/(m/p)], if p is the number of memory modules.
Hence, the module number is stored in the logp most significant bits of the
binary representation of H(x). The lowermost bits give the local address within
one module.

In theoretical investigations, polynomials of degree O(logp) over Z/PZ, with
P a prime larger than m, were taken as hash functions. Our hashing scheme has
the advantage that I is bijective (no secondary hashing at memory modules)
and can be evaluated fast. The performance in practice seems to be equivalent
or better [4].

The SB-PRAM supports an operation called multiprefiz, which is an exten-
sion of parallel prefix [5]. We assume that processors are ordered. Assume a
shared memory cell 2 with content dy and processors i1, ...,4; (i; < 4;41) that
execute multiprefix with an associative operator o and data dy,...,dg. Then at
the end of the operation, the content of cell # will be dyodyo---ody, and proces-
sor ¢; will receive a value dpody o---od;_1. The SB-PRAM network supports
operators ADD, MAX, AND, OR. There is also a restricted version called sync
where only cell z is changed, but no values are returned.

All computations necessary to implement multiprefix take place in the net-
work, the execution time of the operation is not longer than for a load instruc-
tion. Several prefix operations of disjunct processor groups on different cells are
allowed simultaneously, hence the name multiprefix.

3 Processor Architecture

As described above we use the concept of virtual processors (vP) to hide network
latency. There are two concepts of scheduling the processes. In the first concept
one process remains active until it wants to access the shared memory, or its time
slice has ended. Then this process i1s de-scheduled. In case of a shared memory
access it is appended to the waiting—queue. In case of a timeout it is appended
to the ready—to—run queue. In either case a process from the ready—to—run queue
is activated. When the answer to the request returns from shared memory, the
corresponding process is moved from the waiting—queue to the ready—to-run
queue. FIFO queues are sufficient because the routing algorithm guarantees that
the order of requests is not changed by the network. One major concern of
the SB-PRAM design was synchronous execution at assembler instruction level.
Hence we cannot use the above concept and use instead a strategy where a fixed
number C' of processes are scheduled in a round-robin manner. After execution
of one instruction, control is always switched to the next process, independently
of the occurrence of memory access; i.e. vP;11modc follows vP;, where 0 <7 <
C — 1. Control for the latter mechanism is much simpler than for the first one.
However it requires a context switch after each instruction and demands that all
instructions have identical execution time.

The instructions are executed in an instruction pipeline. At the same time
step there are several vP’s in different stages of the pipeline. As a consequence of
the demand for identical execution time it is not possible to skip pipeline stages
even if they are not necessary. Another effect of this demand is that all data,
addresses and busses have the same format of 32 bit. It follows that we need only
one opcode format and that only single-precision floating—point instructions are
supported.

We give every physical processor (pP) its own local program memory, i.e.
we use a Harvard—architecture. Holding programs in the global shared memory
would at least double network traffic and would either increase C' because of
access time or require an opcode prefetch. One program memory per pP implies

that all vP’s work on an identical program. However it is possible to branch
depending on the v P-number.

One v P is specified by the content of its register file (including special reg-

isters like program—counter PC' and status—register SR). The ALU (arithmetic
logic unit) and the decode/control unit can be shared among the vP’s of one
pP.
The number of necessary vP’s to hide the network latency is determined by the
number of network stages and by the routing algorithm. Theoretical investiga-
tions [7] and simulations [4] have shown that C' = ¢-n vP’s (with 2" the number
of physical processors) are sufficient to hide network latency. Using delayed load
allows to halve ¢ from ¢ = 6 to ¢ = 3. Delayed load means that the value read
out of a memory cell is not available in the next instruction but in the next but
one. In our planned prototype we have 27 = 128 physical processors. This leads
to C'= 21 vP’s per pP. We only allow a pP to run alternatively 8, 16, 24 or 32
vP’s to simplify the necessary counting mechanism.

3.1 Instruction set

Because of the simplicity and because of the restricted opcode length we have im-
plemented a reduced instruction—set. As a basis we have chosen the instruction—
set of the Berkeley—RISC I [6]. However, we provide more arithmetic. In addition
to integer addition and subtraction, bit operations and shifts and rotates (both
logical and arithmetical), we support rightmost (integer part of the logarithm
to base 2 of an integer argument) and multiplication of integers. The user can
choose between either the 32 most significant or the 32 least significant bits of
the product as the result.

Branch instructions can be relative or absolute, either unconditional or de-
pending on floating—point or integer conditions. Push and pop instructions allow
pre—addition of a constant and optional post—increment.

We use 3-address—instructions (two operands, one result). Operands are ei-
ther a register or a 13-bit immediate constant. Computation with memory—cells
as operand or result is impossible. This is called load—/store—architecture.

3.2 Register—files

We have 32 registers per vP, each 32 bits wide. Register Ry means either the
value 0 or the content of the status—register SR, depending on the executed
instruction. Register Ry 1s the program—counter PC'. Registers Rs...Rg3; are
universal registers, i.e. they can hold an integer, a floating—point number, a
memory address or can be used as stack—pointer.

Because a full-custom design would have been too expensive, we restricted
ourselves to a semi—custom design: a sea-of-gates architecture by MOTOROLA
in a 0.7um technology. We chose a master with about 80,000 gate equivalents
and about 230 signal pins.

To implement the 32 registers with 32 bits each for 32 vP'’s, 323 = 32,678
1-bit register cells are needed. Using flip—flops to realize these cells requires

8 x 32,768 = 262, 144 gate—equivalents. Implementing the register cells by on—
chip RAM modules would still need approximately 100,000 gate—equivalents.
Therefore the register files are realized by fast off—chip static RAM’s.

In the chosen technology it is not possible to implement bidirectional busses
with the desired speed. Because of pin—limitation it is also not possible to replace
each bidirectional bus by two unidirectional busses. Hence, the busses have to
be multiplexed. Each processor cycle 1s therefore divided into two half-cycles.

During the execution of one instruction one needs up to four accesses to the
register RAM’s, two for loading the operands, one for storing the result, and one
for a possibly returning answer to a load instruction from the network. Because
of timing limitations only one access per half-cycle is possible. Therefore the
register RAM’s have to be either dual-ported or one has to use two single—
port RAM’s and partition the registers of the vP’s among them. We choose the
second option (two RAM—chips 16K x 32, 20 ns access time) because there are
no appropriate dual-ported memories available. Partitioning the register files
into two groups is easy as vP’s with odd and even numbers alternate.

3.3 Memory access

As already mentioned we use a linear hash function which needs an integer
multiplication with the hash factor a. During the initialization routine the hash
factor is loaded into a special register on—chip.

Although we use delayed load, there 1s a slight chance that there is too much
traffic in the network. If the answer to a load request is not returned in time the
processor is frozen.

The internal memory of the network interface to store returning data is lim-
ited. To avoid additional waiting situations because of a full buffer in the network
interface, data coming from the network should be passed on as soon as possible.
However the processor has the necessary control information (e.g. the destination
register number) for returning load packets only available when the correspond-
ing vP is in the appropriate pipeline stage. Therefore an off-chip FIFO queue
buffers the data coming from the network interface. The necessary length of this
FIFO queue is limited to twice the number of vP’s because the processor is
frozen if the answer to a request has not returned after two processor rounds,
and no more packets can be generated within this time.

Instructions that access shared memory are load, store, push, pop, mul-
tiprefix, sync and jump-to-subroutine (push PC' onto stack, post—increment
stack—pointer). The push and pop instructions allow to add a 13 bit integer im-
mediate value before the multiplication with the hash factor and optionally a
post—increment. This allows fast copying of memory sections which may over-
lap. For load, store, multiprefix and sync the address is computed by adding the
content of a register and a 13 bit immediate constant.

We provide a mechanism that simplifies access to private data. Each vP of a
pP works on the same program. The processes need private variables which are
also held in the shared memory. For performance reasons it should be avoided
that a v P must use an additional compute instruction to add the base—address

each time it accesses these variables. This base—address is held by each vP on—
chip in the base-register (BASE). An access where adding BASE is desired is
specified by setting the most significant address bit msb, 1.e. bit 31.

3.4 Protection

We provide two mechanisms to protect system resources, e.g. disks, from uncon-
trolled access by distinguishing between user— and supervisor-mode. First, in
user—-mode a vP can only access its own universal registers. To access any other
register, e.g. BASE or SR, or to execute an instruction that supports context
switch (see section 4) the vP has to be in supervisor-mode.

The other mechanism aims at protection of different memory areas against
each other. This is an essential demand for multitasking as one user—program
has to be protected against accesses from other user—programs.

The global address space is partitioned into areas. The size of each area is a
multiple of 64K Word. Hence, start and end of each area can be specified by two
16-bit addresses. Every vP has a register P ROT on—chip which contains these
addresses. During the execution of each instruction that accesses memory these
bounds are checked while the v P is in user-mode. If the check fails the execution
is invalidated. In multitasking it is possible that data of one program are held
in different memory areas each time the program is started. It is possible to
configure the pP such that the start address, held in PROT, is added to the
computed address. This saves one compute instruction for each access.

Trying to execute a prohibited instruction or to access a protected memory
area results in a branch to the illegal-exception routine as described in subsection

3.6.

3.5 Floating—point

For solving numerical problems efficiently a floating—point unit is mandatory.
Because of the uniform data format of 32 bits only instructions with single pre-
cision are supported. Commercial floating—point co—processors at suitable speed
are available. However, more complex floating—point operations as sin(z), €*, /%
cannot be used even if the co—processor supports them, because of the fixed
number of pipeline stages.

The timing for writing results from chip into the off—chip register RAM is
critical. Therefore introducing some multiplexing—scheme to incorporate the co—
processor would slow down operating frequency. Another 32 bit—wide data—bus
would be necessary. Other problems with commercial co—processors are addi-
tional pins required to configure the co—processor and to bring floating—point
conditions onto the processor chip. The second case could lead to a delayed
branch instruction.

The above considerations give reason for the decision to implement a floating—
point unit on—chip. We use IEEE standard 754 for single precision floating—point
numbers. We provide addition, subtraction and multiplication with two floating—
point operands. These operations are also available with taking the absolute

value of the result. Two conversion instructions allow fast transition from and
to integer computations.

We use the flags proposed in the IEEE standard and allow the appropriate
conditional branch instructions. Several flags allow to enable or disable the ini-
tiation of interrupt routines, e.g. in case of overflow, underflow, infinity, invalid
operations.

The largest part of the floating—point unit is the multiplier for the mantissa.
To save chip area, we implement this multiplier with the help of the already
existing integer multiplier, which additionally is used for evaluation of the hash
function.

3.6 Exceptions

Under the term ezception we collect all actions disturbing the program flow, e.g.
a floating—point trap caused by an overflow or a disk interrupt. We have sixteen
exception levels with hardware-reset as level 0. All but level 0 are maskable. We
distinguish three classes:

common external exceptions: These seven exceptions are caused by some
event off—chip, e.g. disk, timer, bus—error, interrupt from another pP.
Common means that all vP’s have to execute the exception routine. Execu-
tion is always started with vP, regardless of the time when the appropriate
signals were activated off—chip.

common internal exceptions: These three exceptions are caused by an in-
ternal event.
We have a counter on—chip, counting complete instruction rounds. If it
reaches the value 0 all vP’s branch to the counter routine.
There is an instruction that allows one vP to force all other vP’s of this pP
to the corresponding exception routine.

private internal exceptions: These exceptions are caused by the instruction
the v P tries to execute.
An illegal exception occurs if the v P tries to execute a prohibited instruction,
or tries to execute an opcode which does not code an instruction, or tries to
access a protected memory area.
The data exception is activated when the loaded data has an error, i.e. a
parity error or some problems in the network.
The floating—point exception 1s executed if the operation results in an over-
flow, underflow, infinity or the computation was not possible because one of
the operands was not a legal number. One can control the initiation of the
exception more exactly by some mask flags in the SR.
The context exception is activated if an instruction on contexts (see section
4) fails, e.g. the instruction tries to create a new context if there is no one
available.
The system—call allows the user program to execute operating system rou-
tines where supervisor mode is necessary (e.g. disk access).

External exceptions have higher priority than internal ones and common
internal exceptions have higher priority than private internal exceptions. An
enabled common exception is always taken, even the vP’s which are in a private
internal exception routine branch to that routine. Upon entering an exception
routine the supervisor bit for this vP is set. It 1s also possible to execute the
exceptions recursively.

4 Logical Processors

Using the concept of virtual processors, a user of our prototype with 128 pP’s
will see a total number of 128 x 32 = 4096 processes. Some applications however
require dynamic creation of large numbers of processes at runtime. As swapping
the register files without hardware support is too time consuming, we provide an
efficient mechanism to handle large numbers of processes. The obvious solution
is creating new processes by a special instruction which adds a new vP. However,
this would contradict our principle of a simple instruction pipeline of fixed depth
and should therefore be avoided.

Instead, we introduce another hierarchical level, the logical processors, [P.
The number of used [P’s can dynamically be changed at execution time from 1
to 32 per vP. The switch from one [P to the next one is not done automatically,
as is the case for the vP’s, but must be programmed explicitly.

As the register files are held off—chip, it is easy to implement 1024 contexts
instead of 32 per pP. A context switch now consists mainly of exchanging PC'
and SR of the actual process, which are held on—chip, with PC' and SR of the
new process, which are swapped to the off-chip register RAM. An exchange of
the universal registers is not necessary, as these are always held in the register
RAM. Only the base pointer that addresses a specific context within the register
RAM has to be changed.

If context switch is to be completed within one instruction, we run into the
problem that we are allowed to load two operands from the register RAM (PC
and SR of the new context), but to store only one result of the actual context.
Storing the PC' is mandatory and therefore chosen. If the SR of the actual
context contains essential information, it must be stored into the register RAM
with an additional instruction before the explicit context switch.

There are two mechanisms to update the base pointer to the register RAM,
which we will describe in the following subsections.

4.1 Context switch with hardware support

As already mentioned every vP can manage up to 32 [P’s. There are three
possible states for every [P. There is exactly one active [P. A sleeping context
has at least initialized PC' and SR in the register RAM and is waiting to become
active. The third state is dead, 1.e. the contents of its register file are undefined.
It is not possible to switch off the active context if there is no other sleeping
context, because then this v P would no longer exist. The following instructions
allow to change the state of [P’s.

CREATE: A dead context is chosen and its PC', SR and, if necessary, further
registers in its register file are initialized. The state of that context is changed
from dead to sleeping. If there is no dead context available processor control
is switched to an error—routine.

HOP: Switch from the active context to the next sleeping if there is one, oth-
erwise branch to the error—routine. The former active context is appended
to the queue of sleeping contexts.

DIE: Analogously to HOP, the next sleeping context is chosen and gets active.
However, the former active context is appended to the queue of dead con-
texts.

Administration of active, sleeping and dead contexts is handled by a 32-bit
vector per vP. A one in the vector represents a sleeping vP, a zero a dead vP.
The vector 1s always rotated at HOP and DIE instructions in such a way that
the new active context occupies position 0. The number of the active [P is held
in a 5-bit register. The hardware for the context control unit has to perform
several tasks, e.g. find the first 0 in the vector (CREATE), find the first 1 (HOP,
DIE), rotate the vector by the appropriate distance, update the number of the
non—dead [P’s. We omit further details because of space limitations.

4.2 Explicit context switch

The mechanism given by the instructions CREATE, HOP, and DIE provides easy
access to a large number of contexts with a scheduling strategy that should
suffice for many cases. For applications however where this mechanism is not
flexible enough, we provide the possibility to explicitly manage creation, switch
and termination of contexts. The necessary queues must be maintained in shared
memory and managed by the user. The number of the active context is still held
in the 5-bit register, as in the hardware supported mechanism. When a context
switch occurs, the number of the new context must be specified. This is done in a
5-bit field within the SR. The desired number cannot be specified in the opcode
because 1t will not be known at compile time if one uses dynamic scheduling.
The following instructions are used.

PUTSEC, GETSEC: These instructions allow to access the register file of the
[P specified in the SR.

HOPSEC: The active context 1s deactivated, control is switched to the context
specified in the SR. The PC and SR are loaded from the register file into
the processor chip. The PC' of the deactivated context is stored into the
corresponding cell of the register RAM.

5 Processor Board

5.1 Functional blocks

We use one board per pP. On this board the following devices are located.

— The network interface and the FIFO queue to buffer returning data connect
the processor board to the network.

— The processor boards are connected to the host by a bus. Via this bus the
host can load the program memory. It can also be used to access the disks,
which can be necessary if the processor board fails but the disk itself remains
accessible.

— A serial interface allows to connect a terminal to the processor board. This
simplifies debugging of single boards. This device also contains a timer unit
which can be used to interrupt the processor.

— There is also a small local memory. It is helpful during the hardware debug-
ging phase. Normally it is used for accessing the hard disks (see subsection

5.2).

These devices are accessed via a local address/data bus. Since the addresses
for the shared memory are hashed we need a second unhashed address space
for the memory map of the devices. Therefore for each instruction that accesses
memory (load, store, push, pop, jump-to—-subroutine) we have two versions, e.g.
POPG and POPL. The instructions with postfix G access the global shared memory,
L access the local on—board address space.

These local load instructions are not delayed, i.e. the vP can use the result
in the following instruction. In analogy to global loads the result of the local
load is buffered in a FIFO queue until the requesting vP 1s in the appropriate
pipeline stage. A local load following a global load is prohibited and leads to
an exception, because the two results would have to be stored in the same time
slice.

The devices on the board should only be accessed within operating system
routines. With a protection mechanism similar to the one from subsection 3.4 it
is possible to prohibit executing local instructions in user-mode.

5.2 Disks

Disks and the corresponding controller ports are 8 bit wide. Accessing these ports
using processor busses would need ten processor instructions per transmission of
a 32 bit word (for reading/writing and the appropriate shifting and merging). We
use the 32 bit wide local memory as intermediate memory between the shared
memory and the disks. For an efficient handling we need DMA (direct memory
access) transmission between disk controller and local memory. We use an FPGA
(field programmable grid array) to realize the control logic for the board. The
necessary logic for the DMA is also implemented on this FPGA. We have an
address register, an address incrementer, a length register; a register to control
the disk operation, a register reflecting the status of disk operation, the shifting
and multiplexing scheme for data.

We reach a transmission rate between disk controller and local memory of one
32 bit word every fourth processor cycle per disk. This exceeds the transmission
rate of the disks used. Data transmission between local memory and shared
memory 18 managed by the processor. Using loop unrolling two instructions

suffice to transfer a 32 bit word: POP with pre-decrement from shared memory
and PUSH with post—increment to the local memory. Unrolling is easy because
fixed size blocks are transferred. The number of vP’s which are involved in the
data transfer determines the bandwidth.

Storing data to disks can be caused either by an explicit statement in a
program or by a statement of an interrupt routine (e.g. timer interrupt to initiate
writing a checkpoint to disk). If the desired bandwidth cannot be reached by the
executing vP, it interrupts the other vP’s of this pP. The interrupted vP’s
branch depending on their process number to the disk routine and work as
assistant vP’'s. These vP’s transfer the data from shared memory to the local
memory and return to the previously done work. The ezecuting vP initializes
the DMA address register and the length register on the FPGA. Writing to the
DMA control register starts transfers from local memory to the disk controller.
The executing vP completes the transmission routine.

Data transfer from disk to shared memory is done in a similar way. After
initiating the transfer by writing to the DMA registers, the ezecuting vP polls
the DMA status register until it recognizes that the desired data have been
transferred to local memory. Then the transfer is completed by transporting the
data to the shared memory, if necessary with the help of some assistant vP’s.

Because disk bandwidth is critical for applications like databases we use
two disks per processor board. These disks are mechanically mounted on the
processor board. This is possible because todays available disks are small and
power consumption is low. These disks have a capacity of at least 200 MByte
and reach a data transfer rate of 5 MByte/s.

References

1. F. Abolhassan, J. Keller, and W. J. Paul. On the cost—effectiveness of PRAMs. In
Proc. 3rd Symp. on Parallel and Distributed Processing, pages 2—9. IEEE, Dec. 1991.

2. G. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin/Cummings, 2nd
edition, 1994.

3. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.
The Tera computer system. In Proc. 1990 Internat. Conf. on Supercomputing, pages
1-6. ACM, 1990.

4. C. Engelmann and J. Keller. Simulation-based comparison of hash functions for
emulated shared memory. In Proc. PARLE ’93, Parallel Architectures and Lan-
guages Furope, Lecture Notes in Comput. Sci. No. 694, pages 1-11. Springer, June
1993.

5. R. E. Ladner and M. J. Fisher. Parallel prefix computation. J. Assoc. Comput.
Mach., 27(4):831-838, Oct. 1980.

6. D. A. Patterson and C. H. Sequin. A VLSI RISC. Comput., 15(9):8-21, 1982.

7. A. G. Ranade. How to emulate shared memory. J. Comput. System Sci., 42(3):307—
326, 1991.

8. L. G. Valiant. A bridging model for parallel computation. Comm. ACM, 33(8):103—
111, 1990.

This article was processed using the IANTRpX macro package with LLNCS style

