
Realization of PRAMs� Processor Design�

J�org Keller� Wolfgang J� Paul� and Dieter Scheerer

Universit�at des Saarlandes� Computer Science Department
Im Stadtwald� ����� Saarbr�ucken� Germany

Abstract� We present a processor architecture for SB�PRAM� a paral�
lel machine with shared address space and uniform memory access time	
The processor uses a reduced instruction set and provides in hardware
mechanisms for the emulation of shared memory
 random hashing to
avoid hot spots� multiple contexts with regular scheduling to hide net�
work latency and fast context switch to minimize overhead	 Furthermore
it provides hardware support for parallel operating systems and for the
e�cient compilation of parallel high level languages	 We give technical
data for a prototype VLSI implementation with a �oating point unit	

� Introduction

Parallel programming imposes more burdens on the programmer than program�
ming in a sequential setting� but is necessary as long as automatic paralleliza�
tion does not show satisfying results for all problem �elds� Programming with
the view of a shared memory has become popular� because it frees the program�
mer at least from the mapping of data and from programming communication
between processors �or processes��

For small scale machines� a physical shared memory is possible and several
machines of this kind have been built� e�g� Encore Multimax and Alliant FX	

��
� For larger numbers of processors however� a physical shared memory quickly
becomes a bottleneck� and hence these architectures follow another idea� Memory
is physically distributed into modules� the address space is mapped onto modules
by a hash function h� If a processor wants to read the content of address x it
sends a request to module h�x� to send back the content of the cell to which x
is mapped� If all processors access memory at the same time� the hash function
should be such that with very high probability hot spots are avoided� A hot spot
is the event that many requests are sent to one memory module� which leads to
large access times�

Even if no hot spots occur� network latency makes access to remote modules
slow� Architectures like DASH or KSR� ��
 try to avoid access to remote modules
by employing caches and allowing multiple copies of cells� This however causes
a variety of access times� furthermore cache coherency must be ensured� We will
not use caches� If caches are used in our design� they should be at the memory
modules and cache lines should be one word long ��
�

� This work was supported by the German Science Foundation 
DFG� in SFB ���	



The latency can be hidden by running several jobs or virtual processors on
each physical processor� A job that accesses memory is de�scheduled until the
answer from the remote module is back� This requires a minimum number of
ready�to�run processes� Valiant calls this parallel slackness �

� Smith used this
idea for the HEP and the TERA ��
� Abolhassan et� al� ��
 used this idea in an
architecture called SB�PRAM when investigating whether PRAM emulations
are feasible with todays technology� There the access time is uniformly large
which makes scheduling much simpler�

We will present a processor architecture for the SB�PRAM� There were sev�
eral design goals�

� mechanisms necessary for shared memory emulation should be provided in
hardware�

� parallel operating systems and compilation of parallel high level languages
should be supported�

� a �oating�point unit should be supported to be able to run numerically
intensive programs e�ciently�

� a prototype should be produced in semi�custom technology�

The remainder of the article is organized as follows� In section � we will
review some features of the SB�PRAM architecture� In section � we present
the processor architecture with a focus on hardware support for shared memory
emulation and for parallel operating systems �process management�memory pro�
tection�� Section � presents the concept of logical processors which supports the
e�cient execution of programs in a process oriented programming environment�
In section � we sketch the processor board�

� SB�PRAM Architecture

The SB�PRAM is an example of the shared memory emulations described in the
introduction� Here we will sketch some of its features necessary to understand
the processor architecture� A more detailed description can be found in ��
�

The SB�PRAM uses a linear hash function of the form H�x� � a � x modm
where m� the size of the shared address space� is assumed to be a power of two�
The factor a is an odd integer between � and m � �� that is chosen randomly
before the start of an application� The module h�x� that contains address x is
determined by h�x� � bH�x���m�p�c� if p is the number of memory modules�
Hence� the module number is stored in the log p most signi�cant bits of the
binary representation of H�x�� The lowermost bits give the local address within
one module�

In theoretical investigations� polynomials of degree O�logp� over Z�PZ� with
P a prime larger than m� were taken as hash functions� Our hashing scheme has
the advantage that H is bijective �no secondary hashing at memory modules�
and can be evaluated fast� The performance in practice seems to be equivalent
or better ��
�



The SB�PRAM supports an operation called multipre�x� which is an exten�
sion of parallel pre�x ��
� We assume that processors are ordered� Assume a
shared memory cell x with content d� and processors i�� � � � � ik �ij � ij��� that
execute multipre�x with an associative operator � and data d�� � � � � dk� Then at
the end of the operation� the content of cell x will be d��d�� � � ��dk� and proces�
sor ij will receive a value d� � d� � � � � � dj��� The SB�PRAM network supports
operators ADD� MAX� AND� OR� There is also a restricted version called sync
where only cell x is changed� but no values are returned�

All computations necessary to implement multipre�x take place in the net�
work� the execution time of the operation is not longer than for a load instruc�
tion� Several pre�x operations of disjunct processor groups on di�erent cells are
allowed simultaneously� hence the name multipre�x�

� Processor Architecture

As described above we use the concept of virtual processors �vP� to hide network
latency� There are two concepts of scheduling the processes� In the �rst concept
one process remains active until it wants to access the shared memory� or its time
slice has ended� Then this process is de�scheduled� In case of a shared memory
access it is appended to the waiting�queue� In case of a timeout it is appended
to the ready�to�run queue� In either case a process from the ready�to�run queue
is activated� When the answer to the request returns from shared memory� the
corresponding process is moved from the waiting�queue to the ready�to�run
queue� FIFO queues are su�cient because the routing algorithm guarantees that
the order of requests is not changed by the network� One major concern of
the SB�PRAM design was synchronous execution at assembler instruction level�
Hence we cannot use the above concept and use instead a strategy where a �xed
number C of processes are scheduled in a round�robin manner� After execution
of one instruction� control is always switched to the next process� independently
of the occurrence of memory access� i�e� vPi��modC follows vPi� where � � i �
C � �� Control for the latter mechanism is much simpler than for the �rst one�
However it requires a context switch after each instruction and demands that all
instructions have identical execution time�

The instructions are executed in an instruction pipeline� At the same time
step there are several vP �s in di�erent stages of the pipeline� As a consequence of
the demand for identical execution time it is not possible to skip pipeline stages
even if they are not necessary� Another e�ect of this demand is that all data�
addresses and busses have the same format of �� bit� It follows that we need only
one opcode format and that only single�precision �oating�point instructions are
supported�

We give every physical processor �pP� its own local program memory� i�e�
we use a Harvard�architecture� Holding programs in the global shared memory
would at least double network tra�c and would either increase C because of
access time or require an opcode prefetch� One program memory per pP implies



that all vP �s work on an identical program� However it is possible to branch
depending on the vP�number�

One vP is speci�ed by the content of its register �le �including special reg�
isters like program�counter PC and status�register SR�� The ALU �arithmetic
logic unit� and the decode	control unit can be shared among the vP �s of one
pP �
The number of necessary vP �s to hide the network latency is determined by the
number of network stages and by the routing algorithm� Theoretical investiga�
tions ��
 and simulations ��
 have shown that C � c �n vP �s �with �n the number
of physical processors� are su�cient to hide network latency� Using delayed load
allows to halve c from c � � to c � �� Delayed load means that the value read
out of a memory cell is not available in the next instruction but in the next but
one� In our planned prototype we have �� � ��
 physical processors� This leads
to C � �� vP �s per pP � We only allow a pP to run alternatively 
� ��� �� or ��
vP �s to simplify the necessary counting mechanism�

��� Instruction set

Because of the simplicity and because of the restricted opcode length we have im�
plemented a reduced instruction�set� As a basis we have chosen the instruction�
set of the Berkeley�RISC I ��
� However� we provide more arithmetic� In addition
to integer addition and subtraction� bit operations and shifts and rotates �both
logical and arithmetical�� we support rightmost �integer part of the logarithm
to base � of an integer argument� and multiplication of integers� The user can
choose between either the �� most signi�cant or the �� least signi�cant bits of
the product as the result�

Branch instructions can be relative or absolute� either unconditional or de�
pending on �oating�point or integer conditions� Push and pop instructions allow
pre�addition of a constant and optional post�increment�

We use ��address�instructions �two operands� one result�� Operands are ei�
ther a register or a ���bit immediate constant� Computation with memory�cells
as operand or result is impossible� This is called load��store�architecture�

��� Register��les

We have �� registers per vP � each �� bits wide� Register R� means either the
value � or the content of the status�register SR� depending on the executed
instruction� Register R� is the program�counter PC� Registers R� � � �R�� are
universal registers� i�e� they can hold an integer� a �oating�point number� a
memory address or can be used as stack�pointer�

Because a full�custom design would have been too expensive� we restricted
ourselves to a semi�custom design� a sea�of�gates architecture by MOTOROLA
in a ����m technology� We chose a master with about 
����� gate equivalents
and about ��� signal pins�

To implement the �� registers with �� bits each for �� vP �s� ��� � ��� ��

��bit register cells are needed� Using �ip��ops to realize these cells requires




 � ��� ��
 � ���� ��� gate�equivalents� Implementing the register cells by on�
chip RAM modules would still need approximately ������� gate�equivalents�
Therefore the register �les are realized by fast o��chip static RAM�s�

In the chosen technology it is not possible to implement bidirectional busses
with the desired speed� Because of pin�limitation it is also not possible to replace
each bidirectional bus by two unidirectional busses� Hence� the busses have to
be multiplexed� Each processor cycle is therefore divided into two half�cycles�

During the execution of one instruction one needs up to four accesses to the
register RAM�s� two for loading the operands� one for storing the result� and one
for a possibly returning answer to a load instruction from the network� Because
of timing limitations only one access per half�cycle is possible� Therefore the
register RAM�s have to be either dual�ported or one has to use two single�
port RAM�s and partition the registers of the vP �s among them� We choose the
second option �two RAM�chips ��K � ��� �� ns access time� because there are
no appropriate dual�ported memories available� Partitioning the register �les
into two groups is easy as vP �s with odd and even numbers alternate�

��� Memory access

As already mentioned we use a linear hash function which needs an integer
multiplication with the hash factor a� During the initialization routine the hash
factor is loaded into a special register on�chip�

Although we use delayed load� there is a slight chance that there is too much
tra�c in the network� If the answer to a load request is not returned in time the
processor is frozen�

The internal memory of the network interface to store returning data is lim�
ited� To avoid additional waiting situations because of a full bu�er in the network
interface� data coming from the network should be passed on as soon as possible�
However the processor has the necessary control information �e�g� the destination
register number� for returning load packets only available when the correspond�
ing vP is in the appropriate pipeline stage� Therefore an o��chip FIFO queue
bu�ers the data coming from the network interface� The necessary length of this
FIFO queue is limited to twice the number of vP �s because the processor is
frozen if the answer to a request has not returned after two processor rounds�
and no more packets can be generated within this time�

Instructions that access shared memory are load� store� push� pop� mul�
tipre�x� sync and jump�to�subroutine �push PC onto stack� post�increment
stack�pointer�� The push and pop instructions allow to add a �� bit integer im�
mediate value before the multiplication with the hash factor and optionally a
post�increment� This allows fast copying of memory sections which may over�
lap� For load� store� multipre�x and sync the address is computed by adding the
content of a register and a �� bit immediate constant�

We provide a mechanism that simpli�es access to private data� Each vP of a
pP works on the same program� The processes need private variables which are
also held in the shared memory� For performance reasons it should be avoided
that a vP must use an additional compute instruction to add the base�address



each time it accesses these variables� This base�address is held by each vP on�
chip in the base�register �BASE�� An access where adding BASE is desired is
speci�ed by setting the most signi�cant address bit msb� i�e� bit ���

��� Protection

We provide two mechanisms to protect system resources� e�g� disks� from uncon�
trolled access by distinguishing between user� and supervisor�mode� First� in
user�mode a vP can only access its own universal registers� To access any other
register� e�g� BASE or SR� or to execute an instruction that supports context
switch �see section �� the vP has to be in supervisor�mode�

The other mechanism aims at protection of di�erent memory areas against
each other� This is an essential demand for multitasking as one user�program
has to be protected against accesses from other user�programs�

The global address space is partitioned into areas� The size of each area is a
multiple of ��KWord� Hence� start and end of each area can be speci�ed by two
���bit addresses� Every vP has a register PROT on�chip which contains these
addresses� During the execution of each instruction that accesses memory these
bounds are checked while the vP is in user�mode� If the check fails the execution
is invalidated� In multitasking it is possible that data of one program are held
in di�erent memory areas each time the program is started� It is possible to
con�gure the pP such that the start address� held in PROT � is added to the
computed address� This saves one compute instruction for each access�

Trying to execute a prohibited instruction or to access a protected memory
area results in a branch to the illegal�exception routine as described in subsection
����

��� Floating�point

For solving numerical problems e�ciently a �oating�point unit is mandatory�
Because of the uniform data format of �� bits only instructions with single pre�
cision are supported� Commercial �oating�point co�processors at suitable speed
are available� However� more complex �oating�point operations as sin�x�� ex�

p
x

cannot be used even if the co�processor supports them� because of the �xed
number of pipeline stages�

The timing for writing results from chip into the o��chip register RAM is
critical� Therefore introducing some multiplexing�scheme to incorporate the co�
processor would slow down operating frequency� Another �� bit�wide data�bus
would be necessary� Other problems with commercial co�processors are addi�
tional pins required to con�gure the co�processor and to bring �oating�point
conditions onto the processor chip� The second case could lead to a delayed
branch instruction�

The above considerations give reason for the decision to implement a �oating�
point unit on�chip� We use IEEE standard ��� for single precision �oating�point
numbers� We provide addition� subtraction and multiplication with two �oating�
point operands� These operations are also available with taking the absolute



value of the result� Two conversion instructions allow fast transition from and
to integer computations�

We use the �ags proposed in the IEEE standard and allow the appropriate
conditional branch instructions� Several �ags allow to enable or disable the ini�
tiation of interrupt routines� e�g� in case of over�ow� under�ow� in�nity� invalid
operations�

The largest part of the �oating�point unit is the multiplier for the mantissa�
To save chip area� we implement this multiplier with the help of the already
existing integer multiplier� which additionally is used for evaluation of the hash
function�

��	 Exceptions

Under the term exception we collect all actions disturbing the program �ow� e�g�
a �oating�point trap caused by an over�ow or a disk interrupt� We have sixteen
exception levels with hardware�reset as level �� All but level � are maskable� We
distinguish three classes�

common external exceptions
 These seven exceptions are caused by some
event o��chip� e�g� disk� timer� bus�error� interrupt from another pP �
Common means that all vP �s have to execute the exception routine� Execu�
tion is always started with vP� regardless of the time when the appropriate
signals were activated o��chip�

common internal exceptions
 These three exceptions are caused by an in�
ternal event�
We have a counter on�chip� counting complete instruction rounds� If it
reaches the value � all vP �s branch to the counter routine�
There is an instruction that allows one vP to force all other vP �s of this pP
to the corresponding exception routine�

private internal exceptions
 These exceptions are caused by the instruction
the vP tries to execute�
An illegal exception occurs if the vP tries to execute a prohibited instruction�
or tries to execute an opcode which does not code an instruction� or tries to
access a protected memory area�
The data exception is activated when the loaded data has an error� i�e� a
parity error or some problems in the network�
The �oating�point exception is executed if the operation results in an over�
�ow� under�ow� in�nity or the computation was not possible because one of
the operands was not a legal number� One can control the initiation of the
exception more exactly by some mask �ags in the SR�
The context exception is activated if an instruction on contexts �see section
�� fails� e�g� the instruction tries to create a new context if there is no one
available�
The system�call allows the user program to execute operating system rou�
tines where supervisor mode is necessary �e�g� disk access��



External exceptions have higher priority than internal ones and common
internal exceptions have higher priority than private internal exceptions� An
enabled common exception is always taken� even the vP �s which are in a private
internal exception routine branch to that routine� Upon entering an exception
routine the supervisor bit for this vP is set� It is also possible to execute the
exceptions recursively�

� Logical Processors

Using the concept of virtual processors� a user of our prototype with ��
 pP�s
will see a total number of ��
��� � ���� processes� Some applications however
require dynamic creation of large numbers of processes at runtime� As swapping
the register �les without hardware support is too time consuming� we provide an
e�cient mechanism to handle large numbers of processes� The obvious solution
is creating new processes by a special instruction which adds a new vP � However�
this would contradict our principle of a simple instruction pipeline of �xed depth
and should therefore be avoided�

Instead� we introduce another hierarchical level� the logical processors	 lP�
The number of used lP �s can dynamically be changed at execution time from �
to �� per vP � The switch from one lP to the next one is not done automatically�
as is the case for the vP �s� but must be programmed explicitly�

As the register �les are held o��chip� it is easy to implement ���� contexts
instead of �� per pP � A context switch now consists mainly of exchanging PC
and SR of the actual process� which are held on�chip� with PC and SR of the
new process� which are swapped to the o��chip register RAM� An exchange of
the universal registers is not necessary� as these are always held in the register
RAM� Only the base pointer that addresses a speci�c context within the register
RAM has to be changed�

If context switch is to be completed within one instruction� we run into the
problem that we are allowed to load two operands from the register RAM �PC
and SR of the new context�� but to store only one result of the actual context�
Storing the PC is mandatory and therefore chosen� If the SR of the actual
context contains essential information� it must be stored into the register RAM
with an additional instruction before the explicit context switch�

There are two mechanisms to update the base pointer to the register RAM�
which we will describe in the following subsections�

��� Context switch with hardware support

As already mentioned every vP can manage up to �� lP �s� There are three
possible states for every lP � There is exactly one active lP � A sleeping context
has at least initialized PC and SR in the register RAM and is waiting to become
active� The third state is dead� i�e� the contents of its register �le are unde�ned�
It is not possible to switch o� the active context if there is no other sleeping
context� because then this vP would no longer exist� The following instructions
allow to change the state of lP �s�



CREATE
 A dead context is chosen and its PC� SR and� if necessary� further
registers in its register �le are initialized� The state of that context is changed
from dead to sleeping� If there is no dead context available processor control
is switched to an error�routine�

HOP
 Switch from the active context to the next sleeping if there is one� oth�
erwise branch to the error�routine� The former active context is appended
to the queue of sleeping contexts�

DIE
 Analogously to HOP� the next sleeping context is chosen and gets active�
However� the former active context is appended to the queue of dead con�
texts�

Administration of active� sleeping and dead contexts is handled by a ���bit
vector per vP � A one in the vector represents a sleeping vP � a zero a dead vP �
The vector is always rotated at HOP and DIE instructions in such a way that
the new active context occupies position �� The number of the active lP is held
in a ��bit register� The hardware for the context control unit has to perform
several tasks� e�g� �nd the �rst � in the vector �CREATE�� �nd the �rst � �HOP�
DIE�� rotate the vector by the appropriate distance� update the number of the
non�dead lP �s� We omit further details because of space limitations�

��� Explicit context switch

The mechanism given by the instructions CREATE� HOP� and DIE provides easy
access to a large number of contexts with a scheduling strategy that should
su�ce for many cases� For applications however where this mechanism is not
�exible enough� we provide the possibility to explicitly manage creation� switch
and termination of contexts� The necessary queues must be maintained in shared
memory and managed by the user� The number of the active context is still held
in the ��bit register� as in the hardware supported mechanism� When a context
switch occurs� the number of the new context must be speci�ed� This is done in a
��bit �eld within the SR� The desired number cannot be speci�ed in the opcode
because it will not be known at compile time if one uses dynamic scheduling�
The following instructions are used�

PUTSEC� GETSEC
 These instructions allow to access the register �le of the
lP speci�ed in the SR�

HOPSEC
 The active context is deactivated� control is switched to the context
speci�ed in the SR� The PC and SR are loaded from the register �le into
the processor chip� The PC of the deactivated context is stored into the
corresponding cell of the register RAM�

� Processor Board

��� Functional blocks

We use one board per pP � On this board the following devices are located�



� The network interface and the FIFO queue to bu�er returning data connect
the processor board to the network�

� The processor boards are connected to the host by a bus� Via this bus the
host can load the program memory� It can also be used to access the disks�
which can be necessary if the processor board fails but the disk itself remains
accessible�

� A serial interface allows to connect a terminal to the processor board� This
simpli�es debugging of single boards� This device also contains a timer unit
which can be used to interrupt the processor�

� There is also a small local memory� It is helpful during the hardware debug�
ging phase� Normally it is used for accessing the hard disks �see subsection
�����

These devices are accessed via a local address	data bus� Since the addresses
for the shared memory are hashed we need a second unhashed address space
for the memory map of the devices� Therefore for each instruction that accesses
memory �load� store� push� pop� jump�to�subroutine� we have two versions� e�g�
POPG and POPL� The instructions with post�x G access the global shared memory�
L access the local on�board address space�

These local load instructions are not delayed� i�e� the vP can use the result
in the following instruction� In analogy to global loads the result of the local
load is bu�ered in a FIFO queue until the requesting vP is in the appropriate
pipeline stage� A local load following a global load is prohibited and leads to
an exception� because the two results would have to be stored in the same time
slice�

The devices on the board should only be accessed within operating system
routines� With a protection mechanism similar to the one from subsection ��� it
is possible to prohibit executing local instructions in user�mode�

��� Disks

Disks and the corresponding controller ports are 
 bit wide� Accessing these ports
using processor busses would need ten processor instructions per transmission of
a �� bit word �for reading	writing and the appropriate shifting and merging�� We
use the �� bit wide local memory as intermediate memory between the shared
memory and the disks� For an e�cient handling we need DMA �direct memory
access� transmission between disk controller and local memory�We use an FPGA
��eld programmable grid array� to realize the control logic for the board� The
necessary logic for the DMA is also implemented on this FPGA� We have an
address register� an address incrementer� a length register� a register to control
the disk operation� a register re�ecting the status of disk operation� the shifting
and multiplexing scheme for data�

We reach a transmission rate between disk controller and local memory of one
�� bit word every fourth processor cycle per disk� This exceeds the transmission
rate of the disks used� Data transmission between local memory and shared
memory is managed by the processor� Using loop unrolling two instructions



su�ce to transfer a �� bit word� POP with pre�decrement from shared memory
and PUSH with post�increment to the local memory� Unrolling is easy because
�xed size blocks are transferred� The number of vP �s which are involved in the
data transfer determines the bandwidth�

Storing data to disks can be caused either by an explicit statement in a
program or by a statement of an interrupt routine �e�g� timer interrupt to initiate
writing a checkpoint to disk�� If the desired bandwidth cannot be reached by the
executing vP� it interrupts the other vP �s of this pP � The interrupted vP �s
branch depending on their process number to the disk routine and work as
assistant vP �s� These vP �s transfer the data from shared memory to the local
memory and return to the previously done work� The executing vP initializes
the DMA address register and the length register on the FPGA� Writing to the
DMA control register starts transfers from local memory to the disk controller�
The executing vP completes the transmission routine�

Data transfer from disk to shared memory is done in a similar way� After
initiating the transfer by writing to the DMA registers� the executing vP polls
the DMA status register until it recognizes that the desired data have been
transferred to local memory� Then the transfer is completed by transporting the
data to the shared memory� if necessary with the help of some assistant vP
s�

Because disk bandwidth is critical for applications like databases we use
two disks per processor board� These disks are mechanically mounted on the
processor board� This is possible because todays available disks are small and
power consumption is low� These disks have a capacity of at least ��� MByte
and reach a data transfer rate of � MByte	s�

References

�	 F	 Abolhassan� J	 Keller� and W	 J	 Paul	 On the cost�e�ectiveness of PRAMs	 In
Proc� �rd Symp� on Parallel and Distributed Processing� pages ���	 IEEE� Dec	 ����	

�	 G	 Almasi and A	 Gottlieb	 Highly Parallel Computing	 Benjamin�Cummings� �nd
edition� ����	

�	 R	 Alverson� D	 Callahan� D	 Cummings� B	 Koblenz� A	 Porter�eld� and B	 Smith	
The Tera computer system	 In Proc� ���� Internat� Conf� on Supercomputing� pages
���	 ACM� ����	

�	 C	 Engelmann and J	 Keller	 Simulation�based comparison of hash functions for
emulated shared memory	 In Proc� PARLE ���� Parallel Architectures and Lan	

guages Europe� Lecture Notes in Comput	 Sci	 No	 ���� pages ����	 Springer� June
����	

�	 R	 E	 Ladner and M	 J	 Fisher	 Parallel pre�x computation	 J� Assoc� Comput�

Mach�� ��
��
�������� Oct	 ����	
�	 D	 A	 Patterson and C	 H	 Sequin	 A VLSI RISC	 Comput�� ��
��
����� ����	
�	 A	 G	 Ranade	 How to emulate shared memory	 J� Comput� System Sci�� ��
��
����

���� ����	
�	 L	 G	 Valiant	 A bridging model for parallel computation	 Comm� ACM� ��
��
����

���� ����	

This article was processed using the LaTEX macro package with LLNCS style


