
POWER-EFFICIENT LOAD DISTRIBUTION IN HETEROGENEOUS
COMPUTING ENVIRONMENTS

Joerg Lenhardt and Wolfram Schiffmann
Computer Architecture Group

FernUniversität in Hagen, Germany
Joerg.Lenhardt@FernUni-Hagen.de

Wolfram.Schiffmann@FernUni-Hagen.de

Patrick Eitschberger and Joerg Keller
Parallelism and VLSI Group

FernUniversität in Hagen, Germany
Patrick.Eitschberger@FernUni-Hagen.de

Joerg.Keller@FernUni-Hagen.de

ABSTRACT
High performance servers of heterogeneous computing en-
vironments, as can be found in data centers for cloud com-
puting, consume immense amounts of energy even though
they are usually underutilized. In times when not all com-
puting capabilities are needed the task to be solved is how
to distribute the computational load in a power-efficient
manner. The question to be answered is, what load parti-
tions should be assigned to each physical server so that all
work is done with minimal energy consumption. This prob-
lem is closely related to the selection of physical servers
that can be switched off completely to further reduce the
power consumption. In this work, we present algorithms
which calculate a power-efficient distribution of a divisible
workload among multiple, heterogeneous physical servers.
We assume a fully divisible load to calculate an optimized
utilization of each server. Based on this distribution, an iter-
ative process is carried out to identify servers, which can be
switched off in order to further reduce the power consump-
tion. With that information, workload (re)distribution can
take place to partition appropriate subloads to the remain-
ing servers. As before, the calculated partitioning mini-
mizes the power consumption.

KEY WORDS
Power-efficient compute load distribution; switching off
servers; daily load curve; minimizing energy consumption

1 Introduction

In modern data centers one typically finds hundreds or even
thousands of high performance servers. In many cases
these servers are highly virtualized, meaning that on few
physical servers a hundred or more virtual machines re-
side. For example, this situation is often found in cloud
computing environments where hard- and software compo-
nents are unified in a pool of resources that can be rented on
demand. In these environments a machine consisting of op-
erating system and application software is no longer bound
to a specific computer hardware but can easily be moved
between physical machines. Especially in this case a bal-
ancing of load is easily achievable. Depending on the pro-
vision model either software or hardware or both of them
will be provided as Software, Platform or Infrastructure as

a Service (SaaS, PaaS or IaaS). In order to maximize the
providers’ profit and simultaneously reduce carbon dioxide
emissions, HPC objectives changed from pure performance
to power-efficient solutions which maximize the ratio of a
requested rate of operations to the electrical power needed
to provide it.

The virtualization approach directly addresses the is-
sue of underutilized server hardware which was very com-
mon some years ago. Today it is possible to utilize com-
puting hardware more efficient, which was used sometimes
less than 10% in former years. Computing demands may
vary over time. For example, in the morning hours a peak
performance demand of up to 90 or 100% is quite common,
over the day less performance is needed while in the night
hours only 10 to 20% of the total capacity is used. Other
configurations might have other time intervals and different
performance requirements. Fluctuations of the demands
depend on the considered period of time. While they can
vary strongly over long periods their fluctuation becomes
smaller during short time intervals.

In our work we examine the idea to precalculate
power-optimized load-balancing schemes for server farms
to reduce power consumption at different levels of perfor-
mance demand. A power optimization approach for het-
erogeneous cluster computing systems will be presented
that distributes a divisible computational workload to a het-
erogeneous collection of servers. For several load request
levels four different distribution schemes are considered.
The best solution gives us an indication how to distribute
the actual (non-divisible) load. Coarse-grained loads, i.e.
few non-divisible tasks having a heavy load, have to be
distributed with techniques like bin packing to achieve the
precalculated load distribution as exactly as possible. Fine-
grained loads, that means many tasks with a small load re-
quired by each, can almost be treated as a divisible load.

Virtualization techniques offer the possibility to eas-
ily move software components between hosts in just a few
seconds. The overhead of movement regarding downtime
(often almost equal to zero) and additional power consump-
tion is negligible as we intent to hold a specific partitioning
over several hours. We can save much more energy over
this time period than is used for the migration of virtual
machines. The VM technology relaxes the assumption of a
divisible load. Being not fully divisible a server with one

 Proceedings of the IASTED International Conference

February 17 - 19, 2014 Innsbruck, Austria
Parallel and Distributed Computing and Networks (PDCN 2014)

DOI: 10.2316/P.2014.811-015 239

hundred virtual machines, each only using about one per-
cent resources (CPU) gives us the opportunity to handle
these virtual machines almost as a divisible load. Having
fewer virtual machines with higher demands is also man-
ageable, but in this case techniques like the above men-
tioned bin packing for distributing the load in a power-
efficient manner might be necessary. One of our objectives
is to guarantee that the performance needs are always en-
sured while applying the power saving methods. All calcu-
lations regarding the optimized load distribution take place
in advance for specific load levels (percentage of the overall
maximum performance capability of the server farm).

An optional power-off algorithm to identify servers
that can be switched off at a specific load level is presented
for one of our strategies. Although not applicable in some
cases, the switching off of computing hardware offers a
huge power saving potential. This is because of the power
consumption of idle servers. For the fixed set of servers in
a data center and various load levels, we can precalculate
and store the optimized scaling and/or switch off patterns
in a lookup table. Thus, the control of load partitioning can
be accomplished in real time.

The power-aware scaling approach was able to parti-
tion the workload to a collection of heterogeneous servers
while retaining the requested performance. It turned out
that by switching off servers a power reduction of 80% can
be achieved in comparison to the initial partitioning.

The remainder of this paper is organized as follows:
Related work is discussed in section 2. In section 3, we
present our power minimization approach as well as the
switch off algorithm. Experimental results are presented in
section 4. We conclude and present ideas for future work
in section 5.

2 Preliminaries

In this section we give a brief overview of the
power benchmarks in general and especially the used
SPECpower ssj2008 benchmark. Then the related work is
presented.

2.1 Power and Energy Benchmarks

Poess et. al. analyzed several energy benchmarks [12],
among them Transaction Processing Council (TPC) bench-
marks, Storage Performance Council (SPC) benchmarks
and the SPECpower ssj2008.

TPC-C and TPC-E benchmarks, provided by the TPC
since 1988, measure On Line Transaction Processing sys-
tems (OTLP). TPC targets multi-tier systems built from
several computers and interconnection hardware. Part of
configurations are database servers, middle-tier systems
and storage subsystems as well as connectivity devices like
switches or routers. TPC benchmarks deliver objective and
verifiable performance data. In 2007 TPC-Energy added
energy metrics that co-exist with already existing metrics

and allow power analyses of all components. Before that,
power consumption estimation of TPC-C and TPC-H was
possible.

The SPC defines and standardizes benchmarks tar-
geting storage subsystems consisting of storage units,
adapters, controllers, and storage area networks since 1997.
Results are objective, verifiable and vendor-neutral perfor-
mance data. SPC/1C targets on the comparison of smaller
configurations and component-level storage products. In-
stead of building a new benchmark addressing the energy
consumption of storage systems, SPC developed optional
energy extensions (SPC-1C/E).

Compared to TPC and SPC benchmarks
SPECpower ssj2008 was initially developed for
power/performance analysis by the Standard Perfor-
mance Evaluation Corporation (SPEC). It targets a single
server or a combination of identical servers. Since
2008, SPEC published over 400 benchmark results of
different server configurations. As our main interest is
the power/performance ratio of single server systems
the SPEC benchmark fits well for our purposes. The
number of available results offers an adequate base for our
analyses.

Throughout this work we are using results of
the SPEC power benchmark1, retrieved Jan 9, 2013.
SPECpower relies on Server Side Java (SSJ) for measuring
power consumption of servers at different load levels run-
ning Java applications [14]. Current servers include tech-
nologies which reduce the power consumption if the sys-
tem is not fully utilized. Many of these technologies are
recognized by the SPEC power benchmark.

Performance and power consumption are measured at
different discrete levels of system load. The benchmark it-
self runs workloads representing a server application used
by a large number of users. Details on the target work-
load can be found in [14]. There are two phases in an SSJ
run: A calibration phase, and real benchmark runs at a se-
ries of target loads. In the calibration phase the maximum
throughput of the server is determined. Then, the actual
benchmark runs take place. Each run performs some per-
centage of the calibrated throughput. These runs decrease
target load from 100% to 0% in 10% steps. Running at 0%
is referred to as active idle, which means that the applica-
tion can accept requests, but none are actually received.

2.2 Related Work

Power consumption of recent microchips must be kept
within reasonable bounds [2]. Thus, chip architects provide
means to scale the supply voltage. If voltage is reduced,
frequency has to be reduced as well due to increasing sig-
nal delays by the underlying logic. This Dynamic Volt-
age and Frequency Scaling (DVFS) is used in most con-
tributions towards power-efficient use of modern computer
hardware [5]. Power management can be implemented on

1http://www.spec.org/power ssj2008/results

240

node level [8] or on cluster level [6] that belongs also to our
approach. Moreover, low-power and power-aware comput-
ing can be distinguished. While the former one relies on a
large number of low-power processors [15], we are focus-
ing on the second approach where the power consumption
is controlled usually by means of DVFS [4, 17].

In contrast to the cited DVFS-based algorithms our
approach relies on the power saving capabilities which are
provided by the servers’ firmware and in combination with
the operating system. Thus, besides the CPU also other
computer components like memory and hard disks are con-
trolled by the node’s built-in power management system.
Our work extends this server provided management system
by workload scaling and switching capabilities for power-
efficiency. Similar to [10] it assumes divisible loads that
are assigned to the available servers. The specific load par-
titions could consist of virtual machines that are moved by
live-migration between the servers [16].

Pinheiro et. al. proposed a load balancing and un-
balancing algorithm for power and performance in cluster-
based systems referred to as Load Concentration (LC) [11].
The primary objective is power conservation, the secondary
goal of saving energy is achieved as well. Regarding the
high idle power of server systems and the small difference
when utilized at full load, Pinheiro et. al. did not con-
sider load balancing schemes between nodes. Systems are
switched off to save energy while their load is assigned to
the remaining hosts. This is our optional step after dis-
tributing load between servers to optimize power consump-
tion without switching off nodes. While [11] only con-
siders homogeneous cluster nodes, our approach can also
manage heterogeneous clusters.

Weisberg and Wiseman explored an approach to re-
duce power consumption of memory in avionic and embed-
ded systems by switching off unused hardware components
[18]. First the memory portions that are actually used are
identified, then the remaining portion can be switched off
temporarily. When needed they are turned on again.

Bianchini and Rajamony examine different power
management mechanisms like Dynamic Voltage Scaling
(DVS) or halting/deactivation [1], which provide substan-
tial savings in power. Energy management techniques for
storage servers and clusters are presented. The authors pro-
vided insight in at that time current and future work: The
energy conservation strategies for application servers are
explicitly mentioned as then not considered yet.

Our contribution consists mainly in modeling the total
power consumption based on recent SPECpower ssj2008
measurements and the partitioning of a given workload to
a collection of commercially available servers. Moreover,
we devised a switching off algorithm that can further re-
duce the power consumption already achieved by the par-
titioning. The switching off approach identifies redundant
servers and redistributes their load fractions to the remain-
ing nodes. By switching off those servers, their idle power
can be saved which results in a significant reduction of the
overall power consumption.

3 Optimized Power Configuration

In this section we present the key elements of our algo-
rithms. Starting with an overview, the second subsection
deals with cubic fitting of data representing electric power
consumption for a specific load of a server system. The
third subsection describes the central idea of minimizing
the overall power consumption of a server farm at a given
performance load. In the fourth subsection an algorithm
is proposed to further reduce the power consumption by
switching off servers and redistribute their load to the re-
maining systems. The fifth subsection deals with the distri-
bution of load with a certain granularity.

3.1 Overview

The basic idea is to minimize the power consumption by
partitioning the load over a server farm. To achieve that, we
need information relating different load levels of a server to
the power consumption on that levels. This information is
already available for hundreds of popular servers and for
not yet benchmarked systems it could be retrieved by the
SPECpower ssj2008 benchmark. For each server we have
eleven data points at different load levels given as ssj ops
(server side Java operations per second [7]) and their corre-
sponding power consumption in watts. The data is spread
across active idle load (the system is running, the bench-
mark application is ready to process data but no computa-
tions take place) to 100% load in 10% steps.

As these data points are discrete values, a fitting algo-
rithm calculates a cubic approximation of a power function
pi for each server Si. This power function is then used by
different strategies to calculate load partitions over a set of
servers.

3.2 Power Curve Fitting

We relied on cubic curve fitting as we observed during ex-
periments that the deviation is relatively low compared with
the data retrieved by SPEC power benchmark. The power
function for a single server S with load x is

ps(x) = ax3 + bx2 + cx+ d (1)

The data itself used for fitting can be every conceiv-
able combination of operations per time unit with respect
to power consumption, e.g. MIPS and watts or, as in our
work, based on ssj ops and watts. As parameter the func-
tion ps(x) takes the operations per time unit os that server
S should perform. The result is the power consumption of
the specific machine. The restricted domain is limited to
reasonable inputs. These have to be greater than 0 as nega-
tive operations per time unit do not make sense. The input
must not exceed the maximum of operations that the sys-
tem is able to perform per time unit. So x has to be in a
given range

x ∈ R, [0 ≤ x ≤ omax
S], (2)

241

where omax
S is the maximum number of operations the sys-

tem can perform per second, i.e. when running at 100%
load.

In[89]:= data0444s = 880, 56.1<, 8128555, 78.6<, 8256980, 89.0<,8381572, 99.4<, 8509042, 119<, 8637441, 129<, 8765556, 144<,8893029, 166<, 81024508, 191<, 81149911, 218<, 81 261803, 258<<
fit0444s = Fit@data0444s, 81, x, x^2, x^3<, xD
func0444s@x_D = fit0444s

Out[89]= 880, 56.1<, 8128555, 78.6<, 8256980, 89.<,8381572, 99.4<, 8509042, 119<, 8637441, 129<, 8765556, 144<,8893029, 166<, 81024508, 191<, 81 149911, 218<, 81261803, 258<<
Out[90]= 57.007 + 0.000161318 x - 1.50412 ¥ 10-10 x2 + 1.17023 ¥ 10-16 x3

Out[91]= 57.007 + 0.000161318 x - 1.50412 ¥ 10-10 x2 + 1.17023 ¥ 10-16 x3

In[106]:= Show@ListPlot@data0444s, PlotStyle Æ Red, PlotRange Æ 80, 260<D,
Plot@fit0444s, 8x, 0, 1 300000<D, GridLines Æ Automatic,

Frame Æ True, FrameLabel -> 88"Watts", ""<, 8"ssj-ops", ""<<D

Out[106]=

0 200000 400000 600000 800000 1.0¥ 106 1.2¥ 106
0

50

100

150

200

250

ssj-ops

W
at
ts

Figure 1. Curve fitting of example server S1.

The results of the fitting process for an example sys-
tem S1 is given in Fig. 1. Server S1 consists of two Intel
Xeon E5-2660 processors running at 2.2 GHz. Each chip
has eight cores, resulting in 16 cores overall. Each core has
both, 32 KB of L1 instruction cache and another 32 KB of
L1 data cache, 256 KB of unified L2 cache per core and
20 MB unified L3 cache. 24 GB of RAM are available in
total. Tab. 1 contains the benchmark data for S1, consist-
ing of load, corresponding ssj ops and power consumption.
Besides that, the power consumption calculated with our
power function and the error in relation to the SPEC result
are given, both rounded.

Ø-power
Load ssj ops SPEC func error

98.8% 1,261,803 258 W 256 W -0.71%
90.0% 1,149,911 218 W 221 W 1.63%
80.2% 1,024,508 191 W 190 W -0.40%
69.9% 893,029 166 W 164 W -0.93%
59.9% 765,556 144 W 145 W 0.60%
49.9% 637,441 129 W 129 W 0.02%
39.9% 509,042 119 W 116 W -2.87%
29.9% 381,572 99.4 W 103 W 3.79%
20.1% 256,980 89.0 W 90.5 W 1.70%
10.1% 128,555 78.6 W 75.6 W -3.93%

Active idle 0 56.1 W 57.0 W 1.62%

Table 1. Load, ssj ops and average power consumption of
example server S1.

The absolute maximum error of the cubic fitting func-
tion for the example server S1 is a bit lower than 4% while
the average error is about 1.6%.

Rivoire et. al. denoted that a model is accurate
enough if the average error is lower than 10% [13]. With
our cubic model the average error for all benchmark data

is less than 4.3%, in over 80% of the cases less than 3%.
Above that, the maximum error is less than 10% in 85% of
the cases. The overall maximum error is about 13.8%.

M
ax
im

um
'e
rr
or
'in
'%
'

Year'of'publishing'

Figure 2. Maximum error of fitting process

Fig. 2 shows the trend of the maximum error for all
benchmark results from late 2007 to late 2012. Each data
point represents the maximum error of the cubic fit on a
specific benchmark result. Until early 2009 the maximum
error was at about 5% absolute. From then to early 2010 the
error increased to 15% and stays at this level afterwards.
Hsu and Poole observed similar results for the linear fit
which provided acceptable results before 2010 [9]. The er-
ror was at about 10% increasing to nearly 40% since 2010.

Hsu and Poole presented a power signature analy-
sis of the SPECpower ssj2008 benchmark relying on dif-
ferent fitting approaches for SPEC data up to 2010 [9].
With newer servers and better power management fea-
tures we observed an increasing maximal and average error.
As modern servers usually depend on DVFS for reducing
power we chose the cubic fitting model, because a cubic
model is necessary to model reality. Power consumption
increases linearly by voltage and quadratic by clock rate.
As supply voltage and clock rate correlate, a cubic rela-
tion must be assumed when using power and energy saving
mechanisms like DVFS [3].

3.3 Strategies for Optimizing Power Consumption

We developed four strategies to distribute a given load in
a power-efficient manner on a collection of heterogeneous
servers. We concentrate on a collection of servers which
process a given computational demand of o operations per
second.

Relative load balancing (rlb) distributes the load o
to all systems in such a way that all servers are equally
loaded. If o is 10% of the maximum load, each system is
assigned a fraction of o so that it runs at 10% load.

Absolute load balancing (alb) distributes o so that
all systems process the same amount of operations per sec-
ond. This works fine till the least powerful system is fully

242

loaded. Then the remaining load is equally distributed
among the remaining systems and so on.

Best performance to power ratio first (bppf) sorts
the systems in decreasing order according to their perfor-
mance to power ratio at 100% load. At first the system
with the highest performance to power ratio is filled up to
100% load. After that, the system with the second highest
ratio is used and so on until o is zero.

Adaptive load distribution (ald) is a more sophis-
ticated approach to calculate the distribution of a specific
load on n servers. The key idea is to assign each server a
portion αi ≥ 0 of the requested load. The total power con-
sumption of the load request o can be calculated by sum-
ming up the partial power requests of the different servers
as

ptotal(o) =
n∑

i=1

pi(o · αi). (3)

The scaling factors αi are constrained in the follow-
ing way: αi ·o ≤ omax

i , and
∑

i αi = 1. The first constraint
ensures that no server is overloaded, when omax

i is the max-
imum possible load for that server. The second constraint
ensures that the load is completely distributed. Of course o
must not exceed

∑
i o

max
i .

The next step is to calculate a set of αi values so that
Eq. 3 is minimized. As a result the load distribution consist-
ing of αi values is retrieved. It determines the distribution
of the requested load to subloads αio on the servers Si.

In Fig. 3 the power functions of two servers are de-
picted with their original SPECpower data as crosses. Ob-
viously, server S1 (black dashed line) has a lower power
consumption than server S2 (gray line). As the calculations
for ald are not influenced by the idle power, both power
curves are shown in normalized form (thin lines). Note,
that the power consumption of S2 increases faster than that
of S1. The maximum load of S1 is reached at 530, 326
ssj ops (180 W), of S2 at 900, 762 ssj ops (386 W).

Out[339]=

¥
¥
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

¥

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

Server 1

Server 2

0 200 000 400 000 600 000 800 000
0

100

200

300

400

ssj_ops

W
at

ts

Power Curves

Out[342]=

0 10 20 30 40 50 60 70 80 90

-6

-4

-2

0

2

4

6

Error during fitting

Auswertung zwei Server umfangreich und neu.nb 3

Figure 3. Fitted power functions of servers S1 and S2.

Fig. 4 shows the development of the αi values and
subloads for both servers. The black and dark gray dots
represent theαi value and subload for server S1, the crosses

and squares for server S2. We can identify three phases:
Phase 1 is between 0 and about 37.5% of the overall load.
In this phase the α value for S1 is 1 all the time (this leads
to an alpha-value of 0 for S2). The load of S1 increases lin-
early until the system is fully loaded at about 37.5% maxi-
mum load while S2 is idle. If we look at the power curves
for both systems the power consumption of S1 is rising less
than that of S2.

Phase two is between about 37.5 and 54%. In this
phase S1 is already fully loaded. Increasing the overall load
further above 37.5% leads to utilize S2. The load of S1

keeps stable at 100% and the load of S2 increases linearly
to about 25% at the end of phase two. The α value of S1

decreases while the α value of S2 increases. Thus, S2 must
provide compute power for the increased load.

Phase three is between about 54 and 100%. This
phase is most interesting because now the algorithm does
not continue to put load on S2 and keep S1 fully loaded. It
seems beneficial to decrease the load of S1 and assign even
more work on S2. If we take a look at the normalized power
curves this behavior can be explained: At first the deriva-
tive of S1 is less than S2. So all work is assigned to S1

(phase one). After that, S2 has to be used. The derivative
of S2 is higher in the beginning, but gets smaller over time.
At a certain load the derivative of S2 gets lower than that of
S1 at 100% load. If this happens, it is more power-efficient
to remove load from S1 and assign more load to S2. This
is exactly what happens in phase three. The α value of S1

decreases faster while the α value of S2 increases faster.
At some point of time (at about 65%) the system load of
S1 increases again. Finally both systems are fully loaded at
100% overall load.

Out[624]=

Phase 1 Phase 2 Phase 3
ËËË

¥¥
¥¥
¥¥
¥¥
¥¥
¥¥
¥¥¥
¥¥¥
¥¥¥
¥¥¥
¥¥¥
¥¥¥
¥¥¥
¥¥
¥¥
¥¥
¥¥
¥¥
¥¥
¥¥¥
¥¥¥
¥¥¥¥
¥¥¥¥¥¥
¥¥¥¥¥¥¥¥¥

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

¥¥¥¥

ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË
ËË

ËËËËËËË
ËËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËË
ËËËËËËËËËËËË

ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉ

20 40 60 80 100
o0.0

0.2

0.4

0.6

0.8

1.0

a;oS1ê2
Alpha values for Servers 1 and 2

Ë Alpha Server 1 ¥ Alpha Server 2

Ë Load Server 1 É Load Server 2

Out[626]=

10 20 30 40 50 60 70 80 90

200

300

400

500

600

Power Consumption of Different Load Distribution

Out[627]= :

0. Æ 8223.133, 8a1 Æ 1, a2 Æ 0<<
0.5 Æ 9226.074, 9a1 Æ 1., a2 Æ -4.65461 ¥ 10-19==

1. Æ 8228.924, 8a1 Æ 1., a2 Æ 0.<<
1.5 Æ 8231.687, 8a1 Æ 1., a2 Æ 0.<<
2. Æ 8234.364, 8a1 Æ 1., a2 Æ 0.<<

,

, >

Auswertung zwei Server umfangreich und neu.nb 3

Figure 4. Development of α-values for servers S1 and S2.

This example shows that it is quite useful to distribute
the work among the two servers according to the calculated
values of α. There are situations where a combination of
servers and a specific input o lead to αi values that are 0 or
close to 0. In these cases, if possible, a shut down of the
corresponding servers might be beneficial.

243

3.4 Switch-off Algorithm for Adaptive Load Distribu-
tion

After computing all αi values there are two possibilities to
reduce the power consumption: (1) Switching off servers
with αi close to 0 or (2) switching off servers and distribute
their load to the remaining servers as long as a lower power
consumption is achieved. The first possibility occurs if
a server is notably less energy-efficient than the others,
which results from the convexity of the power function.
Thus, even in heterogeneous systems servers with high en-
ergy efficiency are served first, and others are considered
only if the load is high enough to completely fill the others.
The second possibility is not covered by the minimization
process as it does not consider to switch off servers.

An algorithm that finds an optimal solution has to
consider all possible combinations of (on, off) for all n
servers, which leads to a complexity of O(2n ·m), where
n is the number of servers and m is the complexity for the
minimization process.

In Fig. 5 an algorithm for further power reduction is
depicted which has a complexity of O(n3 · m), where n
is the number of servers, m is the complexity of the min-
imization process and Θ is a threshold of the minimal uti-
lization. When falling below Θ a system is switched off
and the residual load is distributed among the remaining
systems.

In line 1 a set of servers Sinit is defined. This set
contains all servers to consider and all information needed
to perform the minimization process, i.e. all power func-
tions pi. It is assumed that the operations per second to
be performed o is known all over the algorithm. In line
2 an initial minimization run is performed by calling the
procedure CalculateAlphas. This procedure imple-
ments the approach illustrated in subsection 3.3. The re-
sults are assigned to the set Ainit. After that the procedure
ReducePower is called in line 3 which performs the ad-
ditional power reduction.

The procedure ReducePower in lines 4 to 31 takes
two parameters: S is the initial set of active servers and A
the initial set of α values. It returns a reduced set of servers
which perform the assigned work more power-efficiently
and the α values representing the work distribution.

The outer loop from lines 5 to 30 is repeated as long as
an improvement in power reduction can be achieved. The
loop in lines 6 to 12 removes all servers from S whose
α values are smaller than a threshold of Θ. All servers
which have no or only a small amount of work assigned are
switched off. In our experiments we set Θ = 0.01 or 1%
of o. In line 13 the power consumption of the current set of
servers is calculated. The procedure PowerDemand im-
plements Eq. 3. The variable isPowerReduced is set to
false in line 14.

The next loop from lines 15 to 25 successively re-
moves servers from S. The temporal set is assigned to Stmp

in line 16. After that, the α values for the reduced set are
computed and assigned to the variableAtmp in line 17. The

1: Sinit ← set of servers S1 to Sn

2: Ainit ← CALCULATEALPHAS(Sinit)
3: (Sfinal, Afinal)← REDUCEPOWER(Sinit, Ainit)

4: procedure REDUCEPOWER(S,A)
5: repeat
6: for i← 1, S.length do
7: if A[i] < Θ then
8: REMOVE(S, i)
9: REMOVE(A, i)

10: A← CALCULATEALPHAS(Stmp)
11: end if
12: end for
13: pmin ← POWERDEMAND(S,A)
14: isPowerReduced← false
15: for i← 1, S.length do
16: Stmp ← S \ Si

17: Atmp ← CALCULATEALPHAS(Stmp)
18: ptmp ← POWERDEMAND(Stmp, Atmp)
19: if ptmp < pmin then
20: pmin ← ptmp

21: Snew ← Stmp

22: Anew ← Atmp

23: isPowerReduced← true
24: end if
25: end for
26: if isPowerReduced = true then
27: S ← Snew

28: A← Anew

29: end if
30: until isPowerReduced = false
31: end procedure

Figure 5. Iterative Switch-Off algorithm for further power
reduction.

power consumption for the reduced set is calculated and as-
signed to ptmp. If the temporal power consumption ptmp is
less than pmin, pmin is set to ptmp in line 20. Above that,
the temporal sets Stmp and Atmp are assigned to Snew and
Anew in lines 21 and 22. In addition, isPowerReduced
is set to true in line 23.

The loop is iterated for all servers in S. After that, if
a better solution was found, Snew and Anew are containing
the servers and α values for the best solution. In that case
these new sets are assigned to S and A respectively in lines
26 to 29 and the outer loop is reiterated. It has to be ensured
that at least one server remains in the set of servers S. It
also has to be ensured, that no server is overloaded and all
work is distributed on the remaining set.

3.5 Load Distribution at a Certain Granularity

If load is distributed with a certain granularity g, then
for each system one can alternatively generate an array of
length omax

i /g where ai[j] = pi((j + 1)g) − pi(jg) de-

244

notes the additional power to increase the load from jg to
(j + 1)g. These arrays are then merged like in merge sort
(where each entry also contains i and j), so that the first k
entries contain information on how to distribute a load of
kg onto servers in the most power-efficient way. A nice side
effect is that servers not referenced by the first k elements
can be switched off. The granularity used can be adapted to
application needs. Also, if g is known in advance, precom-
putations for several load levels, i.e. several values of k,
could be done so that the load fractions αi can be precom-
puted as well. The complexity of the algorithm is O(o/g)
without precomputation, so it can be accelerated by using
coarser grain, and O(1) with precomputation.

4 Discussions/Results

In the following subsections we present the experimental
results for four sets of servers. In the first subsection the
configuration of the servers and loads that have to be pro-
cessed are addressed. After that, the results are presented.

4.1 Configurations

We consider four configurations consisting of 16 nodes
each. Every node can be a single server or a cluster of
identical servers for which a single power function exists.

Configuration I consists of eleven single systems and
five clusters. There are two 2-server clusters, two 4-server
clusters and one 38-server cluster. The SPEC performance
to power ratio is between 1, 588 and 3, 038 ssj ops/Watt.
Power consumption is at about 3.2 to 10.5 kW. The server
hardware got available between September 2009 and June
2010. All servers are equipped with Intel Xeon processors
(7 x X5670, 5 x L5530, 3 x L5520, 1 x E5540). Main
memory is 4 GB (2 servers), 8 GB (38 servers) or 12 GB
(4 servers). Each server is equipped with one or two pro-
cessors containing four or six cores. All systems running
Windows Server 2008, 15 of them Enterprise Server, one
Datacenter Edition. The best performance to power ratio
was achieved by a two-node multi-system, Intel Xeon 5670
at 2.9 GHz running Windows 2008 Datacenter Edition. The
worst performance to power ratio was achieved by a two-
node multi-system, Intel Xeon L5520 at 2.0 GHz running
Windows 2008 Enterprise Server.

Configuration II consists of 14 single systems (three
duplicates) and two 4-server clusters (identical systems).
The SPEC performance to power ratio is between 3, 775
and 5, 887 ssj ops/Watt. Power consumption is at about
1.4 to 5.8 kW. The server hardware got available between
May and December 2012. One server is equipped with
an AMD processor (Opteron 6380), the others with Intel
processors (4 x E5-2470, 8 x E5-2660, 1 x E3-1265LV2,
2 x E5-4650L). Main memory is 8 GB (1 server), 16 GB
(8 servers), 24 GB (8 servers), 32 GB (2 servers), 48 GB
(2 servers) or 64 GB (1 server). Each server is equipped
with one, two or four processors containing four, eight or

16 cores. All systems running Windows Server 2008 En-
terprise Edition. The best performance to power ratio was
achieved by an Intel Xeon E3-1265VL2 system at 2.5 GHz.
The worst performance to power ratio was achieved by an
Intel Xeon E5-2470 at 2.3 GHz.

Configuration III consists of 16 single systems. The
performance to power ratio is between 245 and 1, 746
ssj ops/Watt. Power consumption is at about 2.6 to 4.6
kW. The server hardware got available between Novem-
ber 2007 and April 2009. Two servers are equipped with
AMD Opteron processors (2356, 8376HE), all others with
Intel Xeon processors (1 x 5160, 2 x E5420, 1 x E5440, 1
x E5462, 1 x E5472, 2 x L3360, 1 x L5420, 2 x L5430, 2
x L5570, 1 x L7345). Main memory is 4 GB (2 servers),
8 GB (4 servers), 12 GB (1 server), 16 GB (7 servers), 18
GB (1 server) or 32 GB (1 server). Each server is equipped
with one, two, four or eight processors containing two or
four cores. Seven systems running Windows 2003 Server
Enterprise Edition, four servers Windows 2008 Enterprise
Server, two SuSE Linux ES 10, one Red Hat EL 5.3 and
two Mac OS X 10.5.6 Server. The best performance to
power ratio was achieved by an Intel Xeon 5570 system at
2.9 GHz running Windows 2008 Server. The worst perfor-
mance to power ratio was achieved by an Intel Xeon E5472
system at 3.0 GHz running Mac OS X Server 10.5.6.

Interesting are the results of two systems of configu-
ration III which are both equipped with an Intel Xeon 5570
processor running at 2.9 GHz (referred as system A and
system B). The main differences are memory, hard disk and
operating system/Java Virtual Machine. While system A is
equipped with 12 GB (6x2 GB, PC3-8500E), system B is
equipped with 18 GB (6x2 GB, 6x1 GB, DDR3 ECC FB-
DIMM, 1066 MHz). The hard disk is a 2.5 inch 50 GB SSD
(system A), a normal 160 GB HDD (system B), respec-
tively. System A is running Windows 2008 Enterprise x64
with Oracle JRockit 6 while system B is running Mac OS X
server 10.5.6 with Sun Java HotSpot 1.6.0 VM. Although
both systems are similar in many respects, system A has
with 1, 746 ssj ops/Watt a nearly four times higher perfor-
mance to power ratio than system B with 464 ssj ops/Watt.
The idle power of system B is about 2.3 times higher than
that of system A. Both systems got available in early 2009
and both benchmark runs took place in March 2009.

Configuration IV consists of 12 single systems and
4 clusters. There is a 4-server cluster, a 16-server clus-
ter, a 18-server cluster and a 32-server cluster. The SPEC
performance to power ratio is between 268 and 5, 521
ssj ops/Watt. Power consumption is at about 5.3 to 19.1
kW. The server hardware got available between November
2006 and October 2012. Two systems are equipped with
AMD Opteron processors (2356 and 8376HE), 14 systems
with Intel Xeon processors (5160, E5420, E5440, E5462,
E5472, 2 x L3360, 2 x L5420, 2 x L5430, L7345, 2 x
X5570). Main memory is 4 GB (2 servers), 8 GB (34
servers), 12 GB (4 servers), 16 GB (3 servers), 24 GB (34
servers), 32 GB (3 servers) or 128 GB (2 servers). Each
server is equipped with one, two or eight processors con-

245

taining two, four, six or eight cores. Eight systems running
Windows 2008 Enterprise Edition, six systems Windows
2003 Enterprise Server, one system SuSE Linux ES 10, one
system Red Hat EL 5.3. The best performance to power ra-
tio was achieved by an Intel Xeon E5-2470 16-node cluster
at 2.3 GHz running Windows 2008. The worst performance
to power ratio was achieved by an Intel Xeon 3040 system
at 1.8 GHz running Windows 2003.

Out[64]=

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122230

20

40

60

80

100

Time of day

Lo
ad

4 Power Strategies fully variable.nb 5

Figure 6. Load over day for an example server configura-
tion

For energy evaluation we used a typical load profile
of a server farm over a day providing a cluster of data base
servers, application servers and dedicated login servers –
all systems are virtualized. We simplified the load levels
at each hour to full tenth of percent of load, see Fig. 6.
Between 2300 and 0200 hrs some data base jobs are exe-
cuted each night leading to a load of 90%. Between 0200
and 0700 hrs the servers are at 20% load. Between 0700
and 0900 hrs a significant amount of employees log into
the system leading to a load at 80%. At working hours be-
tween 0900 and 1200 hrs as well as 1400 and 1700 hrs the
load is at 60% while at lunch time between 1200 and 1400
hrs the load is at 40%

4.2 Results

The results for power reduction using our algorithms are
described for all four configurations introduced in the last
subsection. Above that, the energy consumption for the
example load over day is given. Finally, we have a look
on the power saving potential of the power-off algorithm
which we applied on one of the configurations.

Fig. 7, 8, 9 and 10 show the results of all four con-
figurations. For all configurations bppf or ald or a combi-
nation of those led to the lowest power consumption. The
results of ald are quite good in all cases whereas bppf led to
the worst overall result in configuration II. The power con-
sumption at 0% and 100% load is, as expected, the same for
all strategies. Analyzing the results we focus on the scope
between 10% and 90% load. As rlb is a common strategy

for load balancing we compare the other strategies with it
regarding improvement potential.

In[121]:= Show@ListLinePlot@aldresult,
PlotStyle Æ 8Black, Thick<, PlotLegends Æ Placed@8"ald"<, BelowD,
PlotRange Æ 880, 100<, 8aldresult@@1DD * 0.9, aldresult@@11DD * 1.1<<D,

ListLinePlot@bppfresult, PlotStyle Æ 8Black, Thick, Dashed<,
PlotLegends Æ Placed@8"bppf"<, BelowDD,

ListLinePlot@rlbresult, PlotStyle Æ 8Gray<,
PlotLegends Æ Placed@8"rlb"<, BelowDD,

ListLinePlot@albresult, PlotStyle Æ 8Gray, Dashed<,
PlotLegends Æ Placed@8"alb"<, BelowDD,

ListPlot@aldresult, PlotStyle Æ 8Black, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@bppfresult, PlotStyle Æ 8Black, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@rlbresult, PlotStyle Æ 8Gray, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@albresult, PlotStyle Æ 8Gray, Thick, Dashed<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

GridLines Æ Automatic, Frame Æ True,
FrameLabel Æ 88"Watts", ""<, 8"% of max. load", ""<<,
PlotLabel Æ "Power demand of strategies",
ImageSize Æ 600, BaseStyle Æ 8FontSize Æ 20<D

Out[121]=

Ï

Ï

Ï

Ï

Ï
Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

0 20 40 60 80 100

4000

5000

6000

7000

8000

9000

10000

% of max. load

W
at
ts

Power demand of strategies

alb rlb bppf ald

Figure 7. Results based on configuration I

In configuration I, see Fig. 7, bppf has the best result
at 10% and 60% load, in all other cases ald outperforms the
other strategies. rlb starts weak but has better results at load
levels above 50%. alb is in the mid-field up to 50% load
and in one case at 30% also better than bppf but is weak at
higher load levels up to 80%. The power consumption with
ald is up to 14% (at 20% load) lower than that of rlb. In the
average ald leads to about 6% lower power consumption.
The power consumption of bppf is in two cases (80% and
90% load) higher than rlb and in the average about 4.3%
lower than rlb. At higher load levels the differences be-
tween the strategies are fading. The highest improvements
are gained up to 50%. At 80% and 90% the difference be-
tween rlb and the other strategies is below 1%.

In[153]:= Show@ListLinePlot@aldresult,
PlotStyle Æ 8Black, Thick<, PlotLegends Æ Placed@8"ald"<, BelowD,
PlotRange Æ 880, 100<, 8aldresult@@1DD * 0.9, aldresult@@11DD * 1.1<<D,

ListLinePlot@bppfresult, PlotStyle Æ 8Black, Thick, Dashed<,
PlotLegends Æ Placed@8"bppf"<, BelowDD,

ListLinePlot@rlbresult, PlotStyle Æ 8Gray<,
PlotLegends Æ Placed@8"rlb"<, BelowDD,

ListLinePlot@albresult, PlotStyle Æ 8Gray, Dashed<,
PlotLegends Æ Placed@8"alb"<, BelowDD,

ListPlot@aldresult, PlotStyle Æ 8Black, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@bppfresult, PlotStyle Æ 8Black, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@rlbresult, PlotStyle Æ 8Gray, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@albresult, PlotStyle Æ 8Gray, Thick, Dashed<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

GridLines Æ Automatic, Frame Æ True,

FrameLabel Æ 88"Watts", ""<, 8"% of max. load", ""<<,
PlotLabel Æ "Power demand of strategies",

ImageSize Æ 600, BaseStyle Æ 8FontSize Æ 20<D

Out[153]=

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

0 20 40 60 80 100

2000

3000

4000

5000

6000

% of max. load

W
at
ts

Power demand of strategies

alb rlb bppf ald

Figure 8. Results based on configuration II

In configuration II, see Fig. 8, bppf leads to the high-
est power consumption at all load levels while ald has the
lowest power consumption. The results of rlb are quite
good in this configuration. A similar curve with slightly
worse results is achieved compared to ald. The results of

246

alb are in the mid-field. ald led to 3.7% less power con-
sumption than rlb (at 10% load). The average is at about
2% lower power consumption. As all systems in this con-
figuration got available between May and December 2012
and all running the same operating system we can suppose
that the hardware power management features are some-
what similar. In that cases a normal load balancing scheme
would lead to acceptable power consumption compared to
the ald strategy.

In[185]:= Show@ListLinePlot@aldresult,
PlotStyle Æ 8Black, Thick<, PlotLegends Æ Placed@8"ald"<, BelowD,
PlotRange Æ 880, 100<, 8aldresult@@1DD * 0.9, aldresult@@11DD * 1.1<<D,

ListLinePlot@bppfresult, PlotStyle Æ 8Black, Thick, Dashed<,
PlotLegends Æ Placed@8"bppf"<, BelowDD,

ListLinePlot@rlbresult, PlotStyle Æ 8Gray<,
PlotLegends Æ Placed@8"rlb"<, BelowDD,

ListLinePlot@albresult, PlotStyle Æ 8Gray, Dashed<,
PlotLegends Æ Placed@8"alb"<, BelowDD,

ListPlot@aldresult, PlotStyle Æ 8Black, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@bppfresult, PlotStyle Æ 8Black, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@rlbresult, PlotStyle Æ 8Gray, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@albresult, PlotStyle Æ 8Gray, Thick, Dashed<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

GridLines Æ Automatic, Frame Æ True,
FrameLabel Æ 88"Watts", ""<, 8"% of max. load", ""<<,
PlotLabel Æ "Power demand of strategies",
ImageSize Æ 600, BaseStyle Æ 8FontSize Æ 20<D

Out[185]=

Ï

Ï

Ï

Ï

Ï

Ï

Ï
Ï

Ï Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

0 20 40 60 80 100

3000

3500

4000

4500

% of max. load

W
at
ts

Power demand of strategies

alb rlb bppf ald

Figure 9. Results based on configuration III

In configuration III, see Fig. 9, bppf performs well,
despite the fact that the results are a bit worse than those
of ald in most cases. But ald, using different strategies to
minimize the α-values for work assignment, has problems
at 60% and 80% load, where the power consumption is sig-
nificantly higher than achieved by the more stable bppf.
The rounds to minimize the α-values are limited for ald.
More rounds lead to better results at the cost of run-time
– the run-time is orders of magnitude greater than the run-
times of the other strategies. Both, alb and rlb have similar
results with rlb a little bit better but much worse than bppf
or ald. ald led to 8.7% less power consumption than rlb
(at 50% load). The average is about 6.3% (ald) and 6.5%
(bppf).

In configuration IV, see Fig. 10, ald performs well.
Only at 10% load bppf leads to a much lower power con-
sumption, at 50% and 60% to a slightly lower power con-
sumption. On higher load levels over 80% bppf has the
worst results. Both, rlb and alb are worse than the other
two strategies up to 70% load. ald led to 18.2% less power
consumption than rlb at 30% load. The average is at about
8.9%. This configuration covers systems gotten available
over a long period of time from November 2006 to October
2012. In these cases, where different hardware with differ-
ent power reduction facilities is used, the most advantages
compared to a simple load balancing (rlb) can be achieved.
The greatest benefit is achieved at lower load levels up to
50%.

In all four configurations either ald or bppf lead to the
lowest power consumption.

In[217]:= Show@ListLinePlot@aldresult,
PlotStyle Æ 8Black, Thick<, PlotLegends Æ Placed@8"ald"<, BelowD,
PlotRange Æ 880, 100<, 8aldresult@@1DD * 0.9, aldresult@@11DD * 1.1<<D,

ListLinePlot@bppfresult, PlotStyle Æ 8Black, Thick, Dashed<,
PlotLegends Æ Placed@8"bppf"<, BelowDD,

ListLinePlot@rlbresult, PlotStyle Æ 8Gray<,
PlotLegends Æ Placed@8"rlb"<, BelowDD,

ListLinePlot@albresult, PlotStyle Æ 8Gray, Dashed<,
PlotLegends Æ Placed@8"alb"<, BelowDD,

ListPlot@aldresult, PlotStyle Æ 8Black, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@bppfresult, PlotStyle Æ 8Black, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@rlbresult, PlotStyle Æ 8Gray, Thick<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

ListPlot@albresult, PlotStyle Æ 8Gray, Thick, Dashed<,
PlotMarkers Æ 8"Ï", Medium<, PlotLegends Æ NoneD,

GridLines Æ Automatic, Frame Æ True,
FrameLabel Æ 88"Watts", ""<, 8"% of max. load", ""<<,
PlotLabel Æ "Power demand of strategies",
ImageSize Æ 600, BaseStyle Æ 8FontSize Æ 20<D

Out[217]=

Ï

Ï Ï
Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï
Ï

Ï

Ï

Ï
Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï
Ï

Ï

Ï

Ï

Ï

Ï

0 20 40 60 80 100
6000

8000

10000

12000

14000

16000

18000

% of max. load

W
at
ts

Power demand of strategies

alb rlb bppf ald

Figure 10. Results based on configuration IV

Table 2 shows the energy consumption over a day ac-
cording to the load levels in Fig. 6 for all four configura-
tions. The lowest result is written bold. The last row shows
the quotient best/rlb, where best is the result of the strategy
with the lowest energy consumption.

Conf. alb rlb bppf ald best/rlb
I 653 657 635 616 0.94
II 300 289 317 283 0.98
III 338 334 311 314 0.93
IV 1,113 1,059 999 965 0.91

Table 2. Energy consumption over day for all configura-
tions in MJ

Regarding the results in power consumption, ald and
bppf lead to the best results. The run-times of the strategies
for all configurations are depicted in Tab. 3. ald is four to
six orders of magnitude slower than the other strategies for
configurations with 16 servers. If increasing the number
of servers it becomes necessary to increase the rounds to
calculate usable results in the case of ald. This increases
the run-time of ald significantly, while the run-times of the
other algorithms increase much slower. If the strategies are
used off-line to calculate distributions for distinct load lev-
els once in advance as we intended, this is not a great prob-
lem. Using ald on-line is not recommended. rlb is the
fastest strategy, two orders of magnitude faster than alb

Conf. alb rlb bppf ald
I 0.00867 0.00004 0.00341 55.73920
II 0.00606 0.00005 0.00407 26.78819
III 0.00649 0.00005 0.00373 31.89179
IV 0.00338 0.00006 0.00338 58.36603

Table 3. Run-times of the strategies in seconds

A huge amount of power and energy can be saved by
switching off servers due to their high idle power consump-

247

tion, particularly if the overall load is low (up to 70%). At
higher load levels the potential decreases more and more
as less machines can be switched off if any at all. Espe-
cially, bppf is eligible for powering-off unused machines.
As only the first k of n machines (k≤n) are designated to
do work, the remaining systems can be shut down. For
ald we presented an algorithm to decide which machines
to switch off. The whole procedure can take place off-line,
so there is no real need to redistribute work on-line for the
purpose of identifying the machines to switch off. Provi-
sioning plans are calculated and applied when a specific
load level is reached. In that case all work is distributed as
calculated in advance.

Because rlb and alb distribute the workload somewhat
equally over all machines, the results of these strategies are
less suited for a power-off scheme.

5 Conclusion

We presented methods for calculating the power-optimized
workload assignment to a collection of heterogeneous
servers. These methods can be further refined for schedul-
ing strategies of non-divisible loads to find optimized so-
lutions regarding power consumption in large computing
environments. With information about future performance
needs rules can be devised when to move specific load
packages from one server to another to balance workload
in a power-efficient manner.

The iterative approach also considers the possibility
to switch off one or more servers to further reduce power
consumption. With known performance demands it is pos-
sible to turn off servers e.g. at night time when less perfor-
mance is needed. Intelligent power management facilities
could be established to redistribute loads at specific times,
turn servers on and off and collect data about performance
demands to adapt performance information to changing sit-
uations.

In follow-up work we will investigate genetic algo-
rithms to find good solutions for the selection of servers to
switch off. An initial set of chromosomes consisting of ran-
domized solutions and solutions calculated by our iterative
approach are genetically manipulated over several rounds
using mutation and crossover operations. In an evaluation
process the fitness values are calculated using the power
functions and minimized values of α.

Notes
SPEC R© and SPECpower ssj R© are registered trademarks
of the Standard Performance Evaluation Corporation.

References

[1] R. Bianchini and R. Rajamony. Power and energy manage-
ment for server systems. IEEE Computer, 37(11):68–76,
November 2004.

[2] S. Borkar and A. A. Chien. The future of microprocessors.
Communications of the ACM, pages 67–77, 2011.

[3] P. Cichowski, J. Keller, and C. Kessler. Energy-efficient
mapping of task collections onto manycore processors. In
5th Swedish Workshop on Multicore Computing. MCC,
2012.

[4] J. Cong and B. Yuan. Energy-efficient scheduling on het-
erogeneous multi-core architectures. In ACM/IEEE Int.
Symp. on Low Power Electronics and Design, pages 345–
350. ACM, 2012.

[5] E. Feller, C. Morin, D. Leprince, et al. State of the art
of power saving in clusters and results from the EDF case
study. INRIA, 2010.

[6] E. Feller, C. Rohr, D. Margery, and C. Morin. Energy man-
agement in IaaS clouds: A holistic approach. In 5th Int.
Conf. Cloud Computing, pages 204–212. IEEE, 2012.

[7] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc.,
5th edition, 2011.

[8] J. Howard et al. A 48-core IA-32 message-passing proces-
sor with DVFS in 45nm CMOS. In IEEE Int. Solid-State
Circuits Conf. Digest of Tech. Papers, pages 108–109, 2010.

[9] C.-H. Hsu and S. Poole. Power signature analysis of the
SPECpower ssj2008 benchmark. IEEE Int. Symp. on Per-
formance Analysis of Systems and Software, pages 227–236,
2011.

[10] Cong L. Energy-efficient workload mapping in heteroge-
neous systems with multiple types of resources. In 21st
Int. Conf. on Parallel Architectures and Compilation Tech-
niques, pages 491–492. ACM, 2012.

[11] E. Pinheiro and R. Bianchini. Load balancing and unbal-
ancing for power and performance in cluster-based systems.
Workshop on Compilers and Operating Systems for Low
Power, 2001.

[12] M. Poess, R. O. Nambiar, and K. Vaid. Energy benchmarks:
A detailed analysis. In 1st Int. Conf. on Energy-Efficient
Computing and Networking, pages 131–140. ACM, 2010.

[13] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison
of high-level full-system power models. Workshop on Power
Aware Computing and Systems, 2008.

[14] SPEC. SPEC — Power and Performance, Design Docu-
ment, SSJ Workload, SPECpower ssj2008, rev1137, 2012.

[15] I. Takouna, W. Dawoud, and C. Meinel. Energy efficient
scheduling of HPC-jobs on virtualize clusters using host and
VM dynamic configuration. SIGOPS Oper. Syst. Rev., pages
19–27, 2012.

[16] A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and
migration cost aware application placement in virtualized
systems. In Middleware, volume 5346 of Lecture Notes in
Computer Science, pages 243–264. Springer, 2008.

[17] G. von Laszewski, L. Wang, A.J. Younge, and X. He.
Power-aware scheduling of virtual machines in DVFS-
enabled clusters. In IEEE Int. Conf. on Cluster Computing
and Workshops, pages 1 –10. IEEE, 2009.

[18] P. Weisberg and Y. Wiseman. Efficient memory control for
avionics and embedded systems. Int. J. of Embedded Sys-
tems, 5(4), 2013.

248

