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Abstract—Many algorithms for computing the reliability of
linear or circular consecutive-k-out-of-n:F systems appeared
in this Transactions. The best complexity estimate obtained
for solving this problem is O(k3 log(n/k)) operations in the
case of i.i.d. components. Using fast algorithms for computing
a selected term of a linear recurrence with constant coeffi-
cients, we provide an algorithm having arithmetic complexity
O(k log(k) log(log(k)) log(n) + kω) where 2 < ω < 3 is
the exponent of linear algebra. This algorithm holds generally
for linear, and circular consecutive-k-out-of-n:F systems with
independent but not necessarily identical components.

Index Terms—consecutive-k-out-of-n:F systems.

NOTATION

O(·) asymptotic runtime, up to constant factor
M(k) time to multiply to polynomials of

degree ≤ k

Prob{·} probability of an event
E(·) expected value of a random variable
UL(n), UC(n) unreliabilities of linear and circular

systems with n components

I. INTRODUCTION

THE study of consecutive-k-out-of-n:F systems has caught
the attention of researchers since the early 1980s (see

[1]–[7], and references therein). These systems consist of n
components arranged in an open line (linear case), or a circle
(circular case); they fail if at least k consecutive components
fail. Classical examples are sequences of microwave stations,
pump stations for transporting oil by pipes [4], or rows of
street lanterns.
More precisely, people have been interested in computing
efficiently the reliability of such systems in terms of the failure
probabilities of each component (see [8]–[14], and references
therein). The arithmetic complexities of existing algorithms
for different kinds of arrangements (linear or circular), and
independent components (identical or non-identical) are sum-
marized in Table I.

While comparing these complexity estimates, the reader
must keep in mind that the parameter k is always assumed
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to be lower or equal to n. Normally, n is much larger than
k; as in most applications, k typically represents a constant,
and n represents a variable. Furthermore, as it is remarked in
[15], these algorithms do not allow one to compute the desired
reliability within a reasonable execution time when k and n
become large, even when the components are i.i.d. with the
same failure probability.

In this paper, we use computer algebra efficient
techniques to derive an algorithm having complexity
O(k log(k) log(log(k)) log(n) + kω) for computing the
reliability of linear or circular consecutive-k-out-of-n:F
systems with independent components. The unreliability of
such systems can be expressed depending on the unreliability
of systems with n−1, . . . , n−k components (see [8, Equation
1a.] for example); this is straightforward by using probability
arguments, but we show here that the corresponding linear
recurrence equation of order k can be recovered using
Shannon decomposition [16]. As a consequence, computing
the unreliability of a system with n components boils down
to computing the nth term of a linearly recurrent sequence of
order k having constant coefficients. The latter problem has
been well studied in computer algebra (see [17], [18], and
references therein), and it has been shown that this task can
be performed using only O(M(k) log(n) + kω)1 operations
in the base field where M(k) is the number of operations
needed to multiply two polynomials of degree at most k,
and 2 < ω < 3 is the exponent of linear algebra or matrix
multiplication exponent defined such that the number of
operations needed to multiply two square matrices of size k
is O(kω) [19, 12.1]. Using the Fast Fourier Transform, we
further have M(k) = O(k log(k) log(log(k))) [19, 8.2-8.3]
so that we obtain the complexity estimate announced. For
systems having non-identical components, we replace a
polynomial dependency in n by a logarithmic one, but the
exponent of the polynomial dependency in k is greater.
Consequently, our algorithm supersedes the existing ones
when k � n, which is the case in most applications. In
the case of identical components, compared to the existing
algorithm in O(k3 log(n/k)), our algorithm has the same
logarithmic dependency in n, but the exponent of the
polynomial dependency in k is reduced.

The paper is organized as follows. In the next section,

1The original result in [17] holds for the case of homogeneous recurrences,
and the exponent of k in the second summand is 2 instead of ω. The result
for the non-homogeneous case is easily deduced in Section I.B below.
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TABLE I
ARITHMETIC COMPLEXITIES OF DIFFERENT ARRANGEMENTS OF

COMPONENTS

identical non-identical

linear O(k3 log(n/k)) [14] O(n) [8]

circular O(n) [10]/O(k3 log(n/k)) [14] O(n k) [9], [11]

we recall, and adapt needed facts, and results concerning
the computation of a selected term of a linear recurrence. In
Section 3, we first construct the linear recurrence satisfied by
the unreliability of a linear consecutive-k-out-of-n:F system
with independent components using Shannon decomposition.
Then, we apply the results of Section 2 to yield an algorithm
computing this unreliability, and we extend this to the circular
case. Finally, Section 4 recalls the main contribution of the
paper, and points out that fast algorithms in computer algebra
may be used to improve a lot of computational methods.

II. LINEAR RECURRENCES WITH CONSTANT COEFFICIENTS

Let K be a field. We consider a linear recurrence

a0 u(n) + a1 u(n− 1) + · · ·+ ar u(n− r) = b, (1)

with constant coefficients a0, . . . , ar, b in K. We assume
further that a0 6= 0, and ar 6= 0 so that r is the order of the
recurrence.

We aim at solving the following problem: given the linear
recurrence (1), the “initial conditions” u(0), . . . , u(r−1), and a
positive integer N , compute efficiently2 u(N). A classical fact
consists in rewriting the recurrence (1) in matrix form; noting
that Un = (u(n), . . . , u(n+r−1))T , and B = (0, . . . , 0, b

a0
)T

where vT denotes the transpose of the vector v, we get

Un+1 = RUn + B, (2)

with

R =


0 1 0 0
...

. . . . . . 0
0 . . . 0 1
−ar

a0
. . . . . . −a1

a0

 .

The first vector Un involving u(N) is UN−r+1 so that comput-
ing u(N) reduces to computing UN−r+1. Moreover, applying
(2) recursively, and using the fact that the entries of the r× r
matrix R do not depend on n, we obtain

UN−r+1 = RN−r+1 U0 +

(
N−r∑
i=0

Ri

)
B, (3)

where U0 = (u(0), . . . , u(r − 1))T is the known vector of
initial conditions.

2Note that we are interested in the case where the value of N is large; in
particular, we assume r < N .

A. Homogeneous case
In the homogeneous case, where b, and thus B, are zero,

the problem boils down to computing the (N−r+1)th power
of the companion matrix R, and the product matrix-vector
RN−r+1 U0. Note that the latter product can be computed
using only O(r2) operations [19]. This method is developed
in [17], and the result is the following:

Lemma 1 ( [17], Proposition 2.4, and 3.2): The nth
power of a companion matrix of size k can be computed
using O(M(k) log(n)) operations where M(k) is the number
of operations needed to multiply two polynomials of degree
at most k. Consequently, when b = 0, the N th term of the
homogeneous linear recurrence (1) can be computed using
O(M(r) log(N) + r2) operations.

B. Non-homogeneous case
We now consider the case where b, and thus B, are

non-zero. As a consequence of Lemma 1, we obtain the
following proposition.

Proposition 1: The N th term of the linear recurrence
(1) can be computed in terms of the initial conditions
u(0), . . . , u(r − 1) using O(M(r) log(N) + rω) operations,
where M(k) is the number of operations needed to multiply
two polynomials of degree at most k, and ω is the exponent
of linear algebra defined such that the number of operations
needed to multiply two square matrices of size k is O(kω).

Proof: From (3), the problem reduces to computing
RN−r+1; the sum

∑N−r
i=0 Ri; and the two products matrix-

vector RN−r+1 U0, and
(∑N−r

i=0 Ri
)

B. From Lemma 1,
RN−r+1 can be computed in O(M(r) log(N) + r2) oper-
ations. Now,

∑N−r
i=0 Ri is a sum of terms in a geometric

progression, and thus we have
N−r∑
i=0

Ri = (Ir −R)−1 (
Ir −RN−r+1

)
,

where Ir is the identity matrix of size r. Consequently, the sum
can be deduced from RN−r+1; the inverse of Ir−R; and the
product of the two matrices (Ir −R)−1, and

(
Ir −RN−r+1

)
.

The latter inverse, and product can both be computed using
O(rω) operations (see [20], [21], or [18, 2.3.1] for the com-
plexity of computing the inverse) so that the complexity for
computing

∑N−r
i=0 Ri is O(M(r) log(N) + rω). The result

then follows because a product matrix-vector of size r can be
computed in O(r2) operations, and 2 < ω < 3 [19].

Note that, as we compute the whole vector UN−r+1, we
get the same complexity estimate for computing a slice of r
consecutive elements u(N − r + 1), . . . , u(N). This remark
will be useful for the circular case in Section III.B (see the
proof of Corollary 1).

III. APPLICATION TO CONSECUTIVE-k-OUT-OF-n:F
SYSTEMS

In this section, we consider a consecutive-k-out-of-n:F sys-
tem with (stochastically) independent components. We denote
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each component i by an indicator variable Xi, where Xi = 0
if the component is functional, and Xi = 1 otherwise.

A. Case of a linear arrangement of the components

The Boolean function of the fault-tree for the linear
consecutive-k-out-of-n:F system is

XL(n) = (X1∧X2∧· · ·∧Xk)∨· · ·∨(Xn−k+1∧· · ·∧Xn). (4)

The goal in this section is to compute the unreliability of the
system, i.e., the probability of fault

UL(n) = Prob{XL(n) = 1} = E(XL(n)),

in terms of the failure probability qi = Prob{Xi = 1} of each
component i in {1, . . . , n}. Note that the case of identical
components corresponds to qi = q for all i in {1, . . . , n}.

To achieve this goal, we are going to construct a linear
recurrence equation of order k satisfied by UL(n). This linear
recurrence, given in Lemma 2 below, can be obtained directly
using probability arguments (see [8, Equation 1a.]); we
propose here another approach using Shannon decomposition
(see [16] for example). For the sake of completeness, and
accessibility, some details on this method are given below.

First we replace the Boolean operators ∨, and ∧ by addi-
tions, and multiplications defined as

Xi ∨Xj = Xj + Xj Xi, Xi ∧Xj = Xi Xj ,

where the Boolean negation is replaced by applying the
identity X = 1 − X . Note that, in the sequel, to apply the
rules

E(T1 T2) = E(T1) E(T2), E(T1 + T2) = E(T1) + E(T2),

we have to ensure that the terms concerned, i.e., T1, and T2

in the formula above, are stochastically independent.
To achieve the orthogonalization, we apply recursively Shan-
non decomposition (see [16] for example). We first apply it
with Xn to derive the Boolean fault-tree function ϕ:

ϕ(X1, . . . , Xn) = Xn ϕ(X1, . . . , Xn−1, 1)

+Xn ϕ(X1, . . . , Xn−1, 0).
(5)

From (4), we get

XL(n) = Xn (XL(n−2)∨Xn−k+1 · · ·Xn−1)+Xn XL(n−1),

because the term Xn−k ∧ · · · ∧ Xn−1 in (4) is absorbed
by the last term for Xn = 1. Noting T1 = XL(n − 2) ∨
(Xn−k+1 · · ·Xn−1), a further Shannon decomposition step
shortens T1 to T2:

T1 = Xn−1 (XL(n−3)∨Xn−k+1 · · ·Xn−2)+Xn−1 XL(n−2),

and T2 = XL(n − 3) ∨ (Xn−k+1 · · ·Xn−2). Continuing
similarly, we finally get

Tk−1 = XL(n−k)∨Xn−k+1 = Xn−k+1+Xn−k+1 XL(n−k).

Hence, XL(n) depends linearly on XL(n−1), . . . , XL(n−k).
Computing the expected value for stochastically independent

components, we get [8, Equation 1a.] the following lemma.

Lemma 2: The unreliability UL(n) of a linear consecutive-
k-out-of-n:F system satisfies the linear recurrence of order k
with constant coefficients given by

UL(n)− pn UL(n− 1)− pn−1 qn UL(n− 2)− · · ·
· · · − pn−k+1

∏n
i=n−k+2 qi UL(n− k) =

∏n
i=n−k+1 qi,

(6)
where, for i in {1, . . . , n}, qi is the (constant) failure
probability of the component i, and pi = 1− qi.

To apply Proposition 1 to the recurrence (6), its coefficients
must be constants, i.e., must not depend on n. This is
ensured when each qi is a given constant. Now, as a direct
consequence of Lemma 2 and Proposition 1, we obtain the
following theorem which provides the main result of the paper:

Theorem 1: The unreliability UL(n) of a linear
consecutive-k-out-of-n:F system with (stochastically)
independent components can be computed using
O(M(k) log(n) + kω) operations, where M(k) is the
number of operations needed to multiply two polynomials
of degree at most k, and ω is the exponent of linear
algebra defined such that the number of operations needed
to multiply two square matrices of size k is O(kω).
In particular, using the Fast Fourier Transform, we get an
algorithm in O(k log(k) log(log(k)) log(n)+kω) operations.

For the last assertion of the theorem, we use the fact
that the Fast Fourier Transform corresponds to M(k) =
k log(k) log(log(k)) [19, 8.2-8.3].

B. Case of a circular arrangement of the components

If one now considers a circular consecutive-k-out-of-n:F
system, then the Boolean function of the fault tree becomes

XC(n) = XL(n)∨(Xn−k+2∧· · ·∧X1)∨· · ·∨(Xn∧· · ·∧Xk−1).

It is well known (see [4], [9], [11], [12], or [1, Theorem 2]
for the case of identical components) that the unreliability
UC(n) of the circular consecutive-k-out-of-n:F system can
be expressed as a linear combination of the UL(m) for
n − k ≤ m ≤ n − 1. Once again, this relation can be
recovered using Shannon decomposition techniques [16], and
following exactly the same strategy as in the linear case;
details are left to the reader. As a consequence, we get the
following corollary.

Corollary 1: The unreliability UC(n) of a circular
consecutive-k-out-of-n:F system with (stochastically)
independent components can be computed using
O(M(k) log(n) + kω) operations, where M(k) is the
number of operations needed to multiply two polynomials
of degree at most k, and ω is the exponent of linear algebra
defined such that the number of operations needed to
multiply two matrices of dimension k is O(kω). In particular,
using the Fast Fourier Transform, we get an algorithm in
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O(k log(k) log(log(k)) log(n) + kω) operations.

Proof: From the explanations above, to get UC(n), one
needs UL(n − k), . . . , UL(n − 1), i.e., a slice of k consec-
utive elements of a solution of (6), which is of order k.
The first assertion follows then from Theorem 1, and the
last sentence of Section II.B. The second assertion of the
theorem is clear as the Fast Fourier Transform corresponds
to M(k) = k log(k) log(log(k)) [19, 8.2-8.3].

IV. CONCLUSION

We have applied computer algebra techniques to handle the
problem of computing the unreliability of consecutive-k-out-
of-n:F systems. More precisely, the use of fast algorithms for
computing a selected term of a linear recurrence with constant
coefficients provides an algorithm having a complexity lower
than that of all previous known algorithms for this problem,
when k � n; which is the case in most applications where k
typically represents a constant, and n represents a variable.
Note that the same improvement is obtained for computing
the (un)reliability of consecutive-k-out-of-n:G systems [22,
Lemma 1].

We point out that the application of fast algorithms for
manipulating linear recurrences, and computing powers
of matrices is not restricted to the computation of the
unreliability of consecutive-k-out-of-n:F systems. In the case
of ladder-type redundancy structures (the so called reliability
block diagrams), we find coupled linear recurrences. It is
classical that these recurrences can be written in matrix
form Un = RUn−1 + U0, where Un is the unknown vector,
and U0 contains the initial conditions. However, comparing
to the one defined in Section II, the square matrix R,
say of size k, is no longer a companion matrix, so that,
classically, we would use binary powering to compute its
nth power in O(kω log(n)) operations (see [17], or [18,
2.3.4] for example). This procedure would yield an algorithm
in O(kω log(n)) operations for computing Un. Now, when
k � n, which is the case in most applications, we can
provide a little improvement to this algorithm. Indeed,
there exists a Las Vegas type probabilistic algorithm for
computing the nth power of a square matrix of size k in
only O((k + log(n))M(k) + kω log(k)) operations (see [23,
Corollary 6.4], or [18, 2.3.4]), so that by using it, we manage
to provide an algorithm in O((k +log(n))M(k)+kω log(k))
for computing Un.

In general, using fast algorithms in computer algebra for
handling problems that can be written in terms of linear
recurrence (or differential) equations may improve many com-
putational methods.
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