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Abstract

This article proposes three different modes for the sliag@esentation of the histories of moving
objects in databases: the Compact Representation, theRépitesentation and the Hybrid Representa-
tion. To this end, unit types are introduced as new DB datadyp represent single data slices. The
potential influence of different parameters on the perforeeaof the data models is discussed. Based
upon the BerlinMOD benchmark, the properties of the reprieg®ns are considered and expectations
for their performance for different categories of queries Bormulated. After this, the benchmark is
performed using the three representations, two differentastics and two clustering types for the
sliced data. The observed results are compared with thectimns, and results for selected queries
are discussed. The complete implementation of data typgperators, and all used query plans are
freely available for further studies as algebra modules ety scripts for the Sconpo DBMS.

Index Terms

H.2.1: Data Models; H2.2.3: Database Semantics; H.2.4nh.3patio-temporal Databases, Moving
Objects, Trajectory Databases.

. INTRODUCTION

Current database systems are able to store large sets ofBestiales standard data, more
complex kinds of data may be stored, e.g. multimedia, dpatiapatio-temporal data. Whereas
storing and efficient access of standard data is well umtedstthis is still a challenge for more
complex data. In the last decade, tracking the location dbilacentities and geo-tagging has
become easy using GPS devices, which still are getting evatiexr, cheaper, and more precise.
As a consequence, these devices have become popular angetusnfor the development of
new applications, like location-aware services. Thoudlecting moving object data has become
easy, its representation and processing in databased msnstipen field for research.

Moving objects databases (MODBs) come in two flavors: (iy@spnting current movements,
e.g. of a fleet of trucks, in real time, supporting questidnsud current and expected near future
positions, and (ii) representing complete histories of ements, allowing for complex analyses
of movements in the past. In this article, we focus on the sg@@pproach and present different
ways of representing the histories of moving object dM®D). Typical questions that can be
answered using moving object history data are: “Where wascbb at time t?”, “When did
objecto have a certain property?”, “Which vehicles have met eackrathpointp?”. To answer
them efficiently, we need sophisticated methods to reptesehaccess the histories. Though we
focus on unconstrained linear time-sliced spatio-tempdata, our approach is general enough
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to be applicable also to other kinds of time-sliced datee ldonstrained moving objects (e.g.
objects moving on a network) and non-linear movements, dsasenon-spatial temporal data.
The contributions of this paper are:

« We introduce new respresentations for MOD.

« We introduce unit types as data types in a DBMS, which werardsgl as an internal

implementation issue and a formal concept by now.

« We provide a first comprehensive comparison of query praogss different MOD rep-

resentations, which is useful for query optimization.

« We analyse the advantages of so-called summary fields in M&pEesentations.

« We exemplarily analyse equivalent query plans in order fgax the results.

« We make all query plans available for further analyses anmements.

The remainder of the paper is organized as follows. After ganoew on related work
in Section Il, and revisiting a formal data model for reprégey moving object histories in
Section 1ll, we present our suggested models of repregentioving object data in Section IV.
Subsequently, we introduce the BerlinMOD scenario as alreadking tool to assess the models
and discuss the possible impact of different parametersaoh eepresentations’ advantages and
disadvantages in Section V. After some theoretical calmra on the expected behavior of the
different representations regarding storage requiresnantl query runtimes, we present some
experimental results in Sections VI and VII and finally cam® the article in Section VIII.

I[I. RELATED WORK

A literature review by Pelekis et al. gives a good impressibthe historic development of
spatio-temporal data models [1]. First approaches wenealgttemporal data models applied
to spatial data. They useshapshotgdo represent complete scenarios of spatial data at certain
temporal instants [2], [3]. Latetjimestampingvas used to record discrete changes/events con-
cerning single geometries in databases [4]-[7]: a movingals history is stored as a set of
pairs(l,), each containing an observation instaaind the observatioh which may be a point
or a complex geometry. The main problems with thant-location managemermalled model
are, that it only defines discrete observations (interpmaand extrapolation is not possible), a
significant precision/resource problem arises (if manyeolations are stored), and hence, query
processing becomes inefficient.

The Moving Objects Spatio-Temporal modMOST) and theFuture Temporal LogidFTL)
guery language aim at modeling and querying moving objetzt dach that questions regarding
the current and (near) future positions of moving objects lba answered; this task is often
calledtracking[8]-[11]. Moving objects are modelled lynamic attributeswhich continuously
change as a function of time. Each function is representedpasnt and a motion vector, where
the point represents the object’s last known location aadrhtion vector its last known direction
and velocity, thus allowing for predictive queries.

The first abstract model to include continuous movement géatd — time dependent ge-
ometries, i.e. geometries described as a function of times-|22]. It views objects and their
complete history as abstract data types, calling tieoving objectsThis has been mapped to
a discrete, implementable model [13]: #Aiced representatioms used, which decomposes the
continuous changes of moving objects into fragments, ttetadelled by “simple” functions.
Finally, the algorithms for the spatio-temporal operasiamroduced in [14] have been improved
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by adding auxiliarysummary field¢o the moving data types [15]. The moving object model
allows to represent the complete evolution of a moving dbgeca single attribute within an
object-relational or other data model. An introduction higstmodel is given in Section lll.

The free and open source extensible DBMSSNDO [16]-[18] provides a native implemen-
tation of the moving object model and we use it as a platfornttie experimental evaluations
presented in this article. Another system implementing rieving objects model is STAU
[19], which extends the commercial Oracle Spatial DBMS witlo data cartridges; one for
temporal types, a second for moving object data types. HER[2B]-[22], a descendant of this
prototype, still uses the sliced representation, but aléev using variable simple interpolation
functions (currently: polynomial of first/second degrequare root of polynomial of second
degree, constant function). The used Oracle10g DBMS altmwsplex user-defined types (here:
the moving object data types) to physically represent datamable size usingested tablesA
moving object attribute points to a nested table stored io-eatled store table, managed by the
DBMS. The nested table contains a set of units. Each unitrmdd by a temporal interval and a
set ofunit functions e.g. one for each coordinate, each actually consistingflaigaindicating an
interpolation function and a vector of parameters to thigfion. This general concept is similar
to the storage mechanism provided lsxc®NDO. One difference is, thatEONDO dynamically
decides whether LOB data are stored within a special stbie {aalled FLOB file) or within the
table file itself. The lastest version of HERMES now captuséhbhistoric and dynamic moving
object queries. HERMES has also been migrated to the P&pyi@ostGIS DBMS [23].

Instead of implementing moving objects as data types wighDBMS, they can be concep-
tually modelled by a relation controlled by a spatially exted standard DBMS storing time
slice data as tuple§d, t1, x1,y1, t2, T2, y2), Whereid identifies a moving object [24]. This is
similar to the Unit Representation we will introduce in SextlV-B. The same holds for the
model proposed in [25], where moving objects trajectorresrapresented as sequences of tuples
(1, (x,y),t,b), x andy being coordinates of theth waypoint reached by the object at instant
The flagd indicates, whether waypoinisandi + 1 are connected (forming a well-defined piece
of the trajectory). Otherwise, a definition gap exists, @& fbllowing waypoint starts a new trip.

In most moving objects databases (also ECSNDO), movements are usually supposed to
be piecewise linear (i.e. linear interpolation between @andata points is used to reconstruct
the temporal evolution). The objective is a reduction of twmplexity for spatio-temporal
predicate and operator implementations. Becker et al. {i&cribe an approach to use non-
linear approximation functions (e.g. B-splines) for mayinbject data. Experimental results
show, that using B-slines increases the cost for evaluaiforemporal functions by 30-50%,
compared to linear interpolation. Similar methods havenbeeposed in order to gain more
accurate trajectories and to compress the data [27].

In [28] the authors deal with the question how to represeta fitam multiple sensors: inserting
the readings of all sensors into a common single table, or ame table per sensor, one table
per observation instant, or maintaining a single table witle column per sensor, where tuples
give the readings for all sensors at a time. In an experinh@etdormance study regarding four
gueries analysing RoboCUP sensor data (ball and playesstipo and heading), they showed
that there is no general best choice. This work becomesamievf several moving object
trajectories (readings of different sensors) should beaged and queried together in a database
(e.g. several moving object data type attributes per tuple)



To assess the performance of data representations, berkshara appropriate tools. Most
benchmarks proposed for moving objects databases in thetlire are insufficient to the
requirement of this study. Arguments and a discussion af theability are given in [29]. The
BerlinMOD benchmark proposed in that article focuses onclehracking data and perfectly
fits our needs. Hence, we use this benchmark throughoutrtickeaThe BerlinMOD benchmark
supports two different approaches of moving object seroanfiihe first one, calledbject based
approach(OBA), handles the complete history of a vehicle as a singd@ing object attribute.
The secondtrip based approaclfTBA), decomposes each moving object’s journey into a serie
of trips with shorter histories. Trips belonging to a givelvimg object are identified using a
moving object identifie(moid) unique to that object, which may be considered as a system
generated integer attribute. In the TBA, each history fjey) is therefore represented as a set
of Trip attribute values, each being a moving point representedttie complete journey within
the OBA. An introduction to the BerlinMOD scenario is preehin Section V-A.

Though we focus on unconstrained 2D moving objects in thisley it is possible to generalize
our approach and apply it to any other time slicing repregent for moving object history data,
e.g. for periodically moving objects [30], semantic tragees [31], or network constrained
moving objects [32].

[1l. REVISITING DATA STRUCTURES FORMOD

An abstract data model for representing moving objects kas proposed in [14]. The model
introduces a type constructetoving, that creates types for moving object data when applied
to a base data type, e.g. applying the type constructor tsghgal typepoint, it returns a type
for moving point data:moving(point) = mpoint. There are also other type constructors, like
range 10 create interval set types from a base type. While the septation of moving point
data is a major contribution of that article, also other kirtd data are covered, e.g. the types
mowving(bool) = mbool, moving(integer) = mint, and moving(real) = mreal are defined, which
are capable of storing temporal evolutions of the partichlse types.

Based on this abstract data model, a discrete data modeldeasgdresented in [13], using a
sliced representatiotior the development of a moving object, which is expressedtset of
units (Figure 1). Each unit describes the behavior of a movingatljéor a certain time interval
(ti,t;), t; < t; disjoint from all the other units’ definition time interval& “simple” function is
used to approximate the concrete value at each instant ef dumning that interval. For amnt
or bool unit for example, a constant function is applied, foreal unit a quadratic polynomial
function or its square root is used, and for a movpgnt, the function is represented by the
staticpoint values taken at the unit’s starting instanand ending instant;. Linear interpolation
is used to evaluate the function between these values foinastentt, ¢, <t < ;.

In this work, we will use a subset of the type system proposeld 3], as shown in Table I.
We use seven kinds of typeBASE types, which represent static simple data (likéeger, real);
SPATIAL types, representing static 2-dimensional spatial obj@etgit, points (=multipoint),
line, andregion), and 2/3-dimensional rectanglegdt, rect?); TEMPORAL, with type instant
to represent single instants of timeRANGE types, providing a collection of disjoint intervals
defined on a base type or temporal type — they correspond tdyfhes created using the
range type constructor from [14]JNTIME types, representing a concrete value at a certain
temporal instant (afinstant, value) pair); UNIT types, which represent time slices of temporal
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Fig. 1. Sliced Representations of a Moving Real and a MoviamtP

The mreal shown in the left figure consists of@cal units (time slices). The total definition time is shaded iaygiFor instants
outside the shaded area, theeal is undefined. Each unit can be described by a simple funclibe. right figure depicts an
mpoint consisting of 4upoint units. Here, the lines between the 5 shown points representime slices, for which linear
interpolation is used to approximate the object’s trajgcto

BASE = {int, real, string, bool}
SPATIAL = {point, line, region, rectangle2D?, rectanqleﬁ’DT}
TEMPORAL = {instant}
RANGE = {rint, rreal, rbool, rmstantT}
INTIME = {iint, ireal, ibool, ipoint, ireqionT}
UNIT = {wint, ureal, ubool, upoint, uregion}
MOVING = {mint, mreal, mbool, mpoint, mreqionT}
TABLE |
TYPE SYSTEM

fInSECONDO, some types have different namesgriods instead ofrinstant, rect instead ofrectangle2D, rect3 instead of
rectangle3D, intimeregion instead ofiregion, movingregion instead ofmregion.

developments, as described in [13]; aA@VING types, which describe the complete history of
a moving object by a collection of temporally disjoint unéisd correspond to the types created
by the mowving type constructor in [14];

Besides data types, we also require a set of operations ge thipes. Table Il presents the
subset of the operators introduced in [14] that is used withé BerlinMOD queries.

IV. MODELS

In this section, we address three different ways of reptesgithe histories of moving object
data MOD) using unit types as primitives of sliced representatignas introduced in Section
lll. To do so, we start using unit types as standalone datastyphis is new, since in [14] unit
types are not noted explicitly (though there is a single af@r decompose, that returns a
set of “maximal continuous parts of temporal data typesiy a [13] the types introduced for
kind UNIT are just used to formally define and implement the more comid©VING types.
However, values ofUNIT types are conceptually capable to store simple temportd {aént,
ubool, ustring), functions (real), and movementsupoint, uregion). We utilize this ability and
assume that all unit types can be used as attribute typesmweélations managed by a DBMS.
For our experiments, we have extended tee SNDO DBMS with all the unit types from Table |
and operations on unit types according to TableHence, all requirements for usingeSoNDO
during the experimental evaluations in Sections VI and V4 tulfilled.

*Implemented within the “TemporalUnitAlgebra” and the “TpanalAlgebra”.
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atinstant
atperiods
at
intersection
inside
intersects
trajectory
deftime
speed
distance
inst

val

initial
final

restrict a mT/ uT to a certain instant

restrict a mT/ uT to a certain rinstant

restrict a mT/ uT to the time intervals where it takes a carfivalue
for a pair of values of compatible types, compute the intgise
test, if the first value is contained in the second one

test, whether two values of compatible types intersect
compute the 2D-spatial projection of a mT/ uT

return the definition time of a mT/ uT as an rinstant

return the speed of an mpoint/ upoint as an mreal/ ureal
compute the distance of two spatial objects

return an iT value’s instant

return an iT values’s value of type T

for a mT/ uT, return the iT corresponding to the initial ingta
for a mT/ uT, return the iT corresponding to the final instant

TABLE I
A SELECTION OF OPERATIONS AS USED BYBERLINMOD

T € BASE U SPATIAL. T, iT, mT and uT stand for according range, intinmeoving, resp. unit types based on type T. The
definition of “compatible” relies on common sense. Whereliapple, operators will return moving types (eigside: mpoint

x region — mbool). Several operators (e.gt, atperiods, intersection) return a set of units when applied to an unit type.
A more detailed description of these operators and a forrafihition of their semantics can be found in [14].

OBA/CR TBA/CR OBA/UR TBA/UR OBA/HR+ TBA/HR+
dataSCear dataMCcar dataSUcar dataMUcar dataSHcar ~ C__dataMicar |
tring Li tring Li 1 string Licence
string Licence string Licence string Licence string Licence tring L string Type
string Type string Type string Type string Type :t:zg Tt:g e string Model
string Model string Model string Model string Model string Model int Moid (key)
mpoint Journey int Moid (key) int Moid int Moid int Moid (key) O
upoint JourneyUnit int Tripid (key) Y,
1 & 1 int JourneyNoUnits ml .
N periods JourneyDeftime 0..
[Moid) rect3 JourneyMBR dataMHtrip
0. 1
i 0.* int Moid
dataMCt _ 1 it oid
I dataMUunit int Tripid (key)
int Moid int TripNoUnits
mpoint Tril int Tripid N periodsTripDeftime
P P upoint TripUnit m E@ rect3 TripMBR
1
0. i N i)
dataSHunit dataMAunit
int Moid ) int Tripid
upoint JourneyUnit upoint TripUnit
int TID - int TID
0.* 0.
(@) (b) (©

Fig. 2. BerlinMOD conceptual database schemas: Compact) (b), and Hybrid Representation (c).

A. Compact Representation

The compact representation (CR) is the direct application of the MOD model from Section
lll: The complete history of a moving object is encapsuldtgdan abstract data type. Logically,
all units of an object’s history are organized into an aridmgt is embedded into the object
representation. Hence, such a moving object can be used a® i attribute value within a
tuple. Physically, the array of units is stored in a distifiet (LOB file) and only reference to
that file and some summary information is kept within the objeself. Internally, units of each
moving object are sorted by their definition time intervatlarence allow for efficient access



methods, like binary search. Additional aggregated infdrom is stored in so-calledummary
fields the number of components (units), definition time (intéfuam the first unit's beginning
instant to the last unit’s ending instant), duration (sumndérval lengths, where the object is
defined), and further type specific summary information, aimum and maximum value (for
mint, mreal, mbool), or MBR (for the spatio-temporal typegoint, mregion). The summary
fields are directly kept within a moving object’s root rec¢re. they are embedded into the tuple
representation and need not to be loaded explicitly). Ttegy e used in a preceding filtering
step to select candidates for expensive geometric testel@ttons and joins, which would
otherwise require the object’s units to be loaded from theiernal file. We assume, that at least
the number of components, and for spatio-temporal movirtg,dae object’s spatio-temporal
MBR are saved as summary fields, which is the caseBad@\DO.

Throughout this article, we will use both the moving objeatngantics (OBA and TBA) Berlin-
MOD [29] supports. Representing the OBA using the CR (abated OBA/CR) is straightfor-
ward: Since complete histories of moving object data cantbeed within single attributes,
there is only a single relatiodat aSCcar containing one tuple per vehicle. The tuple contains
a key attributelicence, some more attributes, plus one attribute of typeint called Journey,
that contains the complete movement history for that objeactcapture the TBA semantics in
the CR (TBA/CR), each history (journey) is represented agtao Trip values, each being
represented in a compact manner as a moving point. Thesanhdata are stored within a
trip relation dat aMCt ri p, whereas the attributes regarding the complete object tareds
within a root relationdat aMCcar . Figure 2 (a) shows what the main data objects used in this
benchmark look like, when using the CR to represent the MObegeed by BerlinMOD for
both, the OBA and TBA. Note the i:relation between the root relatiatat aMCcar and the
trip relationdat aMZt r i p; the additional attributé/oid identifies all tuples containing history
data for trips of the same moving object and can be used tdecesaindex. There is also a
functional dependencyicence — Moid.

B. Unit Representation

In the unit representation (UR), every moving object is represented by a set of tuples within
a relation. In the OBA/UR, each tuple contains a single uhiaanoving object (i.e. series
of single units rather than complete histories are stordtlinvithe relation), anoving object
identifier (moid, a key unique to the individual object, to which the unit mgJs), and copies of
all other attributes belonging to the moving object. Thisamg that all attributes get replicated
once per unit. The moids allow to select the units forming tirtory of a certain moving
object. If more than a single moving type attribute is usé@, tnits need to be modified to
ensure that the units contained by a tuple all have exaatlyséime definition time interval. This
again increases the storage requirements, since orignital are split, whenever definition time
intervals of two different attributes’ units overlap. Th&are, we restrict UR relations to contain
only one moving object. Summary fields are not supported s/ répresentation model.

For the OBA, only a single relationat aSUcar is used. Compared with the OBA/CR,
the added attributé/oid is used to identify all units belonging to the history of thense
moving object. In the TBA/UR, each vehicle’s journey is swimkd into several trips, each
of which is handled as an own moving object. The units are keititin a separateunit
relation dat aMJuni t , whereas the root records for each trip are kept withinrtoe relation
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dat aMJcar . The moid groups the tuples within the root relation beloggio a single vehicle.
An additional unique trip identifiefripid is added to all tuples within both relations. It connects
each tuple of the root relation with the set of tuples withia tinit relation whose units form the
trip’s history. The TBA/UR looks very similar to the TBA/CR:lsema; just instead ahipoint
values, upoint values are stored, and — as the moid is used to group tripsjontmeys —
an identifier Tripid is used to form trips from sets of units. The main data objéoisthe
BerlinMOD benchmark using the UR are shown in Figure 2 (b).

C. Hybrid Representation

In the hybrid representation (HR), within an original tuple, every single moving object gets
replaced by a uniqueoving object identifie(moid). Thus, we receive theot relation As the
moid is unique to every single moving object, it can be usedeatify a moving object’s units,
which are stored within so-calleghit relations(one per column/attribute containing a moving
object), whose tuples contain each a unit of a moving objegether with its moid and the
tuple id (tid) of the referencing tuple in the root relation. This tid isystem-generated tuple
identifier, that allows to access a tuple within the roottretain a direct and quick manner,
i.e. without using an index. In comparison with the UR, westlavoid the replication of non-
moving attributes. Also, the HR doesn't suffer from the itifla inflicted by splitting units as
observed with the UR when more than a single moving objecbigained in a single tuple of
the main relation. However, handling the additional unlatiens increases the complexity of
managing stored moving objects. While the moid can be uséidddhe related units in the unit
relations, the tids can be used to identify the referrindetupithin the main relation (i.e. the
tuple “containing” the unit). In an attempt to save admimisve overhead, one could use the
main relation tids as moids of each contained moving objadt @it the tid columns within
the unit relation, but this would increase the complexityewlctreating result relations.

Modelling the OBA semantics, the HR database schema loakssimilar to that for OBA/UR:
Theroot relationdat aSHcar contains one tuple per vehiclé/oid is used to reference tuples
in the unit relation dat aSHuni t that contain units forming the vehicle’s MOD history. The
tuple identifier TID points from each unit tuple back to the according root tupleis allows
to quickly access the root tuple without using an index. THe fdr trip-based semantics is
clearly the most complex of the representations proposesl bs is shown by Figure 2 (c). The
TBA/HR schema has three levels. The upperniost relationdat aHVcar contains one tuple
per vehicle. The intermediatap relation dat alVHt r i p contains one tuple per trip belonging to
the history of a vehicle from the root relatioMoid is used to join these data. The lowermosit
relation dat aMHuni t contains the units forming all histories of vehicles fratat aMHcar .
The units are grouped b¥ripid to form trips. The tuple identifiefl’'/D refers from each unit
tuple directly to its “containing” tuple irdat aMH ri p.

For the HR, we further propose two variants regarding thegee of summary fields:

1) With Summary Fields (HR: In this variant of the hybrid representation, summary infor
mation is kept as additional attributes within the tupleshaf root relation (OBA), resp. the trip
relation (TBA).

2) Without Summary Fields (MR Here, we abandon the information stored in summary
fields. This variant we expect to benefit in the case of updaesio summary data is needed
to be computed on occasion of an update.



In Figure 2 (c), both HR variants are displayed all at once. the variant HR', we just
drop the summary fieldgripNo Unit, TripDeftime, and TripMBR from relationdat aSHcar ,
resp.dat aMHt ri p. In the figures representing these relations, the summadds fleave been
separated from the other attributes by a dotted line.

V. EVALUATION DATABASE

In the following sections, we will evaluate the performamdéehe proposed data models from
section IV. We will use the BerlinMOD/R benchmark [29] for tasdardized comparison of the
results. We now briefly describe the BerlinMOD/R benchmar®l enotivate our choice.

A. Scenario

We assume, that a MOD database (in its compact represemtatmuld contain at least
one relation with a large cardinality>(1000)?, containing exactly one attribute of a moving
spatial type per tuple. The moving objects stored shoule l@aong history in average, i.e. their
history consists of a large number of units. At scale fact@; the BerlinMOD scenario tracks
the motions of 2,000 vehicles within Berlin simulated forexipd of 28 days.80% of these cars
are “passenger cars”, 10% are “trucks” and the remaining ‘M#%es”. For each car, commuting
trips between the owner's home and place of work are created,additional “leisure time”
trips are added. The simulation captures a vehicle’s postivhenever its velocity or direction
changes significantly, every 2 seconds otherwise. Withetlassumptions, we get an average of
about 963 units for each car and day, or 53,926,394 unitstail & scalefactor 1.0.

B. Database Schema

The original BerlinMOD schema is adapted to fit our needslties) in the following database
schema for the CR:

OBA only:
dat aSCcar : relation{ Licence: string, Model: string, Type: string, Journey: mpoint}
— relation of vehicle descriptions (car type, car model aicgrice plate number),
including the complete position history as a singi@oint value per vehicle, where
Licence is a key.

TBA only:
dat aMCcar : relation{ Licence: string, Model: string, Type: string, Moid: int} —
relation of all vehicle descriptions (without position tuisy).
dat aMCt ri p: relation{ Moid: string, Trip: mpoint} — relation containing all ve-
hicles’ movements and pauses as single tripgofnt values).
Here, { Moid} is a key/ foreign key fodat aMCcar and{Moid, Trip} is a key for
dat aMCtri p.

2While 1000 is not considered to be a “large number” of tuptea tatabase system, we want to point out that we are talking
about 1000 tuples, each containing a huge amount of data wremes to long-term observation of moving objects. Each
tuple may then contain tens of thousands of single obsensti

3We will in the sequel refer to different scale factors by tlwtion of “@SF”, where SF' is the scale factor.



Common Database Objects (OBA and TBA): A set of relations is used to control the queries
by providing query points, periods, licences and regiorkth&se relations start with the prefix
“Query”.

This base schema can directly be used for the CR, whose miatiors for the MOD are
visualized in Figure 2 (a). From this basic database schémeagdatabase schemas for the UR
and HR can easily be deduced, having main relations acaptdifrigure 2 (b) and (c).

C. Parameters

For setting up the experimental evaluation of differentadegpresentations, the analysis of
variables influencing the performance is a preliminary sieip important for choosing a realistic
benchmarking workload and for the interpretation of thailtss In this subsection we consider
which factors should have what kind of impact on the perforcesof the described data models.
We will also show, how these parameters are set up in therB&@D benchmark.

1) Semantics of Moving Object Datavloving Object Data for vehicles can be viewed in
two different ways: The object-based (OBA), and the trigdah (TBA) approach. The first one
keeps the complete history of the object together. The skapproach rather observes a vehicle’s
single trips, which are kept separately in the databasetheg with a key (moid) that allows one
to select all trips belonging to a single vehicle. Both vidveve advantages and disadvantages.
While in the OBA semantics are always clear, in the TBA onalsde specify how to distinguish
between subsequent “trips”. The TBA applies some form gettary splitting [33] and thus
reduces the size of MBRs to index and therefore also indexcteties. When interpreting
the three presented models (CR, UR, HR) to be some kind ohédypes” of representing
MOD, the TBA diminishes the characteristics of these thregems. E.g. in the TBA additional
indexes to lookup all trips belonging to a single vehicle guired, because original keys (like
“Licence” in BerlinMOD) loose their key property. The TBARCtherefore looses its object
semantic property, becoming more similar to the OBA/HR. AgIBMOD provides data and
queries for both, OBA and TBA, and since experiments [29talered several advantages of
the TBA/CR regarding certain types of queries, we will coveth semantics in our experiments.

2) Amount of ObjectsAs many reasonable MOD applications will track data of marmyimg
objects, to demonstrate the gain in performance achievesing index structures, and to justify
for using indexes on moid or primary keys, we choose to olesédr, 894, and 2,000 objects
from the BerlinMOD data (at scale factors 0.05, 0.2, and a9)large” numbers of recorded
object histories for the comparison of MOD representations

3) Length of Histories:At scale factor 1.0, the BerlinMOD benchmark generates atbje
having an average length of 26,963 units per history. Wittt taimount, we hope to avoid
discrimination of any of the representations examined: dShay too short histories results in
an approximation of the CR to the UR; too large lengths widlule in a growth of overhead
from replicated data especially within the UR, and overlgré@ase the answer times for spatial
access to MOD in the CR. One could argue, that MOD should bepaotad to contain only
“interesting” data and therefore histories be shorter. (erdy several 10 or 100 units, semantic
trajectories [31]). But that would require a-priori knowdte of the meaning of “interesting”.
However, our model inherently compacts stored data, aspglsimchanges (constant values,
linear movements, etc.) can be expressed within a single ewen for long periods of time.
In BerlinMOD, the length/ of generated MOD histories depends on the scale fagioy as
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I ~ v/SF. We will use scale factors 0.05, 0.2, and 1.0 in our expertsiéh is important to
mention that the scale factor influences the amount of trgggerated, not the average number
of units per trip. This results in larger sizes of attribute:.rney within OBA/CR, but in higher
cardinalities for all other representations.

4) Index Structures:In our experiments, we will use R-Trees [34] to index the MOD —
2D-R-Trees for spatial and temporal indexes, and 3D-RsTfeespatio-temporal indexes. This
choice is due to the availability of index structures in oatathase platform, namelyeSoNDO
[16], [17]. Of course, there exist various specialized diees for indexing trajectories (e.g. the
TB-tree [35]). But as our goal is to compageneralproperties of the three MOD representations,
we think, that results can be transferred to more conveimeleix structures later on. To allow for
fast access to stored MOD, we assume that for each repréeantzodel the following indexes
are available for all spatial, temporal, and spatio-terapattributes within the test databases:
(a) Object Index (B-Tree): Key € { Moid, Tripid, Licence} — provide quick access to tuples
holding the object data (CR), resp. units from the objecigsdny (UR, HR).

(b) Spatio-Temporal Index (3D-R-tree): Keys are 3D-MBRs of the indexed attribute — allows
quick access to all tuples containing objects/ units wh@&&/mBR intersects a 3D-query window.
For the CRmultiple entry indexing36] is applied, i.e for each tuple within relatiaiat aSCcar ,

its mpoint Journey is decomposed into all contained units, - - -, u,,, and for each unit; a
pair (MBR(u;), tid), wheretid is the tuple identifier of the according tuple dat aSCcar , is
inserted into the R-Trek.

(c) Temporal Index (2D-R-Tree): Keys are 2D-MBRs created from the indexed attribute’s
deftime — gives quick access to all tuples containing oljeahits whose deftime intersects
a query instant or query time interval. Due to the index dtnes available in SCONDQ,
we apply a transformation approach to map temporal quedespéatial ones: Assuming, that
eachinstant I can be translated into a corresponding!/ value using a functiorgetreal,

it is possible to translate a temporal range vaRiei.e. anrinstant value, into a 2D-point
(getreal(initial(R)), getreal(final(R))). Such a point can be used to generate keys for the
temporal R-Tree index. To query such an index, the sameftnanation can be used to lookup
temporal ranges in the index. To perform a temporal pointyguke instant/ is translated to the
point P corresponding to the temporal intervdl [[]. If the real representation for the earliest,
resp. latest representable instant is denotedBby-IN_OF_TIME, resp. END_OF _TIME,
and point S=(BEGIN_OF _TIME,END_OF_TIMFE), the MBR of {P, S} can be used to
retrieve all temporal intervals possibly containing theyinstant from the temporal index. For
the CR, multiple entry indexing is used.

(d) Spatial Index (2D-R-tree): Keys are 2D-MBRs of the indexed attribute resp. its MBR'’s
spatial projection — grants quick access to all tuples whaigect/ unit 2D-MBR intersects a
given query rectangle. Again, multiple entry indexing i®digor the CR.

Using R-Trees to index 2D-MOD with 3D-MBRs as keys raises #-Wweown problem: The
temporal coordinates are usually represented on diffeseakes than the spatial coordinates.
Hence, direct use of these MBRs during R-Tree constructionldviead to skewed indexes with
unbalanced or even degraded index performance. The saméapgagn in the 2D case, if the
sizes of the ranges regarding both dimensions are veryrehiffe As a simple solution to this
problem, we normalize all spatial and spatio-temporal MB&sthat all dimensions are treated

4Also see Section VI-A2 for a short example on multiple entrgteixing.
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fairly equal: Basically, each dimension is scaled such thataverage interval size of all MBRs
is the same for all dimensions.

5) Data Distribution: Obviously, the (spatial and temporal) distribution of datarucial for
index performance and therefore for query performancefddni distributions allow for easy
analyses and are thus comfortable to the researcher. The lsalas for Gaussian data distri-
bution. However, both distribution schemas are not “ndtwaad have a limited expressiveness
concerning real applications. Hence, we prefer to experiwéh data being as “real” as possible.
The BerlinMOD benchmark generates and uses representativeuniformly distributed data.

6) Universe and Query Window Dimensions§he universe, which is defined as the union
of all possible objects’ 3D-MBRs, shall be large comparedhi® size of single query ranges.
This reflects that often we collect huge amounts of data, imgies queries can be restricted to
relatively small ranges within the universe. BerlinMOD/Rriprms instant and point queries,
as well as small and large range queries. This helps to baldecperformance of the different
temporal, spatial and spatio-temporal index types.

7) Standard Attributes and Tuple Sizé&lsually, queries are not concerning solely spatial,
temporal or spatio-temporal aspects. Rather, additiarfalmation represented using standard
data types is used. To demonstrate the properties of theretiff representations, we can use the
additional attributes given to each vehicle in the BerlinD@ata. Namely, the string attribute
Licence is a key, and there are two more non-key string attributege (“bus”, “truck” or
“passenger”) andV/odel (manufacturer) of the car. Thus, tuples can be selected figrett
criteria (including non-indexed attributes) and the tugiee is increased without changing the
size of the MOD. One could restrict the relation with the MO dontain only a key as an
additional attribute, and all other attributes to be stosegarately in a second relation. This
would transform each representation into something sinlahe HR — but again, we want to
demonstrate the general differences between the threesesgations.

8) Clustering: Within the relations, MOD can be stored clustered, i.e.esblly some mean-
ingful criterion. BerlinMOD creates data clustered priftyaby object-id, with definition time
being the secondary criterion. This is the only feasible Waythe CR. For the UR and HR it
makes sense to consider different orderings, e.g. ston@ginits by the their definition time, or
spatial or spatio-temporal MBR (using Z-order). This migtrongly affect the number of page
reads required to process certain queries. Clearly, eattecing scheme will favor a certain
kind of queries and discriminate some others. We will restour experiments to clustering
relations by (i) first object-id and second definition timM®(TMP schema), and by (ii) the
spatio-temporal MBR of the MODSPTMP schema). This choice was made in order to keep
the number of experiments manageable.

D. Queries

For our analyses, we simply use the 17 BerlinMOD/R benchmaskies, i.e. the range and
point query subset, as proposed in [29]. The query set B4@B/NN, focussing on complex
nearest neighbor queries, is not considered, BSOBIDJs abilities to process these queries
effectively — by now — depend on a certain UR like data repmesiéon, so these queries
cannot contribute to the results of a fair comparison of thierént data representations. The
BerlinMOD/R queries can also be found in Appendix A.
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1) Query ClassificationTo formulate our expectations and results within Sectiohand VII,
we use the query categorization introduced in [29]. Thegmieation classifies query types as a
combination of five dimensions: (&bject Identity € {known, unknowr — Whether a query
starts with a known object “Does obje&t ...” or without “Which objects do ..."”. (bpimension
€ {standard, temporal, spatial, spatio-temppral This criterion refers to the dimension(s)
used in the query. (QQuery Interval € {point, range, unboundéd— This property determines
the presence/size of the query interval. @ndition Type € {single object, object relatiohs—
Whether relationships between objects are subject of tieeyquequiring a join) or not (“single
object”). (e) Aggregation € {aggregation, no aggregatipr— Indicates whether the result is
computed by some kind of aggregation. This property may niems which approach is used
(“(no) aggregation”).

The BerlinMOD/R benchmark queries cover the 14 most intergf all possible 96 com-
binations. Non spatio-temporal queries are covered twi@k-R); the combination (unknown,
spatio-temporal, range, single, no aggr) is covered byetleeries (Q13-15).

We further generalize these combinations into two more iggrand obvious categories of
gueries: (a)Standard queries — any query that does not involve a MOD attribute within its
where clause and does not perform calculations on any M@ibae. From the BerlinMOD/R
queries, only Q1 and Q2 belong to this category. NbPD queries — any query, that does
involve a MOD attribute in its where clause or somehow catad a MOD-attribute within the
select clause. In BerlinMOD/R, Q3-17 belong to this catggor

VI. STORAGE REQUIREMENTS

In this section, we first formulate expectations on the nsdastorage performance by calcu-
lating the theoretically required disk space for all Bavi@D relations and indexes within the
different representations. Then, we compare the theatasults to practical from experiments
using the different models within theeESBoNDO DBMS. We have evaluated the following
proposed representations for MOD following both, the OBAl &BA: CR, UR, HR®. To this
end, we have used BerlinMOD to generate MOD at scale fact@$, @®.2, and 1.0 and then
created all representations addressed in the previoussectVe also translated the benchmark
gueries from BerlinMOD/R to fit the different representasoand started the benchmark for
each representation and scale factor using thed®ibo DBMS. For the experiments, we used
a standard PC configured as shown in Table Ill. As mentionddrdgsee Section V-A), we
will use the notation of “@ F” in the sequel. It can be read as “at scale facidr”.

A. Expected Storage Requirements

In this subsection, we investigate how the three repregBensainfluence the storage size for
the BerlinMOD benchmark data from a theoretical point ofwyieegarding relations as well
as as the different indexes which could be useful in que¥dss.don’t regard optimizer related
information like histograms and so on.

For our computations, we use a hypothetical database sitnildne concrete one used in the
experiments. The main differences are: (a) All cars havestime (average) number of trips and
units, and (b) computations are independent of the dataystem (assuming an optimal storage
and query behavior). Otherwise, we use the original stedisin the BerlinMOD data @0.05,
@0.2, and @1.0 (Table 1V). For example, the table indicatest @1.0, 2,000 vehicles with
292,693 trips (for the TBA), and 53,926,394 units are crkatethe BerlinMOD data generator.
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@0.05 @0.2 @10
Days 6 13 28

Vehicles 447 894 2,000

, Trips 15,049 62,893 292,693
fﬂzrﬂ'ory: 'ng'Bcore 2 DUO 2.4 GHz Units | 2744069 11,658,013 53,926,394
DD 3 % 500 GB. RAID 0 Avg. Units/Vehicle | 6138.857  13040.283  26963.197
0S: Open SuSe 10.2 (Kemel 2.6.18.2-34-defalilt) | Av9- Units/Trip 182340 185360 184.24p
DBMS: SECONDO 2.8.4 Avg. Trips/Vehicle 33.667 70.353 146.347

TABLE Il TABLE IV
CONFIGURATION OF THEEVALUATION PLATFORM BASIC STATISTICS ONBERLINMOD DATA

1) Relations: To determine the size of the relations, we start with catoulafield sizes for
all attributes. For most fields, ast or string attributes, the sizes are constant. Some types need
more explanation: Eaclwpoint value consists of a time interval, a starting and an endirsifipo.
For each position, we need two coordinates representeddxptivl e type. We model time as
a discrete representation of the R. For a temporal resoludf 1 millisecond, we represent an
instant value by al ong int (8 bytes). Twobool ean flags (1 byte each) indicate whether the
starting and the ending boundary of the interval belong ¢arnkerval or not. Summarized we get
4-84+2-8+42-1= 50 bytes per unit. Thenpoint data type consists of a constant part containing
data management and summary information, plus a variabtdgraall units contained — while
both attributes,Irip and Journey, are of typempoint, they contain different numbers of units.
The constant part consists of the summary fields; we haveuhder of contained components
(i nt, 4 bytes), the deftime (twanstants, 8 bytes each), the duration (tygeration, 8 bytes),
and the MBR (arectangle3D represented using @ubl e values, 8 bytes each), giving a total of
76 bytes for the fixed-sized part. For the variable part, eamitained unit contributes with 50
additional bytes, as calculated above. Obviously, thetetusy of units within the unit relations
for the UR and HR has no effect on the storage requirements.

The sizes for all attributes used within the relations feriépresentations introduced in Section
V-B are shown in Figure 4. The upper part of the table showsattréutes with constant sizes.
The lower part shows the varying average size of attribdtesney and Trip, which depends on
the average length of the vehicles’ histories. Remembat,ttte size ofl’rip does not depend on
the scaling factor: With increasing scaling factor, withine vehicles’ histories only the amount
of trips — but not their length or duration — increases.

Now we can compute the tuple sizes for all used relations iraghtforward way. For
the relations’ cardinalities, we use the statistics on thenlber of vehicles, trips, and units
as presented in Table IV. The cardinalities, tuple sizesl tal memory sizes for all the
relations in Figure 2 are given in Table V. From that, we clatithe total relation sizes for
all representations (see Table VI). As one could easily exgbe CR is the smallest one, and
the UR the largest one in terms of disk space required.

2) Indexes:As in SECONDO only secondary indexes are available, we only provide talcu
tions for secondary indexes. Secondary indexes yield tuggletifiers referring to tuples within
the main relation (CR), resp. a unit or trip relation (UR, HR)

For all three representations, the temporal, spatial amdicspemporal indexes (see V-C4)
are created using multiple entry indexing [36]. This is, éach unit, a key is inserted into the
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Attribute

Type | Size[Byte] |

Licence string 12
Model string 20
Type string 10
Moid int 4
Tripid int 4
JourneyUnit | upoint 50
A TripUnit upoint 50
%, TripNoUnits | int 4
— TripDeftime | rinstant 16
TripMBR rect3 48
Tid int 4
%2 -
Journey mpoint
@0.05 307018.85
ud _us @0.2 652090.15
lut u2 — @1.0 1348235.85
" ur us Trip mpoint
. @0.05 9343.75
P3
Y @0.2 9343.75
> @1.0 9288.08
Fig. 3. Multiple entry indexing Fig. 4. Hypothetical Attribute Sizes
Cardinalities Tuplesizes [B] Relation Sizes [MB]
Relation @0.05 @0.2 @1.0 @0.05 @0.2 @1.0 @0.05 @0.2 @1.0
Calculated Sizes
dataSCcar 447 894 2000 307018.850 652132.150 1348277.850 130.880 555.998 2571.636
dataMCcar 447 894 2000 46.000 46.000 46.000| 0.020 0.039 0.088
dataMCtrip 15049 62893 292693 9193.024 9347.752 9292.077 131.937 560.673 2593.73%
dataSUcar 2744069 11658013 53926394 96.000 96.000 96.000] 251.227 1067.323 4937.10
dataMUcar 15049 62893 292693 50.000 50.000 50.000 0.718 2.999 13.957
dataMUunit 2744069 11658013 53926394 54.000 54.000 54.000| 141.315 600.369 2777.124
dataSHcaP 447 894 2000 114.000 114.000 114.00q 0.049 0.097 0.217
dataSHcaP 447 894 2000 46.000 46.000 46.000 0.020 0.039 0.088
dataSHunit 2744069 11658013 53926394 58.000 58.000 58.000] 151.783 644.841 2982.837
dataMHcar 447 894 2000 46.000 46.000 46.000| 0.020 0.039 0.088
dalaMHtrip€B 15049 62893 292693 76.000 76.000 76.000] 1.091 4.558 21.214
dalaMHtrin 15049 62893 292693 8.000 8.000 8.000 0.115 0.480 2.233
dataMHunit 2744069 11658013 53926394 58.000 58.000 58.000] 151.783 644.841 2982.837
Observed Sizes
dataSCcar 447 894 2000 | 1035912.233 2188675.007 4474039.30 315.375 1337.914 8533.553
dataMCcar 447 894 2000 180.000 180.000 168.00 0.094 0.176 0.320
dataMCtrip 15038 62879 292669 21267.471 21646.254 21320.61 330.730 1407.137 5950.815
dataSUcar 2742033 11670697 5338840 296.000 296.000 296.00 825.977 3515.492 15070.884
dataMUcar 15038 62879 292669 180.000 180.000 180.00 2.816 11.738 50.240
dataMUunit 2742033 11670697 5338840 128.000 128.000 128.00 357.930 1523.391 6517.13
dataSHcaP 447 894 2000 348.000 348.000 348.00 0.168 0.328 0.664
dataSHcaP — — — — — — — — —
dataSHunit 2742033 11670697 5338840 144.000 144.000 144.00 397.695 1692.652 7331.781
dataMHcar 447 894 2000 168.000 168.000 168.00 0.086 0.160 0.320
(‘JatatMHtripéB 15038 62879 292669 192.000 192.000 192.00 2.953 12.320 57.316
dataMHtrig® — — — — — — — — —
dataMHunit 2742033 11670697 5338840 144.000 144.000 144.00 397.695 1692.652 7331.781
TABLE V

CALCULATED VS. OBSERVEDCARDINALITIES, TUPLE SIZES, AND RELATION SIZES FORBERLINMOD
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Representation Total Relations [MB] Total Indexes [MB] Total Database [MB]
@0.05| @0.2| @1.0| @0.05] @0.2] @1.0| @0.05| @0.2| @1.0
Calculated Sizes
OBA/CR 131 556 2572 376 | 2055 | 9075 506 | 2611 | 11647
OBA/UR 251 | 1067 | 4937 463 | 2558 | 10888 714 | 3625 | 15825
OBA/HR® 152 | 645| 2983 406 | 2177 | 9634 557 | 2822 | 12617
OBA/HR® 152 645 2983 405 | 2177 | 9634 557 | 2822 | 12617
TBA/CR 132 | 561 | 2594 376 | 2056 | 9080 508 | 2617 | 11674
TBA/UR 142 603 2791 406 | 2181 | 9650 548 | 2784 | 12441
TBA/HR® 153 649 3004 408 | 2187 | 9691 561 | 2836 | 12695
TBA/HR® 152 645 2985 406 | 2179 | 9643 558 | 2824 | 12628
Observed Sizes
OBA/CR 315 | 1338 | 6112 599 | 2522 | 12573 914 | 3859 | 18685
OBA/UR 826 | 3515 | 16082 657 | 2756 | 13623 1483 | 6272 | 29705
OBA/HR® 398 | 1693 | 7744 628 | 2639 | 13098 1026 | 4332 | 20842
OBA/HR® — — — — — — — — —
TBA/CR 331 | 1407 | 6447 599 | 2524 | 12580 930 | 3931 | 19027
TBA/UR 361 | 1536 | 7026 652 | 2745 | 13588 1013 | 4280 | 20614
TBA/HR® 401 | 1705| 7801 659 | 2771 | 13665 1060 | 4476 | 21465
TBA/HR® — — — — — — — — —
TABLE VI

CALCULATED VS. OBSERVEDTOTAL RELATION, INDEX, AND DATABASE SIZES FORBERLINMOD

indexes. If one would build, e.g. the indexes for the CR, base the objects’ total MBRs,
this would result in drastically smaller indexes, which Wbin turn have a bad performance,
since almost all MBRs would overlap, producing a drastycaigh percentage of false alarms
at each index access. The idea of trajectory splitting foltiple entry indexing is visualized in
Figure 3: A moving point) consists of 8 units.,, ..., us. The figure showsrajectory(M)
and compares the 2D-MBR of the complete moving object withs¢hfor the single units. A
spatial index built with MBRA) returns the whole objectM} for query pointsP, and P,
while an index built using thenultiple entry indexingpolicy will create separate entries for
MBR(u;),1 < i < 8. The index returng for query pointP, and{u,} for P;.

We further assume, that an*fee [37] implementation is used for 2D (3D)-R-trees, aatd s
the page size to the widely used standard of 4kB. Each R-treg eontains an MBR (16 bytes
per dimension) and a page/ tuple identifier (4 bytes), makipn@6 bytes (2D), resp. 52 bytes
(3D) per entry. This allows for 113 (78) entries per page. Wfed node fillings of not less than
40% and therefore use R-trees of orders (46, 113) for 2DeBstrand (32, 78) for 3D-R-trees.
Assuming an average filling degree of 69%, we get an averageuaof f = 77 (f = 53),
resulting in heighth = log, N. For NV, we have 53,926,000 units resp. 292,693 trips or 2,000
vehicles. Assuming a Btree implementation is used for B-trees and page size = diBget
a maximum fan-out of 512 for attribut@ripMoid (256 for Licence). With an average filling
degree of 74% for inner nodes and leaves, we get an averagrufaof f = 378 (f = 189).

The calculated index sizes (in terms of 4kB pages and heifjtiteotrees) for the different
relations and scale factors are presented in Table VII. D& index sizes (in MB) for the
different representations are listed in Table VI.

3) Databases:The expected total database size for each representatiaiciglated as the
sum of its total relation size and its total index size. Theuhs are presented in Table VI.
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Relation Calculated [pagesdheight] Observed [pages/height]
R-tree Indexes B-tree Indexes R-tree Indexes B-tree Indexes
2D 3D Moid Tripid Licence 2D spat. 2D temp. 3D Moid Tripid Licence
dataSCcar 41567/3 54584/3 — — 3/1 49478/3 45592/3 58299/4 — — 6/2
dataSUcar 4156773 545843 763872 — 1470872 4947813 4559273 58299/4 742972 — 74322
dataSHcaP 6/1 9/1 2/1 — 3/1 15/1 10/1 17/1 5/2 — 6/2
dataSHcaP = = 2/1 = 31 = = — — — =
dataSHunit 41567/3 54584/3 7638/2 — — 49478/3 45592/3 58299/4 7429/2 — —
dataMCcar — — 271 — 371 — — — 52 — 6/2
@0.05 dataMCtrip 41567/3 54584/3 40/1 — — 49478/3 45592/3 58299/4 71/2 — —
dataMUcar — — 4071 4071 8071 — — — 7172 72 9272
dataMUunit 41567/3 54584/3 — 7638/2 — 49478/3 45592/3 58299/4 — 13265/3 —
dataMHcar — — — — 371 — — — 52 — 6/2
datalMHtrip€B 273/2 337/2 40/1 40/1 — 723/2 462/2 765/2 71/2 7713 —
dataMHtrig® — — 40/1 40/1 — — — — — — —
dataMHunit 41567/3 54584/3 — 7638/2 — 49478/3 45592/3 58299/4 — 13265/2 —
dataSCcar 157332/3 368840/4 — — 5/1 188365/4 | 193048/4 26409474 — — 1072
dataSUcar 157332/3 368840/4 3122072 — 9740473 188365/4 | 19304874 26409474 3007272 — 30076/2
dataSHcaP 12/1 17/1 3/1 — 5/1 17/1 15/1 20/1 712 — 10/2
dataSHcaP = = 31 = 5/1 = = — — — =
dataSHunit 157332/3 368840/4 31220/2 — — 188365/4 | 193048/4 264094/4 30072/2 — —
dataMCcar — — 3/1 — 5/1 — — — 72 — 10/2
@02 dataMCtrip 157332/3 368840/4 167/1 — — 188365/4 | 193048/4 264094/4 605/3 — —
dataMUcar — — 16771 16771 522/2 — — — 60573 31673 45273
dataMUunit 157332/3 368840/4 — 31220/2 — 188365/4 | 193048/4 264094/4 — 55715/3 —
dataMHcar — — — — 571 — — — 72 — 1072
dalaMHtrip€B 894/2 124072 167/1 167/1 — 2643/3 1693/2 2846/3 605/3 316/3 —
dataMHtrig® — — 167/1 167/1 — — — — — — —
dataMHunit 157332/3 368840/4 — 31220/2 — 188365/4 | 193048/4 264094/4 — 55715/3 —
dataSCcar 1156876/4 | 1166357/4 — — 11/1 776849/4 | 886984/4 | 1554721/4 — — 20/2
dataSUcar 115687674 | 1166357/4 | 14304172 — 32104673 77684974 | 88698474 | 155472174 | 13451072 — 13452672
dataSHcaP 26/1 38/1 6/1 — 111 31/1 29/1 39/1 1212 — 20/2
dataSHca — — 6/1 — 111 — — — — — —
dataSHunit 1156876/4 | 1166357/4 | 143041/2 — — 776849/4 | 886984/4 | 1554721/4 | 134510/2 — —
dataMCcar — — 6/1 — 1171 — — — 1272 — 2072
@10 dataMCtrip 1156876/4 | 1166357/4 1153/2 — — 776849/4 | 886984/4 | 1554721/4 2017/2 — —
dataMUcar — — 115372 115372 173872 — — — 201772 145873 20332
dataMUunit 1156876/4 | 1166357/4 — 143041/2 — 776849/4 | 886984/4 | 1554721/4 — 254442/3 —
dataMHcar — — — — 1171 — — — 1212 — 2072
datalMHtrip€B 3879/2 8332/3 1153/2 1153/2 — 6306/3 7309/3 8019/3 2017/2 1458/3 —
dataMHtrig® — — 1153/2 1153/2 — — — — — — —
dataMHunit 1156876/4 | 1166357/4 — 143041/2 — 776849/4 | 886984/4 | 1554721/4 — 254442/3 —
TABLE VII

CALCULATED VS. OBSERVEDINDEX SIZES FORBERLINMOD

Only one common value is listed for calculated sizes of thatiapand temporal 2D indexes, as in our calculations, wethise
same parameters for both. As mentioned within the text, giages 4 kB.

For the OBA, we observe, that the CR has the smallest expeetation and index sizes,
while the UR has always the largest expected relation andxirsizes. The UR is expected
to be +35.9% larger than the CR (+92.0% larger relation, @%0larger indexes). HR has an
overhead of +8.3% (relations: +16.00%, indexes +6.2%); kRonly slightly better with +8.3%
(relations: +15.99%/, indexes: +6.2%).

For the TBA, we also expect the CR to be the most compact fotdeat, the HR is expected
to be worst with respect to required space. However, it oak/dn overhead of +8.75% (relations:
+15.82%, indexes: +6.7%). The HRs slightly better with +8.18% (relation: +15.09%, indexes
+6.2%). The UR is second place with expected +6.57% in tawlhijons: +7.6%, indexes
+6.3%).

B. Experimental Results

The observed relation sizes are presented in Table V. Wenabs#ight differences in the
cardinalities (relative errok 1%). For the tuple sizes, we observe significant differenetaéen
expected and observed valuesEC®NDO uses 1.58 to 3.91 times as much memory as the
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calculated minimum requirement. This directly affects tetion sizes (factors 2.38 to 3.29).
The cause for this “wasted” space is the simple persistermghamism applied by ERONDOQ,
that does not use compression. As expected, the CR has thtecompact, and the UR the
largest relations. The OBA/HR requires about 1.12 timed,the OBA/UR 1.59 times the space
of the OBA/CR. For the TBA, the differences are smaller: Hdre TBA/HR requires about
1.13, the TBA/UR only 1.08 times the space required for thé\/THR.

The observed statistics for the indexes are shown in Table Séveral indexes seem to
need less space than expected. There are two reasons faottdsperformance: (1) As we
are interested in querying historic MOD, we use a bulkloaadimeaism to create the R-Trees.
The algorithm is a variant of [38]. It creates packed treeséguentially filling all leaf nodes
(unless a key to insert is too far “off” the leaf node’s cutrdBR) and creating upper inner
nodes only when required. This might leave the rightmosh peth a very low filling degree
(nodes may even underflow), but this is acceptable, sincanihex buildup time is reduced
drastically and updates are not required. Entries are feal time bulkload after sorting them
by means of a Z-ordering and therefore can be expected to shgaod query performance.
The 2D-R-trees used for spatial and temporal indexes ak lwawer (33, 83), the 3D-R-trees
(24, 62). For the 3D-Index @1.0, we achieve a net storageatibn of 54.19% (capacity =
99,502,144 keys: 1554721 pages, 64 keys each; occupiedebgntinies for 53,926,394 units).
(2) SEconDO employs BerkeleyDB as a storage manager. B-Trees are ineplewh directly
using BerkeleyDB’s B-Trees, which seem to apply some opttion techniques to increase the
storage performance.

The total relation, index, and database sizes for all rgmtesions are listed in Table VI.

VII. BERLINMOD/R PERFORMANCE

Due to different relation sizes and methods applied to acttesdata in the different represen-
tations, we expect them to behave differently executingBedinMOD/R benchmark queries.
We compare our expectations with the practical benchmasklte on $CONDO, using the
same configuration as described in Section VI. Finally, waly@®e selected queries in detail.
The benchmark queries are listed in Appendex VIII.

A. Expected Runtimes

1) Compact Representatiorin the CR, moving object data is primarily clustered by objec
identity. Time is always the secondary clustering criteyi@as the units are sorted by their
time intervals internally; using different clustering fgahs is impossible. With respect to the
cardinalities and relation sizes, the CR is minimal, heneeckearly expect it to be the best
model for standard queries (Q1-2). For MOD queries, we exg@¢antages whenever data are
accessed using the identity of the vehicles prior to furghi@cessing, as in queries Q3, and
Q16. We also expect an advantage for the CR with any combimafi dimensions with (Object
Identity Known, Temporal; Q3, Q8), where the relatively dnatree indexes can be used to
find the moving objects and binary search be applied to thernat unit array. Worse for the
CR in this category are queries for dimensions (Object ilenhknown) along with “Spatial”
(Q4, Q7), or “Temporal” (Q9), as they can use the fine graineatial/ temporal index, but
nonetheless must scan the complete MO history. Since trex@sdwill trigger “false alarms”
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due to high rates of overlapping object MBRs — the tempordéxnwill be worst, as the entry

for each unit will overlap with one MBR for each vehicle atdea— a linear search within each
returned object’s unit array is required to check for spataditions. While the coarse summary
fields can be used to perform simple tests on the moving ofgegt whether the moving object
is possibly defined at a given instant, or the moving spatigga takes a value within a given
range), complex tests are required to compute temporalaira$predicates. On the other hand,
aggregations over selected units within a single movingabghould be quite fast.

2) Unit Representationin the UR, we can cluster the data within the units relationaby
criterion we want, e.g. by object identity, by the units’ &nntervals, or by their temporal
values (resp. their MBR for spatial base types). A majordiiaatage is the massive replication
of non-moving attribute data, which drastically increatbessize of the relation. As a side effect,
maintaining keys (resp. attributes with a key property) néeasible within the UR. Hence, we
expect the UR to perform worst on standard queries (Q1-2jupkcates must always be dealed
with. For MOD queries within dimension “spatial” (Q4-5, Q&nd “temporal” (Q3, Q8-9), we
expect the UR to perform well. Here, the UR should benefit ftbenl:1 relation of index entries
to units within the relation. As all non-moving attributelsam object are contained in each unit
tuple, we have immediate access to these data. Howeverafmrégation” queries (Q9, Q17),
grouping candidate tuples by moid is required, reducinggbdormance. As for differences
between the two employed clustering schemas — ID/TMP (obgntity, then temporal) and
SPTMP (spatio-temporal) — we expect the SPTMP clusteringeteefit queries applying spatio-
temporal indexes (Q4, Q7, Q12 and Q17). The ID/TMP clusteviill have its advantage, if
temporal access or ordering/ grouping is used (Q3, Q5 and Q8)

3) Hybrid Representationin both variants of the HR, clustering the unit relation byy an
criterion is possible. The representation needs more specethe CR (as referencing moids
and tids have to be stored in the relations), but the req@ngésnare far less than for the UR. The
internal references lead to another main drawback, as thstruwtion of indexes and relations
becomes more complex compared to the CR or UR. Otherwisehyhad representation is
expected to combine the advantages of both other forms oéseptation. In standard queries
(Q1-2), the root relation can be used to access the unitg tisenmoid and the object index to
retrieve the MOD if necessary. The behavior should be smidahe CR’s here. As for MOD
gueries in the UR, the 1:1 mapping from index entries to wpliethe unit relation should make
the HR fast for queries having dimensions “spatial” (Q4-%) @nd “temporal” (Q3, Q8-9).
As spatio-temporal and further, non-moving attributes lapt separated in different relations,
disk-accesses may be reduced in some cases. In other cated$toin both relations need to
be joined (using moid with an object index, resp. the tid a&sjtin attributes). When summary
fields are maintained within the root relation, they can kedusr simple prefiltering tests (e.g. to
restrict complex tests to promising candidates). Againgwgect the SPTMP clustering schema
to support queries using spatio-temporal indexes (Q4, Q2,&hd Q17), and the ID/TMP being
superior with temporal access and grouping (Q8-9).

4) Semantics: OBA vs. TBAAs noted in Section V-C, the TBA implements a form of
trajectory splitting and hence is expected to show some &irthtermediate” behavior: While
in the TBA trajectories are shorter than in the OBA, some iggerequire trip data to be joined
with data from the root table, or duplicates being removeteré&fore, we expect the UR and
HR to benefit less from using the TBA than the CR.
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B. Evaluation of BerlinMOD/R Running Times

To execute the BerlinMOD/R queries on thec®NDO platform, we hand-translated the SQL
queries into so-called E2ONDO executable queries, which represent concrete query plans,
we did not utilize the SQL query optimizer. For most querissyeral equivalent translation
variants were tried, but only the fastest response times wetuded into the results tables. The
experiments are conducted using database scripts. Eaigh sontains all executable queries
for Q1 — Q17 as a series for each combination of: (1) semamizoach (OBA/TBA), (2)
representation (CR/UR/HR), and (3) clustering Schemal(M}® and SPTMP). The experiments
for both, HR® and HR® (HR with/without summary fields), have been combined in canm
scripts. The query scripts can be downloaded from the BE@D web site [39].

We did not evaluate buffer effects explicitly, because (g scripts already employ a good
mix of data access paths, and (2) it seems unreasonable ltoithxpule out buffering, because
buffering effects are actually intended in operational DBMince the workload is well-defined
and the sequence of executed queries fixed, the resultsreroaiparable. However, a strong
buffer effect has been observed and explicitly examinedfb2 (see Section VII-B1).

The response times for all queries are listed in Table Viiithee OBA and Table IX for the
TBA. As stated above, for the HR we have only created thé &presentation, but formulated
queries once not using summary fields (HBtyle) and once using them (HRstyle), where
this seemed appropriate. Where theH&yle did not seem appropriate at all, &" is printed
in the HR? columns of the result tables, meaning that the®HRsult is also used for the HR
We continue with a brief analysis of the experimental result

1) Semantics — OBA vs. TBAn the OBA, the expectations for standard queries (Q1-2),
have been confirmed. The CR and HR execute them fast, but theutéts from the replication
of the standard attributes. For MOD queries, with incregisicale factor (i.e. increasing length of
histories), UR and HR gain advantages regarding many aqjeranely for Q4, Q7, and Q10-15.
All these queries deal (a) with either unknown object idésgior a possible relation between
known objects, and (b) spatial or spatio-temporal dimensio the temporal point query Q3,
the CR takes advantage of a rapid selectionfsence and a subsequent binary search within
the array of units. The CR maintains an advantage in Q5, wtierdJR and HR require for
additional aggregation steps. Another query preferrirgg@R is Q8, which requires to process
the complete trajectory of candidate vehicles. Surprigirnthe CR also seems to have a major
advantage with respect to Q9. The construction of the teatg@lection and subsequent spatial
projection for all objects’ MOD seems to be much less expeniian selecting units using the
temporal index and recreating the total trajectory apgygnouping and aggregation. Also, the
CR is clearly superior with regard to Q16. This again steromfthe requirement to aggregate
the units of candidates b¥icence, here in order to allow for a parallel scan of the candidate
pair’s trajectories instead of checking all pairs of caatéd’ units.

In the TBA, the MOD histories within the CR are split into stesrtrips. Therefore, the
overhead for searching the history becomes drasticallyllemaliminishing the CR’s main
disadvantage. As a consequence TBA/CR is faster than OBAdCBome queries, e.g. Q13-15.
TBA-queries Q11-14, and Q16 run fastest using the CR. FortligsCR’s superiority becomes
even clearer. This leads to the TBA/CR prepresentationgbiia global “winner” for 8 of the

5In the result tables, the columns for ID/TMP variants are kadrwith *¢, those for SPTMP are labeled wiff.
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17 queries (namely Q3, Q5, Q8, Q11-14, and Q16) in our benthmgeriments. Also the
TBA/UR using SPTMP clustering is quite good, scoring 3 bdsbal results (Q4, Q7, Q12).

Regarding the majority of the benchmark queries, the TBAugesior to the OBA when
using the CR or HR. However, there are some remarkable erosptQ5 runs very slown on
the TBA/HR, and Q9 on the TBA/CR. As expected, the UR cannaegaly profit from using
the TBA: While the OBA is favored by 10 queries, the TBA is sodnly 7. Among the latter
are the standard queries (Q1-2), since in the TBA/UR the nelation can be used instead of
the much larger unit relation. Q12 seems to be much fastenanTBA than in the OBA, but
closer inspection proves this to be an artifact: (1) By nkistave accidently translated the OBA
variants in an improper way, using the spatial index andatheperator instead of the spatio-
temporal index and thatinstant operator, penalizing the OBA variants. (2) When setting up
the query scripts, we missed to notice that Q12 has exaalgdme data access patterns as Q11
and the amount of data is relative small. Hence, the operatistem’s file caches allow for high
cache-hit rates. Since with the TBA smaller amounts of da¢al@aded after the prefiltering
step, cache hits are much higher here than with the OBA. Taw/s the performance results.
To demonstrate these effects, we re-translated the OBAe&p)jerow using the spatio-temporal
index and theatinstant operator, and executed all queries with cleared systemesackhe
result§ show, that the difference not only between OBA/CR@0.2 and/TR@0.2, but even
between all variants becomes almost insignificant. OBA/@R15 sec, TBA/CR: 4.685 sec;
OBA/UR: 4.756 sec, TBA/UR: 4.435 sec; OBA/HR4.671 sec, TBA/HR: 4.411 sec. This is
exactly what one should expect for this kind of simple sp&timporal point queries.

2) Clustering Schemas — ID/TMP vs. SPTMBPomparing the two clustering schemas for the
unit relation in the UR and HR, the ID/TMP pattern is supefmr Q1-3, Q5-6, Q8, Q10, and
Q15, whereas the SPTMP pattern is better for Q4, Q7, Q9, Q221617 Only for Q11 the
differences between both patterns are insignificant, grigbéecause the used spatio-temporal
predicate is very specific. The experiments show, that tH€VMP pattern is superior for standard
gueries (having an advantage during grouping and id-bagplicdte removal operations), and if
candidates are being selected using vehicle ids. Spaapdral or spatio-temporal data access
benefits from using the SPTMP clustering pattern. Thesegpti@s of the two clustering methods
generally hold for both, UR and HR.

3) Summary Fields — HRvs. HR’: For the HR, considerable performance differences
between queries using (MR and not using summary fields (MR have been established. In
this analysis we focus on experiments with the full scaleabase (SF 1.0). For the OBA we
observe, that only Q9 and Q16 (when using ID/TMP clusteringgp. Q3 (SPTMP clustering)
profit from using summary fields. This is different regardthg TBA. Here, Q3, Q8-9, and Q16
are enhanced by using HRor both clustering schemas. There are two general expéarsator
the different behavior between OBA and TBA: (1) In the TBAnsuaries exist for each trip,
so that e.g. tests for overlapping MBRs can speed up progesggnificantly. (2) In the TBA
one may restrict oneself to inspect fewer units if either argwbject’s identity is known or the
search can be restricted to certain trips (i.e. certairs tripuld be selected using prefiltering on
the trip summaries).

6Said results for ID/TMP clustering are also displayed inl&@adlll, and Table IX.
’In the result tables, ID/TMD results are mark&d SPTMP results are labeled.
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C. Exemplary Query Analyses

In this subsection, we analyze three of the queries to show, the query plans relate to
observed query response times. We use the following aldiiens: QL for Quer yLi cences,
QP for Quer yPeri ods, andQ for Queryl nst ants. We also shorten all relation names
starting with “data”, sadat axXY becomesXY.

1) Q3: We used the following plans for this temporal point query oown objectsOBA/CR:
For QL1, select according tuples fro®Ccar using a B-tree index. Then for each instant from
Q 1 calculate the vehicles’ positio©BA/UR: For QL1, select the JourneyUnits fro@Ucar
using a B-tree index. Join each unit with all instants frQiil selecting those pairs, where the
unit is present at the given insta@BA/HR°: For QL1, select trips fronSHcar , then units from
SHuni t using the B-tree indexes, joins units wigh 1, selecting TripUnits present at an query
instant and evaluate the temporal functi@BA/HR®: For QL1, select trips fromSHcar and
join with QL1, selecting pairs whose query instant is contained by theDeitime summary (but
as the summary is for the complete journey, this is alwaysctse). Then fetch all units from
SHuni t to refine the temporal containment and evaluate the temjbamnation. TBA/CR: For
QL1 retrieve all Moids fromMCcar using a B-tree index, then retrieve all TripUnits belonging
to each found Moid fronMCt r i p using a B-tree index. Join with all instants fragh1, where
the TripUnit is present at the given instamBA/UR:For QL1 retrieve all Triplds fromMJcar
and then all TripUnits belonging to the according Tripldetfbtimes using B-tree indexes). Join
with all instants fromQL1, where the TripUnit is present at the given instaFBA/HR°: For
QL1 select the Moids fromvHcar , then retrieve all according Triplds froivHt r i p and finally
the TripUnits fromMHuni t using the three according B-trees. Then join with all insgdrom
Q.1, where the TripUnit is present at the given instafBA/HR®: For QL1 select all Moids
from MHcar and get all according trips descriptions fravtt r i p using two B-trees. Then
join with the instants fromQL1 selecting Triplds whose TripDeftime contains the givenrgue
instant. Retrieve the TripUnits belonging to the remainimgplds using a B-tree and restrict to
those tuples, where the TripUnit is present at the quenamdthis is necessary as a trip within
IVHt r i p theoretically may contain definition gaps).

Q3 shows some interesting results. First, it is simple toeustdnd, that the CR is superior to
the UR and HR, as for each given licence, one just extractsdtig position at each of the query
instants. Second, as basically the same access sequestél(fthen time) is also used for the
UR and HR, also the superiority of the ID/TMP to the SPTMP isacl Third, using summary
fields is good for all HR-variants except the OBA/HR, where pirefiltering adds complexity,
but does not drop any candidates (because prefiltering @yalwositive).

2) Q6: The plans used for this unbounded spatio-temporal joinygwéh unknown identities
and without aggregation ar@BA/CR:Select trucks fronSCcar , selfjoin if minimum distance
ever becomesc10m. OBA/UR: Create a materialized view with all trucks’ JourneyUnitsnfr
SUcar . Create a spatio-temporal index (3D R-Tree) for the viewhvieys buffered by 5m
in both spatial dimensions. Do a spatial selfjoin on this fe€eT selecting pairs of units from
different trucks and that getting nearer than 10m. Remoy#ichtes.OBA/HR: Select trucks
from SHcar , retrieve according units frorBUuni t using the moid B-tree. Join with all units
that intersect with their distance-buffered MBR using thpat®-temporal index. Drop pairs
of units belonging to the same truck, evaluate the spatigteal condition and drop pairs
with non-truck join partnersOBA/HR®: Select trucks fromSHcar , use the spatio-temporal
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index for a distance-buffered self-join on the MBR sumngridtering pairs of different trucks.
Retrieve units for the first and second truck truck fr&@uni t, using the moid index. Do a
distance-buffered spatial join between them and evallespatio-temporal condition. Remove
dublicates. TBA/CR: Select trucks fromMCcar , retrieve all their trips fromMCt ri p and do a
buffered spatial selfjoin select pairs that have diffeler@nces and whose trips come closer than
10m and remove duplicate¥BA/UR: Select all trucks fromMJcar and retrieve the according
TripUnits from MJuni t using a B-tree, store them as a materialized view. Createatiosp
temporal index (3D R-Tree) with keys buffered by 5m in botlatsgd dimensions. Do a spatial
selfjoin on this R-Tree, filter pairs of units, that have éiffnt moids and belong to different
trucks and ever get nearer than 10m. Finally, remove dupbcdaBA/HR’: An R-tree-indexed
relation with distance-buffered MBRs of all trucks’ unitsséreated which is used to evaluate a
spatial selfjoin as a prefilter. Then the spatio-temporaldétion is applied and duplicate results
are removedTBA/HR®: Create a relation with the extended TripMBRs for all trucksps.
Apply a selfjoin to find all trip pairs with different Moids king overlapping distance-buffered
TripMBRs. Then, join in the units for each pair of trips usitig B-tree index. Filter the tuples
having overlapping buffered MBRs and the evaluate the sgiathporal predicate. Remove all
duplicate results.

Q6 strongly benefits the TBA/CR (small product size for s@ffj short mpoint values for
parallel scan), and the OBA/UR (high selectivity for the t&daselfjoin). TBA is superior to
OBA (single trips can be retrieved instead of the complettolny of an object, reducing the
cardinality of intermediate results by orders of magnijudéaybe surprisingly, the clustering
schema clearly is the dominating factor in the TBA, ID/TMRngesuperior to SPTMP (because
unit access is always ordered by Moid (Tripld)).

3) Q9: This is a temporal range query for unknown objects using aregmtion.OBA/CR:
Create the product ddCcar and QP. Extend each tuple with the travelled distance of Journey
restricted to the query period. Group by query period toaettthe maximum travelled distance.
OBA/UR:Retrieve all tuples fronSUcar whose JourneyUnit is present at a query period from
QP using the temporal R-tree index. Extend each tuple with ¢ngth of JourneyUnit restricted
to the query period. Group by Moid sum up the total travellesfashce for each vehicle. Finally,
group by query period to extract the maximum total dista@®A/HR®: Use the temporal index
to retrieve all units fromSHuni t present at a given Period fro@P. Restrict the units to the
query period and group by Moid and query period to calculatettavelled distance for each
vehicle and period. After that, grouping is used to seleettfaximum travelled distance for each
period. OBA/HR: Join QP with all cars fromSHcar selecting pairs where the JourneyDeftime
summary field intersects the query period. Then load thenpuunits using the Moid B-tree
from SHuni t . Apply the refined temporal condition, restrict the unitshe query periods and
sum up the total length for each combination of query peridl lsloid. Group by query period
to extract the maximum valuelBA/CR: For each query period fror@P load all trips from
Mt ri p, whose deftime intersect the query period (using the teaipadex). Calculate the
length of the Trip restricted to the query period. Group byid/to sum up the total travelled
distance for each vehicle. The group by query periods taekthe maximum travelled distance.
TBA/UR:For each query period fror@P load all units fromMJuni t , whose deftime intersect
the query period (using the temporal index). Calculate #mgth of the TripUnit restricted to
the query period. Group by Moid to sum up the total length fachevehicle. Group by query
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period to extract the maximum travelled distant&A/HR’: For each query period fror@QP
load all trips fromMCt r i p, whose deftime intersect the query period (using the teaipodex).
Calculate the length of the Trip restricted to the query quriGroup by Moid to sum up the
total travelled distance for each vehicle. The group by yyeriods to extract the maximum
travelled distanceTBA/UR:For each query period fro@P load all units fromvVHuni t , whose
deftime intersect the query period (using the temporabihdealculate the length of the TripUnit
restricted to the query period. Group by TID to sum up thel tietagth for each trip. Retrieve
the trip tuple fromMVHt ri p “containing” the grouped units dereferencing the TID li@doup
by Moid to calculate the total length for each vehicle. Grdaypquery period to extract the
maximum travelled distancelBA/HR®: For each query period fronQP load all trips from
IVHt r i p, whose deftime intersect the query period (using the teaipodex). Using the Tripid
B-tree index, load all according units froktHuni t using the Tripld B-tree. Calculate the length
of the TripUnit restricted to the query period. Group by Maalsum up the total length for
each vehicle. Group by query period to extract the maximwawvelted distance.

The query clearly favours the OBA/CR, because during quesggssing, cardinalities remain
small and the temporal restrictions are fast and easy toomerfOnly a single grouping is
required to get the result. All other variants are more thatintes slower. The second rank
is for the TBA/HR? with IDTMP clustering, where candidate trips can be selbdsst using
the TripDeftime summary. Then, the unit data is accessedreddby Tripid and time, perfectly
matching the clustering schema. Using SPTMP more than deuhk responce time, This also
holds for the remaining TBA variants. While still existenle benefits of using the Deftime
summary becomes much smaller for OBA, since the definitiore tsummary field is more
accurate for single trips. For the OBA/UR and OBA/HRariants, the SPTMP clustering is
better than the ID/TMP due to the access pattern createdebkesult sequence returned by the
temporal index, which does not reflect the object identity.

VIII. CONCLUSIONS ANDRESEARCHPERSPECTIVES

We have proposed three different representations forngtdime-sliced moving object data.
Regarding queries and general settings for a database aiidatipn domain, we analyzed
the factors having impact on their query and space perfocmaand using the BerlinMOD/R
benchmark, we formulated expected differences betweemethresentations. We implemented
data types and algorithms required to create and evaluatB¢hinMOD data for each of the
representations in theESBONDO extensible DBMS and evaluated all models in this concrete
database system.

As expected, the UR and HR showed to have some advantagesimitthe point and range
gueries, where no further processing is required after ¢éecgon (Q11-15). For queries con-
sidering the complete history of a moving object (Q5-6, Q8#%8 CR is the better choice.

In the comparison of the UR and HR, the summary fields withenHiR® have proved to be
only of marginal use. They are only useful within queries Eying very rough selections like
“Was objectX present at instant’ (Q3), “Which objects were present between instant® ¢,”,
or “Which objects ever moved within ardd&, where they can only be used as an initial filtering
step. This seems to be more useful in the according TBA guénen in the corresponding OBA
queries. Otherwise, it is more convenient to directly userttore fine grained spatial, temporal
or spatio-temporal indexes to retrieve candidates witlimipand range queries.
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Query || OBA/CR | OBA/UR™ | OBA/UR*? | OBA/HR®""* | OBA/HR¥** | OBA/HR®*? | OBA/HR®:*7
Q1 0.262 0.001 1.906 0.001 — 0.122 —
Q2 0.027 0.001 38.752 0.004 — 0.004 —
Qs 1.285 0.899 7.913 0.901 4.915 22.256 5.540
Q4 34.587 0.239 7.437 0.280 — 16.119 —
Q5 5.090 13.488 53.652 9.787 — 6.851 —
Q6 31.506 38.149 58.402 132.517 4244.040 118.437 4403.280
Q7 38.236 1.818 2.572 0.992 — 0.990 —
Q8 0.453 2.263 24.823 2.244 6.803 2.318 7.446
@0.05 || Q9 189.092| 1014.490 1077.650 1524.180 3867.880 1546.830 4052.970
Q10 213.984 35.522 29.817 37.401 — 41.392 —
Q11 1.347 0.888 0.580 0.455 — 0.843 —
Q12f 0.710 0.079 0.069 0.051 — 0.051 —
Q13 29.304 42.408 38.900 37.392 — 40.272 —
Q14 0.645 0.900 0.630 0.848 — 0.900 —
Q15 2.446 1.679 1.583 1.816 — 1.534 —
Q16 42.110 250.423 140.360 244.644 98.393 221.559 181.749
Q17 2.675 18.330 7.824 30.684 — 21.727 —
Q1 0.190 4.885 4.074 0.103 — 0.106 —
Q2 0.004 141.508 194.426 0.005 — 0.005 —
Q3 2.377 3.197 25.212 3.452 13.127 77.717 13.793
Q4 163.173 61.755 26.465 105.537 — 53.633 —
Q5 7.250 24.320 100.302 21.172 — 20.678 —
Q6 220.035 196.260 220.671 701.332 57082.800 679.447 57645.500
Q7 201.235 109.870 50.657 145.098 — 69.025 —
Q8 0.711 5.796 74.813 4.497 18.129 5.343 78.907
@0.2 Q9 450.832| 18955.500| 12064.000 15456.300 16132.400 11704.100 19133.800
' Q10 1264.260 160.557 216.539 174.406 — 232.595 —
Q11 4.010 1.412 1.253 1.390 — 1.290 —
Q12 35.965 13.289 5.800 19.775 — 7.682 —
QL 4515 4.756 — 4.671 — — —
Q13 60.725 126.367 94.153 146.240 — 97.531 —
Q14 2.045 4.072 5.884 3.605 — 3.401 —
Q15 24.988 18.313 14.506 19.996 — 10.586 —
Qle6 65.539 513.499 328.596 520.173 193.745 411.003 440.091
Q17 46.104 91.857 13.317 133.918 — 92.517 92.517
Q1 0.187 6.840 7.469 0.110 — 0.307 —
Q2 0.014 793.578 990.027 0.009 — 0.009 —
Q3 4.132 6.158 221.999 6.657 26.925 228.287 28.847
Q4 1540.350 401.612 190.306 421.459 — 177.656 —
Q5 14.950 63.320 574.382 56.889 — 485.887 —
Q6 1892.430 819.940 825.850 6102.880| 1183340.000 6012.200| 1249690.000
Q7 4293.671 442.659 215.382 899.849 — 333.711 —
Q8 5.314 9.603 226.742 8.246 35.620 14.190 230.862
@1.0 || Q9 2174.680| 85226.900| 55128.100| 118095.000 76242.100 51634.500| 183316.000
Q10 8871.060 714.355 882.736 881.063 — 848.341 —
Q11 10.538 3.183 3.253 3.122 — 3.163 —
Q12 906.701 62.633 28.775 125.353 — 47.576 —
Q13 356.500 144.867 89.181 200.313 — 76.835 —
Q14 13.604 7.738 11.987 8.332 — 6.622 —
Q15 253.536 37.465 17.150 58.318 — 16.524 —
Qle 59.455 719.583 606.589 733.218 385.471 206.785 869.483
Q17 1539.700 413.274 203.257 882.076 — 313.049 —
TABLE VIII

OBSERVEDRESULTS FORBERLINMOD OBA-QUERIES USINGSECONDC: TOTAL RESPONSETIMES [SE(]

: Q12 was run using a wrong query translatibnTherefore, Q12 was reevaluated using corrected traosa@0.2 and ruling
out cache effects.
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Query | TBA/ICR | TBAJUR™ | TBAJUR® | TBA/HR®™@ | TBA/HR® | TBA/HRC>? | TBA/HR®*?
Q1 0.046 0.186 0.150 0.081 — 0.089 -
Q2 0.003 0.047 0.034 0.004 - 0.004 -
Q3 0.327 1.725 65.319 5.595 1.197 76.122 4.227
Q4 57.370 28.338 4.307 30.996 - 4.940 =
Q5 4314 | 5117.194| 5306.014 1680.635 - 1855.058 1855.058
Q6 4.028 28.616 | 144.718 33.909 66.540 200.463 68.227
Q7 24.332 3.436 2.603 4.744 - 3.180 =
Q8 0.349 6.397 8.592 6.804 789.272 9.092 1.422
@0.05 || Q9 411.694| 4849.780| 5138.690 1040.500 789.272 1196.930 1051.900
Q10 51.171 31.166 32.076 24156 — 24810 =
Q11 0.508 1.207 1.105 0.739 — 0.851 -
Q12 0.124 0.090 0.098 0.111 - 0.116 -
Q13 13.626 53.317 45301 45931 p 40.192 -
Q14 0.246 0.847 0.704 1.246 - 0.122 -
Q15 1.550 2.108 1.587 1.658 — 1.744 -
Q16 4697 160.765| 243.615 23.806 7271 20.143 8.018
Q17 1.444 21.603 5.632 2.388 - 5.349 .
Q1 0.079 0.394 0.369 0.082 — 0.077 —
Q2 0.003 0.215 0.168 0.005 - 0.005 -
Q3 0.486 3.485|  347.377 14.619 2.273 372.418 17.100
Q4 267.167| 109.938 10.570 118.496 - 11.718 =
Q5 6.561 | 27580.610| 28138.400 5188.582 — 6083.815 -
Q6 6.464 99.577| 951.223 118.378 280.166 1169.331 984.615
Q7 104.564| 104.432 14.861 120.182 - 17.099 =
Q8 0.462 16.564 |  353.958 17.988 5.392 108.600 120.058
@02 |2 2921.800| 8976.480| 15407.900| 18876.000 2042.880| 50984.200|  43824.200
“ Q10 482.898 86.946| 161.593 74452 — 417.820 =
Q11 0.389 1.421 1.130 1.069 - 1.303 -
Q12 0.153 0.116 0.136 0.135 - 0.160 -
Q1 4685 4435 — 4411 pu — —
Q13 54.636|  150.869 88.704 131.321 - 92.782 -
Q14 0.925 4519 6.079 4.460 — 3.737 -
Q15 27.672 21.540 5.825 23.915 = 8.143 =
Q16 6.547 | 441.481| 572.390 46.820 14.709 51.617 20.222
Q17 128.523|  102.351 4.044 110.043 — 11.807 -
Q1 0.097 1.181 1.667 0.200 — 0.140 =
Q2 0.005 1.160 0.724 0.008 — 0.008 -
Q3 0.954 6.375| 1313.900 28.109 3.177 1281.970 26.258
Q4 2230.440|  459.191 25.071 435.355 — 31.176 =
Q5 10.091 | 86319.730| 88602.890 7303.940 7303.940 9675.540 -
Q6 23.815| 374.373| 9700.021 454.592 2140.877 8849.633|  53314.719
Q7 2236.707| 475536 45178 464588 — 59.698 =
Q8 2.198 38.937| 1352.870 34.920 5.416 931.084 267.802
@1.0 || Q9 15012.300| 26656.700| 70687.700| 82092.600| 13998.700| 427516.000| 291820.000
Q10 3983.280| 741.830| 2220.020 708.417 = 2120.840 =
Q11 3.550 2.977 3.580 3.127 — 3.003 -
Q12 0.172 0.167 0.161 0.166 — 0.196 -
Q13 166.185| 160.501| 123.163 140.526 - 92.806 =
Q14 4.425 7.619 6.609 7.585 — 5.605 -
Q15 108.037 46.862 18.632 49.670 - 16.011 -
Q16 8.095| 1067.479| 1089.416 83.854 17.746 89.493 24.300
Q17 2035.960|  467.890 39.538 435.972 — 33.767 -
TABLE IX

OBSERVEDRESULTS FORBERLINMOD TBA-QUERIES USINGSECONDC: TOTAL RESPONSETIMES [SEC]

- Q12 was run using a wrong query translatibnTherefore, Q12 was reevaluated using corrected traost@0.2 and ruling
out cache effects.
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We also evaluated the impact of using different clustericitesnas for the unit stores required
by the UR and HR. Both examined variants showed to have tloaivaih: If standard predicates
dominate the queries, the ID/TMP should be preferred, fatisgemporal queries, the SPTMP
clustering leads to a significantly increased query perémce.

One aspect of future work may aim at identifying the impacadditional clustering schemas
for the unit relations. Other aspects are about how to iategthe presented results into query
optimization. As the queries for the UR and especially the t¢Bresentations showed to be
quite complex, translation rules need to be defined. A chgite optimization perspective is
automatic schema migrations in order to migrate the MODeasgmtation schema according to
the observed working sets of queries.
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APPENDIX

We provide the BerlinMOD/R OBA queries as a quick refereradl query texts are available
from [29]. Several relations and attributes have been redafior the sake of disambiguation. We
only list the queries in common English and the SQL-quemegtfe OBA/CR. The SQL-queries
for other representations can be formulated in an analog way

Q1: What are the models of the vehicles with licence plate nusxirem Quer yLi cence?
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SELECT DI STINCT LL.Licence AS Licence, Model FROM dataSCcar, QueryLicence LL
WHERE Licence = LL.Licence;

Q2: How many vehicles exist that are “passenger” cars?
SELECT COUNT(Licence) FROM dataSCcarWwHERE Type = "passenger”;

Q1. What are the models of the vehicles with licence plate nusibflem Quer yLi cence?

SELECT DI STINCT LL.Licence AS Licence, Model FROM dataSCcar, QueryLicence LL
WHERE Licence = LL.Licence;

Q2: How many vehicles exist that are “passenger” cars?
SELECT COUNT(Licence) FROM dataSCcarwWwHERE Type = "passenger”;

Q4: Which licence plate numbers belong to vehicles that havegqubihe points frorQuer yPoi nt s?

SELECT PP.PosAS Pos, C.LicenceAS Licence FROM dataSCcar C, QueryPoints PP
WHERE C.Journey passes PP.Pos;

Q5: What is the minimum distance between places, where a vehiitle a licence from
QueryLi cences1 and a vehicle with a licence froQuer yLi cences2 have been?
SELECT LL1.Licence AS Licencel, LL2.LicenceAS Licence?2 ,

distance(trajectory (V1.Journey),trajectory (V2.Joesn) AS Dist

FROM dataSCcar V1, dataSCcar V2, QuerylLicencesl LL1, Queryhioes2 LL2
WHERE V1. Licence = LL1.LicenceAND V2.Licence = LL2.LicenceAND V1.Licence <> V2.Licence;

Q6: What are the pairs of licence plate numbers of “trucks”, tiete ever been as close as
10m or less to each other?
SELECT V1.Licence AS Licencel, V2.LicenceAS Licence2 FROM dataSCcar V1, dataSCcar V2

WHERE V1.Licence< V2.Licence AND V1.Type = "truck” AND V2.Type = "truck”
AND sometimes (distance (V1.Journey ,V2.Journey¥y 10.0);

Q7: What are the licence plate numbers of the “passenger” catshtive reached the points
from Quer yPoi nt s first of all “passenger* cars during the complete observagieriod?
SELECT PP.PosAS Pos, V1.LicenceAS Licence FROM dataSCcar V1, QueryPoints PP
WHERE V1.Journey passes PP.Pos\D V1.Type = "passenger”

AND inst(initial (V1.Journey at PP.Pos)X= ALL

( SELECT inst(initial(V2.Journey at PP2.Pos)pS FirstTime
FROM dataSCcar V2WHERE V2.Journey passes PP.Pos\D V2.Type = "passenger” );

Q8: What are the overall travelled distances of the vehicles Vicence plate numbers from
Quer yLi cencesl during the periods fronQuer yPeri ods1?

SELECT V1. Licence AS Licence, PP.PeriodAs Period,
length (V1.Journey atperiods PP.Periodp Dist
FROM dataSCcar V1, QueryPeriodsl PP, QuerylLicencesl LL
WHERE V1.Licence = LL.LicenceAND V1.Journey present PP.Period;

Q9: What is the longest distance that was travelled by a vehiglend each of the periods
from Quer yPeri ods?

SELECT PP.PeriodAs Period , MAX(length (V1.Journey atperiods PP)AS Dist
FROM dataSCcar V1, QueryPeriods PBHERE V1.Journey present PP.PerioGROUP BY PP.Period;

Q10: When and where did the vehicles with licence plate numbers fpuer yLi cencesl
meet other vehicles (distanee 3m) and what are the latters’ licences?
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SELECT V1.Licence AS QueryLicence, V2.LicenceAS OtherLicence ,
(V1.Journey atperiods(deftime ((distance (V1.Journey2.¥Yourney)<= 3.0)
at TRUE))) AS Pos

FROM dataSCcar V1, dataSCcar V2, QuerylLicencesl LL

WHERE V1. Licence = LL.LicenceAND V2.Licence<> V1.Licence
AND sometimes (distance (V1.Journey, V2.Journey¥ 3.0);

Q11: Which vehicles passed a point froQuer yPoi nt s1 at one of the instants from
Queryl nstantsl?

SELECT C.Licence AS Licence, PP.Po0sAS Pos, Il.InstantAS Instant
FROM dataSCcar C, QueryPointsl PP, Querylnstantsl Il
WHERE val(C.Journey atinstant Il.Instant) = PP.Pos;

Q12: Which vehicles met at a point fro@uer yPoi nt s1 at an instant fron@Quer yl nst ant s1?
SELECT PP.PosAS Pos, Il.InstantAS Instant, Cl.LicenceAS Licencel, C2.LicenceAS Licence?2
FROM dataSCcar C1, dataSCcar C2, QueryPointsl PP, Querylnstanil
WHERE val(Cl.Journey atinstant Il.Instant) = PP.Pos

AND val (C2.Journey atinstant Il.Instant) = PP.Pos;

Q13: Which vehicles travelled within one of the regions fr@aer yRegi ons1 during the
periods fromQuer yPeri ods1?

SELECT RR.Region AS Region, PP.PeriodAs Period, C.LicenceAS Licence
FROM dataSCcar C, QueryRegionsl RR, QueryPeriodsl PP
WHERE NOT(isempty (((C.Journey atperiods PP.Period) at RR.Region)
Q14: Which vehicles travelled within one of the regions fr@pner yRegi ons1 at one of
the instants fromQuer yl nst ant s1?

SELECT RR.Region AS Region, Il.InstantAS Instant, C.LicenceAS Licence
FROM dataSCcar C, QueryRegionsl RR, Querylnstantsl 1l
WHERE val(C.Journey atinstant Il.Instant) inside RR.Region;

Q15: Which vehicles passed a point frd@uer yPoi nt s1 during a period fronQuer yPer i ods1?

SELECT PO.PosAS Pos, PR.PeriodAsS Period, C.LicenceAS Licence
FROM dataSCcar C, QueryPointsl PO, QueryPeriodsl PR
WHERE NOT(isempty (((C.Journey atperiods PR.Period) at PO.Pos)));

Q16: List the pairs of licences for vehicles, the first froQuer yLi cencesl, the second
from Quer yLi cences2, where the corresponding vehicles are both present withiegen
from Quer yRegi ons1 during a period fromQuer yPeri odl, but do not meet each other
there and then.

SELECT PP.PeriodAs Period, RR.RegionAS Region, Cl.LicenceAS Licencel,
C2.Licence AS Licence?2
FROM dataSCcar C1, dataSCcar C2, QueryRegionsl RR, QueryPedioRP,
QueryLicencesl LL1, QueryLicences2 LL2
WHERE C1.Licence = LL1.LicenceAND C2.Licence = LL2.Licence
AND LL1.Licence <> LL2.Licence AND (Cl.Journey at PP.Period) passes RR.Region
AND (C2.Journey at PP.Period) passes RR.Region
AND isempty((intersection(Cl.Journey, C2.Journey) atparoPP.Period)
at RR.Region);

Q17: Which points fromQuer yPoi nt s have been visited by a maximum number of different
vehicles?

CREATE VI EW PosCountAS SELECT PP.PosAS Pos, COUNT(C.Licence) AS Hits
FROM QueryPoints PP, dataSCcar WHERE C.Journey passes PP.PosROUP BY PP.Pos;
SELECT Pos FROM PosCountAS N WHERE N. Hits = (SELECT MAX(Hits) FROM PosCount);
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