
INFORMATIK 
BERICHTE 

 
357 – 09/2010 

 
 
 
 
 

Assessing Representations for Moving Object 
Histories 

 
 
 

Christian Düntgen, Thomas Behr, Ralf Hartmut Güting 
 
 
 
 
 
 
 

 
 
Fakultät für Mathematik und Informatik 
Postfach 940 
D-58084 Hagen 

 
 



1Assessing Representations for Moving Object
Histories

Christian D̈untgen, Thomas Behr, and Ralf Hartmut Güting

Abstract

This article proposes three different modes for the sliced representation of the histories of moving
objects in databases: the Compact Representation, the UnitRepresentation and the Hybrid Representa-
tion. To this end, unit types are introduced as new DB data types to represent single data slices. The
potential influence of different parameters on the performance of the data models is discussed. Based
upon the BerlinMOD benchmark, the properties of the representations are considered and expectations
for their performance for different categories of queries are formulated. After this, the benchmark is
performed using the three representations, two different semantics and two clustering types for the
sliced data. The observed results are compared with the expectations, and results for selected queries
are discussed. The complete implementation of data types and operators, and all used query plans are
freely available for further studies as algebra modules andquery scripts for the SECONDO DBMS.

Index Terms

H.2.1: Data Models; H2.2.3: Database Semantics; H.2.4, H.2.m: Spatio-temporal Databases, Moving
Objects, Trajectory Databases.

I. INTRODUCTION

Current database systems are able to store large sets of data. Besides standard data, more
complex kinds of data may be stored, e.g. multimedia, spatial or spatio-temporal data. Whereas
storing and efficient access of standard data is well unterstood, this is still a challenge for more
complex data. In the last decade, tracking the location of mobile entities and geo-tagging has
become easy using GPS devices, which still are getting even smaller, cheaper, and more precise.
As a consequence, these devices have become popular and an impetus for the development of
new applications, like location-aware services. Though collecting moving object data has become
easy, its representation and processing in databases is still an open field for research.

Moving objects databases (MODBs) come in two flavors: (i) representing current movements,
e.g. of a fleet of trucks, in real time, supporting questions about current and expected near future
positions, and (ii) representing complete histories of movements, allowing for complex analyses
of movements in the past. In this article, we focus on the second approach and present different
ways of representing the histories of moving object data (MOD). Typical questions that can be
answered using moving object history data are: “Where was object o at time t?”, “When did
objecto have a certain property?”, “Which vehicles have met each other at pointp?”. To answer
them efficiently, we need sophisticated methods to represent and access the histories. Though we
focus on unconstrained linear time-sliced spatio-temporal data, our approach is general enough
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to be applicable also to other kinds of time-sliced data, like constrained moving objects (e.g.
objects moving on a network) and non-linear movements, as well as non-spatial temporal data.

The contributions of this paper are:
• We introduce new respresentations for MOD.
• We introduce unit types as data types in a DBMS, which were regarded as an internal

implementation issue and a formal concept by now.
• We provide a first comprehensive comparison of query processing on different MOD rep-

resentations, which is useful for query optimization.
• We analyse the advantages of so-called summary fields in MOD representations.
• We exemplarily analyse equivalent query plans in order to explain the results.
• We make all query plans available for further analyses and experiments.
The remainder of the paper is organized as follows. After an overview on related work

in Section II, and revisiting a formal data model for representing moving object histories in
Section III, we present our suggested models of representing moving object data in Section IV.
Subsequently, we introduce the BerlinMOD scenario as a benchmarking tool to assess the models
and discuss the possible impact of different parameters on each representations’ advantages and
disadvantages in Section V. After some theoretical calculations on the expected behavior of the
different representations regarding storage requirements and query runtimes, we present some
experimental results in Sections VI and VII and finally conclude the article in Section VIII.

II. RELATED WORK

A literature review by Pelekis et al. gives a good impressionof the historic development of
spatio-temporal data models [1]. First approaches were actually temporal data models applied
to spatial data. They usedsnapshotsto represent complete scenarios of spatial data at certain
temporal instants [2], [3]. Later,timestampingwas used to record discrete changes/events con-
cerning single geometries in databases [4]–[7]: a moving object’s history is stored as a set of
pairs(l, i), each containing an observation instanti and the observationl, which may be a point
or a complex geometry. The main problems with thispoint-location managementcalled model
are, that it only defines discrete observations (interpolation and extrapolation is not possible), a
significant precision/resource problem arises (if many observations are stored), and hence, query
processing becomes inefficient.

The Moving Objects Spatio-Temporal model(MOST) and theFuture Temporal Logic(FTL)
query language aim at modeling and querying moving object data such that questions regarding
the current and (near) future positions of moving objects can be answered; this task is often
calledtracking [8]–[11]. Moving objects are modelled bydynamic attributes, which continuously
change as a function of time. Each function is represented asa point and a motion vector, where
the point represents the object’s last known location and the motion vector its last known direction
and velocity, thus allowing for predictive queries.

The first abstract model to include continuous movement of objects — time dependent ge-
ometries, i.e. geometries described as a function of time — is [12]. It views objects and their
complete history as abstract data types, calling themmoving objects. This has been mapped to
a discrete, implementable model [13]: Asliced representationis used, which decomposes the
continuous changes of moving objects into fragments, that are modelled by “simple” functions.
Finally, the algorithms for the spatio-temporal operations introduced in [14] have been improved
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by adding auxiliarysummary fieldsto the moving data types [15]. The moving object model
allows to represent the complete evolution of a moving object as a single attribute within an
object-relational or other data model. An introduction to this model is given in Section III.

The free and open source extensible DBMS SECONDO [16]–[18] provides a native implemen-
tation of the moving object model and we use it as a platform for the experimental evaluations
presented in this article. Another system implementing themoving objects model is STAU
[19], which extends the commercial Oracle Spatial DBMS withtwo data cartridges; one for
temporal types, a second for moving object data types. HERMES [20]–[22], a descendant of this
prototype, still uses the sliced representation, but allows for using variable simple interpolation
functions (currently: polynomial of first/second degree, square root of polynomial of second
degree, constant function). The used Oracle10g DBMS allowscomplex user-defined types (here:
the moving object data types) to physically represent data of variable size usingnested tables. A
moving object attribute points to a nested table stored in a so-called store table, managed by the
DBMS. The nested table contains a set of units. Each unit is formed by a temporal interval and a
set ofunit functions, e.g. one for each coordinate, each actually consisting of aflag indicating an
interpolation function and a vector of parameters to this function. This general concept is similar
to the storage mechanism provided by SECONDO. One difference is, that SECONDO dynamically
decides whether LOB data are stored within a special store table (called FLOB file) or within the
table file itself. The lastest version of HERMES now capture both, historic and dynamic moving
object queries. HERMES has also been migrated to the PostgreSQL/PostGIS DBMS [23].

Instead of implementing moving objects as data types withina DBMS, they can be concep-
tually modelled by a relation controlled by a spatially extended standard DBMS storing time
slice data as tuples(id, t1, x1, y1, t2, x2, y2), where id identifies a moving object [24]. This is
similar to the Unit Representation we will introduce in Section IV-B. The same holds for the
model proposed in [25], where moving objects trajectories are represented as sequences of tuples
(i, (x, y), t, b), x andy being coordinates of thei-th waypoint reached by the object at instantt.
The flagb indicates, whether waypointsi andi+1 are connected (forming a well-defined piece
of the trajectory). Otherwise, a definition gap exists, or the following waypoint starts a new trip.

In most moving objects databases (also in SECONDO), movements are usually supposed to
be piecewise linear (i.e. linear interpolation between sample data points is used to reconstruct
the temporal evolution). The objective is a reduction of thecomplexity for spatio-temporal
predicate and operator implementations. Becker et al. [26]describe an approach to use non-
linear approximation functions (e.g. B-splines) for moving object data. Experimental results
show, that using B-slines increases the cost for evaluationof temporal functions by 30–50%,
compared to linear interpolation. Similar methods have been proposed in order to gain more
accurate trajectories and to compress the data [27].

In [28] the authors deal with the question how to represent data from multiple sensors: inserting
the readings of all sensors into a common single table, or into one table per sensor, one table
per observation instant, or maintaining a single table withone column per sensor, where tuples
give the readings for all sensors at a time. In an experimental performance study regarding four
queries analysing RoboCUP sensor data (ball and players’ position and heading), they showed
that there is no general best choice. This work becomes relevant, if several moving object
trajectories (readings of different sensors) should be managed and queried together in a database
(e.g. several moving object data type attributes per tuple).
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To assess the performance of data representations, benchmarks are appropriate tools. Most
benchmarks proposed for moving objects databases in the literature are insufficient to the
requirement of this study. Arguments and a discussion of their usability are given in [29]. The
BerlinMOD benchmark proposed in that article focuses on vehicle tracking data and perfectly
fits our needs. Hence, we use this benchmark throughout this article. The BerlinMOD benchmark
supports two different approaches of moving object semantics. The first one, calledobject based
approach(OBA), handles the complete history of a vehicle as a single moving object attribute.
The second,trip based approach(TBA), decomposes each moving object’s journey into a series
of trips with shorter histories. Trips belonging to a given moving object are identified using a
moving object identifier(moid) unique to that object, which may be considered as a system
generated integer attribute. In the TBA, each history (journey) is therefore represented as a set
of Trip attribute values, each being a moving point represented like the complete journey within
the OBA. An introduction to the BerlinMOD scenario is presented in Section V-A.

Though we focus on unconstrained 2D moving objects in this article, it is possible to generalize
our approach and apply it to any other time slicing representation for moving object history data,
e.g. for periodically moving objects [30], semantic trajectories [31], or network constrained
moving objects [32].

III. REVISITING DATA STRUCTURES FORMOD

An abstract data model for representing moving objects has been proposed in [14]. The model
introduces a type constructormoving, that creates types for moving object data when applied
to a base data type, e.g. applying the type constructor to thespatial typepoint , it returns a type
for moving point data:moving(point) = mpoint . There are also other type constructors, like
range to create interval set types from a base type. While the representation of moving point
data is a major contribution of that article, also other kinds of data are covered, e.g. the types
moving(bool ) = mbool , moving(integer) = mint , andmoving(real ) = mreal are defined, which
are capable of storing temporal evolutions of the particular base types.

Based on this abstract data model, a discrete data model has been presented in [13], using a
sliced representationfor the development of a moving object, which is expressed bya set of
units (Figure 1). Each unit describes the behavior of a moving object o for a certain time interval
(ti, tj), ti ≤ tj disjoint from all the other units’ definition time intervals. A “simple” function is
used to approximate the concrete value at each instant of time during that interval. For anint

or bool unit for example, a constant function is applied, for areal unit a quadratic polynomial
function or its square root is used, and for a movingpoint , the function is represented by the
staticpoint values taken at the unit’s starting instantti and ending instanttj . Linear interpolation
is used to evaluate the function between these values for anyinstantt, ti ≤ t ≤ tj .

In this work, we will use a subset of the type system proposed in [13], as shown in Table I.
We use seven kinds of types:BASE types, which represent static simple data (likeinteger , real );
SPATIAL types, representing static 2-dimensional spatial objects(point , points (=multipoint),
line, andregion), and 2/3-dimensional rectangles (rect , rect3 ); TEMPORAL, with typeinstant

to represent single instants of time;RANGE types, providing a collection of disjoint intervals
defined on a base type or temporal type — they correspond to thetypes created using the
range type constructor from [14];INTIME types, representing a concrete value at a certain
temporal instant (an(instant, value) pair); UNIT types, which represent time slices of temporal
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Fig. 1. Sliced Representations of a Moving Real and a Moving Point
Themreal shown in the left figure consists of 8ureal units (time slices). The total definition time is shaded in gray. For instants
outside the shaded area, themreal is undefined. Each unit can be described by a simple function.The right figure depicts an
mpoint consisting of 4upoint units. Here, the lines between the 5 shown points represent the time slices, for which linear
interpolation is used to approximate the object’s trajectory.

BASE = {int , real , string , bool}
SPATIAL = {point , line, region , rectangle2D †, rectangle3D †}
TEMPORAL = {instant}
RANGE = {rint , rreal , rbool , rinstant†}
INTIME = {iint , ireal , ibool , ipoint , iregion†}
UNIT = {uint , ureal , ubool , upoint , uregion}
MOVING = {mint , mreal , mbool , mpoint , mregion†}

TABLE I
TYPE SYSTEM

†InSECONDO, some types have different names:periods instead ofrinstant , rect instead ofrectangle2D , rect3 instead of
rectangle3D , intimeregion instead ofiregion, movingregion instead ofmregion .

developments, as described in [13]; andMOVING types, which describe the complete history of
a moving object by a collection of temporally disjoint unitsand correspond to the types created
by themoving type constructor in [14];

Besides data types, we also require a set of operations on these types. Table II presents the
subset of the operators introduced in [14] that is used within the BerlinMOD queries.

IV. M ODELS

In this section, we address three different ways of representing the histories of moving object
data (MOD) using unit types as primitives of asliced representation, as introduced in Section
III. To do so, we start using unit types as standalone data types. This is new, since in [14] unit
types are not noted explicitly (though there is a single operator, decompose, that returns a
set of “maximal continuous parts of temporal data types”), and in [13] the types introduced for
kind UNIT are just used to formally define and implement the more complex MOVING types.
However, values ofUNIT types are conceptually capable to store simple temporal facts (uint ,
ubool , ustring), functions (ureal ), and movements (upoint , uregion). We utilize this ability and
assume that all unit types can be used as attribute types within relations managed by a DBMS.
For our experiments, we have extended the SECONDO DBMS with all the unit types from Table I
and operations on unit types according to Table II.1 Hence, all requirements for using SECONDO

during the experimental evaluations in Sections VI and VII are fulfilled.

1Implemented within the “TemporalUnitAlgebra” and the “TemporalAlgebra”.
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atinstant restrict a mT/ uT to a certain instant
atperiods restrict a mT/ uT to a certain rinstant
at restrict a mT/ uT to the time intervals where it takes a certain T value
intersection for a pair of values of compatible types, compute the intersection
inside test, if the first value is contained in the second one
intersects test, whether two values of compatible types intersect
trajectory compute the 2D-spatial projection of a mT/ uT
deftime return the definition time of a mT/ uT as an rinstant
speed return the speed of an mpoint/ upoint as an mreal/ ureal
distance compute the distance of two spatial objects
inst return an iT value’s instant
val return an iT values’s value of type T
initial for a mT/ uT, return the iT corresponding to the initial instant
final for a mT/ uT, return the iT corresponding to the final instant

TABLE II
A SELECTION OFOPERATIONS AS USED BYBERLINMOD

T ∈ BASE ∪ SPATIAL. rT, iT, mT and uT stand for according range, intime,moving, resp. unit types based on type T. The
definition of “compatible” relies on common sense. Where applicable, operators will return moving types (e.g.inside: mpoint

× region → mbool ). Several operators (e.g.at, atperiods, intersection) return a set of units when applied to an unit type.
A more detailed description of these operators and a formal definition of their semantics can be found in [14].

(a) (b) (c)

Fig. 2. BerlinMOD conceptual database schemas: Compact (a), Unit (b), and Hybrid Representation (c).

A. Compact Representation

The compact representation (CR) is the direct application of the MOD model from Section
III: The complete history of a moving object is encapsulatedby an abstract data type. Logically,
all units of an object’s history are organized into an array,that is embedded into the object
representation. Hence, such a moving object can be used as anatomic attribute value within a
tuple. Physically, the array of units is stored in a distinctfile (LOB file) and only reference to
that file and some summary information is kept within the object itself. Internally, units of each
moving object are sorted by their definition time interval and hence allow for efficient access
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methods, like binary search. Additional aggregated information is stored in so-calledsummary
fields: the number of components (units), definition time (interval from the first unit’s beginning
instant to the last unit’s ending instant), duration (sum ofinterval lengths, where the object is
defined), and further type specific summary information, as minimum and maximum value (for
mint, mreal, mbool), or MBR (for the spatio-temporal typesmpoint , mregion). The summary
fields are directly kept within a moving object’s root record(i.e. they are embedded into the tuple
representation and need not to be loaded explicitly). They can be used in a preceding filtering
step to select candidates for expensive geometric tests in selections and joins, which would
otherwise require the object’s units to be loaded from theirexternal file. We assume, that at least
the number of components, and for spatio-temporal moving data, the object’s spatio-temporal
MBR are saved as summary fields, which is the case in SECONDO.

Throughout this article, we will use both the moving object semantics (OBA and TBA) Berlin-
MOD [29] supports. Representing the OBA using the CR (abbreviated OBA/CR) is straightfor-
ward: Since complete histories of moving object data can be stored within single attributes,
there is only a single relationdataSCcar containing one tuple per vehicle. The tuple contains
a key attributelicence, some more attributes, plus one attribute of typempoint calledJourney ,
that contains the complete movement history for that object. To capture the TBA semantics in
the CR (TBA/CR), each history (journey) is represented as a set of Trip values, each being
represented in a compact manner as a moving point. These history data are stored within a
trip relation dataMCtrip, whereas the attributes regarding the complete object are stored
within a root relationdataMCcar. Figure 2 (a) shows what the main data objects used in this
benchmark look like, when using the CR to represent the MOD generated by BerlinMOD for
both, the OBA and TBA. Note the 1:n relation between the root relationdataMCcar and the
trip relationdataMCtrip; the additional attributeMoid identifies all tuples containing history
data for trips of the same moving object and can be used to create an index. There is also a
functional dependencyLicence → Moid .

B. Unit Representation

In theunit representation (UR), every moving object is represented by a set of tuples within
a relation. In the OBA/UR, each tuple contains a single unit of a moving object (i.e. series
of single units rather than complete histories are stored within the relation), amoving object
identifier (moid, a key unique to the individual object, to which the unit belongs), and copies of
all other attributes belonging to the moving object. This means, that all attributes get replicated
once per unit. The moids allow to select the units forming thehistory of a certain moving
object. If more than a single moving type attribute is used, the units need to be modified to
ensure that the units contained by a tuple all have exactly the same definition time interval. This
again increases the storage requirements, since original units are split, whenever definition time
intervals of two different attributes’ units overlap. Therefore, we restrict UR relations to contain
only one moving object. Summary fields are not supported by this representation model.

For the OBA, only a single relationdataSUcar is used. Compared with the OBA/CR,
the added attributeMoid is used to identify all units belonging to the history of the same
moving object. In the TBA/UR, each vehicle’s journey is subdivided into several trips, each
of which is handled as an own moving object. The units are keptwithin a separateunit
relation dataMUunit, whereas the root records for each trip are kept within theroot relation
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dataMUcar. The moid groups the tuples within the root relation belonging to a single vehicle.
An additional unique trip identifierTripid is added to all tuples within both relations. It connects
each tuple of the root relation with the set of tuples within the unit relation whose units form the
trip’s history. The TBA/UR looks very similar to the TBA/CR schema; just instead ofmpoint

values,upoint values are stored, and — as the moid is used to group trips intojourneys —
an identifierTripid is used to form trips from sets of units. The main data objectsfor the
BerlinMOD benchmark using the UR are shown in Figure 2 (b).

C. Hybrid Representation

In the hybrid representation (HR), within an original tuple, every single moving object gets
replaced by a uniquemoving object identifier(moid). Thus, we receive theroot relation. As the
moid is unique to every single moving object, it can be used toidentify a moving object’s units,
which are stored within so-calledunit relations(one per column/attribute containing a moving
object), whose tuples contain each a unit of a moving object together with its moid and the
tuple id (tid) of the referencing tuple in the root relation. This tid is a system-generated tuple
identifier, that allows to access a tuple within the root relation in a direct and quick manner,
i.e. without using an index. In comparison with the UR, we thus avoid the replication of non-
moving attributes. Also, the HR doesn’t suffer from the inflation inflicted by splitting units as
observed with the UR when more than a single moving object is contained in a single tuple of
the main relation. However, handling the additional unit relations increases the complexity of
managing stored moving objects. While the moid can be used tofind the related units in the unit
relations, the tids can be used to identify the referring tuple within the main relation (i.e. the
tuple “containing” the unit). In an attempt to save administrative overhead, one could use the
main relation tids as moids of each contained moving object and omit the tid columns within
the unit relation, but this would increase the complexity when creating result relations.

Modelling the OBA semantics, the HR database schema looks very similar to that for OBA/UR:
The root relationdataSHcar contains one tuple per vehicle.Moid is used to reference tuples
in the unit relation dataSHunit that contain units forming the vehicle’s MOD history. The
tuple identifierTID points from each unit tuple back to the according root tuple.This allows
to quickly access the root tuple without using an index. The HR for trip-based semantics is
clearly the most complex of the representations proposed here, as is shown by Figure 2 (c). The
TBA/HR schema has three levels. The uppermostroot relationdataHMcar contains one tuple
per vehicle. The intermediatetrip relation dataMHtrip contains one tuple per trip belonging to
the history of a vehicle from the root relation.Moid is used to join these data. The lowermostunit
relation dataMHunit contains the units forming all histories of vehicles fromdataMHcar.
The units are grouped byTripid to form trips. The tuple identifierTID refers from each unit
tuple directly to its “containing” tuple indataMHtrip.

For the HR, we further propose two variants regarding the presence of summary fields:
1) With Summary Fields (HR⊕): In this variant of the hybrid representation, summary infor-

mation is kept as additional attributes within the tuples ofthe root relation (OBA), resp. the trip
relation (TBA).

2) Without Summary Fields (HR⊖): Here, we abandon the information stored in summary
fields. This variant we expect to benefit in the case of updates, as no summary data is needed
to be computed on occasion of an update.
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In Figure 2 (c), both HR variants are displayed all at once. For the variant HR⊖, we just
drop the summary fieldsTripNoUnit , TripDeftime, andTripMBR from relationdataSHcar,
resp.dataMHtrip. In the figures representing these relations, the summary fields have been
separated from the other attributes by a dotted line.

V. EVALUATION DATABASE

In the following sections, we will evaluate the performanceof the proposed data models from
section IV. We will use the BerlinMOD/R benchmark [29] for a standardized comparison of the
results. We now briefly describe the BerlinMOD/R benchmark and motivate our choice.

A. Scenario

We assume, that a MOD database (in its compact representation) should contain at least
one relation with a large cardinality (≥ 1000)2, containing exactly one attribute of a moving
spatial type per tuple. The moving objects stored should have a long history in average, i.e. their
history consists of a large number of units. At scale factor 1.0, the BerlinMOD scenario tracks
the motions of 2,000 vehicles within Berlin simulated for a period of 28 days.3 80% of these cars
are “passenger cars”, 10% are “trucks” and the remaining 10%“buses”. For each car, commuting
trips between the owner’s home and place of work are created,and additional “leisure time”
trips are added. The simulation captures a vehicle’s positions whenever its velocity or direction
changes significantly, every 2 seconds otherwise. With these assumptions, we get an average of
about 963 units for each car and day, or 53,926,394 units in total at scalefactor 1.0.

B. Database Schema

The original BerlinMOD schema is adapted to fit our needs, resulting in the following database
schema for the CR:

OBA only:
dataSCcar: relation{Licence: string , Model : string , Type: string, Journey : mpoint}
— relation of vehicle descriptions (car type, car model and licence plate number),
including the complete position history as a singlempoint value per vehicle, where
Licence is a key.

TBA only:
dataMCcar: relation{Licence: string , Model : string, Type: string, Moid : int} —
relation of all vehicle descriptions (without position history).
dataMCtrip: relation{Moid : string , Trip: mpoint} — relation containing all ve-
hicles’ movements and pauses as single trips (mpoint values).
Here,{Moid} is a key/ foreign key fordataMCcar and{Moid , Trip} is a key for
dataMCtrip.

2While 1000 is not considered to be a “large number” of tuples in a database system, we want to point out that we are talking
about 1000 tuples, each containing a huge amount of data whenit comes to long-term observation of moving objects. Each
tuple may then contain tens of thousands of single observations.

3We will in the sequel refer to different scale factors by the notion of “@SF ”, where SF is the scale factor.
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Common Database Objects (OBA and TBA): A set of relations is used to control the queries
by providing query points, periods, licences and regions. All these relations start with the prefix
“Query”.

This base schema can directly be used for the CR, whose main relations for the MOD are
visualized in Figure 2 (a). From this basic database schema,the database schemas for the UR
and HR can easily be deduced, having main relations according to Figure 2 (b) and (c).

C. Parameters

For setting up the experimental evaluation of different data representations, the analysis of
variables influencing the performance is a preliminary step. It is important for choosing a realistic
benchmarking workload and for the interpretation of the results. In this subsection we consider
which factors should have what kind of impact on the performance of the described data models.
We will also show, how these parameters are set up in the BerlinMOD benchmark.

1) Semantics of Moving Object Data:Moving Object Data for vehicles can be viewed in
two different ways: The object-based (OBA), and the trip-based (TBA) approach. The first one
keeps the complete history of the object together. The second approach rather observes a vehicle’s
single trips, which are kept separately in the database, together with a key (moid) that allows one
to select all trips belonging to a single vehicle. Both viewshave advantages and disadvantages.
While in the OBA semantics are always clear, in the TBA one needs to specify how to distinguish
between subsequent “trips”. The TBA applies some form of trajectory splitting [33] and thus
reduces the size of MBRs to index and therefore also index selectivities. When interpreting
the three presented models (CR, UR, HR) to be some kind of “archetypes” of representing
MOD, the TBA diminishes the characteristics of these three models. E.g. in the TBA additional
indexes to lookup all trips belonging to a single vehicle arerequired, because original keys (like
“Licence” in BerlinMOD) loose their key property. The TBA/CR therefore looses its object
semantic property, becoming more similar to the OBA/HR. As BerlinMOD provides data and
queries for both, OBA and TBA, and since experiments [29] discovered several advantages of
the TBA/CR regarding certain types of queries, we will coverboth semantics in our experiments.

2) Amount of Objects:As many reasonable MOD applications will track data of many moving
objects, to demonstrate the gain in performance achieved byusing index structures, and to justify
for using indexes on moid or primary keys, we choose to observe 447, 894, and 2,000 objects
from the BerlinMOD data (at scale factors 0.05, 0.2, and 1.0)as “large” numbers of recorded
object histories for the comparison of MOD representations.

3) Length of Histories:At scale factor 1.0, the BerlinMOD benchmark generates objects
having an average length of 26,963 units per history. With that amount, we hope to avoid
discrimination of any of the representations examined: Choosing too short histories results in
an approximation of the CR to the UR; too large lengths will result in a growth of overhead
from replicated data especially within the UR, and overly increase the answer times for spatial
access to MOD in the CR. One could argue, that MOD should be compacted to contain only
“interesting” data and therefore histories be shorter (e.g. only several 10 or 100 units, semantic
trajectories [31]). But that would require a-priori knowledge of the meaning of “interesting”.
However, our model inherently compacts stored data, as “simple” changes (constant values,
linear movements, etc.) can be expressed within a single unit, even for long periods of time.
In BerlinMOD, the lengthl of generated MOD histories depends on the scale factorSF , as
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l ∼
√

SF . We will use scale factors 0.05, 0.2, and 1.0 in our experiments. It is important to
mention that the scale factor influences the amount of trips generated, not the average number
of units per trip. This results in larger sizes of attributeJourney within OBA/CR, but in higher
cardinalities for all other representations.

4) Index Structures:In our experiments, we will use R-Trees [34] to index the MOD —
2D-R-Trees for spatial and temporal indexes, and 3D-R-Trees for spatio-temporal indexes. This
choice is due to the availability of index structures in our database platform, namely SECONDO

[16], [17]. Of course, there exist various specialized structures for indexing trajectories (e.g. the
TB-tree [35]). But as our goal is to comparegeneralproperties of the three MOD representations,
we think, that results can be transferred to more convenientindex structures later on. To allow for
fast access to stored MOD, we assume that for each representation model the following indexes
are available for all spatial, temporal, and spatio-temporal attributes within the test databases:
(a) Object Index (B-Tree): Key ∈ {Moid ,Tripid ,Licence} — provide quick access to tuples
holding the object data (CR), resp. units from the object’s history (UR, HR).
(b) Spatio-Temporal Index (3D-R-tree): Keys are 3D-MBRs of the indexed attribute — allows
quick access to all tuples containing objects/ units whose 3D-MBR intersects a 3D-query window.
For the CR,multiple entry indexing[36] is applied, i.e for each tuple within relationdataSCcar,
its mpoint Journey is decomposed into all contained unitsu1, · · · , un, and for each unitui a
pair (MBR(ui), tid), wheretid is the tuple identifier of the according tuple indataSCcar, is
inserted into the R-Tree.4

(c) Temporal Index (2D-R-Tree): Keys are 2D-MBRs created from the indexed attribute’s
deftime — gives quick access to all tuples containing objects/ units whose deftime intersects
a query instant or query time interval. Due to the index structures available in SECONDO,
we apply a transformation approach to map temporal queries to spatial ones: Assuming, that
each instant I can be translated into a correspondingreal value using a functiongetreal,
it is possible to translate a temporal range valueR, i.e. an rinstant value, into a 2D-point
(getreal(initial(R)), getreal(final(R))). Such a point can be used to generate keys for the
temporal R-Tree index. To query such an index, the same transformation can be used to lookup
temporal ranges in the index. To perform a temporal point query, the instantI is translated to the
point P corresponding to the temporal interval [I, I]. If the real representation for the earliest,
resp. latest representable instant is denoted byBEGIN OF TIME , resp.END OF TIME ,
and pointS=(BEGIN OF TIME ,END OF TIME ), the MBR of {P , S} can be used to
retrieve all temporal intervals possibly containing the query instant from the temporal index. For
the CR, multiple entry indexing is used.
(d) Spatial Index (2D-R-tree): Keys are 2D-MBRs of the indexed attribute resp. its MBR’s
spatial projection — grants quick access to all tuples whoseobject/ unit 2D-MBR intersects a
given query rectangle. Again, multiple entry indexing is used for the CR.

Using R-Trees to index 2D-MOD with 3D-MBRs as keys raises a well-known problem: The
temporal coordinates are usually represented on differentscales than the spatial coordinates.
Hence, direct use of these MBRs during R-Tree construction would lead to skewed indexes with
unbalanced or even degraded index performance. The same mayhappen in the 2D case, if the
sizes of the ranges regarding both dimensions are very different. As a simple solution to this
problem, we normalize all spatial and spatio-temporal MBRs, so that all dimensions are treated

4Also see Section VI-A2 for a short example on multiple entry indexing.
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fairly equal: Basically, each dimension is scaled such thatthe average interval size of all MBRs
is the same for all dimensions.

5) Data Distribution: Obviously, the (spatial and temporal) distribution of datais crucial for
index performance and therefore for query performance. Uniform distributions allow for easy
analyses and are thus comfortable to the researcher. The same holds for Gaussian data distri-
bution. However, both distribution schemas are not “natural” and have a limited expressiveness
concerning real applications. Hence, we prefer to experiment with data being as “real” as possible.
The BerlinMOD benchmark generates and uses representative, non-uniformly distributed data.

6) Universe and Query Window Dimensions:The universe, which is defined as the union
of all possible objects’ 3D-MBRs, shall be large compared tothe size of single query ranges.
This reflects that often we collect huge amounts of data, but single queries can be restricted to
relatively small ranges within the universe. BerlinMOD/R performs instant and point queries,
as well as small and large range queries. This helps to balance the performance of the different
temporal, spatial and spatio-temporal index types.

7) Standard Attributes and Tuple Size:Usually, queries are not concerning solely spatial,
temporal or spatio-temporal aspects. Rather, additional information represented using standard
data types is used. To demonstrate the properties of the different representations, we can use the
additional attributes given to each vehicle in the BerlinMOD data. Namely, the string attribute
Licence is a key, and there are two more non-key string attributes,Type (“bus”, “truck” or
“passenger”) andModel (manufacturer) of the car. Thus, tuples can be selected by different
criteria (including non-indexed attributes) and the tuplesize is increased without changing the
size of the MOD. One could restrict the relation with the MOD to contain only a key as an
additional attribute, and all other attributes to be storedseparately in a second relation. This
would transform each representation into something similar to the HR — but again, we want to
demonstrate the general differences between the three representations.

8) Clustering: Within the relations, MOD can be stored clustered, i.e. sorted by some mean-
ingful criterion. BerlinMOD creates data clustered primarily by object-id, with definition time
being the secondary criterion. This is the only feasible wayfor the CR. For the UR and HR it
makes sense to consider different orderings, e.g. storing the units by the their definition time, or
spatial or spatio-temporal MBR (using Z-order). This mightstrongly affect the number of page
reads required to process certain queries. Clearly, each clustering scheme will favor a certain
kind of queries and discriminate some others. We will restrict our experiments to clustering
relations by (i) first object-id and second definition time (ID/TMP schema), and by (ii) the
spatio-temporal MBR of the MOD (SPTMP schema). This choice was made in order to keep
the number of experiments manageable.

D. Queries

For our analyses, we simply use the 17 BerlinMOD/R benchmarkqueries, i.e. the range and
point query subset, as proposed in [29]. The query set BerlinMOD/NN, focussing on complex
nearest neighbor queries, is not considered, as SECONDO’s abilities to process these queries
effectively — by now — depend on a certain UR like data representation, so these queries
cannot contribute to the results of a fair comparison of the different data representations. The
BerlinMOD/R queries can also be found in Appendix A.
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1) Query Classification:To formulate our expectations and results within Sections VI and VII,
we use the query categorization introduced in [29]. The categorization classifies query types as a
combination of five dimensions: (a)Object Identity ∈ {known, unknown} — Whether a query
starts with a known object “Does objectX ...” or without “Which objects do ...”. (b)Dimension
∈ {standard, temporal, spatial, spatio-temporal}) — This criterion refers to the dimension(s)
used in the query. (c)Query Interval ∈ {point, range, unbounded}— This property determines
the presence/size of the query interval. (d)Condition Type ∈ {single object, object relations}—
Whether relationships between objects are subject of the query (requiring a join) or not (“single
object”). (e) Aggregation ∈ {aggregation, no aggregation} — Indicates whether the result is
computed by some kind of aggregation. This property may depend on which approach is used
(“(no) aggregation”).

The BerlinMOD/R benchmark queries cover the 14 most interesting of all possible 96 com-
binations. Non spatio-temporal queries are covered twice (Q1–2); the combination (unknown,
spatio-temporal, range, single, no aggr) is covered by three queries (Q13–15).

We further generalize these combinations into two more general and obvious categories of
queries: (a)Standard queries — any query that does not involve a MOD attribute within its
where clause and does not perform calculations on any MOD-attribute. From the BerlinMOD/R
queries, only Q1 and Q2 belong to this category. (b)MOD queries — any query, that does
involve a MOD attribute in its where clause or somehow calculates a MOD-attribute within the
select clause. In BerlinMOD/R, Q3–17 belong to this category.

VI. STORAGE REQUIREMENTS

In this section, we first formulate expectations on the relative storage performance by calcu-
lating the theoretically required disk space for all BerlinMOD relations and indexes within the
different representations. Then, we compare the theoretical results to practical from experiments
using the different models within the SECONDO DBMS. We have evaluated the following
proposed representations for MOD following both, the OBA and TBA: CR, UR, HR⊕. To this
end, we have used BerlinMOD to generate MOD at scale factors 0.05, 0.2, and 1.0 and then
created all representations addressed in the previous sections. We also translated the benchmark
queries from BerlinMOD/R to fit the different representations and started the benchmark for
each representation and scale factor using the SECONDO DBMS. For the experiments, we used
a standard PC configured as shown in Table III. As mentioned before (see Section V-A), we
will use the notation of “@SF ” in the sequel. It can be read as “at scale factorSF ”.

A. Expected Storage Requirements

In this subsection, we investigate how the three representations influence the storage size for
the BerlinMOD benchmark data from a theoretical point of view, regarding relations as well
as as the different indexes which could be useful in queries.We don’t regard optimizer related
information like histograms and so on.

For our computations, we use a hypothetical database similar to the concrete one used in the
experiments. The main differences are: (a) All cars have thesame (average) number of trips and
units, and (b) computations are independent of the databasesystem (assuming an optimal storage
and query behavior). Otherwise, we use the original statistics on the BerlinMOD data @0.05,
@0.2, and @1.0 (Table IV). For example, the table indicates,that @1.0, 2,000 vehicles with
292,693 trips (for the TBA), and 53,926,394 units are created by the BerlinMOD data generator.
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CPU: Intel Core 2 DUO 2.4 GHz
Memory: 2 GB
HDD: 2 x 500 GB, RAID 0
OS: Open SuSe 10.2 (Kernel 2.6.18.2-34-default)
DBMS: SECONDO 2.8.4

TABLE III
CONFIGURATION OF THEEVALUATION PLATFORM

@0.05 @0.2 @1.0
Days 6 13 28
Vehicles 447 894 2,000
Trips 15,049 62,893 292,693
Units 2,744,069 11,658,013 53,926,394
Avg. Units/Vehicle 6138.857 13040.283 26963.197
Avg. Units/Trip 182.340 185.360 184.240
Avg. Trips/Vehicle 33.667 70.353 146.347

TABLE IV
BASIC STATISTICS ON BERLINMOD DATA

1) Relations:To determine the size of the relations, we start with calculating field sizes for
all attributes. For most fields, asint or string attributes, the sizes are constant. Some types need
more explanation: Eachupoint value consists of a time interval, a starting and an ending position.
For each position, we need two coordinates represented by the double type. We model time as
a discrete representation of the IR. For a temporal resolution of 1 millisecond, we represent an
instant value by along int (8 bytes). Twoboolean flags (1 byte each) indicate whether the
starting and the ending boundary of the interval belong to the interval or not. Summarized we get
4 ·8+2 ·8+2 ·1 = 50 bytes per unit. Thempoint data type consists of a constant part containing
data management and summary information, plus a variable part for all units contained — while
both attributes,Trip andJourney , are of typempoint , they contain different numbers of units.
The constant part consists of the summary fields; we have the number of contained components
(int, 4 bytes), the deftime (twoinstants, 8 bytes each), the duration (typeduration, 8 bytes),
and the MBR (arectangle3D represented using 6double values, 8 bytes each), giving a total of
76 bytes for the fixed-sized part. For the variable part, eachcontained unit contributes with 50
additional bytes, as calculated above. Obviously, the clustering of units within the unit relations
for the UR and HR has no effect on the storage requirements.

The sizes for all attributes used within the relations for the representations introduced in Section
V-B are shown in Figure 4. The upper part of the table shows theattributes with constant sizes.
The lower part shows the varying average size of attributesJourney andTrip, which depends on
the average length of the vehicles’ histories. Remember, that the size ofTrip does not depend on
the scaling factor: With increasing scaling factor, withinthe vehicles’ histories only the amount
of trips — but not their length or duration — increases.

Now we can compute the tuple sizes for all used relations in a straightforward way. For
the relations’ cardinalities, we use the statistics on the number of vehicles, trips, and units
as presented in Table IV. The cardinalities, tuple sizes, and total memory sizes for all the
relations in Figure 2 are given in Table V. From that, we calculate the total relation sizes for
all representations (see Table VI). As one could easily expect, the CR is the smallest one, and
the UR the largest one in terms of disk space required.

2) Indexes:As in SECONDO only secondary indexes are available, we only provide calcula-
tions for secondary indexes. Secondary indexes yield tupleidentifiers referring to tuples within
the main relation (CR), resp. a unit or trip relation (UR, HR).

For all three representations, the temporal, spatial and spatio-temporal indexes (see V-C4)
are created using multiple entry indexing [36]. This is, foreach unit, a key is inserted into the
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Fig. 3. Multiple entry indexing

Attribute Type Size [Byte]

Licence string 12
Model string 20
Type string 10
Moid int 4
Tripid int 4
JourneyUnit upoint 50
TripUnit upoint 50
TripNoUnits int 4
TripDeftime rinstant 16
TripMBR rect3 48
Tid int 4

Journey mpoint
@0.05 307018.85
@0.2 652090.15
@1.0 1348235.85
Trip mpoint
@0.05 9343.75
@0.2 9343.75
@1.0 9288.08

Fig. 4. Hypothetical Attribute Sizes

Cardinalities Tuplesizes [B] Relation Sizes [MB]
Relation @0.05 @0.2 @1.0 @0.05 @0.2 @1.0 @0.05 @0.2 @1.0

Calculated Sizes
dataSCcar 447 894 2000 307018.850 652132.150 1348277.850 130.880 555.998 2571.636
dataMCcar 447 894 2000 46.000 46.000 46.000 0.020 0.039 0.088
dataMCtrip 15049 62893 292693 9193.024 9347.752 9292.077 131.937 560.673 2593.733
dataSUcar 2744069 11658013 53926394 96.000 96.000 96.000 251.227 1067.323 4937.109
dataMUcar 15049 62893 292693 50.000 50.000 50.000 0.718 2.999 13.957
dataMUunit 2744069 11658013 53926394 54.000 54.000 54.000 141.315 600.369 2777.124

dataSHcar⊕ 447 894 2000 114.000 114.000 114.000 0.049 0.097 0.217
dataSHcar⊖ 447 894 2000 46.000 46.000 46.000 0.020 0.039 0.088
dataSHunit 2744069 11658013 53926394 58.000 58.000 58.000 151.783 644.841 2982.837
dataMHcar 447 894 2000 46.000 46.000 46.000 0.020 0.039 0.088
dataMHtrip⊕ 15049 62893 292693 76.000 76.000 76.000 1.091 4.558 21.214
dataMHtrip⊖ 15049 62893 292693 8.000 8.000 8.000 0.115 0.480 2.233
dataMHunit 2744069 11658013 53926394 58.000 58.000 58.000 151.783 644.841 2982.837

Observed Sizes
dataSCcar 447 894 2000 1035912.233 2188675.007 4474039.30 315.375 1337.914 8533.553
dataMCcar 447 894 2000 180.000 180.000 168.00 0.094 0.176 0.320
dataMCtrip 15038 62879 292669 21267.471 21646.254 21320.61 330.730 1407.137 5950.815
dataSUcar 2742033 11670697 53388403 296.000 296.000 296.00 825.977 3515.492 15070.884
dataMUcar 15038 62879 292669 180.000 180.000 180.00 2.816 11.738 50.240
dataMUunit 2742033 11670697 53388403 128.000 128.000 128.00 357.930 1523.391 6517.139
dataSHcar⊕ 447 894 2000 348.000 348.000 348.00 0.168 0.328 0.664
dataSHcar⊖ — — — — — — — — —
dataSHunit 2742033 11670697 53388403 144.000 144.000 144.00 397.695 1692.652 7331.781
dataMHcar 447 894 2000 168.000 168.000 168.00 0.086 0.160 0.320
dataMHtrip⊕ 15038 62879 292669 192.000 192.000 192.00 2.953 12.320 57.316
dataMHtrip⊖ — — — — — — — — —
dataMHunit 2742033 11670697 53388403 144.000 144.000 144.00 397.695 1692.652 7331.781

TABLE V
CALCULATED VS . OBSERVEDCARDINALITIES , TUPLE SIZES, AND RELATION SIZES FORBERLINMOD
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Representation Total Relations [MB] Total Indexes [MB] Total Database [MB]
@0.05 @0.2 @1.0 @0.05 @0.2 @1.0 @0.05 @0.2 @1.0

Calculated Sizes
OBA/CR 131 556 2572 376 2055 9075 506 2611 11647
OBA/UR 251 1067 4937 463 2558 10888 714 3625 15825
OBA/HR⊕ 152 645 2983 406 2177 9634 557 2822 12617
OBA/HR⊖ 152 645 2983 405 2177 9634 557 2822 12617
TBA/CR 132 561 2594 376 2056 9080 508 2617 11674
TBA/UR 142 603 2791 406 2181 9650 548 2784 12441
TBA/HR⊕ 153 649 3004 408 2187 9691 561 2836 12695
TBA/HR⊖ 152 645 2985 406 2179 9643 558 2824 12628

Observed Sizes
OBA/CR 315 1338 6112 599 2522 12573 914 3859 18685
OBA/UR 826 3515 16082 657 2756 13623 1483 6272 29705
OBA/HR⊕ 398 1693 7744 628 2639 13098 1026 4332 20842
OBA/HR⊖ — — — — — — — — —
TBA/CR 331 1407 6447 599 2524 12580 930 3931 19027
TBA/UR 361 1536 7026 652 2745 13588 1013 4280 20614
TBA/HR⊕ 401 1705 7801 659 2771 13665 1060 4476 21465
TBA/HR⊖ — — — — — — — — —

TABLE VI
CALCULATED VS . OBSERVEDTOTAL RELATION , INDEX, AND DATABASE SIZES FORBERLINMOD

indexes. If one would build, e.g. the indexes for the CR, based on the objects’ total MBRs,
this would result in drastically smaller indexes, which would in turn have a bad performance,
since almost all MBRs would overlap, producing a drastically high percentage of false alarms
at each index access. The idea of trajectory splitting for multiple entry indexing is visualized in
Figure 3: A moving pointM consists of 8 unitsu1, . . . , u8. The figure showstrajectory(M)
and compares the 2D-MBR of the complete moving object with those for the single units. A
spatial index built with MBR(M) returns the whole object{M} for query pointsP2 and P3,
while an index built using themultiple entry indexingpolicy will create separate entries for
MBR(ui), 1 ≤ i ≤ 8. The index returns∅ for query pointP2 and{u4} for P3.

We further assume, that an R∗-tree [37] implementation is used for 2D (3D)-R-trees, and set
the page size to the widely used standard of 4kB. Each R-tree entry contains an MBR (16 bytes
per dimension) and a page/ tuple identifier (4 bytes), makingup 36 bytes (2D), resp. 52 bytes
(3D) per entry. This allows for 113 (78) entries per page. We force node fillings of not less than
40% and therefore use R-trees of orders (46, 113) for 2D-R-trees, and (32, 78) for 3D-R-trees.
Assuming an average filling degree of 69%, we get an average fan-out of f = 77 (f = 53),
resulting in heighth = logf N . For N , we have 53,926,000 units resp. 292,693 trips or 2,000
vehicles. Assuming a B+-tree implementation is used for B-trees and page size = 4kB,we get
a maximum fan-out of 512 for attributeTripMoid (256 for Licence). With an average filling
degree of 74% for inner nodes and leaves, we get an average fan-out of f = 378 (f = 189).

The calculated index sizes (in terms of 4kB pages and height of the trees) for the different
relations and scale factors are presented in Table VII. The total index sizes (in MB) for the
different representations are listed in Table VI.

3) Databases:The expected total database size for each representation iscalculated as the
sum of its total relation size and its total index size. The results are presented in Table VI.
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Relation Calculated [pages/height] Observed [pages/height]
R-tree Indexes B-tree Indexes R-tree Indexes B-tree Indexes

2D 3D Moid Tripid Licence 2D spat. 2D temp. 3D Moid Tripid Licence

@0.05

dataSCcar 41567/3 54584/3 — — 3/1 49478/3 45592/3 58299/4 — — 6/2
dataSUcar 41567/3 54584/3 7638/2 — 14708/2 49478/3 45592/3 58299/4 7429/2 — 7432/2
dataSHcar⊕ 6/1 9/1 2/1 — 3/1 15/1 10/1 17/1 5/2 — 6/2
dataSHcar⊖ — — 2/1 — 3/1 — — — — — —
dataSHunit 41567/3 54584/3 7638/2 — — 49478/3 45592/3 58299/4 7429/2 — —
dataMCcar — — 2/1 — 3/1 — — — 5/2 — 6/2
dataMCtrip 41567/3 54584/3 40/1 — — 49478/3 45592/3 58299/4 71/2 — —
dataMUcar — — 40/1 40/1 80/1 — — — 71/2 77/2 92/2
dataMUunit 41567/3 54584/3 — 7638/2 — 49478/3 45592/3 58299/4 — 13265/3 —
dataMHcar — — — — 3/1 — — — 5/2 — 6/2
dataMHtrip⊕ 273/2 337/2 40/1 40/1 — 723/2 462/2 765/2 71/2 77/3 —
dataMHtrip⊖ — — 40/1 40/1 — — — — — — —
dataMHunit 41567/3 54584/3 — 7638/2 — 49478/3 45592/3 58299/4 — 13265/2 —

@0.2

dataSCcar 157332/3 368840/4 — — 5/1 188365/4 193048/4 264094/4 — — 10/2
dataSUcar 157332/3 368840/4 31220/2 — 97404/3 188365/4 193048/4 264094/4 30072/2 — 30076/2
dataSHcar⊕ 12/1 17/1 3/1 — 5/1 17/1 15/1 20/1 7/2 — 10/2
dataSHcar⊖ — — 3/1 — 5/1 — — — — — —
dataSHunit 157332/3 368840/4 31220/2 — — 188365/4 193048/4 264094/4 30072/2 — —
dataMCcar — — 3/1 — 5/1 — — — 7/2 — 10/2
dataMCtrip 157332/3 368840/4 167/1 — — 188365/4 193048/4 264094/4 605/3 — —
dataMUcar — — 167/1 167/1 522/2 — — — 605/3 316/3 452/3
dataMUunit 157332/3 368840/4 — 31220/2 — 188365/4 193048/4 264094/4 — 55715/3 —
dataMHcar — — — — 5/1 — — — 7/2 — 10/2
dataMHtrip⊕ 894/2 1240/2 167/1 167/1 — 2643/3 1693/2 2846/3 605/3 316/3 —
dataMHtrip⊖ — — 167/1 167/1 — — — — — — —
dataMHunit 157332/3 368840/4 — 31220/2 — 188365/4 193048/4 264094/4 — 55715/3 —

@1.0

dataSCcar 1156876/4 1166357/4 — — 11/1 776849/4 886984/4 1554721/4 — — 20/2
dataSUcar 1156876/4 1166357/4 143041/2 — 321046/3 776849/4 886984/4 1554721/4 134510/2 — 134526/2
dataSHcar⊕ 26/1 38/1 6/1 — 11/1 31/1 29/1 39/1 12/2 — 20/2
dataSHcar⊖ — — 6/1 — 11/1 — — — — — —
dataSHunit 1156876/4 1166357/4 143041/2 — — 776849/4 886984/4 1554721/4 134510/2 — —
dataMCcar — — 6/1 — 11/1 — — — 12/2 — 20/2
dataMCtrip 1156876/4 1166357/4 1153/2 — — 776849/4 886984/4 1554721/4 2017/2 — —
dataMUcar — — 1153/2 1153/2 1738/2 — — — 2017/2 1458/3 2033/2
dataMUunit 1156876/4 1166357/4 — 143041/2 — 776849/4 886984/4 1554721/4 — 254442/3 —
dataMHcar — — — — 11/1 — — — 12/2 — 20/2
dataMHtrip⊕ 3879/2 8332/3 1153/2 1153/2 — 6306/3 7309/3 8019/3 2017/2 1458/3 —
dataMHtrip⊖ — — 1153/2 1153/2 — — — — — — —
dataMHunit 1156876/4 1166357/4 — 143041/2 — 776849/4 886984/4 1554721/4 — 254442/3 —

TABLE VII
CALCULATED VS . OBSERVED INDEX SIZES FORBERLINMOD

Only one common value is listed for calculated sizes of the spatial and temporal 2D indexes, as in our calculations, we usethe
same parameters for both. As mentioned within the text, pagesize is 4 kB.

For the OBA, we observe, that the CR has the smallest expectedrelation and index sizes,
while the UR has always the largest expected relation and index sizes. The UR is expected
to be +35.9% larger than the CR (+92.0% larger relation, +20.0% larger indexes). HR⊕ has an
overhead of +8.3% (relations: +16.00%, indexes +6.2%); HR⊖ is only slightly better with +8.3%
(relations: +15.99%/, indexes: +6.2%).

For the TBA, we also expect the CR to be the most compact format. Here, the HR⊕ is expected
to be worst with respect to required space. However, it only has an overhead of +8.75% (relations:
+15.82%, indexes: +6.7%). The HR⊖ is slightly better with +8.18% (relation: +15.09%, indexes:
+6.2%). The UR is second place with expected +6.57% in total (relations: +7.6%, indexes
+6.3%).

B. Experimental Results

The observed relation sizes are presented in Table V. We observe slight differences in the
cardinalities (relative error≤ 1%). For the tuple sizes, we observe significant differences between
expected and observed values: SECONDO uses 1.58 to 3.91 times as much memory as the
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calculated minimum requirement. This directly affects therelation sizes (factors 2.38 to 3.29).
The cause for this “wasted” space is the simple persistency mechanism applied by SECONDO,
that does not use compression. As expected, the CR has the most compact, and the UR the
largest relations. The OBA/HR requires about 1.12 times, and the OBA/UR 1.59 times the space
of the OBA/CR. For the TBA, the differences are smaller: Herethe TBA/HR requires about
1.13, the TBA/UR only 1.08 times the space required for the TBA/CR.

The observed statistics for the indexes are shown in Table VII. Several indexes seem to
need less space than expected. There are two reasons for thisgood performance: (1) As we
are interested in querying historic MOD, we use a bulkload mechanism to create the R-Trees.
The algorithm is a variant of [38]. It creates packed trees bysequentially filling all leaf nodes
(unless a key to insert is too far “off” the leaf node’s current MBR) and creating upper inner
nodes only when required. This might leave the rightmost path with a very low filling degree
(nodes may even underflow), but this is acceptable, since theindex buildup time is reduced
drastically and updates are not required. Entries are fed into the bulkload after sorting them
by means of a Z-ordering and therefore can be expected to showa good query performance.
The 2D-R-trees used for spatial and temporal indexes all have order (33, 83), the 3D-R-trees
(24, 62). For the 3D-Index @1.0, we achieve a net storage utilization of 54.19% (capacity =
99,502,144 keys: 1554721 pages, 64 keys each; occupied by the entries for 53,926,394 units).
(2) SECONDO employs BerkeleyDB as a storage manager. B-Trees are implemented directly
using BerkeleyDB’s B-Trees, which seem to apply some optimization techniques to increase the
storage performance.

The total relation, index, and database sizes for all representations are listed in Table VI.

VII. B ERLINMOD/R PERFORMANCE

Due to different relation sizes and methods applied to access the data in the different represen-
tations, we expect them to behave differently executing theBerlinMOD/R benchmark queries.
We compare our expectations with the practical benchmark results on SECONDO, using the
same configuration as described in Section VI. Finally, we analyze selected queries in detail.
The benchmark queries are listed in Appendex VIII.

A. Expected Runtimes

1) Compact Representation:In the CR, moving object data is primarily clustered by object
identity. Time is always the secondary clustering criterion, as the units are sorted by their
time intervals internally; using different clustering patterns is impossible. With respect to the
cardinalities and relation sizes, the CR is minimal, hence we clearly expect it to be the best
model for standard queries (Q1–2). For MOD queries, we expect advantages whenever data are
accessed using the identity of the vehicles prior to furtherprocessing, as in queries Q3, and
Q16. We also expect an advantage for the CR with any combination of dimensions with (Object
Identity Known, Temporal; Q3, Q8), where the relatively small B-tree indexes can be used to
find the moving objects and binary search be applied to the internal unit array. Worse for the
CR in this category are queries for dimensions (Object Identity unknown) along with “Spatial”
(Q4, Q7), or “Temporal” (Q9), as they can use the fine grained spatial/ temporal index, but
nonetheless must scan the complete MO history. Since the indexes will trigger “false alarms”
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due to high rates of overlapping object MBRs — the temporal index will be worst, as the entry
for each unit will overlap with one MBR for each vehicle at least — a linear search within each
returned object’s unit array is required to check for spatial conditions. While the coarse summary
fields can be used to perform simple tests on the moving object(e.g. whether the moving object
is possibly defined at a given instant, or the moving spatial object takes a value within a given
range), complex tests are required to compute temporal or spatial predicates. On the other hand,
aggregations over selected units within a single moving object should be quite fast.

2) Unit Representation:In the UR, we can cluster the data within the units relation byany
criterion we want, e.g. by object identity, by the units’ time intervals, or by their temporal
values (resp. their MBR for spatial base types). A major disadvantage is the massive replication
of non-moving attribute data, which drastically increasesthe size of the relation. As a side effect,
maintaining keys (resp. attributes with a key property) is unfeasible within the UR. Hence, we
expect the UR to perform worst on standard queries (Q1–2), asduplicates must always be dealed
with. For MOD queries within dimension “spatial” (Q4–5, Q7), and “temporal” (Q3, Q8–9), we
expect the UR to perform well. Here, the UR should benefit fromthe 1:1 relation of index entries
to units within the relation. As all non-moving attributes of an object are contained in each unit
tuple, we have immediate access to these data. However, for “aggregation” queries (Q9, Q17),
grouping candidate tuples by moid is required, reducing theperformance. As for differences
between the two employed clustering schemas — ID/TMP (object identity, then temporal) and
SPTMP (spatio-temporal) — we expect the SPTMP clustering tobenefit queries applying spatio-
temporal indexes (Q4, Q7, Q12 and Q17). The ID/TMP clustering will have its advantage, if
temporal access or ordering/ grouping is used (Q3, Q5 and Q8).

3) Hybrid Representation:In both variants of the HR, clustering the unit relation by any
criterion is possible. The representation needs more spacethan the CR (as referencing moids
and tids have to be stored in the relations), but the requirements are far less than for the UR. The
internal references lead to another main drawback, as the construction of indexes and relations
becomes more complex compared to the CR or UR. Otherwise, thehybrid representation is
expected to combine the advantages of both other forms of representation. In standard queries
(Q1–2), the root relation can be used to access the units using the moid and the object index to
retrieve the MOD if necessary. The behavior should be similar to the CR’s here. As for MOD
queries in the UR, the 1:1 mapping from index entries to tuples of the unit relation should make
the HR fast for queries having dimensions “spatial” (Q4–5, Q7) and “temporal” (Q3, Q8–9).
As spatio-temporal and further, non-moving attributes arekept separated in different relations,
disk-accesses may be reduced in some cases. In other cases, data from both relations need to
be joined (using moid with an object index, resp. the tid as the join attributes). When summary
fields are maintained within the root relation, they can be used for simple prefiltering tests (e.g. to
restrict complex tests to promising candidates). Again, weexpect the SPTMP clustering schema
to support queries using spatio-temporal indexes (Q4, Q7, Q12 and Q17), and the ID/TMP being
superior with temporal access and grouping (Q8–9).

4) Semantics: OBA vs. TBA:As noted in Section V-C, the TBA implements a form of
trajectory splitting and hence is expected to show some kindof “intermediate” behavior: While
in the TBA trajectories are shorter than in the OBA, some queries require trip data to be joined
with data from the root table, or duplicates being removed. Therefore, we expect the UR and
HR to benefit less from using the TBA than the CR.
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B. Evaluation of BerlinMOD/R Running Times

To execute the BerlinMOD/R queries on the SECONDO platform, we hand-translated the SQL
queries into so-called SECONDO executable queries, which represent concrete query plans,i.e.
we did not utilize the SQL query optimizer. For most queries,several equivalent translation
variants were tried, but only the fastest response times were included into the results tables. The
experiments are conducted using database scripts. Each script contains all executable queries
for Q1 – Q17 as a series for each combination of: (1) semantic approach (OBA/TBA), (2)
representation (CR/UR/HR), and (3) clustering Schema (ID/TMP and SPTMP)5. The experiments
for both, HR⊕ and HR⊖ (HR with/without summary fields), have been combined in common
scripts. The query scripts can be downloaded from the BerlinMOD web site [39].

We did not evaluate buffer effects explicitly, because (1) the scripts already employ a good
mix of data access paths, and (2) it seems unreasonable to explicitly rule out buffering, because
buffering effects are actually intended in operational DBMS. Since the workload is well-defined
and the sequence of executed queries fixed, the results remain comparable. However, a strong
buffer effect has been observed and explicitly examined forQ12 (see Section VII-B1).

The response times for all queries are listed in Table VIII for the OBA and Table IX for the
TBA. As stated above, for the HR we have only created the HR⊕ representation, but formulated
queries once not using summary fields (HR⊖ style) and once using them (HR⊕ style), where
this seemed appropriate. Where the HR⊕ style did not seem appropriate at all, a “←” is printed
in the HR⊕ columns of the result tables, meaning that the HR⊖ result is also used for the HR⊕.
We continue with a brief analysis of the experimental results.

1) Semantics — OBA vs. TBA:In the OBA, the expectations for standard queries (Q1–2),
have been confirmed. The CR and HR execute them fast, but the URsuffers from the replication
of the standard attributes. For MOD queries, with increasing scale factor (i.e. increasing length of
histories), UR and HR gain advantages regarding many queries, namely for Q4, Q7, and Q10–15.
All these queries deal (a) with either unknown object identities or a possible relation between
known objects, and (b) spatial or spatio-temporal dimension. In the temporal point query Q3,
the CR takes advantage of a rapid selection byLicence and a subsequent binary search within
the array of units. The CR maintains an advantage in Q5, wherethe UR and HR require for
additional aggregation steps. Another query preferring the CR is Q8, which requires to process
the complete trajectory of candidate vehicles. Surprisingly, the CR also seems to have a major
advantage with respect to Q9. The construction of the temporal selection and subsequent spatial
projection for all objects’ MOD seems to be much less expensive than selecting units using the
temporal index and recreating the total trajectory applying grouping and aggregation. Also, the
CR is clearly superior with regard to Q16. This again stems from the requirement to aggregate
the units of candidates byLicence, here in order to allow for a parallel scan of the candidate
pair’s trajectories instead of checking all pairs of candidates’ units.

In the TBA, the MOD histories within the CR are split into shorter trips. Therefore, the
overhead for searching the history becomes drastically smaller, diminishing the CR’s main
disadvantage. As a consequence TBA/CR is faster than OBA/CRfor some queries, e.g. Q13–15.
TBA-queries Q11–14, and Q16 run fastest using the CR. For Q5,the CR’s superiority becomes
even clearer. This leads to the TBA/CR prepresentation being the global “winner” for 8 of the

5In the result tables, the columns for ID/TMP variants are marked with id, those for SPTMP are labeled with3d.
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17 queries (namely Q3, Q5, Q8, Q11–14, and Q16) in our benchmark experiments. Also the
TBA/UR using SPTMP clustering is quite good, scoring 3 best global results (Q4, Q7, Q12).

Regarding the majority of the benchmark queries, the TBA is superior to the OBA when
using the CR or HR. However, there are some remarkable exceptions: Q5 runs very slown on
the TBA/HR, and Q9 on the TBA/CR. As expected, the UR cannot generally profit from using
the TBA: While the OBA is favored by 10 queries, the TBA is so byonly 7. Among the latter
are the standard queries (Q1–2), since in the TBA/UR the rootrelation can be used instead of
the much larger unit relation. Q12 seems to be much faster in the TBA than in the OBA, but
closer inspection proves this to be an artifact: (1) By mistake, we accidently translated the OBA
variants in an improper way, using the spatial index and theat operator instead of the spatio-
temporal index and theatinstant operator, penalizing the OBA variants. (2) When setting up
the query scripts, we missed to notice that Q12 has exactly the same data access patterns as Q11
and the amount of data is relative small. Hence, the operating system’s file caches allow for high
cache-hit rates. Since with the TBA smaller amounts of data are loaded after the prefiltering
step, cache hits are much higher here than with the OBA. This skews the performance results.
To demonstrate these effects, we re-translated the OBA queries, now using the spatio-temporal
index and theatinstant operator, and executed all queries with cleared system caches. The
results6 show, that the difference not only between OBA/CR@0.2 and TBA/CR@0.2, but even
between all variants becomes almost insignificant: OBA/CR:4.515 sec, TBA/CR: 4.685 sec;
OBA/UR: 4.756 sec, TBA/UR: 4.435 sec; OBA/HR⊖: 4.671 sec, TBA/HR⊖: 4.411 sec. This is
exactly what one should expect for this kind of simple spatio-temporal point queries.

2) Clustering Schemas — ID/TMP vs. SPTMP:Comparing the two clustering schemas for the
unit relation in the UR and HR, the ID/TMP pattern is superiorfor Q1–3, Q5–6, Q8, Q10, and
Q15, whereas the SPTMP pattern is better for Q4, Q7, Q9, Q12–14, Q16–17.7 Only for Q11 the
differences between both patterns are insignificant, probably, because the used spatio-temporal
predicate is very specific. The experiments show, that the ID/TMP pattern is superior for standard
queries (having an advantage during grouping and id-based duplicate removal operations), and if
candidates are being selected using vehicle ids. Spatial, temporal or spatio-temporal data access
benefits from using the SPTMP clustering pattern. These properties of the two clustering methods
generally hold for both, UR and HR.

3) Summary Fields — HR⊖ vs. HR⊕: For the HR, considerable performance differences
between queries using (HR⊕) and not using summary fields (HR⊖) have been established. In
this analysis we focus on experiments with the full scale database (SF 1.0). For the OBA we
observe, that only Q9 and Q16 (when using ID/TMP clustering), resp. Q3 (SPTMP clustering)
profit from using summary fields. This is different regardingthe TBA. Here, Q3, Q8–9, and Q16
are enhanced by using HR⊕ for both clustering schemas. There are two general explanations for
the different behavior between OBA and TBA: (1) In the TBA, summaries exist for each trip,
so that e.g. tests for overlapping MBRs can speed up processing significantly. (2) In the TBA
one may restrict oneself to inspect fewer units if either a query object’s identity is known or the
search can be restricted to certain trips (i.e. certain trips could be selected using prefiltering on
the trip summaries).

6Said results for ID/TMP clustering are also displayed in Table VIII, and Table IX.
7In the result tables, ID/TMD results are markedid, SPTMP results are labeled3d.
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C. Exemplary Query Analyses

In this subsection, we analyze three of the queries to show, how the query plans relate to
observed query response times. We use the following abbreviations:QL for QueryLicences,
QP for QueryPeriods, andQI for QueryInstants. We also shorten all relation names
starting with “data”, sodataXY becomesXY.

1) Q3: We used the following plans for this temporal point query on known objects:OBA/CR:
For QL1, select according tuples fromSCcar using a B-tree index. Then for each instant from
QI1 calculate the vehicles’ position.OBA/UR:For QL1, select the JourneyUnits fromSUcar
using a B-tree index. Join each unit with all instants fromQI1 selecting those pairs, where the
unit is present at the given instant.OBA/HR⊖: ForQL1, select trips fromSHcar, then units from
SHunit using the B-tree indexes, joins units withQI1, selecting TripUnits present at an query
instant and evaluate the temporal function.OBA/HR⊕: For QL1, select trips fromSHcar and
join with QL1, selecting pairs whose query instant is contained by the TripDeftime summary (but
as the summary is for the complete journey, this is always thecase). Then fetch all units from
SHunit to refine the temporal containment and evaluate the temporalfunction. TBA/CR:For
QL1 retrieve all Moids fromMCcar using a B-tree index, then retrieve all TripUnits belonging
to each found Moid fromMCtrip using a B-tree index. Join with all instants fromQL1, where
the TripUnit is present at the given instant.TBA/UR:For QL1 retrieve all TripIds fromMUcar
and then all TripUnits belonging to the according TripIds (both times using B-tree indexes). Join
with all instants fromQL1, where the TripUnit is present at the given instant.TBA/HR⊖: For
QL1 select the Moids fromMHcar, then retrieve all according TripIds fromMHtrip and finally
the TripUnits fromMHunit using the three according B-trees. Then join with all instants from
QL1, where the TripUnit is present at the given instant.TBA/HR⊕: For QL1 select all Moids
from MHcar and get all according trips descriptions fromMHtrip using two B-trees. Then
join with the instants fromQL1 selecting TripIds whose TripDeftime contains the given query
instant. Retrieve the TripUnits belonging to the remainingTripIds using a B-tree and restrict to
those tuples, where the TripUnit is present at the query instant (this is necessary as a trip within
MHtrip theoretically may contain definition gaps).

Q3 shows some interesting results. First, it is simple to understand, that the CR is superior to
the UR and HR, as for each given licence, one just extracts thecar’s position at each of the query
instants. Second, as basically the same access sequence (first id, then time) is also used for the
UR and HR, also the superiority of the ID/TMP to the SPTMP is clear. Third, using summary
fields is good for all HR-variants except the OBA/HR, where the prefiltering adds complexity,
but does not drop any candidates (because prefiltering is always positive).

2) Q6: The plans used for this unbounded spatio-temporal join query with unknown identities
and without aggregation are:OBA/CR:Select trucks fromSCcar, selfjoin if minimum distance
ever becomes<10m. OBA/UR: Create a materialized view with all trucks’ JourneyUnits from
SUcar. Create a spatio-temporal index (3D R-Tree) for the view, with keys buffered by 5m
in both spatial dimensions. Do a spatial selfjoin on this R-Tree, selecting pairs of units from
different trucks and that getting nearer than 10m. Remove duplicates.OBA/HR⊖: Select trucks
from SHcar, retrieve according units fromSUunit using the moid B-tree. Join with all units
that intersect with their distance-buffered MBR using the spatio-temporal index. Drop pairs
of units belonging to the same truck, evaluate the spatio-temporal condition and drop pairs
with non-truck join partners.OBA/HR⊕: Select trucks fromSHcar, use the spatio-temporal
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index for a distance-buffered self-join on the MBR summaries, filtering pairs of different trucks.
Retrieve units for the first and second truck truck fromSHunit, using the moid index. Do a
distance-buffered spatial join between them and evaluate the spatio-temporal condition. Remove
dublicates.TBA/CR:Select trucks fromMCcar, retrieve all their trips fromMCtrip and do a
buffered spatial selfjoin select pairs that have differentlicences and whose trips come closer than
10m and remove duplicates.TBA/UR:Select all trucks fromMUcar and retrieve the according
TripUnits from MUunit using a B-tree, store them as a materialized view. Create a spatio-
temporal index (3D R-Tree) with keys buffered by 5m in both spatial dimensions. Do a spatial
selfjoin on this R-Tree, filter pairs of units, that have different moids and belong to different
trucks and ever get nearer than 10m. Finally, remove duplicates.TBA/HR⊖: An R-tree-indexed
relation with distance-buffered MBRs of all trucks’ units is created which is used to evaluate a
spatial selfjoin as a prefilter. Then the spatio-temporal condition is applied and duplicate results
are removed.TBA/HR⊕: Create a relation with the extended TripMBRs for all trucks’trips.
Apply a selfjoin to find all trip pairs with different Moids having overlapping distance-buffered
TripMBRs. Then, join in the units for each pair of trips usingthe B-tree index. Filter the tuples
having overlapping buffered MBRs and the evaluate the spatio-temporal predicate. Remove all
duplicate results.

Q6 strongly benefits the TBA/CR (small product size for selfjoin, short mpoint values for
parallel scan), and the OBA/UR (high selectivity for the spatial selfjoin). TBA is superior to
OBA (single trips can be retrieved instead of the complete history of an object, reducing the
cardinality of intermediate results by orders of magnitude). Maybe surprisingly, the clustering
schema clearly is the dominating factor in the TBA, ID/TMP being superior to SPTMP (because
unit access is always ordered by Moid (TripId)).

3) Q9: This is a temporal range query for unknown objects using an aggregation.OBA/CR:
Create the product ofSCcar andQP. Extend each tuple with the travelled distance of Journey
restricted to the query period. Group by query period to extract the maximum travelled distance.
OBA/UR:Retrieve all tuples fromSUcar whose JourneyUnit is present at a query period from
QP using the temporal R-tree index. Extend each tuple with the length of JourneyUnit restricted
to the query period. Group by Moid sum up the total travelled distance for each vehicle. Finally,
group by query period to extract the maximum total distance.OBA/HR⊖: Use the temporal index
to retrieve all units fromSHunit present at a given Period fromQP. Restrict the units to the
query period and group by Moid and query period to calculate the travelled distance for each
vehicle and period. After that, grouping is used to select the maximum travelled distance for each
period.OBA/HR⊕: JoinQP with all cars fromSHcar selecting pairs where the JourneyDeftime
summary field intersects the query period. Then load the journey units using the Moid B-tree
from SHunit. Apply the refined temporal condition, restrict the units tothe query periods and
sum up the total length for each combination of query period and Moid. Group by query period
to extract the maximum value.TBA/CR: For each query period fromQP load all trips from
MCtrip, whose deftime intersect the query period (using the temporal index). Calculate the
length of the Trip restricted to the query period. Group by Moid to sum up the total travelled
distance for each vehicle. The group by query periods to extract the maximum travelled distance.
TBA/UR:For each query period fromQP load all units fromMUunit, whose deftime intersect
the query period (using the temporal index). Calculate the length of the TripUnit restricted to
the query period. Group by Moid to sum up the total length for each vehicle. Group by query
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period to extract the maximum travelled distance.TBA/HR⊖: For each query period fromQP
load all trips fromMCtrip, whose deftime intersect the query period (using the temporal index).
Calculate the length of the Trip restricted to the query period. Group by Moid to sum up the
total travelled distance for each vehicle. The group by query periods to extract the maximum
travelled distance.TBA/UR:For each query period fromQP load all units fromMHunit, whose
deftime intersect the query period (using the temporal index). Calculate the length of the TripUnit
restricted to the query period. Group by TID to sum up the total length for each trip. Retrieve
the trip tuple fromMHtrip “containing” the grouped units dereferencing the TID link.Group
by Moid to calculate the total length for each vehicle. Groupby query period to extract the
maximum travelled distance.TBA/HR⊕: For each query period fromQP load all trips from
MHtrip, whose deftime intersect the query period (using the temporal index). Using the Tripid
B-tree index, load all according units fromMHunit using the TripId B-tree. Calculate the length
of the TripUnit restricted to the query period. Group by Moidto sum up the total length for
each vehicle. Group by query period to extract the maximum travelled distance.

The query clearly favours the OBA/CR, because during query processing, cardinalities remain
small and the temporal restrictions are fast and easy to perform. Only a single grouping is
required to get the result. All other variants are more than 6times slower. The second rank
is for the TBA/HR⊕ with IDTMP clustering, where candidate trips can be selected fast using
the TripDeftime summary. Then, the unit data is accessed ordered by Tripid and time, perfectly
matching the clustering schema. Using SPTMP more than doubles the responce time, This also
holds for the remaining TBA variants. While still existent,the benefits of using the Deftime
summary becomes much smaller for OBA, since the definition time summary field is more
accurate for single trips. For the OBA/UR and OBA/HR⊖ variants, the SPTMP clustering is
better than the ID/TMP due to the access pattern created by the result sequence returned by the
temporal index, which does not reflect the object identity.

VIII. C ONCLUSIONS AND RESEARCHPERSPECTIVES

We have proposed three different representations for storing time-sliced moving object data.
Regarding queries and general settings for a database and application domain, we analyzed
the factors having impact on their query and space performance, and using the BerlinMOD/R
benchmark, we formulated expected differences between therepresentations. We implemented
data types and algorithms required to create and evaluate the BerlinMOD data for each of the
representations in the SECONDO extensible DBMS and evaluated all models in this concrete
database system.

As expected, the UR and HR showed to have some advantages withsimple point and range
queries, where no further processing is required after the selection (Q11–15). For queries con-
sidering the complete history of a moving object (Q5–6, Q8–9), the CR is the better choice.

In the comparison of the UR and HR, the summary fields within the HR⊕ have proved to be
only of marginal use. They are only useful within queries employing very rough selections like
“Was objectX present at instantI ” (Q3), “Which objects were present between instantst1 to t2”,
or “Which objects ever moved within areaR”, where they can only be used as an initial filtering
step. This seems to be more useful in the according TBA queries than in the corresponding OBA
queries. Otherwise, it is more convenient to directly use the more fine grained spatial, temporal
or spatio-temporal indexes to retrieve candidates within point and range queries.
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Query OBA/CR OBA/URid OBA/UR3d OBA/HR⊖,id OBA/HR⊕,id OBA/HR⊖,3d OBA/HR⊕,3d

@0.05

Q1 0.262 0.001 1.906 0.001 ← 0.122 ←
Q2 0.027 0.001 38.752 0.004 ← 0.004 ←
Q3 1.285 0.899 7.913 0.901 4.915 22.256 5.540
Q4 34.587 0.239 7.437 0.280 ← 16.119 ←
Q5 5.090 13.488 53.652 9.787 ← 6.851 ←
Q6 31.506 38.149 58.402 132.517 4244.040 118.437 4403.280
Q7 38.236 1.818 2.572 0.992 ← 0.990 ←
Q8 0.453 2.263 24.823 2.244 6.803 2.318 7.446
Q9 189.092 1014.490 1077.650 1524.180 3867.880 1546.830 4052.970
Q10 213.984 35.522 29.817 37.401 ← 41.392 ←
Q11 1.347 0.888 0.580 0.455 ← 0.843 ←
Q12† 0.710 0.079 0.069 0.051 ← 0.051 ←
Q13 29.304 42.408 38.900 37.392 ← 40.272 ←
Q14 0.645 0.900 0.630 0.848 ← 0.900 ←
Q15 2.446 1.679 1.583 1.816 ← 1.534 ←
Q16 42.110 250.423 140.360 244.644 98.393 221.559 181.749
Q17 2.675 18.330 7.824 30.684 ← 21.727 ←

@0.2

Q1 0.190 4.885 4.074 0.103 ← 0.106 ←
Q2 0.004 141.508 194.426 0.005 ← 0.005 ←
Q3 2.377 3.197 25.212 3.452 13.127 77.717 13.793
Q4 163.173 61.755 26.465 105.537 ← 53.633 ←
Q5 7.250 24.320 100.302 21.172 ← 20.678 ←
Q6 220.035 196.260 220.671 701.332 57082.800 679.447 57645.500
Q7 201.235 109.870 50.657 145.098 ← 69.025 ←
Q8 0.711 5.796 74.813 4.497 18.129 5.343 78.907
Q9 450.832 18955.500 12064.000 15456.300 16132.400 11704.100 19133.800
Q10 1264.260 160.557 216.539 174.406 ← 232.595 ←
Q11 4.010 1.412 1.253 1.390 ← 1.290 ←
Q12† 35.965 13.289 5.800 19.775 ← 7.682 ←
Q12‡ 4.515 4.756 — 4.671 ← — —
Q13 60.725 126.367 94.153 146.240 ← 97.531 ←
Q14 2.045 4.072 5.884 3.605 ← 3.401 ←
Q15 24.988 18.313 14.506 19.996 ← 10.586 ←
Q16 65.539 513.499 328.596 520.173 193.745 411.003 440.091
Q17 46.104 91.857 13.317 133.918 ← 92.517 92.517

@1.0

Q1 0.187 6.840 7.469 0.110 ← 0.307 ←
Q2 0.014 793.578 990.027 0.009 ← 0.009 ←
Q3 4.132 6.158 221.999 6.657 26.925 228.287 28.847
Q4 1540.350 401.612 190.306 421.459 ← 177.656 ←
Q5 14.950 63.320 574.382 56.889 ← 485.887 ←
Q6 1892.430 819.940 825.850 6102.880 1183340.000 6012.200 1249690.000
Q7 4293.671 442.659 215.382 899.849 ← 333.711 ←
Q8 5.314 9.603 226.742 8.246 35.620 14.190 230.862
Q9 2174.680 85226.900 55128.100 118095.000 76242.100 51634.500 183316.000
Q10 8871.060 714.355 882.736 881.063 ← 848.341 ←
Q11 10.538 3.183 3.253 3.122 ← 3.163 ←
Q12† 906.701 62.633 28.775 125.353 ← 47.576 ←
Q13 356.500 144.867 89.181 200.313 ← 76.835 ←
Q14 13.604 7.738 11.987 8.332 ← 6.622 ←
Q15 253.536 37.465 17.150 58.318 ← 16.524 ←
Q16 59.455 719.583 606.589 733.218 385.471 206.785 869.483
Q17 1539.700 413.274 203.257 882.076 ← 313.049 ←

TABLE VIII
OBSERVEDRESULTS FORBERLINMOD OBA-QUERIES USINGSECONDO: TOTAL RESPONSETIMES [SEC]

†: Q12 was run using a wrong query translation.‡: Therefore, Q12 was reevaluated using corrected translations @0.2 and ruling
out cache effects.
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Query TBA/CR TBA/URid TBA/UR3d TBA/HR⊖,id TBA/HR⊕,id TBA/HR⊖,3d TBA/HR⊕,3d

@0.05

Q1 0.046 0.186 0.150 0.081 ← 0.089 ←
Q2 0.003 0.047 0.034 0.004 ← 0.004 ←
Q3 0.327 1.725 65.319 5.595 1.197 76.122 4.227
Q4 57.370 28.338 4.307 30.996 ← 4.940 ←
Q5 4.314 5117.194 5306.014 1680.635 ← 1855.058 1855.058
Q6 4.028 28.616 144.718 33.909 66.540 200.463 68.227
Q7 24.332 3.436 2.693 4.744 ← 3.180 ←
Q8 0.349 6.397 8.592 6.804 789.272 9.092 1.422
Q9 411.694 4849.780 5138.690 1040.500 789.272 1196.930 1051.900
Q10 51.171 31.166 32.076 24.156 ← 24.810 ←
Q11 0.508 1.207 1.105 0.739 ← 0.851 ←
Q12† 0.124 0.090 0.098 0.111 ← 0.116 ←
Q13 13.626 53.317 45.301 45.931 ← 40.192 ←
Q14 0.246 0.847 0.704 1.246 ← 0.122 ←
Q15 1.550 2.108 1.587 1.658 ← 1.744 ←
Q16 4.697 160.765 243.615 23.806 7.271 20.143 8.918
Q17 1.444 21.603 5.632 2.388 ← 5.349 ←

@0.2

Q1 0.079 0.394 0.369 0.082 ← 0.077 ←
Q2 0.003 0.215 0.168 0.005 ← 0.005 ←
Q3 0.486 3.485 347.377 14.619 2.273 372.418 17.100
Q4 267.167 109.938 10.570 118.496 ← 11.718 ←
Q5 6.561 27580.610 28138.400 5188.582 ← 6083.815 ←
Q6 6.464 99.577 951.223 118.378 280.166 1169.331 984.615
Q7 104.564 104.432 14.861 120.182 ← 17.099 ←
Q8 0.462 16.564 353.958 17.988 5.392 108.600 120.058
Q9 2921.800 8976.480 15407.900 18876.000 2942.880 50984.200 43824.200
Q10 482.898 86.946 161.593 74.452 ← 417.820 ←
Q11 0.389 1.421 1.130 1.069 ← 1.303 ←
Q12† 0.153 0.116 0.136 0.135 ← 0.160 ←
Q12‡ 4.685 4.435 — 4.411 ← — —
Q13 54.636 150.869 88.704 131.321 ← 92.782 ←
Q14 0.925 4.519 6.079 4.460 ← 3.737 ←
Q15 27.672 21.540 5.825 23.915 ← 8.143 ←
Q16 6.547 441.481 572.390 46.820 14.709 51.617 20.222
Q17 128.523 102.351 4.044 110.043 ← 11.807 ←

@1.0

Q1 0.097 1.181 1.667 0.200 ← 0.140 ←
Q2 0.005 1.160 0.724 0.008 ← 0.008 ←
Q3 0.954 6.375 1313.900 28.109 3.177 1281.970 26.258
Q4 2230.440 459.191 25.071 435.355 ← 31.176 ←
Q5 10.091 86319.730 88602.890 7303.940 7303.940 9675.540 ←
Q6 23.815 374.373 9700.021 454.592 2140.877 8849.633 53314.719
Q7 2236.707 475.536 45.178 464.588 ← 59.698 ←
Q8 2.198 38.937 1352.870 34.920 5.416 931.084 267.802
Q9 15012.300 26656.700 70687.700 82092.600 13998.700 427516.000 291820.000
Q10 3983.280 741.830 2220.020 708.417 ← 2120.840 ←
Q11 3.550 2.977 3.580 3.127 ← 3.093 ←
Q12† 0.172 0.167 0.161 0.166 ← 0.196 ←
Q13 166.185 169.501 123.163 140.526 ← 92.806 ←
Q14 4.425 7.619 6.609 7.585 ← 5.605 ←
Q15 108.037 46.862 18.632 49.670 ← 16.011 ←
Q16 8.095 1067.479 1089.416 83.854 17.746 89.493 24.300
Q17 2035.960 467.890 39.538 435.972 ← 33.767 ←

TABLE IX
OBSERVEDRESULTS FORBERLINMOD TBA-QUERIES USINGSECONDO: TOTAL RESPONSETIMES [SEC]

†: Q12 was run using a wrong query translation.‡: Therefore, Q12 was reevaluated using corrected translations @0.2 and ruling
out cache effects.
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We also evaluated the impact of using different clustering schemas for the unit stores required
by the UR and HR. Both examined variants showed to have their domain: If standard predicates
dominate the queries, the ID/TMP should be preferred, for spatio-temporal queries, the SPTMP
clustering leads to a significantly increased query performance.

One aspect of future work may aim at identifying the impact ofadditional clustering schemas
for the unit relations. Other aspects are about how to integrate the presented results into query
optimization. As the queries for the UR and especially the HRrepresentations showed to be
quite complex, translation rules need to be defined. A challenging optimization perspective is
automatic schema migrations in order to migrate the MOD representation schema according to
the observed working sets of queries.
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APPENDIX

We provide the BerlinMOD/R OBA queries as a quick reference.Full query texts are available
from [29]. Several relations and attributes have been renamed for the sake of disambiguation. We
only list the queries in common English and the SQL-queries for the OBA/CR. The SQL-queries
for other representations can be formulated in an analog way.

Q1: What are the models of the vehicles with licence plate numbers fromQueryLicence?
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SELECT DISTINCT LL . L i cence AS L icence , Model FROM dataSCcar , QueryL icence LL
WHERE L i cence = LL . L i cence ;

Q2: How many vehicles exist that are “passenger” cars?
SELECT COUNT ( L i cence ) FROM da taS CcarWHERE Type = ” p a s s e n g e r ” ;

Q1: What are the models of the vehicles with licence plate numbers fromQueryLicence?
SELECT DISTINCT LL . L i cence AS L icence , Model FROM dataSCcar , QueryL icence LL
WHERE L i cence = LL . L i cence ;

Q2: How many vehicles exist that are “passenger” cars?
SELECT COUNT ( L i cence ) FROM da taS CcarWHERE Type = ” p a s s e n g e r ” ;

Q4: Which licence plate numbers belong to vehicles that have passed the points fromQueryPoints?
SELECT PP . Pos AS Pos , C . L i cenceAS L i cence FROM da taS Ccar C, QueryP o in t s PP
WHERE C . Journey p a s s e s PP . Pos ;

Q5: What is the minimum distance between places, where a vehiclewith a licence from
QueryLicences1 and a vehicle with a licence fromQueryLicences2 have been?
SELECT LL1 . L i cence AS Licence1 , LL2 . L i cenceAS Licence2 ,

d i s t a n c e ( t r a j e c t o r y (V1 . Journey ) , t r a j e c t o r y (V2 . Journey ) ) AS D i s t
FROM da taS Ccar V1 , da taS Ccar V2 , QueryL icences1 LL1 , QueryL icences2 LL2
WHERE V1 . L i cence = LL1 . L i cence AND V2 . L i cence = LL2 . L i cence AND V1 . L i cence <> V2 . L i cence ;

Q6: What are the pairs of licence plate numbers of “trucks”, thathave ever been as close as
10m or less to each other?
SELECT V1 . L i cence AS Licence1 , V2 . L i cenceAS L icence2 FROM da taS Ccar V1 , da taS Ccar V2
WHERE V1 . L i cence < V2 . L i cence AND V1 . Type = ” t r u c k ” AND V2 . Type = ” t r u c k ”

AND somet imes ( d i s t a n c e (V1 . Journey , V2 . Journey )<= 1 0 . 0 ) ;

Q7: What are the licence plate numbers of the “passenger” cars that have reached the points
from QueryPoints first of all “passenger“ cars during the complete observation period?
SELECT PP . Pos AS Pos , V1 . L i cenceAS L i cence FROM da taS Ccar V1 , QueryP o in t s PP
WHERE V1 . Journey p a s s e s PP . PosAND V1 . Type = ” p a s s e n g e r ”

AND i n s t ( i n i t i a l (V1 . Journey a t PP . Pos ) )<= ALL
( SELECT i n s t ( i n i t i a l (V2 . Journey a t PP2 . Pos ) )AS F i r s t T i m e

FROM da taS Ccar V2WHERE V2 . Journey p a s s e s PP . PosAND V2 . Type = ” p a s s e n g e r ” ) ;

Q8: What are the overall travelled distances of the vehicles with licence plate numbers from
QueryLicences1 during the periods fromQueryPeriods1?
SELECT V1 . L i cence AS L icence , PP . P e r i o dAS Per iod ,

l e n g t h (V1 . Journey a t p e r i o d s PP . P e r i o d )AS D i s t
FROM da taS Ccar V1 , QueryP er i ods1 PP , QueryL icences1 LL
WHERE V1 . L i cence = LL . L i cence AND V1 . Journey p r e s e n t PP . P e r i o d ;

Q9: What is the longest distance that was travelled by a vehicle during each of the periods
from QueryPeriods?
SELECT PP . P e r i o d AS Per iod , MAX ( l e n g t h (V1 . Journey a t p e r i o d s PP ) )AS D i s t
FROM da taS Ccar V1 , QueryP er i ods PPWHERE V1 . Journey p r e s e n t PP . P e r i o dGROUP BY PP . P e r i o d ;

Q10: When and where did the vehicles with licence plate numbers from QueryLicences1
meet other vehicles (distance< 3m) and what are the latters’ licences?
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SELECT V1 . L i cence AS QueryL icence , V2 . L i cenceAS OtherL icence ,
(V1 . Journey a t p e r i o d s ( d e f t i m e ( ( d i s t a n c e (V1 . Journey , V2 . Journey ) <= 3 . 0 )
a t TRUE ) ) ) AS Pos

FROM da taS Ccar V1 , da taS Ccar V2 , QueryL icences1 LL
WHERE V1 . L i cence = LL . L i cence AND V2 . L i cence <> V1 . L i cence

AND somet imes ( d i s t a n c e (V1 . Journey , V2 . Journey )<= 3 . 0 ) ;

Q11: Which vehicles passed a point fromQueryPoints1 at one of the instants from
QueryInstants1?
SELECT C . L i cence AS L icence , PP . PosAS Pos , I I . I n s t a n t AS I n s t a n t
FROM da taS Ccar C, QueryP o in t s1 PP , Q u e r y I n s t a n t s 1 I I
WHERE v a l (C . Journey a t i n s t a n t I I . I n s t a n t ) = PP . Pos ;

Q12: Which vehicles met at a point fromQueryPoints1 at an instant fromQueryInstants1?
SELECT PP . Pos AS Pos , I I . I n s t a n t AS I n s t a n t , C1 . L i cenceAS Licence1 , C2 . L i cenceAS L icence2
FROM da taS Ccar C1 , da taS Ccar C2 , QueryP o in t s1 PP , Q u e r y I n s t a n ts 1 I I
WHERE v a l ( C1 . Journey a t i n s t a n t I I . I n s t a n t ) = PP . Pos

AND v a l (C2 . Journey a t i n s t a n t I I . I n s t a n t ) = PP . Pos ;

Q13: Which vehicles travelled within one of the regions fromQueryRegions1 during the
periods fromQueryPeriods1?
SELECT RR. Region AS Region , PP . P e r i o dAS Per iod , C . L i cenceAS L i cence
FROM da taS Ccar C, QueryRegions1 RR, QueryP er i ods1 PP
WHERE NOT ( i sempty ( ( ( C . Journey a t p e r i o d s PP . P e r i o d ) a t RR. Region )) ) ;

Q14: Which vehicles travelled within one of the regions fromQueryRegions1 at one of
the instants fromQueryInstants1?
SELECT RR. Region AS Region , I I . I n s t a n t AS I n s t a n t , C . L i cenceAS L i cence
FROM da taS Ccar C, QueryRegions1 RR, Q u e r y I n s t a n t s 1 I I
WHERE v a l (C . Journey a t i n s t a n t I I . I n s t a n t ) i n s i d e RR. Region ;

Q15: Which vehicles passed a point fromQueryPoints1 during a period fromQueryPeriods1?
SELECT PO . Pos AS Pos , PR . P e r i o dAS Per iod , C . L i cenceAS L i cence
FROM da taS Ccar C, QueryP o in t s1 PO, QueryP er i ods1 PR
WHERE NOT ( i sempty ( ( ( C . Journey a t p e r i o d s PR . P e r i o d ) a t PO . Pos ) ) ) ;

Q16: List the pairs of licences for vehicles, the first fromQueryLicences1, the second
from QueryLicences2, where the corresponding vehicles are both present within aregion
from QueryRegions1 during a period fromQueryPeriod1, but do not meet each other
there and then.
SELECT PP . P e r i o d AS Per iod , RR. RegionAS Region , C1 . L i cenceAS Licence1 ,

C2 . L i cence AS L icence2
FROM da taS Ccar C1 , da taS Ccar C2 , QueryRegions1 RR, QueryP er i ods1 PP ,

QueryL icences1 LL1 , QueryL icences2 LL2
WHERE C1 . L i cence = LL1 . L i cenceAND C2 . L i cence = LL2 . L i cence

AND LL1 . L i cence <> LL2 . L i cence AND ( C1 . Journey a t PP . P e r i o d ) p a s s e s RR. Region
AND ( C2 . Journey a t PP . P e r i o d ) p a s s e s RR. Region
AND i sempty ( ( i n t e r s e c t i o n (C1 . Journey , C2 . Journey ) a t p e r i od s PP . P e r i o d )

a t RR. Region ) ;

Q17: Which points fromQueryPoints have been visited by a maximum number of different
vehicles?
CREATE VIEW PosCount AS SELECT PP . Pos AS Pos , COUNT (C . L i cence ) AS H i t s

FROM QueryP o in t s PP , da taS Ccar CWHERE C . Journey p a s s e s PP . PosGROUP BY PP . Pos ;
SELECT Pos FROM PosCount AS N WHERE N. H i t s = (SELECT MAX ( H i t s ) FROM PosCount ) ;
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