
INFORMATIK
BERICHTE

380 – 01/2020

Parallel Trajectory Management in SECONDO

Fabio Valdés, Thomas Behr, Ralf Hartmut Güting

Fakultät für Mathematik und Informatik
D-58084 Hagen

Parallel Trajectory Management in Secondo

Fabio Valdés, Thomas Behr, and Ralf Hartmut Güting

Database Systems for New Applications
Faculty of Mathematics and Computer Science

Fernuniversität Hagen, Germany

January 3, 2020

Abstract

In this document, we present a use case for handling a real-world spatio-temporal dataset
on a cluster with the DBMS Secondo. For a set of taxi trajectories recorded in Rome, Italy,
we address the raw data import with some data cleaning, distribution on several workers,
indexing with different structures, querying the indexed data, and inserting updates.

Contents
1 Introduction 2

2 Preparation 2

3 Environment 2

4 Data Import and Partitioning 3
4.1 Creating a Database . 3
4.2 Data Import . 4

4.2.1 Sequential Import and Distribution from the Master 4
4.2.2 Parallel Import . 5

4.3 Creating Moving Objects . 5
4.4 Looking at the Dataset . 6
4.5 Multiplying the Dataset . 8
4.6 Partitioning . 10

4.6.1 Partitioning by Object Identifier . 10
4.6.2 Spatio-temporal Partitioning . 11

5 Indexing 14
5.1 By Identifier . 14
5.2 By Spatio-temporal Information . 14

6 Querying 15
6.1 By Identifier . 15
6.2 By Spatio-temporal Dimension . 15

2 Parallel Trajectory Management in Secondo

7 Updates 17
7.1 Data Import . 17
7.2 Creating Moving Objects . 18
7.3 Multiplying the Dataset . 18
7.4 Updating CabsId . 18
7.5 Updating CabsST . 20

1 Introduction
This document provides a stepwise manual for importing, partitioning, indexing, querying, and
updating a very large set of raw trajectory data on several machines. Throughout the article, a
real-world dataset is applied for demonstration purposes. All listed queries are executed in the
freely available database system Secondo [3, 5, 1].

The dataset considered in the following comprises the trajectories of 318 taxis recorded
in the city of Rome during one month [2]. The corresponding file contains almost 22 million
timestamped positions together with the taxi identifier, ordered by time, and has a size of
1.5 GBytes. Moreover, we will enlarge the dataset by a factor 10 corresponding to about 220
million time-stamped positions.

For background information on the techniques used in this paper, see the User Manual of
Secondo [6] and the Tutorial on Distributed Query Processing [4].

2 Preparation
To be able to demonstrate the initial loading of data and the setup of the distributed database
as well as later updates (when new position data become available), we split the data set into a
large part loaded initially and the rest used for an update. Since lines of the file are ordered by
time, a simple file split operation suffices to divide data into temporally disjoint ranges.

We assume that the data file taxi february.txt is available in a directory named cabsrome
right below Secondo’s bin directory. We first determine the number of lines in this file, e.g. by
a command wc -l < taxi february.txt. There are 21817851 lines.

The Linux command

split -l 21000000 -d taxi_february.txt taxidata

creates two files taxidata00 and taxidata01 with 21000000 and 817851 lines, respectively.

3 Environment
First, the master and worker environment has to be set up. This procedure is detailed in [4],
Section 3. We use two different clusters.

The first small cluster has 12 workers besides the master. It uses two desktop computers
with the following properties and configuration:

• Computer 1
– 6 cores, 16 GB main memory, 4 disks, AMD Phenom 1055t six-core processor, running

Ubuntu 18.04
– master using 1 core, one disk, 4 GB memory
– 4 workers each using one core, 2 GB memory, two workers sharing one disk

• Computer 2
– 8 cores, 32 GB main memory, 4 disks, AMD Fx-8320 eight-core processor, running

Ubuntu 18.04
– 8 workers each using one core, 3.6 GB memory, two workers sharing one disk

Parallel Trajectory Management in Secondo 3

Examples in the text refer to this cluster.
The second, a bit larger, cluster provides 40 workers. It employs five server computers. Each

of them has the following configuration:
• 8 cores, 32 GB main memory, 4 disks, Intel Xeon CPU E5-2630, running Ubuntu 18.04
• 8 workers each using one core, 3.6 GB memory, two workers sharing one disk
• master on one of them, using all memory.
Together with the Secondo commands and queries shown below we indicate running times.

The purpose is to give a rough idea of the effort required for this query. Running times are given
as pairs, for example

9.3 seconds, 1.27 seconds

The two entries refer to the small and larger cluster, respectively. Comparing them allows one
to get an impression of scalability. If only one time is shown, it refers to the small cluster; the
query was not run on the larger cluster.

4 Data Import and Partitioning
After the cluster is prepared, we can begin to import the raw data. The objective is to obtain two
different partitionings, one by object identifier and another by the spatio-temporal dimensions,
in order to support efficient querying.

The distribution by identifier is rather trivial. Unfortunately, the taxi dataset is not suitable
for a standard spatial partitioning, since the trips are rather long compared to the diameter of
the whole data space (which roughly equals the city of Rome). For example, a trip may start
at one of the airports and end in the city center, hence many trips would be copied to several
workers.

Therefore, we apply a small trick and reproduce the data space ten times in a 5 × 2 raster
(other sizes are also possible), in order to support a better spatial partitioning and to also enlarge
the dataset.

The resulting 3-dimensional space (2d + time) is then partitioned into 4 × 2 × 8 grid cells.
Trajectories are mapped to the cells they intersect. Cells in turn are mapped to the fields of a
distributed array.

4.1 Creating a Database

In the first step we create and open a database and restore the Workers relation. The number
of slots for distributed arrays is set. We also define a port number required by some operators
for data exchange which must be reserved for this application.

create database taxis;
open database taxis;

restore Workers from Workers;
let NSlots = 40;
let myPort = 1238;

We also need to start the monitors controlling the workers:

remoteMonitors Cluster40 start

These steps assume that a Workers relation is available in nested list format in the secondo/bin
directory as well as a file Cluster40 specifying the available monitors (see [4]).

4 Parallel Trajectory Management in Secondo

4.2 Data Import

The raw data are available as a CSV file taxidata00 with 21 million lines of the following form
(here the first line):

156;2014-02-01 00:00:00.739166+01;POINT(41.8836718276551 12.4877775603346)

The three attributes are an object identifier, a time stamp, and geographic coordinates,
separated by a semicolon. The latter two need to be transformed into a suitable form for
Secondo. The lines are ordered by time stamp.

There are two possible strategies for importing the data into the distributed database:
• Reading the file sequentially on the master and then distribute tuples to workers, or
• Splitting the file into parts, distributing file parts to workers and then reading file parts

in parallel by the workers.
The first strategy is more straightforward whereas the second is more scalable. We discuss the
two techniques in turn.

4.2.1 Sequential Import and Distribution from the Master

let RawDataById =
[const rel(tuple([Id: int, DateTime: string, Point: string])) value ()]
csvimport[’cabsrome/taxidata00’, 0, "", ";", FALSE, FALSE]
projectextend[Id
; Inst: str2instant(substr(.DateTime, 1, 10) + "-" + substr(.DateTime, 12, 23)),

Pos: makepoint(
str2real(

substr(.Point, findFirst(.Point, " ") + 1, findFirst(.Point, ")") - 1)),
str2real(

substr(.Point, findFirst(.Point, "(") + 1, findFirst(.Point, " ") - 1))
)]
ddistribute4["RawDataById", hashvalue(.Id, 999997) , 40, Workers]

8:49 min, 5:25 min
The operator csvimport reads lines from the CSV file, interpreting them according to the

schema given by the empty relation argument in front of the operator. Output of the first part
of the query

[const rel(tuple([Id: int, DateTime: string, Point: string])) value ()]
csvimport['cabsrome/taxi_february.txt', 0, "", ";", FALSE, FALSE]

are tuples of the form:

Id : 156
DateTime : 2014-02-01 00:00:00.739166+01

Point : POINT(41.8836718276551 12.4877775603346)

In the next step, the projectextend operator keeps the Id attribute and computes new at-
tributes Inst of type instant and Pos of type point, applying string operations. The resulting
tuples have the form:

Id : 156
Inst : 2014-02-01-00:00:00.739
Pos : point: (12.4877775603346, 41.8836718276551)

Finally, the ddistribute4 operator distributes tuples to 40 slots of a distributed array par-
titioning by a hash function on the Id attribute. Result of the query is a distributed array
RawDataById.

Parallel Trajectory Management in Secondo 5

4.2.2 Parallel Import

Distributing the 21 million lines over 40 slots of a distributed array results in 525000 lines per
slot. We can apply a Linux split command to divide the large file into 40 parts, each containing
525000 lines:

split -l 525000 --numeric-suffixes=10 taxidata00 taxipart

This creates 40 files named taxipart10, ..., taxipart49. We copy these files to the same direc-
tory $HOME/secondo/bin/cabsrome on all computers running workers, using commands like the
following:

scp taxipart* ralf@ralf2:/home/ralf/secondo/bin/cabsrome

We create a distributed integer array, containing the numbers 0, ..., 39 in its slots. This allows
one to control the further processing of 40 slots.

let Control40 = createintdarray("Control40", Workers, 40)

These three preparatory steps have taken only 12.6 + 14.9 + 2.25 = 29.75 seconds. The following
command imports the data in parallel:

let RawDataById2 = Control40
dmap["",

[const rel(tuple([Id: int, DateTime: string, Point: string])) value ()]
csvimport[’cabsrome/taxipart’ + num2string(. + 10), 0, "", ";", FALSE, FALSE]
projectextend[Id
; Inst: str2instant(substr(.DateTime, 1, 10) + "-" + substr(.DateTime, 12, 23)),

Pos: makepoint(
str2real(

substr(.Point, findFirst(.Point, " ") + 1, findFirst(.Point, ")") - 1)),
str2real(

substr(.Point, findFirst(.Point, "(") + 1, findFirst(.Point, " ") - 1))
)]
consume

]
partition["", hashvalue(.Id, 999997), 0]
collect2["RawDataById2", myPort]

3:15 min
In the end, tuples are repartitioned by Id with the partition and collect2 operators. Result

is a distributed array RawDataById2.

4.3 Creating Moving Objects

From the distributed raw data we now create trips associated with object identifiers. Note that
for a given object identifier all data points are present in the same slot due to the partitioning
by identifiers.

let CabsTrips = RawDataById
dmap["CabsTrips",

. feed sortby[Id, Inst]
groupby[Id; TotalTrip: group feed

approximate[Inst, Pos, TRUE, create_duration(0, 60000)]
removeNoise[35.0, 2000.0, create_geoid("WGS1984")]]

projectextendstream[Id; Trip: .TotalTrip
sim_trips[create_duration(0, 180000), 100.0, create_geoid("WGS1984")]]

filter[no_components(.Trip) > 1]
consume

]

6 Parallel Trajectory Management in Secondo

1:48 min, 14.6 seconds
In the invocation of the approximate operator, which combines timestamps and positions

into complete trajectories, we assume that a continuous movement ends if two consecutive data
points for the same taxi identifier have a temporal distance of more than one minute (note that
the command create duration(0, 60000) creates an object of the type duration having a length
of 60,000 milliseconds, i.e., one minute).

To the trajectories (moving points) built by the approximate operator, a further operator
removeNoise is applied. GPS data sometimes contain erroneous positions that can to some
extent be recognized by lying far away from the other observation points within a temporal
sequence of observations. This results in the creation of two adjacent movement units that
have a large speed and distance traversed. The removeNoise operator discovers such pairs of
subsequent units with speed and/or distance higher than a specified threshold and replaces them
by a single unit (so that the erroneous point is ignored). For the current dataset we assume
that taxis do not move at a speed higher than 120 km/h or traverse between two observations a
distance higher than 2000 meters. The latter distance can be traversed within one minute by a
car moving at 120 km/h; this is consistent with the parameter of approximate which separates
trips if there is a gap of more than one minute between observations. The two parameters of
removeNoise are the speed in meters per second (120 km/h ≈ 35 m/s) and the distance in
meters if a geoid is given as a third parameter.

The sim trips operator splits trajectories into shorter trips whenever there are definition
gaps, i.e., adjacent positions not connected by movement. It also splits them at stationary
intervals with a duration of at least three minutes, where an interval is viewed as stationary if
its speed is below 100 meters per hour. Finally, only trips having at least two units are kept.

4.4 Looking at the Dataset

We can look at the result and check for plausibility:

query CabsTrips dmap["", . count] getValue

Here the getValue operator copies a distributed array into a local array on the master. The
result looks like this:

*************** BEGIN ARRAY ***************
--------------- Field No: 0 ---------------
9066
--------------- Field No: 1 ---------------
8957
--------------- Field No: 2 ---------------
9970
--------------- Field No: 3 ---------------
8400

...

--------------- Field No: 39 ---------------
8500
*************** END ARRAY ***************

So there are about 9000 trips per slot, the total is given by

query CabsTrips dmap["", . count] getValue tie[. + ..]

and is 337182. The tie operator takes a binary parameter function to combine any two adjacent
fields of an array, here addition, and so computes an aggregate over an array. The query could
also be written as

Parallel Trajectory Management in Secondo 7

query CabsTrips dmap["", . count] getValue tie[fun(x:int, y:int) x + y]

The average number of units (observations) per trip is

query CabsTrips dmap["", . feed projectextend[; N: no_components(.Trip)] sum[N]]
dsummarize transformstream sum[Elem]
/ 337182

which is about 40.
Here the dsummarize operator is applied to the distributed integer array resulting from

the dmap operation and feeds these integers into a stream of values on the master. This is
further transformed into a stream of tuples (with attribute Elem) to which the sum aggregation
is applied.

We determine for each trip its traversed distance in meters and total time in minutes:

let CabsTripsDistDur = CabsTrips
dmap["CabsTripsDistDur", . feed

projectextend[
; Distance: val(final(distancetraversed(.Trip, create geoid("WGS1984")))),

Duration: get duration(deftime(.Trip)) / [const duration value (0 60000)]]
]

11.65 sec
Note that the division of durations returns an integer result (like integer division), hence a

result of 0 indicates a duration of less than one minute.
Let us see from each slot a few example tuples:

query CabsTripsDistDur dmap["", . feed head[3] consume] getValue

The result is:

*************** BEGIN ARRAY ***************
--------------- Field No: 0 ---------------

Distance : 17.1818541061
Duration : 0

Distance : 262.1977324963
Duration : 0

Distance : 3866.498835861
Duration : 9

--------------- Field No: 1 ---------------

Distance : 3877.4149047889
Duration : 15

Distance : 9662.5241977585
Duration : 41

Distance : 7231.7033269336
Duration : 10

--------------- Field No: 2 ---------------

Distance : 5565.8362844199
Duration : 20

...

8 Parallel Trajectory Management in Secondo

The minimal, maximal, and average distance traversed and duration of trips, respectively,
can be computed as

query CabsTripsDistDur dmap["", . feed
groupby[
; MinDist: group feed min[Distance],

MaxDist: group feed max[Distance],
AvgDist: group feed avg[Distance],
MinDur: group feed min[Duration],
MaxDur: group feed max[Duration],
AvgDur: group feed avg[Duration]]

]
getValue

with result

*************** BEGIN ARRAY ***************
--------------- Field No: 0 ---------------

MinDist : 4.08e-07
MaxDist : 31500.5420808775
AvgDist : 1889.0556102962
MinDur : 0
MaxDur : 183
AvgDur : 7.0586807854

--------------- Field No: 1 ---------------

MinDist : 2.909e-07
MaxDist : 49709.1580841572
AvgDist : 1702.7162155473
MinDur : 0
MaxDur : 209
AvgDur : 6.7019091214

...

Finally, let us see the spatial bounding box of trips for each slot at the graphical user interface.

query CabsTrips
dmap["", . feed projectextend[; Box: bbox2d(.Trip)] transformstream

collect box[TRUE]]
getValue

The result is shown in Figure 1.

4.5 Multiplying the Dataset

In this step we enlarge the dataset by creating a number of copies shifted spatially and with
numerically shifted identifiers. To prepare this, we first need to know the maximal identifier and
the width and height of the spatial bounding box of all points.

The maximal identifier can be determined by the following query:

query CabsTrips dmap["", . feed max[Id]] dsummarize transformstream max[Elem]

2.7 sec
The maximal identifier is 374.
The spatial bounding box of all trips (GPS positions) and its width and height can be

determined as follows:

Parallel Trajectory Management in Secondo 9

Figure 1: Bounding Boxes of Trips for Each Slot of the Distributed Array

let bboxR = CabsTrips
dmap["", . feed projectextend[; Box: bbox(.Trip)] transformstream

collect_box[TRUE]]
dsummarize collect_box[TRUE]

let deltax = maxD(bboxR, 1) - minD(bboxR, 1);
let deltay = maxD(bboxR, 2) - minD(bboxR, 2)

The deltax and deltay values will be needed by the workers; so we make these values available
to them.

query share("deltax", TRUE, Workers);
query share("deltay", TRUE, Workers);

We now have a choice of how many copies of the dataset we wish to create. In this example,
we create 10 copies arranged in a 5 × 2 grid. That is, the area of the original bounding box is
repeated four times in x- and once in y-direction. For the identifiers, we reserve disjoint ranges
of 1000 values for the 10 copies. The resulting enlarged dataset is distributed again by Id.

let CabsId = CabsTrips
dmap["", . feed

loopsel[fun(t: TUPLE)
intstream(0, 4) namedtransformstream[Nx]
intstream(0, 1) namedtransformstream[Ny]
product
projectextend[
; Id: attr(t, Id) + ((5 * .Ny) + .Nx) * 1000,

Trip: attr(t, Trip)
translate[[const duration value (0 0)], .Nx * deltax, .Ny * deltay]]

]
]

10 Parallel Trajectory Management in Secondo

partition["", hashvalue(.Id, 999997), 0]
collect2["", myPort]
dmap["CabsId", . feed consume]

11:27 min, 2:17 min
The loopsel operator evaluates for each tuple in its argument stream a parameter function

which returns a stream of tuples; it returns the concatenation of all these streams. Here for each
argument tuple we create the 10 copies with shifted Id and Trip attributes. After repartitioning,
the final application of the dmap operator serves to transform the distributed file array returned
by collect2 into a distributed array of relations. We need a darray to be able to build indexes
over its relations.

Again we check the result for plausibility.

query CabsId dmap["", . count] getValue tie[. + ..]

The result is 3371820.
We compare the numbers of units in the original and the multiplied data set:

query CabsTrips dmap["", . feed projectextend[; N: no_components(.Trip)] sum[N]]
dsummarize transformstream sum[Elem]

query CabsId
dmap["", . feed projectextend[; N: no_components(.Trip)] sum[N]]
dsummarize transformstream sum[Elem]

The results are 13460706 and 134607060, respectively.
The maximal identifier is

query CabsId dmap["", . feed max[Id]] dsummarize transformstream max[Elem]

returning 9374 as it should be. Finally, we look at the bounding boxes of slots

query CabsId
dmap["", . feed projectextend[; Box: bbox2d(.Trip)] transformstream

collect_box[TRUE]]
dsummarize consume

and obtain the red boxes in Figure 2 as compared to the blue boxes of the original dataset.

4.6 Partitioning

Partitioning determines which objects are co-located within the same slot and hence stored on
the same worker. This is relevant for keeping operations restricted to one or a few workers,
rather than all, and especially to support joins over partitioning attributes.

We propose to maintain two copies of the dataset, one partitioned by object identifier, the
other spatio-temporally.

4.6.1 Partitioning by Object Identifier

The distributed array CabsId is already partitioned by object identifier as this was the last step
in the query creating it. So all trips of a given object are co-located.

Parallel Trajectory Management in Secondo 11

Figure 2: Bounding Boxes of Trips for Each Slot of the Original (blue) and the Multiplied
Dataset (red)

4.6.2 Spatio-temporal Partitioning

To design the spatio-temporal partitioning, we need the 3d bounding box of the data, that is,
x- and y-coordinates and the temporal extent. It is given by the query

let bboxR10 = CabsId
dmap["", . feed projectextend[; Box: bbox(.Trip)] transformstream

collect_box[TRUE]]
dsummarize collect_box[TRUE]

6.65 seconds, 1.6 seconds
Note that here we do not apply the bbox2d, but the bbox operator which constructs a 3d

bounding box. The resulting rectangle has the value

rect: ((11.753154551,41.513268021,5143.0000086) -
(17.804743105,43.090930714,5171.6134439))

represented in the form ((xbottom, ybottom, tbottom) − (xtop, ytop, ttop)). Instants are represented
by real numbers by counting the number of days (and fractions thereof) since the NULL date
2000-01-03. We can convert a real into an instant by the operator create instant, hence by
the queries

query create_instant(5143.0000086);
query create_instant(5171.6134439)

we find that the temporal range of the dataset loaded is:

2014-02-01-00:00:00.743
2014-03-01-14:43:21.553

12 Parallel Trajectory Management in Secondo

We enlarge the data space a bit introducing an x-range 11.0 - 19.0, a y-range 41.0 - 44.0 and
a t-range 5140.0 - 5180.0. Within this space we decide, somewhat arbitrarily, to create a grid of
4 × 2 × 8 cells. The grid data structure is created as follows:

let grid = createCellGrid3D(11.0, 41.0, 5140.0, 2.0, 1.5, 5.0, 4, 2)

The first three parameters define the origin of the data space in x, y, t, the next three the
respective cell widths. The last two parameters define the numbers of cells in x- and y-direction.
The grid is unlimited in temporal direction. The purpose of the grid is to assign a continuous
range of cell numbers starting from 1 that can be used for partitioning. Cells are numbered first
in increasing x-, then in y- and last in t-direction.

The grid needs to be made available to the workers:

query share("grid", TRUE, Workers)

The spatio-temporally partitioned copy of the data set is built as follows:

let CabsST = CabsId
partitionF["", . feed

extendstream[Cell: cellnumber(bbox(.Trip), grid)]
extend[Box: bbox(.Trip)],
..Cell, NSlots]

collect2["", myPort]
dmap["CabsST", . feed consume]

20:27 min, 3:37 min
Here the partitionF operator allows one to first apply a function to the relation in each

slot, returning a (modified) tuple stream, and then to partition the resulting stream of tuples
by one of its attributes.

Within the function, the bounding box of each trip is compared to the grid structure by the
cellnumber operator; it returns a stream of integer values, the cell numbers of cells intersected
by the bounding box. The extendstream operator creates one copy of the input tuple for each
returned value, the latter is kept in the new attribute Cell.

The following application of the extend operator adds to each tuple an Original attribute.
It is true if the cell Cell value is the first emitted by the cellnumber operator. So this tuple
is considered the original, any tuples with following cell numbers as copies. This can be used to
efficiently eliminate duplicates from query results.

The last parameter of the partitionF operator gives the number of slots of the partitioning
to be created. Here the original data should fill slots up to 64; we leave space for future tuples
by creating 120 slots. 1 Slot numbers are generally mapped round-robin to workers. Therefore
full and initially empty slots should be distributed evenly among workers.

Finally, the distributed file array is transformed into a distributed array to have relations in
each slot that can be indexed.

Again, we examine the result a bit:

query CabsST dmap["", . count] getValue

The result looks like this:

--------------- Field No: 0 ---------------
0
--------------- Field No: 1 ---------------
7948
--------------- Field No: 2 ---------------
15783

1If cell numbers larger than 120 occur in the future, they will be taken modulo 120 and so be mapped to the
first slots again.

Parallel Trajectory Management in Secondo 13

--------------- Field No: 3 ---------------
8198
--------------- Field No: 4 ---------------
7947

...
--------------- Field No: 55 ---------------
22857
--------------- Field No: 56 ---------------
22162
--------------- Field No: 57 ---------------
0
--------------- Field No: 58 ---------------
0
--------------- Field No: 59 ---------------
0

...
--------------- Field No: 119 ---------------
0
*************** END ARRAY ***************

Hence the last filled cell is numbered 56. The total number of trips is given by

query CabsST dmap["", . count] getValue tie[. + ..]

returning 3380464. Note that for CabsId this number was 3371820. The difference of 8644 is
due to the fact that in CabsST some trips intersecting cell boundaries are duplicated. But these
are relatively few. If we restrict to originals, as in

query CabsST dmap["", . feed filter[.Original] count] getValue tie[. + ..]

we get indeed the result 3371820.
The maximal number of trips in a cell is

query CabsST dmap["", . count] dsummarize transformstream max[Elem]

returning 204663.
We can visualize the distribution of trips over cells (Figure 3) in the Javagui by the following

query:

query CabsST dmap["", . count] dsummarize transformstream addcounter[N, 0]
extend[Bar: rectangle2(.N * 10000, (.N * 10000) + 8000, 0, .Elem)] consume

Figure 3: Distribution of Trips Over Slots for CabsST (empty slots to the right omitted)

14 Parallel Trajectory Management in Secondo

5 Indexing
We wish to support two types of queries:

1. Find all trips for a given object identifier.
2. Retrieve all trips intersecting a given spatio-temporal range.

To enable efficient execution, we create B-trees over taxi identifiers and R-trees over trip data.

5.1 By Identifier

We create a B-tree for indexing the taxi identifiers over the CabsId distributed array.

let CabsId_Id_btree = CabsId dmap["CabsId_Id_btree", . createbtree[Id]]

11.4 seconds, 1.4 seconds

5.2 By Spatio-temporal Information

The applied index structure is a three-dimensional R-tree.

let CabsST_Trip_rtree = CabsST
dmap["CabsST_Trip_rtree", . feed addid

extend[ScaledBox: scalerect(.Box, 1000000.0, 1000000.0, 1000.0)]
sortby[ScaledBox]
remove[ScaledBox]
bulkloadrtree[Box]

]

20.7 seconds, 4.6 seconds
Here the bulkloadrtree operator processes a stream of tuples containing a tuple identifier

attribute (allowing for direct access to the tuple in the relation) and a 3d rectangle to be used as
index entry. This operator packs arriving entries sequentially into pages; it requires to receive a
stream of tuples in z-order. To this end, the arriving stream is sorted by a numerically enlarged
box. Enlarging the box is necessary because the sorting by rectangles uses only the integer part
of coordinates; for geographic coordinates this is not precise enough. When the scaled box has
been used for sorting, it can be disposed again.

This R-tree is built over bounding boxes of entire trips. Such boxes cover relatively large
areas. A spatio-temporal range query with a small range may retrieve many trips whose boxes
overlap the range. To have a more fine-grained indexing, we can alternatively create an index
over units of trips.

let CabsST_UTrip_rtree = CabsST
dmap["CabsST_UTrip_rtree", . feed addid

projectextendstream[TID; UTrip: units(.Trip)]
extend[Box: bbox(.UTrip)]
extend[ScaledBox: scalerect(.Box, 1000000.0, 1000000.0, 1000.0)]
sortby[ScaledBox]
remove[ScaledBox]
bulkloadrtree[Box]

]

25:04 min
The units operator returns a stream of the units (linear pieces of movement) of a trajec-

tory. The projectextendstream operator keeps of each incoming tuple the TID attribute and
produces as many copies of the tuple as there are units. Hence the resulting stream consists of
pairs of a TID and a unit. This is fed into the index construction as before.

Building this set of indexes takes much longer because in total about 135 million index entries
are created.

Parallel Trajectory Management in Secondo 15

6 Querying
Querying by identifier, time interval, or spatial property can now be performed efficiently.

6.1 By Identifier

Figure 4: Query result showing all trips corresponding to the identifier 11

The following query finds and outputs all trips corresponding to the identifier 11, as depicted
in Figure 4.

query CabsId_Id_btree CabsId
dmap2["", . .. exactmatch[11], myPort]
dsummarize consume

14.3 seconds, 11.5 seconds

6.2 By Spatio-temporal Dimension

Figure 5: Query result showing all trips corresponding to the query object qObject

16 Parallel Trajectory Management in Secondo

The following query finds all trips passing the city center of Rome on February 1, 2014,
between 7 and 8 pm. It is executed after defining and sharing the query object. The result is
shown in Figure 5.

let qObject = rectangle3(12.464446, 12.5013, 41.879938, 41.911759,
instant2real(theInstant(2014, 02, 01, 19)),
instant2real(theInstant(2014, 02, 01, 20)));

query share("qObject", TRUE, Workers)

query CabsST_Trip_rtree CabsST
dmap2["", . .. windowintersects[qObject]

filter[.Trip passes rectproject(qObject, 1, 2) rect2region]
filter[.Trip present rect2periods(qObject)], myPort]

dsummarize sort rdup consume

22.7 seconds
Here the windowintersects operator retrieves from the R-tree CabsST Trip rtree the trips

whose 3d bounding box intersects the query box qObject. The following two filter steps check
that the actual trajectory intersects the query box in space and time.

Note that a query box may overlap several grid cells. The same holds for a data box, i.e.,
the bounding box of a trip. Therefore query box and data box may meet in different cells of the
grid, hence in different slots of the distributed array, and we may have duplicate results.

One way to get rid of them is to discover them on the master. This is done in the query
above with the sort and rdup operators. However, this method may be expensive for large
result sets due to the necessary sorting. The rdup operator just removes consecutive equal
tuples in a tuple stream.

Another method is to decide within each cell or slot whether this result instance is to be
reported. The idea is to compute a point, the smallest point within the intersection of query
rectangle and data rectangle. This point can lie in only one cell. Only for this cell the result
will be reported. This method is implemented in the following variant of the query:

query CabsST_Trip_rtree CabsST
dmap2["", . .. windowintersects[qObject]

filter[gridintersects(grid, qObject, bbox(.Trip), .Cell)]
filter[.Trip passes rectproject(qObject, 1, 2) rect2region]
filter[.Trip present rect2periods(qObject)],

myPort]
dsummarize consume

9.7 seconds, 9.6 seconds
Here the gridintersects operator checks whether the smallest intersection point of the

qObject and the bounding box of the trip lies in the cell numbered .Cell with respect to the
argument grid.

The queries shown in this section are a bit slow. This is because within the dmap2 operation,
the respective query is evaluated for each slot, even though for almost all slots the result will be
empty. For the query

query CabsId_Id_btree CabsId
dmap2["", . .. exactmatch[11], myPort]
dsummarize consume

it would be sufficient to evaluate the slot to which the Id 11 is mapped. For the spatio-temporal
query we could restrict evaluation to the slots whose grid cells intersect the query object. We
can easily determine which slots are concerned, by the queries

Parallel Trajectory Management in Secondo 17

query hashvalue(11, 999997) mod NSlots;
query cellnumber(qObject, grid) use[. mod NSlots] consume

Fortunately there exist variants of the dmap family of operators called pdmap (partial dmap).
These operators take an additional argument (written first) which is a stream of slot numbers
that need to be evaluated; other slots are ignored. With these operators, the queries can be
written as follows:

query hashvalue(11, 999997) feed use[. mod NSlots] CabsId_Id_btree CabsId
pdmap2["", . .. exactmatch[11], myPort]
dsummarize consume

10.1 seconds, 11.0 seconds

query cellnumber(qObject, grid) use[. mod NSlots] CabsST_Trip_rtree CabsST
pdmap2["", . .. windowintersects[qObject]

filter[gridintersects(grid, qObject, bbox(.Trip), .Cell)]
filter[.Trip passes rectproject(qObject, 1, 2) rect2region]
filter[.Trip present rect2periods(qObject)], myPort]

dsummarize consume

7.1 seconds, 8.2 seconds
For these queries, improvements are not large, possibly because the main effort is in copying

data.

7 Updates
We assume that after setting up the database, it is occasionally extended by new recently
collected position data. This means, the recently collected positions need to be transformed
into moving points (data type mpoint) and the new data be inserted into distributed relations
and indexes. Furthermore, continuous trips crossing the “update boundary”, that is, comprising
positions before and after an update, should be recovered. That is, the respective existing and
the new trip should be merged into one.

We demonstrate this with the left-over positions from Section 2 in file taxidata01. They
first need to be processed like the initial data set. Here, we choose the method of distributing
data from the master.

7.1 Data Import
let RawDataByIdUpdate =

[const rel(tuple([Id: int, DateTime: string, Point: string])) value ()]
csvimport[’cabsrome/taxidata01’, 0, "", ";", FALSE, FALSE]
projectextend[Id
; Inst: str2instant(substr(.DateTime, 1, 10) + "-" + substr(.DateTime, 12, 23)),

Pos: makepoint(
str2real(

substr(.Point, findFirst(.Point, " ") + 1, findFirst(.Point, ")") - 1)),
str2real(

substr(.Point, findFirst(.Point, "(") + 1, findFirst(.Point, " ") - 1))
)]
ddistribute4["RawDataByIdUpdate", hashvalue(.Id, 999997) , NSlots, Workers]

26.9 seconds, 14.2 seconds

18 Parallel Trajectory Management in Secondo

7.2 Creating Moving Objects
let CabsTripsUpdate = RawDataByIdUpdate

dmap["CabsTripsUpdate",
. feed sortby[Id, Inst]
groupby[Id; TotalTrip: group feed

approximate[Inst, Pos, TRUE, create_duration(0, 60000)]
removeNoise[35.0, 2000.0, create_geoid("WGS1984")]]

projectextendstream[Id; Trip: .TotalTrip
sim_trips[create_duration(0, 180000), 100.0, create_geoid("WGS1984")]]

filter[no_components(.Trip) > 1]
consume

]

10.4 seconds, 2.6 seconds

7.3 Multiplying the Dataset

In the initial setup of the database we multiplied the dataset creating copies laid out in a 5 × 2
grid. We follow the same logic for the updates.

let CabsIdUpdate = CabsTripsUpdate
dmap["", . feed

loopsel[fun(t: TUPLE)
intstream(0, 4) namedtransformstream[Nx]
intstream(0, 1) namedtransformstream[Ny]
product
projectextend[
; Id: attr(t, Id) + ((5 * .Ny) + .Nx) * 1000,

Trip: attr(t, Trip)
translate[[const duration value (0 0)], .Nx * deltax, .Ny * deltay]]

]
]
partition["", hashvalue(.Id, 999997), 0]
collect2["", myPort]
dmap["CabsIdUpdate", . feed consume]

1:12 min, 18.4 seconds

7.4 Updating CabsId

We now need to update the two distributed versions of the dataset, CabsId and CabsST, parti-
tioned by Id and spatio-temporally, including their indexes.

The update relation CabsIdUpdate has been distributed in the same way as CabsId; hence its
tuples can now be inserted locally into CabsId.

query CabsIdUpdate CabsId CabsId_Id_btree
dmap3["", $1 feed $2 insert $3 insertbtree[Id] count, myPort] getValue

20.85 seconds, 4.4 seconds
Here for each slot, the stream of tuples obtained from CabsIdUpdate is inserted into the

relation in CabsId. The insert operator outputs the same stream extended by tuple identifiers
which are used for creating index entries by the insertbtree operator. This operator also passes
the stream of tuples to its successor operator (possibly to be used for further index updates).
Here it is the count operator which finally collects the stream of tuples.

We now need to merge trips crossing the update boundary. To be consistent with the creation
of trajectory data described in Section 4.3, the following rules should be observed:

Parallel Trajectory Management in Secondo 19

• Two positions with a time difference of less than 60 seconds are connected by linear move-
ment by the approximate operator. Hence two trips with the same object identifier
should be concatenated if the time difference between the final point of the first trip and
the initial point of the second trip is less than 60 seconds. In this case, there should be a
unit connecting the final with the initial point.

• A trajectory (mpoint) is split by the sim trips operator at definition gaps. A definition
gap occurs, if the time difference between the final and the initial point is longer than 60
seconds. In this case the two trips do not need to be merged.

• The sim trips operator also splits trajectories at stationary intervals of at least three
minutes duration. However, if we connect the two trips according to the first rule, a unit
between the final and the initial point is created of a duration of less than 60 seconds.
Hence this behaviour of the sim trips operator is not relevant here.

In summary, we just need to connect trips if final and initial points are less than 60 seconds
apart.

Matching arbitrary pairs of trips on equal identifiers and this condition would be expensive.
Fortunately we can restrict to trips whose final or initial position is close to the update boundary.
We first compute this instant, calling it UpdateStart. The value is contained in the first tuple
of the positions read from taxidata01.

let UpdateStart =
[const rel(tuple([Id: int, DateTime: string, Point: string])) value ()]
csvimport[’cabsrome/taxidata01’, 0, "", ";", FALSE, FALSE]
projectextend[Id
; Inst: str2instant(substr(.DateTime, 1, 10) + "-" + substr(.DateTime, 12, 23)),

Pos: makepoint(
str2real(

substr(.Point, findFirst(.Point, " ") + 1, findFirst(.Point, ")") - 1)),
str2real(

substr(.Point, findFirst(.Point, "(") + 1, findFirst(.Point, " ") - 1))
)] extract[Inst]

query share("UpdateStart", TRUE, Workers)

The following query computes the pairs of trips to be connected.

let UpdatePairsId = CabsId CabsId
dmap2["UpdatePairsId", . feed addid

filter[UpdateStart > inst(final(.Trip))]
filter[(UpdateStart - inst(final(.Trip)))

< create_duration(0, 60000)] c1
.. feed addid

filter[UpdateStart < inst(initial(.Trip))]
filter[(inst(initial(.Trip)) - UpdateStart)
< create_duration(0, 60000)] c2

itHashJoin[Id_c1, Id_c2]
filter[

(inst(initial(.Trip_c2)) - inst(final(.Trip_c1)))
< create_duration(0, 60000)] consume,

myPort]

1:17 min, 5.5 seconds
We insert concatenated trips into the set CabsId, also updating the index CabsId Id btree.

Concatenated trips are formed by streaming the units of the first trip, then a single unit providing
the connection, and then the units of the second trip. The stream of units is collected into an
mpoint value by the makemvalue operator.

20 Parallel Trajectory Management in Secondo

query UpdatePairsId CabsId CabsId_Id_btree
dmap3["", . feed

projectextend[
; Id: .Id_c1,

Trip:
units(.Trip_c1)
the_unit(val(final(.Trip_c1)), val(initial(.Trip_c2)),

inst(final(.Trip_c1)), inst(initial(.Trip_c2)),
TRUE, FALSE) feed concat

units(.Trip_c2) concat transformstream
makemvalue[Elem]

]
$2 insert
$3 insertbtree[Id]
count,

myPort] getValue

6.0 seconds, 2.76 seconds
We then delete the trips contained in the set UpdatePairsId from CabsId and CabsId Id btree.

query UpdatePairsId CabsId CabsId_Id_btree
dmap3["",

. feed projectextend[; TID: .TID_c1]

. feed projectextend[; TID: .TID_c2]
concat
$2 deletebyid4[TID]
$3 deletebtree[Id]
count,

myPort] getValue

6.5 seconds, 3.5 seconds

7.5 Updating CabsST

We apply the same update strategy to the set CabsST. First, the new trips need to be distributed
spatio-temporally.

let CabsSTUpdate = CabsIdUpdate
partitionF["", . feed

extendstream[Cell: cellnumber(bbox(.Trip), grid)]
extend[Box: bbox(.Trip)],
..Cell, NSlots]

collect2["", myPort]
dmap["CabsSTUpdate", . feed consume]

155.1 seconds, 17.6 seconds
The new trips are inserted into CabsST and CabsST Trip rtree.

query CabsSTUpdate CabsST CabsST_Trip_rtree
dmap3["", . feed $2 insert $3 insertrtree[Box] count, myPort] getValue

1:17 min, 11:25 seconds
Now we find matching pairs of trips within the spatio-temporal partitioning.

let UpdatePairsST = CabsST CabsST
dmap2["UpdatePairsST", . feed addid

filter[UpdateStart > inst(final(.Trip))]
filter[(UpdateStart - inst(final(.Trip)))

Parallel Trajectory Management in Secondo 21

< create_duration(0, 60000)] c1
.. feed addid

filter[UpdateStart < inst(initial(.Trip))]
filter[(inst(initial(.Trip)) - UpdateStart)
< create_duration(0, 60000)] c2

itHashJoin[Id_c1, Id_c2]
filter[.Cell_c1 = .Cell_c2]
filter[

(inst(initial(.Trip_c2)) - inst(final(.Trip_c1)))
< create_duration(0, 60000)] consume,

myPort]

1:45 min, 6.8 seconds
We insert concatenated trips into the set CabsST, also updating the index CabsId ST rtree.

query UpdatePairsST CabsST CabsST_Trip_rtree
dmap3["", . feed

projectextend[
; Id: .Id_c1,

Trip:
units(.Trip_c1)
the_unit(val(final(.Trip_c1)), val(initial(.Trip_c2)),

inst(final(.Trip_c1)), inst(initial(.Trip_c2)),
TRUE, FALSE) feed concat

units(.Trip_c2) concat transformstream
makemvalue[Elem],

Cell: .Cell_c1
]
extend[Box: bbox(.Trip)]
$2 insert
$3 insertrtree[Box]
count,

myPort] getValue

5.9 seconds, 2.2 seconds
Finally, we delete the trips contained in UpdatePairsST from CabsST and CabsST Trip rtree.

query UpdatePairsST CabsST CabsST_Trip_rtree
dmap3["",

. feed projectextend[; TID: .TID_c1]

. feed projectextend[; TID: .TID_c2]
concat
$2 deletebyid4[TID]
$3 deletertree[Box]
count,

myPort] getValue

6.5 seconds, 2.8 seconds
This concludes processing the updates.

References
[1] Secondo – an extensible database system. http://dna.fernuni-hagen.de/Secondo.

html/index.html, 2019.

[2] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi. Crawdad dataset
roma/taxi. http://crawdad.org/roma/taxi/20140717, 2014.

22 Parallel Trajectory Management in Secondo

[3] V. T. de Almeida, R. H. Güting, and T. Behr. Querying moving objects in Secondo. In
MDM, page 47, 2006.

[4] R. H. Güting and T. Behr. Tutorial: Distributed Query Processing in Sec-
ondo. http://dna.fernuni-hagen.de/Secondo.html/files/Documentation/General/
DistributedQueryProcessinginSecondo.pdf, 2019.

[5] R. H. Güting, T. Behr, and C. Düntgen. Secondo: A platform for moving objects database
research and for publishing and integrating research implementations. IEEE Data Eng. Bull.,
33(2):56–63, 2010.

[6] R. H. Güting, F. Valdés, H. H. Hennings, J. K. Nidzwetzki, F. Heinz, and T. Behr. Sec-
ondo User Manual, Version 4.2. http://dna.fernuni-hagen.de/Secondo.html/files/
Documentation/General/SecondoManual.pdf, 2019.

Verzeichnis der zuletzt erschienenen Informatik-Berichte

[369] Güting, R.H., Valdés, F., Damiani, M.L.:
 Symbolic Trajectories, 12/2013

[370] Bortfeldt, A., Hahn, T., Männel, D., Mönch, L.:

 Metaheuristics for the Vehicle Routing Problem with Clustered
Backhauls and 3D Loading Constraints, 8/2014

[371] Güting, R. H., Nidzwetzki, J. K.:

DISTRIBUTED SECONDO: An extensible highly available and scalable
database management system, 5/2016

[372] M. Kulaš

A practical view on substitutions, 7/2016

[373] Valdés, F., Güting, R.H.:

 Index-supported Pattern Matching on Tuples of Time-dependent
Values, 7/2016

[374] Sebastian Reil, Andreas Bortfeldt, Lars Mönch:

 Heuristics for vehicle routing problems with backhauls, time windows,
 and 3D loading constraints, 10/2016

[375] Ralf Hartmut Güting and Thomas Behr:

Distributed Query Processing in Secondo, 12/2016

[376] Marija Kulaš:

A term matching algorithm and substitution generality, 11/2017

[377] Jan Kristof Nidzwetzki, Ralf Hartmut Güting:

BBoxDB - A Distributed and Highly Available Key-Bounding-Box-Value
Store, 5/2018

[378] Marija Kulaš:

On separation, conservation and unification, 06/2019

[379] Fynn Terhar, Christian Icking:

A New Model for Hard Braking Vehicles and Collision Avoiding
Trajectories, 06/2019

