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Abstract

This document presents a method to design scalable and representative moving object data
(MOD) and a set of queries for benchmarking spatio-temporal DBMS. Instead of programming
a dedicated generator software, we use the existing Secondo DBMS to create benchmark data.
The benchmark is based on a simulation scenario, where the positions of a sample of vehicles are
observed for an arbitrary period of time within the street network of Berlin. We demonstrate the
data generator’s extensibility by showing how to achieve more natural movement generation patterns,
and how to disturb the vehicles’ positions to create noisy data. As an application and for reference,
we also present first benchmarking results for the Secondo DBMS.

Such a benchmark is useful in several ways: It provides well-defined data sets and queries for
experimental evaluations; it simplifies experimental repeatability; it emphasizes the development of
complete systems; it points out weaknesses in existing systems motivating further research. Moreover,
the BerlinMOD benchmark allows one to compare different representations of the same moving
objects.

1 Introduction

Current database systems are able to store large sets of data. Besides standard data, also special kinds
of data, e.g. multimedia, spatial, and spatio-temporal data can be stored. Whereas the handling and the
access of standard data is well known, storing and efficient processing of non-standard data is a current
challenge. To be able to compare different DBMS and their storage and access methods, benchmarks
can be used.

In general, a benchmark consists of a well defined (scalable) data set and a set of problems. In the
context of database systems these are mostly formulated as a set of SQL-queries. Benchmarks have been
proven to be a proper tool to check the performance of DBMS. Though data structures, index structures
and different operator implementations can be compared separately from other components, their impact
on database performance becomes clearer when they are tested all together within in a real system. Also,
benchmark evaluations make results from different researchers comparable in a straightforward way.

Benchmarks simplify the setup and description of experiments, because one can easily refer to a
well-defined data set whose properties are described elsewhere in detail. Using predefined data sets and
queries also reduces the risk of introducing bias in experiments.

In this paper, we present a benchmark for the field of moving objects databases. Such databases
come in two flavors: (i) representing current movements, e.g. of a fleet of trucks, in real time, supporting
questions about current and expected near future positions, and (ii) representing complete histories of
movements, allowing for complex analyses of movements in the past. Our benchmark addresses databases
of the second kind, sometimes called trajectory databases.

There has been a lot of research on moving object databases in the last ten years. Much of this
research has focused on providing specialized index structures or efficient algorithms to support specific
types of queries. However, the maturity of a field shows itself in the fact that complete systems are
around that can handle a significant range of interesting queries. Up to now, very few such systems
exist. A benchmark defining such a set of queries may help the community to focus more on integration,
i.e. building complete systems.
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A benchmark covering an interesting range of queries may show not only the strengths, but also the
weaknesses of existing solutions, indicating where more work is needed. It may also show that gains in
efficiency in specialized components are relatively irrelevant because the bottlenecks in a system context
arise elsewhere.

Because database systems are used in practice, the best data set would be real data. But providing
real data for moving objects will lead to some problems. The first one is the effort for capturing the
data; e.g. to observe 1000 or more vehicles at the same time, each vehicle must be equipped with a GPS
receiver and the data must be collected. Another problem is that real data are not scalable, e.g. it is
impossible to extend the sample in retrospect. Data generators are a good method to cope with these
problems. Their output can be varied in size just by changing some parameters. Some data generators
create data “observing” objects within a simulated scenario; if the scenario is realistic, this approach
promises to yield representative data.

Our proposed benchmark BerlinMOD addresses the handling of moving point data. Besides a set of
queries, we also provide a tool generating the moving point data. To generate the data set, we simulate
a number of cars driving on the road network of Berlin for a given period of time (e.g. a month) and
capture their positions at least every two seconds.

Instead of implementing a stand-alone dedicated generator tool, we use the infrastructure of Sec-
ondo, a prototypical extensible DBMS. Benchmark data are created by sequences of Secondo com-
mands collected in a Secondo script. To our knowledge, this is the first time, a DBMS is used in this
way.

As far as we know, we also present the first data generator creating scalable representative network-
based moving point data simulating long-term observation of objects. Long-term observation yields
huge histories for moving objects, which is interesting for benchmarking indexes and spatio-temporal
operators.

To model the impreciseness of real-world position tracking systems, we can optionally disturb resulting
moving point data.

The benchmark is evaluated within the Secondo system. Both the evaluation of the queries and the
script for creating the benchmark data demonstrate the capabilities of a state-of-the-art moving object
database system.

The Secondo system as well as all tools needed to create the benchmark data and run the benchmark
in Secondo are freely available on the Web [19, 1]. Hence anyone can repeat the experiments reported
here. Of course, benchmark data can also be saved as text files and then be converted to the input
formats of other systems.

2 Related Work

Moving objects are time dependent geometries, i.e. geometries described as a function of time. In
contrast to earlier work on spatio-temporal databases, geometries may change continuously.

Two views on moving object data have been established in the past years. The first one focuses
on answering questions on the current positions of moving objects, and on their predicted temporal
evolution in the (near) future. This approach is sometimes called tracking. To model moving object data
in a way suitable to these classes of queries, the Moving Objects Spatio-Temporal (MOST) model and
the Future Temporal Logic (FTL) language have been proposed [20, 25, 27, 26].

A second approach represents complete histories of moving objects, for moving point objects also
called trajectory databases. This approach was pursued, for example, in [8, 12, 9]. In this work the
complete evolution of a moving object can be represented as a single attribute within an object-relational
or other data model.

In this article we focus on the second, the history-based approach.
As access methods are essential to efficient query processing, index structures for both flavors of

moving object databases have been proposed – for an overview see [15]. To compare and evaluate
indexes on trajectories, our benchmark can be used.

Whereas free movement is the general case for moving object data, also constrained moving objects
have been investigated [23, 7, 14], especially with regard to real world applications. As an example, in
[3] the authors describe transportation networks as an abstraction of constrained movement and present

2



a specialized index structure for them. We will propose to generate data for moving objects constrained
by a transportation network.

Note that the data model implemented in the Secondo system that is used below for executing the
benchmark is the one from [12] based on free movement in the 2D plane. Because the benchmark data
set provides network constrained data, it is suitable to be also represented in an implementation of the
model of [14]. This implementation is underway in Secondo.

For spatial DBMS (SDBMS), the most prominent benchmark is the Sequoia 2000 storage benchmark
[21]. It comprises real spatial data and a set of queries for testing a SDBMS’s performance. Both
are claimed to be representative for geoscience tasks. The test database consists of various scales,
granularities, and sizes of real geographic data. Covered types include raster, point, polygon, and
directed graph data. The system is rated by the total response time generating the test data and
processing queries involving spatial joins, recursive searches, point and range queries. Although some of
the queries include selection and sorting by timestamps, Sequoia does not handle “real” spatio-temporal,
i.e. moving object data.

In an attempt to generalize the Sequoia Benchmark, Werstein [24] introduces time as a third dimen-
sion. He proposes 36 queries based upon the original Sequoia queries, e.g. using “matrix data” as a 3D
analogue of the original Sequoia raster data. Effectively, he saves data snapshots with time stamps and
uses them in spatial, temporal and spatio-temporal point and range queries. He also considers tempo-
ral updates, extending the data histories (Queries 28-32), and performs “walks through time” (Queries
33-36). Nonetheless, several important aspects of spatio-temporal data processing are missing, such as
spatio-temporal relations (predicates), computations based on spatio-temporal data, and computations
creating spatio-temporal data. These features remain out of the benchmark’s scope. For example, Query
5 calculates arithmetic functions only on the single “cells” of the matrix data — one by one. As a sum-
mary, the proposed benchmark is suitable for a temporal SDBMS, but not for a “real” spatio-temporal
database system in the narrower sense.

One of the first generators for moving object data, GSTD [22], creates unconstrained moving point or
rectangle data. A refinement [16] allows for more realistic trajectories by covering more agile, clustered,
and obstructed movement. The refined algorithm has been used within other data generators, e.g. to
create cellular network positioning data [10]. Since in the real world objects often follow a predefined
network (cars, trains, etc.) and access methods are strongly influenced by this fact, such data are
inappropriate to measure the performance of systems dealing with moving objects in networks.

Another generator for spatio-temporal data, called Oporto [18], simulates a fishing scenario to create
scalable and representative moving object data. Shoals of fish follow fluctuating spots of plancton.
Fishing boats travel to and from harbours to find fish swarms and try to evade changing storm areas.
Oporto is capable of creating unrestricted moving point data and moving region data (with fixed center
but moving shape and size, and fully moving ones, with changing location, shape and size). Observation
of ships and shoals is possible for long periods of time. Since the movement of objects is (almost)
unrestricted, we cannot get appropriate data for moving objects in networks.

A generator and visual interface for objects moving in networks is proposed by Brinkhoff in [2].
During the generation process, new objects appear and disappear when their destination is reached.
Speed and route of a moving object depend on the load of network edges (current number of cars using
it) and so-called external objects. Networks can be created from shape files, tiger line files and other
sources. The raw behaviour of the generator is controlled by a set of parameters. More sophisticated
changes require changes within the source code. Because an object only exists while it moves from its
start node to its destination, long time observations of objects are not realizable.

In contrast, our approach allows both, the trip based representation (like Brinkhoff’s generator) and
the object based representation where an object is observed during a given time interval. Our approach
does not consider the edge load within the street graph. Instead, we insert stops and decelerations
depending on the shape of the street section represented by the edge. Additionally, we insert also stops
at transitions between road sections.

The region based approach for the selection of the start and the end of a trip described in [2] is
not implemented in Brinkhoff’s generator. The generator described here supports this kind of selection.
Furthermore, we are able to simulate measuring errors of the position detecting device.

In the remainder of the paper we first describe the scenario simulated during data generation in Section
3. Then we present in Section 4 two different relation schemas for the generated data. After identifying
groups of queries we propose a set of interesting queries for benchmarking (Section 5). After this, we
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explain the Secondo-script implementing the data generator (Section 6) and create the benchmark to
evaluate the Secondo DBMS in Section 7. Finally, we conclude the paper in Section 8.

3 The BerlinMOD Scenario

BerlinMOD uses moving object (vehicle) positions, which are generated using the following design:
We assume that a graph representation of the street network exists. Nodes represent street crossings

and dead ends, while edges represent parts of streets between these nodes. For each edge, a simple (non-
branching and connected) line object describes its 2D-geometry. Edges are labeled with a cost value
being the time needed to travel it at maximum allowed speed (a real value), and with a street identifier.
Nodes are labeled with a node identifier and its spatial 2D-position (a point value).

3.1 Home Node, Work Node, and Neighbourhood

We wish to model a person’s trips to and from work during the week as well as some additional trips at
evenings or weekends.

Hence each object (vehicle) has a HomeNode, representing its holder’s residence. It is chosen randomly
from the set of nodes, using uniform distribution. This selection mechanism corresponds to the “network-
based approach” defined in [2]. By small changes it is also possible to partition the set of all nodes (for
example by predefined regions) and to use a different probability for the selection of each part. This
would implement the “region based approach” from [2].

Also, each object has a WorkNode representing the owner’s working place. Again, this node is chosen
randomly among all nodes of Berlin or using the region based approach.

Additionally, a set of nodes called Neighbourhood is defined by all nodes within a 3 km line of sight
distance around the HomeNode. Nodes in this area will be used more frequently for the additional trips
than all other nodes.

3.2 Temporal Layout of Trips

The goal of the following design is to model a person’s behaviour in a natural way. At the same time it
should be possible to create trips independently, with only a minimal risk of temporal overlapping.

We assume that a person works Monday to Friday and commutes between her home node and her
work node: On each such working day, she leaves her HomeNode in the morning (at 8 am + T1), drives
to her WorkNode, stays there until 4 pm + T2 in the afternoon, and then returns to her HomeNode
(T1, T2 are bounded Gaussian distributed durations1 within an interval of -2 to 2 hours). We call these
the labour trips. Because a trip on the street network of Berlin will take less than two hours (we have
never observed a trip longer than 1:30 h; also see Figure 1 for a typical distribution of trip durations),
we can be sure that the person has arrived at home before 8 pm.

At home, the person stays until 8 pm, then a 4h block of spare time begins.
On the weekend, the person will just have two 5h blocks of spare time per day, the first starting at 9

am and the second one at 7 pm.
For each block of spare time, there is a probability of 0.4, that the person will do an additional trip

which may have 1 to 3 intermediate stops and ends at home.
If the last trip for a day ends at 6:00 am or later on the following day, there is a risk of temporally

overlapping trips. Therefore, we invalidate all trips of that day. The probability for this to happen is
below 0.000138 per vehicle and day. There are various natural explanations for such “days off”, as illness
or vacations.

3.3 Trip Creation Algorithm

For the generation of a trip we have the following assumptions:
1Note that, although data are generated in a probabilistic way using various distributions, the underlying pseudorandom

number generators use seed values and therefore produce deterministic results. Hence the data set provided by the
benchmark will always be the same, except possibly for very small numeric differences on different platforms and operating
systems.
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Figure 1: Typical Distribution of Single Trip Durations

A trip is parameterized by a triple (Start, Destination, Time), where Start and Destination are
nodes, and Time is the instant, when the trip starts. The trip is created following the shortest path from
Start to Destination through the street graph. Sample points of the movement are created tracing the
object’s movement along the segments of the line geometry corresponding to the path.

All streets are classified into one category of {freeway (70), main road (50), side road (30), closed
road}. Closed roads are removed from the graph. For all other roads, the maximum allowed velocity
vmax is given in km/h. Drivers always respect speed limits.

Drivers will always try to travel at the maximum allowed velocity. They will slow down only (or even
stop), if they are required to do so, e.g. by red traffic lights, narrow curves, playing children, respecting
other drivers’ way of right, etc.

We use three kinds of “event” to characterize this behaviour:

Acceleration event — When the vehicle’s current velocity vc is below the allowed maximum speed vmax,
it will automatically accelerate at a constant rate of 12 m/s2.

Deceleration event — The vehicle’s current velocity vc is reduced to vc ·X/20, where vc is the current
speed and X ∼ B(20, 0.5) a binomially distributed random variable.2 Hence the expected new
speed is half the current one.

Stop event — When a car must stop (e.g. at traffic lights), it will stay immobile (vc := 0.0) for a
duration of tw ∼ Exp(15/86400) milliseconds.3 The choosen mean results in an expected waiting
time of 15 seconds.

Acceleration events occur automatically; events of other kinds may occur with a certain probability
pevent every 5 travelled metres, where pevent depends on the current maximum allowed speed, pevent =

1
vmax

(vmax in units of km/h). Curves are defined by sequential line segments on the vehicle’s trajectory,
that enclose an angle φ < 180◦. They will reduce the effective vmax depending on their enclosed angle,
vmax := vmax · φ

180.0◦ . Crossings are all points, where at least two streets meet. When passing a crossing,
a stop event is created with a probalibity depending on the type of transition in road types (Table 1).

2B(n, p) means the Binomial distribution with parameters n – the number of experiments, and p – the probability for
a “positive” outcome for each single experiment.

3Exp(µ) denotes the exponential distribution with mean µ.
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Transition p(Stop) Transition p(Stop) Transition p(Stop) Transition p(Stop)
S → S 0.33 M → S 0.33 S → M 0.66 M → M 0.50
S → F 1.00 M → F 0.66 F → F 0.05 F → M 0.33
F → S 0.10

Table 1: Stop Probability by Street Type Transition. F = freeway, M = main street, S = side street.

Algorithm 1 CreateTrip
INPUT: Start - the start node, Dest the destination node, Time the starting time
OUTPUT: a trip from Start to Dest

let P be the shortest path from Start to Dest ;
for each edge e = (pi, pi+1) ∈ P do

Access vmax and segs, the geodata for e;
for each seg = (s, t) ∈ segs do

pos := s;
while pos 6= t do

if distance(pos,t) > 50 m then
if current speed < vmax then

Apply an acceleration event to the trip;
else

Randomly choose either evt := deceleration event (p=90%) or evt := stop event (p=10%);
With a probability proportional to 1/vmax: Apply evt ;

end if
else

Reduce velocity to α/180◦ · vmax where α is the angle between seg and the next segment in
P ;

end if
Move pos 5m towards t (or to t if it is closer than 5m);

end while
With a propability p(Stop) depending on the street type of the current egde and the street type
of the next edge in P and according to Table 1, apply a stop event ;

end for
end for

Trips are created using the described behaviour, which is implemented by Algorithm 1.
Whereas work trips the can be created easily using Algorithm 1 passing HomeNode, WorkNode,

and a starting instant, additional trips are more complicated. They are created using Algorithm 2 that
determines random destinations and delay times and employs Algorithm 1 to create its sub trips.

4 Database Model

In BerlinMOD, we use two “kinds” of MOD: object-based and trip-based data. In the object-based
approach (OBA), the complete history is kept together. In the trip-based approach (TBA), the motion
of objects is recorded and stored as a sequence of single trips, which are kept separately in an additional
relation. The licence plate number is used as a reference from the base relation to the relation containing
the trips and vice versa.

In the trip-based design, each period of waiting time is represented as a separate stationary trip, i.e.
a trip, where the vehicle doesn’t move, but keeps its position all the time. Since we do not explicitly
differentiate between single trips in the OBA, between each pair of subsequent trips, a vehicle will simply
keep immobile at its positon, which is the final position of the earlier and the initial position of the latter
trip.

The amount of spatio-temporal data generated is determined by parameter SCALEFACTOR. It scales
the amount of simulated vehicles (SCALEFCARS) and the number of days (SCALEFDAYS) they are ob-
served. With SCALEFACTOR = 1.0, 2,000 vehicles are observed for 28 days, starting on a Monday. With
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Algorithm 2 AdditionalTrip
INPUT: Home: node, BlockStart : instant (the begin of the spare time block),

nbh: setofnodes (neighboorhood of the vehicle’s home node)
OUTPUT: a trip: mpoint with up to 3 destinations

Select a number N of destinations: 1 (p=50%), 2 (p=25%), or 3 (p=25%);
Let Start := Home; i := 0; Trip := empty;
Select Time uniformly distributed within two hours after BlockStart ;
for i ∈ {0, 1, 2, 3} do

if i < N then
Select destination node Dest within nbh (p=80%) or from the complete graph (p=20%);

else
Dest := Home;

end if
Trip := Trip + createTrip(Start , Dest , Time);
if i < N then

Determine a delay time dt ∈ [0, 120] min using a bounded Gaussian distribution;
Append a break of length dt to Trip;
Start := Dest ;
Time := endtime(Trip);

end if
end for
return Trip

any other scaling factor, these default values are scaled by the square root of the choosen SCALEFACTOR.
In addition to the represented vehicle movements, we also define six relations containing random

spatial and temporal data to build query points and ranges within the benchmark queries. The size of
these samples is determined by the SAMPLESIZE parameter. We use a value of 100 for the benchmark.

Rather than using simple spatial ranges, like MBR-like rectangles, we use more complex polygon-
shaped regions. This implies, that simple index-selections won’t suffice for selections in most cases.
Instead, candidates selected by an index must additionally qualify by passing a more complex spatial
selection predicate.

In our database, we distinguish between objects used in both approaches (the object-based and the
trip-based), and those used in only one of them.
Common Database Objects:

Nodes: relation{NodeId : int , Pos: point} — relation of all nodes.

QueryPoints: relation{Id : int , Pos: point} — relation of SAMPLESIZE query points, randomly
chosen from Nodes.Pos, Id is a generated key for this relation.

QueryRegions: relation{Id : int , Region: region} — relation of SAMPLESIZE query regions, where Id
is a key. The regions are regular n-gones with center point p and height h, with n ∼ F (1, 100, 100)4,
p is a uniformly randomly chosen Pos from Nodes, and h ∼ F (3, 1000, 998).

QueryInstants: relation{Id : int , Instant : instant}— relation of SAMPLESIZE query instants, where
Id is a key. The instants are uniformly distributed within the observation period.

QueryPeriods: relation{Id : int , Period : periods} — relation of SAMPLESIZE query periods, where
Id is a key. The starting instants are sampled uniformly from the complete observation period.
The periods’ durations d are calculated to be d = abs(x) days, were x is sampled from a Gaussian
distribution (x ∼ N(0, 1)5).

QueryLicences: relation{Id : int , Licence: string} — relation of SAMPLESIZE query licence plate
numbers, where Id is a key. Licence plate numbers are uniformly sampled from all vehicles’ licence
plate numbers.

4F (a, b, m) denotes the discrete uniform distribution of the m integer events from the interval [a, b].
5N(µ, σ2) is the normal (Gaussian) distribution with mean µ and variance σ2.
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Object-Based Approach (OBA) only:

dataScar: relation{Licence: string , Model : string , Type: string , Trip: mpoint} — relation of vehicle
descriptions (car type, car model and licence plate number), including the complete position history
as a single mpoint value per vehicle, where Licence is a key.

Trip-Based Approach (TBA) only:

dataMcar: relation{Licence: string , Model : string , Type: string} — relation of all vehicle descriptions
(without position history).

dataMtrip: relation{Licence: string , Trip: mpoint} — relation containing all vehicles’ movements
and pauses as single trips (mpoint values).

Here, {Licence} is a key/foreign key for dataMcar and {Licence, Trip} is a key for dataMtrip.

5 Benchmark Queries

In this section, we present a set of queries for the BerlinMOD benchmark, working on the data set
described before. First, we will determine, which kinds of queries may arise. To do so, we define query
types. From the large amount of possible types, we select the most interesting ones and formulate
queries for each of them.

5.1 Query Types

The first query type contains queries whose predicates do not rely on moving object type attributes, i.e.
they are restricted to standard attributes. This is important because some storage models for spatio-
temporal data require copying of standard types or introduction of synthetic key attributes which again
require additional joins within queries. For example, in the object-based approach (OBA), the licence
plate number licence is a key attribute. When switching to the trip based representation (TBA), this is
no longer a key (a car with a given licence plate number will make several trips), or it is a key outside
the relation containing the trips. In this case, the licence plate number must be connected with the trips
using a join operation.

If a spatio-temporal object is involved, we can identify the following query properties:

1. Object Identity (known / unknown)
Here we distinguish between queries starting with a known object “Does object X ...” and queries
where we do not know any concerned object in advance “Which objects do ...”, respectively.

2. Dimension (temporal / spatial / spatio-temporal)
This criterion refers to the dimension(s) used in the query.

3. Query Interval (point / range / unbounded)
This property determines the presence/size of the query interval.

4. Condition Type (single object / object relations)
If relations between objects are subject of the query, joins are part of the query plan and we call
this “object relation”.

5. Aggregation (aggregation / no aggregation)
This attribute indicates whether the result is computed by some kind of aggregation. Sometimes,
this property will depend on whether the object based or trip based approach is used (no aggregation
is needed in the first case, but it is required in the latter one). Such cases will be noted by “(no)
aggregation”.

By combining each possible value of the different attributes, we can identify 72 query types if a
spatio-temporal object is part of the query. Not all types of queries are realizable. For example, if the
object identity is known within a point query on a single object, this will exclude any kind of aggregation.
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Type description

bool usual boolean data type
instant a point in time
int integer numbers
ipoint a pair of an instant and a point

value
line data type describing a complex line

as a set of segments
mbool a time dependent boolean value
mpoint moving point, i.e. a mapping from

time into space
mreal a time dependent real number
periods a set of disjoint and non-connected

time intervals
point a geometric 2D position (x ,y)
real a real number
region data type for spatial 2D regions

Table 2: Used Data Types

5.2 Queries

We present a set of seventeen queries of different types, which may be interesting. Together, these queries
form our corpus of benchmark queries. First, we formulate the query in common English and then in
a more formal, SQL-like notation. Table 2 shows an overview of the data types used. In Table 3 the
signatures and a short description of the operators used in the queries are given. Operators and data
types are formally specified in [12].

As the performance of the queries strongly depends on the point/range values and the objects’ identity,
we do not run queries for just a single combination of parameters (parameters involved are query points,
regions, instants, periods and vehicle identities/licences), but choose a set of 100 parameter combinations,
wherever this is applicable.

To this end, we have sampled the universe of our database for query parameters and saved them to re-
lations QueryPoints, QueryRegions, QueryInstants, QueryPeriods, and QueryLicences, as described
in Section 4. For the sake of simplicity during formulation of queries, we save the first ten tuples of each
such relation to a relation with the same name and a suffix “1”, the second ten tuples to a relation with
that name, but with suffix “2”.

From these sample relations, we create 100 combinations of query parameters, either by using the
full sample relation (if there is only one parameter), or by combining the smaller “1” relations of distinct
types, or the “1” and “2”-relation, where two parameters have the same type.

Due to the two representations (object or trip based), some queries must be formulated differently.
If only the query for the object based representation is given below, then the query for the trip based
representation can be derived by just changing the names of the used relations properly.

As usual, index structures should be created to allow for performant data access. The choice of index
types and index keys is left to the database administrator. As indexes have strong influence on the
benchmark results, we will explain which indexes could help with the different queries.

non spatio-temporal

Query 1 What are the models of the vehicles with licence plate numbers from QueryLicence?

SELECT DISTINCT LL . Licence AS Licence , Model
FROM dataScar , QueryLicence LL
WHERE Licence = LL . Licence ;

9



Name Signature / Description Name Signature / Description

val: ipoint → point atinstant: mpoint × instant → ipoint
Extracts the position from the argument. Computes the state of the mpoint for the

given instant .

create instant: string → instant circle: point × real × int → region
Converts the argument to an instant . Constructs a regular n-gon around the

given position and diameter, n is given
by the third argument.

present: mpoint × instant → bool passes: mpoint × point → bool
mpoint × region → bool

Checks whether the given instant is part
of the definition time of the mpoint .

Test if the moving point will be on the
given position in any instant.

trajectory: mpoint → line distance: line × line → real
mpoint × mpoint → mreal

Projects the moving point into the space. Computes the minimum distance be-
tween the arguments.

inst: ipoint → instant initial: mpoint → ipoint
Extract the instant from the argument. Computes the initial state of the argu-

ment.

intersection: mpoint × mpoint → mpoint at: mbool × bool → mbool
mpoint × point → mpoint
mpoint × region → mpoint

Computes the spatio-temporal intersec-
tion of its arguments.

Restricts the first argument to be inside
or equal to the second argument.

length: mpoint → real atperiods: mpoint × periods → mpoint
Computes the driving distance of the
moving point.

Restricts the mpoint to the given time in-
tervals.

deftime: mpoint → periods inside: point × region → bool
Returns the set of time intervals where
the mpoint is defined.

Tests, whether the point is inside the
region.

sometimes: mbool → bool isempty: X → bool
Returns ’TRUE’, if the mpoint is ’TRUE’
at last once.

Returns ’TRUE’, if the argument is un-
defined or empty (for moving type and
period values).

<= : mreal × real → mbool concat: mpoint × mpoint → mpoint
Returns a time dependent boolean indi-
cating when the first argument is smaller
than the second.

Concatenates two moving points with
distinct time intervals.

Table 3: Operator Descriptions

The operators listed correspond to those described in [12]. Operators circle, create instant and concat have

been added. Operators sometimes and length have been added for the sake of simplicity, as e.g. sometimes(X)

could also be expressed as (not(isempty(deftime(X at TRUE)))).

This query will test the performance on standard types and indexes. An index on Licence might be
useful. Some DBMS might partially access Trip data, while this is not needed, resulting in performance
losses. This can be avoided in the TBA.

Query 2 How many vehicles exist that are “passenger” cars?

SELECT COUNT ( L icence )
FROM dataScar
WHERE Type = ” passenger ” ;

Similar to the the first query, but having a more selective predicate.

known - temporal - point - single - no aggr
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Query 3 Where have the vehicles with licences from QueryLicences1 been at each of the instants from
QueryInstants1?

SELECT LL . Licence AS Licence , I I . In s tant AS Instant ,
va l (C. Trip a t i n s t an t I I . In s tant ) AS Pos

FROM dataScar C, QueryLicences1 LL , QueryInstants1 I I
WHERE C. Licence = LL . Licence AND C. Trip pre sent I I . In s tant ;

This query restricts histories to single instants. A temporal index on Trip might be useful only in
the TBA. Both representations will benefit from indexes on Licence.

unknown - spatial - point - single - no aggr

Query 4 Which licence plate numbers belong to vehicles that have passed the points from QueryPoints?

SELECT PP. Pos AS Pos , C. L icence AS Licence
FROM dataScar C, QueryPoints PP
WHERE C. Trip pas s e s PP. Pos ;

In the TBA, Licence is no longer a key attribute in the relation used. Therefore we need to use
SELECT DISTINCT. A spatial index on Trips is advantageous to lookup all motions passing PP .

known - spatial - unbounded - relation - (no) aggr

Query 5 What is the minimum distance between places, where a vehicle with a licence from QueryLicences1
and a vehicle with a licence from QueryLicences2 have been?

SELECT LL1 . L icence AS Licence1 , LL2 . L icence AS Licence2 ,
d i s t anc e ( t r a j e c t o r y (V1 . Trip ) , t r a j e c t o r y (V2 . Trip ) )
AS Dist

FROM dataScar V1 , dataScar V2 , QueryLicences1 LL1 ,
QueryLicences2 LL2

WHERE V1 . Licence = LL1 . L icence AND V2 . Licence = LL2 . L icence
AND V1 . Licence <> V2 . Licence ;

For the OBA, no aggregation is needed for this query, as the global distance is calculated using a
combination of trajectory and distance.

For the TBA, we need an explicit aggregation:

SELECT LL1 . L icence AS Licence1 , LL2 . L icence AS Licence2 ,
MIN ( d i s t ance ( t r a j e c t o r y (T1 . Trip ) , t r a j e c t o r y (T2 . Trip ) ) )
AS Dist ,

FROM dataMtrip T1 , dataMtrip T2 , QueryLicences1 LL1 ,
QueryLicences2 LL2

WHERE T1 . Licence = LL1 . L icence AND T2 . Licence = LL2 . L icence
AND T1 . Licence <> T2 . Licence

GROUP BY LL1 . Licence , LL2 . L icence ;

Here, indexes on Licence seem to be most helpful. Differences between applying the spatial distance
and the projection (trajectory) to small (TBA) and large (OBA) data will be of significance and show
up differences in the DBMS’s performance.

unknown - spatio-temporal - unbounded - relation - no aggr

Query 6 What are the pairs of licence plate numbers of “trucks”, that have ever been as close as 10m
or less to each other?

SELECT V1 . Licence AS Licence1 , V2 . L icence AS Licence2
FROM dataScar V1 , dataScar V2
WHERE V1 . Licence < V2 . Licence AND V1 . Type = ” truck ”

AND V2 . Type = ” truck ”
AND sometimes ( d i s t ance (V1 . Trip ,V2 . Trip ) <= 10 . 0 ) ;

11



In the TBA:

SELECT DISTINCT T1 . Licence AS Licence1 , T2 . L icence AS Licence2
FROM dataMtrip T1 , dataMcar C1 , dataMtrip T2 , dataMcar C2
WHERE T1 . Licence < T2 . Licence AND T1 . Licence = C1 . Licence

AND T2 . Licence = C2 . Licence AND C1 . Type = ” truck ”
AND C2 . Type = ” truck ”
AND sometimes ( d i s t ance (T1 . Trip , T2 . Trip ) <= 10 . 0 ) ;

A spatial (or spatio-temporal) index join on Trip can be used to select candidates from all vehicles.
This query could be used to compare the performance of different index structures, e.g. indexes with
different granularities for the indexed keys, as proposed in [4].

unknown - spatial - unbounded - relation - no aggr

Query 7 What are the licence plate numbers of the “passenger” cars that have reached the points from
QueryPoints first of all “passenger“ cars during the complete observation period?

SELECT PP. Pos AS Pos , V1 . L icence AS Licence
FROM dataScar V1 , QueryPoints PP
WHERE V1 . Trip pas s e s PP. Pos AND V1 . Type = ” passenger ”

AND i n s t ( i n i t i a l (V1 . Trip at PP. Pos ) ) <= ALL
( SELECT i n s t ( i n i t i a l (V2 . Trip at PP2 . Pos ) ) AS FirstTime

FROM dataScar V2
WHERE V2 . Trip pas s e s PP. Pos AND V2 . Type = ” passenger ”

) ;

For the TBA:

SELECT DISTINCT V1 . Licence AS Licence , PP. Pos AS Pos
FROM dataMtrip T1 , dataMcar C1 , QueryPoints1 PP
WHERE T1 . Trip pas s e s PP. Pos

AND C1 . Type = ” passenger ” AND C1 . Licence = T1 . Licence
AND i n s t ( i n i t i a l (T1 . Trip at PP. Pos ) ) <= ALL
( SELECT i n s t ( i n i t i a l (T2 . Trip at PP. Pos ) ) AS FirstTime

FROM dataMtrip T2 , dataMcar C2
WHERE V2 . Trip pas s e s PP. Pos

AND T2 . Licence = C2 . Licence
AND C2 . Type = ” passenger ”

) ;

This query is a classical example for using a spatial index.

known - temporal - range - single - (no) aggr

Query 8 What are the overall travelled distances of the vehicles with licence plate numbers from
QueryLicences1 during the periods from QueryPeriods1?

SELECT V1 . Licence AS Licence , PP. Period AS Period
length (V1 . Trip a tpe r i od s PP. Period ) AS Dist

FROM dataScar V1 , QueryPeriods1 PP, QueryLicences1 LL
WHERE V1 . Licence = LL . Licence AND V1 . Trip pre sent PP. Period ;

Within the TBA, we need an aggregation to sum up the travelled distances.

SELECT V1 . Licence AS Licence , PP. Period AS Period ,
SUM ( l ength (V1 . Trip a tpe r i od s PP. Period ) ) AS Dist

FROM dataMtrip V1 , QueryPeriods1 PP, QueryLicences1 LL
WHERE V1 . Licence = LL . Licence AND V1 . Trip pre sent PP. Period
GROUP BY V1 . Licence , PP. Period ;

12



A temporal index on Trip is helpful in the TBA, while in the OBA, it will be useless unless some
sophisticated approach like double indexing [4] is used.

unknown - temporal - range - single - aggr

Query 9 What is the longest distance that was travelled by a vehicle during each of the periods from
QueryPeriods?

SELECT PP. Period AS Period ,
MAX ( l ength (V1 . Trip a tpe r i od s PP) ) AS Dist

FROM dataScar V1 , QueryPeriods PP
WHERE V1 . Trip pre sent PP. Period
GROUP BY PP. Period ;

Again, in the TBA we need to sum up the lengths of all restricted trips. Therefore, we create a view
first:

CREATE VIEW Distances AS
SELECT SUM ( l ength (V1 . Trip a tpe r i od s PP) ) AS Length ,

PP. Period AS Period , V1 . L icence AS Licence
FROM dataMtrip V1 , QueryPeriods PP
WHERE V1 . Trip pre sent PP. Period
GROUP BY PP. Period , V1 . L icence ;

SELECT Period , MAX ( Length ) AS Dist
FROM Distances
GROUP BY Period ;

A temporal index on Trip can be of use in the TBA to select candidates for the aggregation.

known - spatio-temporal - range - relation - no aggr

Query 10 When and where did the vehicles with licence plate numbers from QueryLicences1 meet
other vehicles (distance < 3m) and what are the latters’ licences?

SELECT V1 . Licence AS QueryLicence , V2 . L icence AS OtherLicence ,
(V1 . Trip a tpe r i od s ( de f t ime ( ( d i s t anc e (V1 . Trip , V2 . Trip )
<= 3 . 0 ) at TRUE ) ) ) AS Pos

FROM dataScar V1 , dataScar V2 , QueryLicences1 LL
WHERE V1 . Licence = LL . Licence AND V2 . Licence <> V1 . Licence

AND sometimes ( d i s t ance (V1 . Trip , V2 . Trip ) <= 3 . 0 ) ;

Since this will be a rather complex query (the temporal distances to all other vehicles need to be
calculated), we restrict our parameter set to 10 licences.

In the TBA, we need to group by Licence and aggregate (using concat) the intermediate results to
one single mpoint value per QueryLicence:

SELECT V1 . Licence AS Licence , V2 . L icence AS OtherLicence ,
AGGR ( concat , V1 . Trip a tpe r i od s ( de f t ime ( ( d i s t ance (

V1 . Trip , V2 . Trip ) <= 3 . 0 ) at TRUE ) ) , emptympoint )
AS Pos

FROM dataMtrip V1 , dataMtrip V2 , QueryLicences1 LL
WHERE V1 . Licence = LL . Licence AND V2 . Licence <> V1 . Licence

AND sometimes ( d i s t ance (V1 . Trip , V2 . Trip ) <= 3 . 0 )
GROUP BY V1 . Licence , V2 . L icence ;

The construct AGGR(aggr op, val, defaultval ) is a notation for a universal aggregation operator that
applies an operator aggr op: X × X → X to aggregate over all instantiations of val . If no val is
provided, i.e. the input relation/stream is empty, defaultval (which must also be of type X) is returned.
emptympoint is an mpoint with an empty history (i.e. the mpoint is defined, but has no recorded position
ever).
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This query features an expensive nonequal condition. Smart optimizers may translate the last con-
dition into a range query using a spatial or spatio-temporal index on Trip.

unknown - spatio-temporal - point - single - no aggr

Query 11 Which vehicles passed a point from QueryPoints1 at one of the instants from QueryInstants1?

SELECT C. Licence AS Licence , PP. Pos AS Pos ,
I I . In s tant AS In s tant

FROM dataScar C, QueryPoints1 PP, QueryInstants1 I I
WHERE va l (C. Trip a t i n s t an t I I . In s tant ) = PP. Pos ;

Though the condition seems to be a spatial range rather than a point condition, the spatio-temporal
semantics require that for attribute Trip the position is a function of time, and hence this condition
actually is a spatio-temporal point condition. In the TBA, this query performs best with a spatio-
temporal index, but also a temporal or spatial index may help here. For the OBA, the spatio-temporal
index might be inferior to the spatial index, and the temporal index will be of no worth.

unknown - spatio-temporal - point - relation - no aggr

Query 12 Which vehicles met at a point from QueryPoints1 at an instant from QueryInstants1?

SELECT PP. Pos AS Pos , I I . In s tant AS Instant ,
C1 . L icence AS Licence1 , C2 . L icence AS Licence2

FROM dataScar C1 , dataScar C2 ,
QueryPoints1 PP, QueryInstants1 I I

WHERE va l (C1 . Trip a t i n s t an t I I . In s tant ) = PP. Pos
AND va l (C2 . Trip a t i n s t an t I I . In s tant ) = PP. Pos ;

Just as for the last query, but as a join is required, the impact of indexes on Trip will be stronger.
In the TBA, we might need to use SELECT DISTINCT instead of a simple SELECT.

unknown - spatio-temporal - range - single - no aggr

Query 13 Which vehicles travelled within one of the regions from QueryRegions1 during the periods
from QueryPeriods1?

SELECT RR. Region AS Region , PP. Period AS Period ,
C. L icence AS Licence

FROM dataScar C, QueryRegions1 RR, QueryPeriods1 PP
WHERE NOT ( isempty ( ( (C. Trip a tpe r i od s PP. Period )

at RR. Region ) ) ) ;

For the TBA we need to use SELECT DISTINCT. This is a spatio-temporal range query with 3D volumes
(cuboid) as query windows. Again, this tests the performance of spatio-temporal access methods, for a
range query in this case.

Query 14 Which vehicles travelled within one of the regions from QueryRegions1 at one of the instants
from QueryInstants1?

SELECT RR. Region AS Region , I I . In s tant AS Instant ,
C. L icence AS Licence

FROM dataScar C, QueryRegions1 RR, QueryInstants1 I I
WHERE va l (C. Trip a t i n s t an t I I . In s tant ) i n s i d e RR. Region ;

Once more, we use SELECT DISTINCT for the TBA query. This is a spatio-temporal range query, with
query windows degenerated into 2D spatial rectangles. Together with Queries 13 and 15, this query will
help to assess the performance of spatio-temporal indexes.
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Query 15 Which vehicles passed a point from QueryPoints1 during a period from QueryPeriods1?

SELECT PO. Pos AS Pos , PR. Period AS Period ,
C. L icence AS Licence

FROM dataScar C, QueryPoints1 PO, QueryPeriods1 PR
WHERE NOT ( isempty ( ( (C. Trip a tpe r i od s PR. Period ) at PO. Pos ) ) ) ;

As before, we SELECT DISTINCT for the TBA query. Being another spatio-temporal range query, the
query windows are degenerated to 1D volumes (temporal intervals) here.

unknown - spatio-temporal - range - relation - no aggr

Query 16 List the pairs of licences for vehicles, the first from QueryLicences1, the second from
QueryLicences2, where the corresponding vehicles are both present within a region from QueryRegions1
during a period from QueryPeriod1, but do not meet each other there and then.

SELECT PP. Period AS Period , RR. Region AS Region ,
C1 . L icence AS Licence1 , C2 . L icence AS Licence2

FROM dataScar C1 , dataScar C2 , QueryRegions1 RR,
QueryPeriods1 PP, QueryLicences1 LL1 , QueryLicences2 LL2

WHERE C1 . Licence = LL1 . L icence AND C2 . Licence = LL2 . L icence
AND LL1 . L icence < LL2 . L icence
AND (C1 . Trip at PP. Period ) pas s e s RR. Region
AND (C2 . Trip at PP. Period ) pas s e s RR. Region
AND isempty ( ( i n t e r s e c t i o n (C1 . Trip , C2 . Trip )

a tpe r i od s PP. Period ) at RR. Region ) ;

For the TBA, we formulate:

( SELECT RR. Region AS Region , PP. Period AS Period ,
C1 . L icence AS Licence1 , C2 . L icence AS Licence2

FROM dataMtrip C1 , dataMtrip C2 , QueryRegions1 RR,
QueryPeriods1 PP, QueryLicences1 LL1 , QueryLicences2 LL2

WHERE C1 . Licence < C2 . Licence
AND C1 . Licence = LL1 . L icence
AND (C1 . Trip at PP. Period ) pas s e s RR. Region
AND C2 . Licence = LL2 . L icence
AND (C2 . Trip at PP. Period ) pas s e s RR. Region

GROUP BY RR. Region , PP. Period , C1 . Licence , C2 . L icence )
EXCEPT
( SELECT RR. Region AS Region , PP. Period AS Period ,

C1 . L icence AS Licence1 , C2 . L icence AS Licence2
FROM dataMtrip C1 , dataMtrip C2 , QueryRegions1 RR,

QueryPeriods1 PP, QueryLicences1 LL1 , QueryLicences2 LL2
WHERE C1 . Licence < C2 . Licence

AND C1 . Licence = LL1 . L icence
AND (C1 . Trip at PP. Period ) pas s e s RR. Region
AND C2 . Licence = LL2 . L icence
AND (C2 . Trip at PP. Period ) pas s e s RR. Region
AND NOT ( isempty ( de f t ime ( ( i n t e r s e c t i o n (C1 . Trip , C2 . Trip )

a tpe r i od s PP. Period ) at RR. Region ) ) )
GROUP BY RR. Region , PP. Period , C1 . Licence , C2 . L icence )

Since this query depends on four parameters, we will explore not only 100, but 10,000 combinations.
This query tests the performance of the spatio-temporal operators. In the TBA, spatial, temporal or

spatio-temporal indexes might raise the performance when used with additional present and/or passes
conditions for both Trip attributes. Otherwise, we don’t expect indexes to accelerate this query.

unknown - spatial - unbounded - relation - aggr
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Query 17 Which points from QueryPoints have been visited by a maximum number of different vehi-
cles?

CREATE VIEW PosCount AS
SELECT PP. Pos AS Pos , COUNT (C. L icence ) AS Hits
FROM QueryPoints PP, dataScar C
WHERE C. Trip pas s e s PP. Pos
GROUP BY PP. Pos ;

SELECT Pos
FROM PosCount AS N
WHERE N. Hits = ( SELECT MAX ( Hits ) FROM PosCount ) ;

For the TBA we have:

CREATE VIEW PosCount AS
SELECT PP. Pos AS Pos , COUNT DISTINCT (C. L icence ) AS Hits
FROM QueryPoints PP, dataMtrip C
WHERE C. Trip pas s e s PP. Pos
GROUP BY PP. Pos ;

SELECT Pos
FROM PosCount AS N
WHERE N. Hits = ( SELECT MAX ( Hits ) FROM PosCount ) ;

6 Implementation

In this section, we decribe how we create the benchmark data using the extensible database system
Secondo [5, 13, 19]. To our knowledge, this is the first time a DBMS is used to create spatio-temporal
benchmark data. Secondo is a research prototype DBMS that can be extended by algebra modules,
defining new types and operations on them using the second order signature mechanism [11].

For the generation of moving objects, a new algebra module, the “SimulationAlgebra” has been
implemented. Other algebra modules providing types and operations for relations, graphs, spatial, and
temporal data already exist in the system and are also used.

To create the moving objects, we use a database script containing a sequence of Secondo commands.
Each command is formulated at the so-called executable level. At this level, each expression is written
as a set of operators, constant objects, and existing database objects.

In the following sub-sections, the principle of the data generation is explained. The complete database
script can be found in Appendix A. Numbers within comments of the script refer to the corresponding
numbers in the following text.

We have set up a web site where the Secondo system and documentation, all the scripts from the
appendices, and scripts with executable benchmark queries for Secondo (the ones we used in Section
7.2) are available for download [1].

Since within the scripts many different operators are employed, we cannot give in-depth explanations
for all of them and restrict ourselves to the most important ones here. The interested reader will find more
detailed information on data types, operators etc. using the self-inquiry features built into Secondo.

6.1 Map Import and Parameters

As a very first step (6.1.1), we create a new database and import the map of Berlin using the restore
command. We use converted street data from the bicycle routing program bbbike [17]. The result is a
relation containing the name of each street, its geometry, and street type:

streets: relation{Name: string , Typ: string , geoData: line}
Afterwards, the parameters of the script are set (6.1.2). To define these, we create some simple

database objects. For example, the command
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let SCALEFACTOR = 1 . 0 ;
let SCALEFCARS = sqrt (SCALEFACTOR) ;

creates a database object of the type real with name SCALEFACTOR and value 1.0. After this, a second
object SCALEFCARS of type real is computed using the first object in its definition. Further constants
are defined in the same way, e.g. the create duration(p1 ,p2 ) command produces an object of the type
duration with a length of p1*86,400,000 + p2 milliseconds.

6.2 Creating the Street Graph

After removing impassable streets, we derive a maximum speed for each street according to its type
(6.2.1).

To give an impression how a command is processed, we will describe this command in more detail.
The corresponding lines from the script are (here in a reformatted style):

let s t r e e t s 1 =
s t r e e t s feed
filter [ not ( . Typ contains "gesperrt" ) ]
extend [ Vmax :

ifthenelse ( . Typ contains "Wichtig" , 7 0 . 0 ,
ifthenelse ( . Typ contains "Haupt" , 5 0 . 0 ,

ifthenelse ( . Typ contains "Neben" , 30 .0 , −1 . 0 ) ) ) ]
consume ;

The feed operator produces a stream of tuples from the relation “streets”. Only tuples fulfilling
the given condition pass the filter operator. Using extend, we add a new attribute Vmax (with the
maximum allowed speed) to each tuple, whose value is derived from the type of the street. Finally, the
consume operator collects all tuples of the stream into a relation which is the result of this expression.
The let command stores the result as a database object named streets1.

Now, we collect all remaining streets into a single line object and select the largest component allstreets
of the result to be sure to produce a connected graph (though the original imported street network is
connected, some streets are closed for motor vehicles) (6.2.2).

This single component line object is divided into sections using crossings and end points of streets
as split points. Crossings are automatically recognized by the polylines operator, the end points of the
streets are used as an argument for this operator to avoid the loss of street transitions without a crossing
(6.2.3-4).

We extract the end points of the sections as nodes of the graph and assign an id to each of them
(6.2.5-6).

We join the sections and the nodes with respect to the position of the node and the sections’ end
points, respectively (6.2.7). Similarly, the maximum speed is assigned to each section. To produce an
undirected graph, we add all reverse edges (6.2.8). To build the graph, we compute the cost for each
section using its length and maximum allowed speed. For a visualization of the graph, we also append
its geographic positions to each node (6.2.9).

6.3 Creating a Relation for the Labour Path

For each car, we select a HomeNode and a WorkNode. To do that, we can use one of two methods:
The simple selection (as implemented by the script from Appendix A) uses a uniform distribution over
all nodes of the network. Thus, the density of the nodes in the network corresponds to the densitity of
such nodes. Fig. 2 a) shows a distribution of the selection of 1000 nodes within the network using this
approach. We use this method for data generation in BerlinMOD.

The second (alternative) possibility implements the region based approach described in [2]. The
according script is provided in Appendix B. To realize it, we first define an array of regions shown in
Fig. 3.

We assume that the population density drops with increasing array index. If a node occurs in more
than one region, it is assigned to the one with the lowest array index. From these regions, we compute a
partition of all nodes. We assign the following probabilities to select one of the nodes for the given array
index:
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a) Network Based b) Region Based

Figure 2: Distributions Generated Using Both Node Selection Algorithms.

Index 0 1 2 3 4 5
Prob 0.4 0.2 0.15 0.1 0.08 0.07

For simplicity, we use the same regions but the probabilities in reversed order for selecting the work
nodes.

Between the nodes within a single partition a uniform distribution is used to select one of the nodes.
The result of this approach applied to the work nodes is shown in Fig. 2 b).

If you want to use the Region Based Approach, you just need to insert the code from Appendix B
after line 143 into the generator script in Appendix A, and change the original line 155 of the generator
script. Replace

rng intN ( ( Nodes count ) ) + 1

by

selectHomeNode ( )

to select the HomeNode region based. In a similar way, you can change line 156 to modify the selection
of the WorkNode.

Using one of these methods (BerlinMOD standard is the Network Based approach), we create a
relation vehicle1 containing an Id , the id of its HomeNode and the id of the WorkNode (6.3.1). Note,
that the HomeNode may be equal to the WorkNode (home workers).

Starting from this relation, we compute the neighbourhood of the HomeNode and add the count of
neighbours to the vehicle relation for further use (6.3.2-3).

For computing the paths to and from the work, we just replace WorkNode and HomeNode by the
shortest path in the graph (6.3.4). To find the shortest path, we apply Dijkstra’s algorithm [6] that has
been implemented in the GraphAlgebra.

6.4 Creating the Moving Points

To create the moving point data (which we will call “moving points” furtheron for the sake of simplicity),
we use a set of user defined functions. The most important one is called Path2MPoint (6.4.2), which
produces a single trip along a path starting at a given time. Basically, this function builds a stream of
edges from the path and connects each edge with the underlying geometry and the allowed maximum
speed for this section using the loopjoin operator. This produces a stream of tuples with all attributes
required for the sim create trip operator as described in Algorithm 1. For the simulation of a GPS
device, we use the samplempoint operator. This operator traces the original position and changes the
interval length between two consecutive sample points lying on colinear segments of the street network
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Figure 3: Regions Defined for Selecting Home and Work Nodes

to GPSINTERVAL milliseconds. At any change of direction, a sample point is created (even if the
GPSINTERVAL is not elapsed). This corresponds to the simulation of exact GPS measures combined
with a mapping to the street network.

Trips within the spare time are created by the function CreateAdditionalTrip (6.4.7). It is based on
the functions SelectDestNode (6.4.3), CreatePause (6.4.4-5), and Path2MPoint (6.4.2).
SelectDestNode selects a destination node applying Algorithm 2. Thereby, some instances of the ifthenelse
operator ensure the correct probabilities for the different spare time trips.

The observation of a vehicle for a complete day is performed by the function CreateDay (6.4.8). It
distinguishes between working days and weekend days to produce two kinds of different behaviour.

Additional information is stored into further attributes, e.g. the vehicles’ model (manufacturer) and
type (passenger car, bus or truck). Also, in real applications, a car is not identified by an id but by
a licence plate number, e.g. represented as a string value. To append that kind of information, we
use the auxiliary functions LicenceFun (6.4.11), computing a unique licence plate number from an id,
RandModel (6.4.9), and RandType (6.4.10) returning a model and a type for each car respectively. Both
latter functions use predefined probabilities to choose from the sets of possible values.

The “main” function of the script is CreateVehicles. For each vehicle, NUMDAYS days are created
using the function CreateDay . Then we aggregate over all movements for each car. Possible gaps in the
definition time are closed using the sim fill up operator. Additionally, for each vehicle the licence plate
number, the type and the model are created.

The actual creation of the moving points is started calling the CreateVehicles function.

6.5 Deriving the Trip Based Representation

Our simulation yields long time observations of the given number of vehicles. Thus, all created moving
points have the same definition time. For this reason, a temporal index will either return all cars or
nothing for any given instant or interval. To avoid this, we can use the trip based representation. In
this representation, the complete movement of a car is split into its different trips. We define a trip as a
connected movement without a break longer than a predefined constant MINPAUSE . Because there is
a special operator for splitting moving points at such major breaks (sim trips), the creation of the trip
based representation is very simple (6.5).
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6.6 Creating Query Relations

For the execution of the benchmark queries, some relations containing values used to instantiate query
parameters are needed. We create these data by sampling the data used during the creation of the
moving point data (6.6).

6.7 Simulating Measuring Errors (Optional)

As all created vehicles never leave the street network, a projection of their according moving points into
the plane, will get a part of the network. In a real application, using GPS devices to capture their routes,
this is improbable due to measurement errors. We assume that a GPS device has a maximum error de-
pending on some factors (kind of device, weather etc.), but between each two consecutive measurements,
its error changes only slightly. To simulate this, a special operator disturb can be used. It changes a
given moving point randomly depending on the maximum error and the error difference between two
measures. To simulate such errors, this operator can be inserted into the generator script (Appendix A)
directly after the sim fillup mpoint operator in line 389 within the CreateVehicles function (6.4.12).
For example

[ . . . ]
sim fillup mpoint [ create instant ( StartDayP − 1 ,0 ) ,

create instant ( ( StartDayP + NumDaysP) + 1 ,0 ) ,
TRUE, FALSE, FALSE] ]

disturb [ 1 0 0 . 0 , 1 . 0 ]
extend [ L icence : LicenceFun ( . Id ) ,
[ . . . ]

will generate errors of up to 1.0 metre between each pair of successive measurements, but the total
absolute error is limited to 100.0 metres.

Dealing with inexact data must be reflected by adapting the spatial and spatio-temporal queries. As
an example, please recall Query 4:

Query 4: Which licence plate numbers belong to vehicles that have passed the points from QueryPoints?

SELECT PP. Pos AS Pos , C. L icence AS Licence
FROM dataScar C, QueryPoints PP
WHERE C. Trip pas s e s PP. Pos ;

When handling inexact data, we cannot apply the passes operator directly to the point values
PP .Pos anymore. We are required to modify the query: Instead of using each point value itself, we
rather construct a circular region around it and apply the passes operator to that region. To do so, we
need to replace PP.Pos by circle(PP.Pos, 10, 50) within the above query. This will also hold for all other
spatial/ spatio-temporal queries and some other kinds of WHERE conditions (e.g. regarding distances).

As a default, we use the exact, undisturbed data in the BerlinMOD benchmark.

6.8 Benchmark Data Export

The produced data are stored into a database using the internal representation of Secondo. It can
be exported into a simple text file using the save command. The output is a nested list whose format
is decribed on the Secondo website [19]. A moving point is an atomic data type which can be used
as an attribute in a relation. Converting the output for database systems without this property, the
representation can be changed using the gps operator. It produces a stream of tuples consisting of an
instant and the position of the moving point at this instant. Thus, we can change the complete relation
containing the movement of all cars using the following command:

let dataScarExport = dataScar feed
loopjoin [ gps ( . Trip , [ const durat ion value (0 2000 ) ] ) ]
project [ Id , Time , Pos i t i on ] consume ;

This relation can also be exported into a nested list text file, which can be used as the input for
arbitrary converters to other data formats:

save dataScarExport to BerlinMODdata ;
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7 Creating and Using BerlinMOD

We have created BerlinMOD on a standard PC with the configuration shown in Table 4. We generated
the benchmark data for three different scale factors, and tested Secondo using each of the data sets.

7.1 Data Generator: Performance and Statistics

The creation of the full-scaled database (SCALEFACTOR = 1.0, 2,000 cars, 28 days) takes about 9:33:17
hours on the mentioned system. In total, the creation of the full-scaled database together with several
non-spatial, spatial, temporal and spatio-temporal indexes for both representations needs 14:50:35 hours.
For SCALEFACTOR = 0.2, this requires only 2:35:04 h, and only 25:27 min for SCALEFACTOR =
0.05.

The creation time of about 10, respectively 15, hours for the full-scaled database is long, but we
feel it is acceptable for a 20 GB database based on a fairly sophisticated simulation scenario. The
resulting database has about 53 million temporal units. Note that in fact many more units are created
temporarily based on “observations” but disappear again due to data reduction. GPS receivers would
produce 1,209,600 timestamps per car within 28 days, leading to an overall figure of about 2.4 billion
observations, but our representation removes subsequent sampling points having identical motion vectors,
thus compressing the data, e.g. for an immobile car.

If only one of the representations is needed (object/trip based), the creation time can be reduced
considerably.

Some more statistical information is given in Table 5.

7.2 Applying BerlinMOD to Secondo

We have used the benchmark to test the Secondo DBMS with its spatio-temporal extension algebras.
The benchmark was carried out with hand-translated executable queries on the same PC that was used
to generate the benchmark data before (see Table 4 for specification). Due to limitations of space, we
cannot show and explain the translation of the queries here, but all queries are available as annotated
scripts at the Secondo project website.

The results are presented in two tables. Table 6 shows the total response times for all queries. Table
7 shows the average response time per single query instance (calculated by dividing the total response
times by the number of query parameter combinations applied). A query instance is a single combination
of applicable query parameters. For Query 16, the benchmark applies 10,000 instances, for Query 10 10,
for Queries 2, 6 and 17 only 1, and for all other queries 100 query instances.

As expected, the non spatio-temporal Queries 1, and 2 are executed very fast. There are significant
differences between both representations. The OBA is significantly faster for queries 6, and 9, while the
TBA makes the race in queries 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, and 16. The OBA seems to have an
advantage, if the objects’ complete histories — or larger parts of them — are accessed (6, 9 and 17).
The TBA can take advantage of (spatio-) temporal indices in bounded spatio-temporal queries (10, 11,
12, 13, 14, 15, 16).

Looking at the individual response times shown in Table 7, we observe that all but eight queries
have acceptable runtimes (that is, seconds or at most a minute at scale factor 1.0). The outliers are
Queries 6, 10, and 17 in both representations; Query 7 in the OBA, and Query 9 in the TBA only. Let
us investigate the reason for this behaviour.

The runtime for Query 6 strongly depends on the number of observed vehicles N and the observation
time. We need to select all “trucks” and perform a selfjoin on these, selecting Ntruck · (Ntruck/2 − 1)
combinations. For these, we need a parallel scan of the joined vehicles’ MOD histories to check whether

CPU: Intel Core 2 DUO 2.4 Ghz
Memory: 2 GB
HDD: 2 x 500 GB, RAID 0
OS: Open SuSe 10.2 (Kernel 2.6.18.2-34-default)

Table 4: Configuration of the used Standard PC
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Scalefactor 0.05 0.2 1.0
Time to Build (excl. indexes) 12:16 min 74:34 min 573:17 min
Time to Build (incl. indexes) 25:27 min 155:04 min 890:35 min
On-Disk Size (excl. indexes) 1.91 GB 4.97 GB 19.45 GB
Observed Vehicles 447 894 2,000
Observation Period 6 days 13 days 28 days
Average Number of Units per Vehicle 6,138.857 13,040.283 26,963.197
Minimum Number of Units per Vehicle 1,038 2,498 3,247
Maximum Number of Units per Vehicle 22,016 44,517 94,021
Total Number of Trips 15,049 62,893 292,693
Average Number of Trips per Vehicle 33.667 70.353 146.347
Minimum Number of Trips per Vehicle 21 45 103
Maximum Number of Trips per Vehicle 53 101 199
Average Driven Distance per Vehicle 170.645 km 361.661 km 748.496 km
Average Trip Length 5,068 m 5,141 m 5,114 m
Nodes within the Network Graph 4,468 4,468 4,468
Edges within the Network Graph 13,384 13,384 13,384

Table 5: Statistics on Created Data for Different Scalefactors

SCALEFACTOR = 0.05 SCALEFACTOR = 0.2 SCALEFACTOR = 1.0
Query Response Time Result Response Time Result Response Time Result

OBA TBA Size OBA TBA Size OBA TBA Size

Q1 0.406 0.335 100 0.476 0.451 100 0.460 0.407 100
Q2 0.099 0.055 1 0.050 0.140 1 0.113 0.099 1
Q3 2.290 0.616 100 6.303 0.993 100 12.080 1.092 100
Q4 76.664 49.516 794 625.431 273.426 2734 6232.560 966.393 9240
Q5 16.737 20.059 100 45.535 34.710 100 121.885 61.015 100
Q6 71.396 189.435 31 333.341 1942.071 86 7032.000 53910.502 1254
Q7 92.666 35.654 79 2325.340 241.182 99 23324.700 135.724 107
Q8 1.209 1.214 100 5.854 3.521 100 13.989 4.308 100
Q9 392.336 784.329 100 1102.580 3241.180 100 4791.730 21730.800 100
Q10 681.937 221.276 376 3170.480 1189.130 1003 23951.800 16410.200 4130
Q11 0.956 0.580 15 1.862 0.849 20 11.602 1.411 33
Q12 2.188 0.553 0 144.466 0.510 1 964.456 0.625 17
Q13 50.376 45.189 2015 426.079 128.682 1963 2015.680 261.572 2612
Q14 2.129 2.020 267 6.444 3.083 318 138.305 13.075 381
Q15 3.662 4.530 204 121.011 30.562 555 322.635 36.343 625
Q16 144.565 58.967 43 102.139 49.206 2 132.165 74.842 2
Q17 5.129 27.393 1 467.125 242.219 1 5374.080 1097.145 1

Total [s] 1544.745 1441.721 — 8884.516 7381.915 — 74440.240 94705.553 —
[h : m : s] 0:25:45 0:24:02 — 2:28:05 2:01:01 — 20:40:40 26:18:26 —

Table 6: Benchmarking the Secondo DBMS: Total Response Time.

Listed are the total response times over all query instances (all combinations of query parameters) in seconds.

Result sizes are given by tuples.

their distance ever is 10 metres or below. The cost for this increases linearly with the observation time.
All in all, this is very expensive. For the TBA, we additionally have to join the dataMcar and dataMtrip
relations and to remove duplicates from the result.

In Query 10, for each car with a appropriate licence plate number, we select it from the relation.
Then we join them with all cars that ever have a distance of less then 3 metres. In the TBA, we apply a
range query on the spatio-temporal index to find all appropriate candidate trips and filter them; in the
OBA we just scan the relation dataScar completely and filter directly, because neither the spatial, nor
the spatio-temporal index showed to perform better in preceding experiments. In both representations,
the number of combinations (candidates) to filter increases quadratically with the number of observed
vehicles. Each computation of the spatio-temporal distance between two vehicles needs a parallel linear
scan through both MOD histories.
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SCALEFACTOR = 0.05 SCALEFACTOR = 0.2 SCALEFACTOR = 1.0
Query Response Time Response Time Response Time

OBA TBA OBA TBA OBA TBA

Q1 0.004 0.003 0.005 0.005 0.005 0.004
Q2 0.099 0.055 0.050 0.140 0.113 0.099
Q3 0.023 0.006 0.063 0.010 0.121 0.011
Q4 0.767 0.495 6.254 2.734 62.326 9.664
Q5 0.167 0.201 0.455 0.347 1.219 0.610
Q6 71.396 189.435 333.341 1942.071 7032.000 53910.502
Q7 0.927 0.357 23.253 2.412 233.247 1.357
Q8 0.012 0.012 0.059 0.035 0.140 0.043
Q9 3.923 7.843 11.026 32.412 47.917 217.308
Q10 68.194 22.128 317.048 118.913 2395.180 1641.020
Q11 0.010 0.006 0.019 0.008 0.116 0.014
Q12 0.022 0.006 1.445 0.005 9.645 0.006
Q13 0.504 0.452 4.261 1.287 20.157 2.616
Q14 0.021 0.020 0.064 0.031 1.383 0.131
Q15 0.037 0.045 1.210 0.306 3.226 0.363
Q16 0.014 0.006 0.010 0.005 0.013 0.007
Q17 5.129 27.393 467.125 242.219 5374.080 1097.145

Total [s] 151.248 248.462 1165.688 2342.939 15180.887 56880.901
[h : m : s] 0:02:31 0:04:08 0:19:26 0:39:03 4:13:01 15:48:01

Table 7: Benchmarking the Secondo DBMS: Response Time per Query Instance

Listed are the response times for single query instances (single combination of query parameters) in seconds.

For Query 17, each QueryPoint P is looked up in the spatial index, to find all candidate tuples with
trips passing it. The candidates are filtered for those tuples whose trip really passes P . The remaining
tuples are projected to P and the according vehicle’s licence plate number L. The results are grouped by
{P}. In each group, duplicate licences are removed and the count of the remainder is added. The result
is sorted by descending counters. Last, we select all tuples having the same count as the first tuple. The
required time increases with the number of observed vehicles and the observation period. In Secondo,
a linear scan through the MOD histories is needed to check whether an mpoint passes a point .

In the OBA version of Query 7, the spatial index is used to find candidates for a subsequent filtering
step. The filter selects only tuples, whose trip passes QueryPoint P . As mentioned before, this requires
Secondo to perform a linear search in each MOD history. Whereas a longer observation time increases
the MOD histories in the OBA, this is not the case for the TBA (basically, there will be more trips of
the same length in the TBA). This is the reason for the long response time in the OBA at scale factor
1.0.

For Query 9 we observe, that the OBA has an advantage over the TBA version. Why does the TBA’s
relative disadvantage become even larger with increasing scale factor? In the OBA, we can just restrict
all vehicles to the temporal ranges from the parameter PP indicating the temporal range and calculate
the travelled distance on the restricted mpoint values. Then we just need to group by the PP to find the
maximum travelled distance. In the TBA, we use the temporal index to retrieve all trips present at PP ,
restrict them to the according temporal range and compute the travelled distance for each trip found.
Then, we are first required to group by Licence to aggregate the distances of all trips belonging to each
vehicle, before we can finally group by PP to select the maximum travelled distance. So, in the TBA,
we have to group twice, which with increasing scale factor becomes more expensive.

8 Summary and Future Work

We have presented a method to generate a data set representing cars driving in Berlin. Because the
only source is a simple map of Berlin, the scenario can also be applied to any place in the world where
a map is available, for example as a shape file. The number of observed cars as well as the number of
observation days can be changed easily. But also more complex changes can be made by simple changes
to the used script, as demonstrated for the region based approach.

First results have been established for the Secondo DBMS, which can be used as a reference for
benchmarking other spatio-temporal database systems.
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For the future, we would like to use the proposed BerlinMOD benchmark with other spatio-temporal
DBMSs and compare their performances. Also, we plan to compare the performance of different repre-
sentations of moving object data within the Secondo system using the benchmark.
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[14] R. H. Güting, V. T. de Almeida, and Z. Ding. Modeling and querying moving objects in networks.
The VLDB Journal, 15(2):165–190, 2006.

24



[15] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access methods. IEEE Data Eng.
Bull., 26(2):40–49, 2003.

[16] D. Pfoser and Y. Theodoridis. Generating semantics-based trajectories of moving objects. Comput-
ers, Environment and Urban Systems, 27(3):243–263, 2003.

[17] S. Rezic. http://bbbike.de, 2007.

[18] J.-M. Saglio and J. Moreira. Oporto: A Realistic Scenario Generator for Moving Objects. Geoin-
formatica, 5(1):71–93, 2001.

[19] Secondo Web Site. http://www.informatik.fernuni-hagen.de/secondo, 2007.

[20] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Querying the uncertain position of moving
objects. Lecture Notes in Computer Science, 1399:310–337, 1998.

[21] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The Sequoia 2000 Benchmark. In P. Buneman
and S. Jajodia, editors, SIGMOD Conference, pages 2–11. ACM Press, 1993.

[22] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the generation of spatiotemporal datasets.
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A The BerlinMOD Data Generator Script

This script is intended to be used with the Secondo DBMS. It will create the benchmark data used by
BerlinMOD.

1 #============================================================
2 #=== Sec t ion 6 . 1 : Map Import and Parameters ===
3 #============================================================
4 # (6 . 1 . 1 ) Create database and r e s t o r e s t r e e t data
5 create database ber l i ng raph ;
6 open database ber l i ng raph ;
7 restore s t r e e t s from STREETS;
8

9 # (6 . 1 . 2 ) S e t t i n g up Parameters
10 #========== Sca l ing Parameter ===============================
11 let SCALEFACTOR = 1 . 0 ;
12

13 #========= Secondary Parameters ============================
14 # d i s t r i b u t e the s c a l e f a c t o r
15 let SCALEFCARS = sqrt (SCALEFACTOR) ;
16 let SCALEFDAYS = sqrt (SCALEFACTOR) ;

25



17

18 # The day the ob s e r va t i on s t a r t s
19 let STARTDAY = 2702 ;
20

21 # The number o f v e h i c l e s to observe
22 let NUMCARS = real2int ( round ( (2000 ∗ SCALEFCARS) , 0 ) ) ;
23

24 # The number o f o b s e r va t i on days
25 let NUMDAYS = real2int ( round ( (SCALEFDAYS∗ 2 8 ) , 0 ) ) ;
26

27 # The minimum l eng t h o f a pause in m i l l i s e c ond s
28 # to d i s t i n g u i s h subsequent t r i p s
29 let MINPAUSE = create duration ( 0 , 300000 ) ;
30

31 #The v e l o c i t y be low which a v e h i c l e i s cons idered to be s t a t i c
32 let MINVELOCITY = 1/24 ;
33

34 # The durat ion between two subsequent GPS−ob s e r va t i on s
35 let GPSINTERVAL = create duration (0 , 2000 ) ;
36

37 # The random seeds used
38 let HOMERANDSEED = 0 ;
39 let TRIPRANDSEED = 4277 ;
40

41 # The s i z e f o r sample r e l a t i o n s
42 let SAMPLESIZE = 100 ;
43

44 #============================================================
45 #=== Sec t ion 6 . 2 : Creat ing the S t r e e t Graph ===
46 #============================================================
47

48 # (6 . 2 . 1 ) Removing Impassab le s t r e e t s :
49 let s t r e e t s 1 =
50 s t r e e t s feed filter [ not ( . Typ contains "gesperrt" ) ]
51 extend [ Vmax : ifthenelse ( . Typ contains "Wichtig" , 7 0 . 0 ,
52 ifthenelse ( . Typ contains "Haupt" , 5 0 . 0 ,
53 ifthenelse ( . Typ contains "Neben" ,
54 30 .0 , −1 . 0 ) ) ) ]
55 consume ;
56

57 # (6 . 2 . 2 ) Aggregate a l l s t r e e t l i n e s in t o a s i n g l e l i n e
58 # ob j e c t and e x t r a c t the l a r g e s t component :
59 let a l l s t r e e t s = components ( s t r e e t s 1 feed
60 aggregateB [ geoData ; fun (L1 : l i n e , L2 : l i n e )
61 union new (L1 , L2 ) ; [ const l i n e value ( ) ] ] )
62 transformstream extend [ NoSeg : no segments ( . elem ) ]
63 sortby [ NoSeg desc ] extract [ elem ] ;
64

65 # (6 . 2 . 3 ) c o l l e c t a l l endpo in t s in t o a s i n g l e po in t s
66 # ob j e c t :
67 let Endpoints = s t r e e t s 1 feed
68 projectextend [ ; B : boundary ( . geoData ) ]
69 aggregateB [B; fun (P3 : po ints , P4 : po in t s )
70 P3 union P4 ; [ const po in t s value ( ) ] ] ;
71

72 # (6 . 2 . 4 ) S p l i t the l a t t e r l i n e o b j e c t i n t o p o l y l i n e s :
73 let s e c t i o n s 2 = a l l s t r e e t s
74 polylines [FALSE, Endpoints ]
75 namedtransformstream [ Part ] consume ;
76

77 # (6 . 2 . 5 ) Ca l cu l a t e the p o s i t i o n s o f the nodes o f the
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78 # graph as a s i n g l e po in t s o b j e c t
79 let nodes2 = s e c t i o n s 2 feed
80 projectextend [ ; EndPoints : boundary ( . Part ) ]
81 aggregateB [ EndPoints ;
82 fun (P1 : po ints , P2 : po in t s ) P1 union P2
83 ; [ const po in t s value ( ) ] ] ;
84

85 # (6 . 2 . 6 ) Create a r e l a t i o n wi th a l l nodes
86 let Nodes = components ( nodes2 )
87 namedtransformstream [ Pos ]
88 addcounter [ NodeId , 1 ] consume ;
89

90 # (6 . 2 . 7 ) Join sec t i ons , nodes , and Vmax
91 let Sec t i on s =
92 s e c t i o n s 2 feed addcounter [ SecId , 1 ]
93 extendstream [EP: components ( boundary ( . Part ) ) ]
94 Nodes feed
95 hashjoin [EP, Pos , 99997 ]
96 sortby [ SecId ]
97 groupby [ SecId ; Part : group feed
98 extract [ Part ] ,
99 NodeId s1 : group feed extract [ NodeId ] ,

100 NodeId s2 : group feed addcounter [ Cnt , 0 ]
101 filter [ . Cnt = 1 ] extract [ NodeId ] ]
102 remove [ SecId ]
103 s t r e e t s 1 feed spatialjoin [ Part , geoData ]
104 filter [ not ( isempty (
105 intersection new ( . Part , . geoData ) ) ) ]
106 project [ Part , NodeId s1 , NodeId s2 , Vmax]
107 consume ;
108

109

110 # (6 . 2 . 8 ) We encode s e c t i o n s by
111 # ( SourceNodeId ∗ 10000 + TargetNodeId )
112 let Sect ionsUndir =
113 Sec t i on s feed extendstream [B : intstream ( 0 , 1 ) ]
114 projectextend [ Vmax , Part
115 ; NodeId s1 : ifthenelse ( .B=0, . NodeId s1 , . NodeId s2 ) ,
116 NodeId s2 : ifthenelse ( .B=0, . NodeId s2 , . NodeId s1 ) ]
117 sortby [ NodeId s1 , NodeId s2 ] krdup [ NodeId s1 , NodeId s2 ]
118 extend [ Key : ( . NodeId s1 ∗ 10000) + . NodeId s2 ]
119 consume ;
120

121 derive Sect ionsUndir Key =
122 Sect ionsUndi r createbtree [ Key ] ;
123

124 # (6 . 2 . 9 ) Create the Graph with dr i v e t ime d i s t anc e s
125 let ber l ingrapht ime =
126 Nodes feed {n2}
127 ( Nodes feed {n1}
128 Sec t i on s feed
129 projectextend [ NodeId s1 , NodeId s2
130 ; Costs : ( 3 . 6 ∗ size ( . Part ) ) / .Vmax]
131 hashjoin [ NodeId n1 , NodeId s1 , 9999 ]
132 project [ NodeId s1 , NodeId s2 , Costs , Pos n1 ] )
133 hashjoin [ NodeId n2 , NodeId s2 , 9999 ]
134 project [ NodeId s1 , NodeId s2 , Pos n1 , Pos n2 , Costs ]
135 extendstream [D : intstream ( 0 , 1 ) ]
136 projectextend [ Costs
137 ; NodeId1 : ifthenelse ( .D=0 , . NodeId s1 , . NodeId s2 ) ,
138 NodeId2 : ifthenelse ( .D=0 , . NodeId s2 , . NodeId s1 ) ,
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139 Pos1 : ifthenelse ( .D=0 , . Pos n1 , . Pos n2 ) ,
140 Pos2 : ifthenelse ( .D=0 , . Pos n2 , . Pos n1 ) ]
141 constgraphpoints [ NodeId1 , NodeId2 , . Costs , Pos1 , Pos2 ] ;
142

143

144 #============================================================
145 #=== Sec t ion 6 . 3 : Creat ing the LabourPaths ===
146 #============================================================
147

148 # (6 . 3 . 1 ) A r e l a t i o n wi th a l l v e h i c l e s , t h e i r HomeNode ,
149 # WorkNode and Number o f Neighbourhood nodes
150 # The second r e l a t i o n conta ins a l l ne ighours
151 # for a v e h i c l e :
152 query rng init (14 , HOMERANDSEED) ;
153 let v eh i c l e 1 =
154 intstream (1 ,NUMCARS) namedtransformstream [ Id ]
155 extend [ HomeNode : rng intN (Nodes count ) + 1 ,
156 WorkNode : rng intN ( ( Nodes count ) ) + 1 ]
157 consume ;
158

159 # (6 . 3 . 2 ) encoding f o r index :
160 # Key i s ( Veh i c l e Id ∗ 100000) + NeighbourId
161 let neighbourhood =
162 v eh i c l e 1 feed filter [ seqinit ( 1 ) ]
163 projectextend [ ; Veh ic l e : . Id ,
164 HomePos : pos ( thevertex ( ber l ingrapht ime , . HomeNode ) ) ]
165 extendstream [
166 Vertex : ( vertices ( be r l ingrapht ime ) transformstream ) ]
167 filter [ distance ( pos ( . Vertex ) , . HomePos) <= 3000 . 0 ]
168 projectextend [ Veh ic l e ; Node : key ( . Vertex ) , Id : seqnext ( ) ]
169 extend [ Key : ( . Veh ic l e ∗ 100000) + . Id ]
170 consume ;
171

172 derive neighbourhood Key =
173 neighbourhood createbtree [ Key ] ;
174

175 # (6 . 3 . 3 )
176 let v eh i c l e =
177 neighbourhood feed groupby [ Veh ic l e
178 ; NoNeighbours : group count ] {nbr}
179 v eh i c l e 1 feed
180 mergejoin [ Vehic le nbr , Id ]
181 projectextend [ Id , HomeNode , WorkNode
182 ; NoNeighbours : . NoNeighbours nbr ]
183 consume ;
184

185 # (6 . 3 . 4 ) A r e l a t i o n con ta in ing the paths f o r the labour t r i p s
186 let labourPath =
187 v eh i c l e feed projectextend [ Id
188 ; ToWork : shortestpath ( ber l ingrapht ime ,
189 . HomeNode , . WorkNode ) ,
190 ToHome : shortestpath ( ber l ingrapht ime ,
191 . WorkNode , . HomeNode ) ]
192 consume ;
193

194 #============================================================
195 #=== Sec t ion 6 . 4 : Creat ing the Moving Points ===
196 #============================================================
197

198 # (6 . 4 . 1 ) Function BoundedGaussian
199 # Computes a gauss ian d i s t r i b u t e d va lue
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200 # wi th in [Low , High ]
201 let BoundedGaussian = fun ( Sigma : r ea l ,
202 Low : r ea l , High : r e a l )
203 rng gaussian ( Sigma ) within [
204 ifthenelse ( . < Low ,Low , ifthenelse ( . > High , High , . ) ) ] ;
205

206 # (6 . 4 . 2 ) Function Path2Mpoint :
207 # Creates a t r i p as a mpoint f o l l ow i n g path P
208 # and s t a r t i n g at i n s t an t Ts tar t .
209 let Path2Mpoint = fun (P: path , Tstart : i n s t an t )
210 ( samplempoint (
211 (P feed namedtransformstream [ Path ]
212 filter [ seqinit ( 1 ) ] extend [Dummy: 1 ]
213 projectextendstream [ Dummy
214 ; Edge : edges ( . Path ) transformstream ]
215 projectextend [ ; Source : source ( . Edge ) ,
216 Target : target ( . Edge ) , SeqNo : seqnext ( ) ]
217 loopjoin [ Sect ionsUndir Key Sect ionsUndir
218 exactmatch [ ( . Source ∗ 10000) + . Target ] ]
219 projectextend [ SeqNo , Vmax ; Line : . Part ]
220 sortby [ SeqNo asc ]
221 sim create trip [ Line , Vmax, Tstart ,
222 pos ( vertices (P) extract [ Vertex ] ) , 0 . 0 ] ) ,
223 GPSINTERVAL, TRUE, TRUE ) ) ;
224

225 # (6 . 4 . 3 ) Function Se lectDestNode
226 # Se l e c t s a d e s t i n a t i o n node f o r an ad d i t i o n a l
227 # t r i p . 80% of the d e s t i n a t i o n s are from the
228 # neighbourhood 20% are from the complete graph
229 let SelectDestNode = fun ( Veh i c l e Id : int ,
230 NoNeighbours : i n t )
231 ifthenelse ( ( rng intN (100) < 80 ) ,
232 ( neighbourhood Key neighbourhood
233 exactmatch [ ( Veh i c l e Id ∗100000) +
234 ( rng intN ( NoNeighbours ) + 1 ) ]
235 extract [ Node ] ) ,
236 ( rng intN (Nodes count ) + 1 ) ) ;
237

238 # (6 . 4 . 4 ) Function CreatePause
239 # Creates a random durat ion o f l e n g t h [0ms , 2h ]
240 let CreatePause = fun ( )
241 create duration (0 , real2int ( ( ( BoundedGaussian ( 1 . 4 , −6.0 , 6 . 0 )
242 ∗ 100 .0 ) + 600 .0 ) ∗ 6 0 0 0 . 0 ) ) ;
243

244 # (6 . 4 . 5 ) Function CreatePauseN
245 # Creates a random non−zero dura t ion o f l e n g t h
246 # [2ms , N min − 4ms ] us ing f l a t d i s t r i b u t i o n
247 let CreatePauseN = fun ( Minutes : i n t )
248 create duration (0 , ( 2 + rng intN ( ( ( Minutes
249 + 1) ∗ 60000) − 4) ) ) ;
250

251 # (6 . 4 . 6 ) Function CreateDurationRhoursNormal
252 # Creates a normal ly d i s t r i b u t e d dura t ion
253 # wi th in [−Rhours h , +Rhours h ]
254 let CreateDurationRhoursNormal =
255 fun ( Rhours : r e a l )
256 create duration ( ( rng gaussian ( 1 . 0 ) ∗ Rhours
257 ∗ 1800000)/86400000)
258 within [ ifthenelse ( duration2real ( . )
259 between [ ( Rhours / −24.0) , ( Rhours / 2 4 . 0 ) ] ,
260 . , ifthenelse ( duration2real ( . ) > ( Rhours / 24 . 0 ) ,
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261 create duration ( Rhours / 24 . 0 ) ,
262 create duration ( Rhours / −24.0)) ) ] ;
263

264 # (6 . 4 . 7 ) Function CreateAddi t iona lTr ip
265 # Creates an ’ a d d i t i o n a l t r i p ’ f o r a v eh i c l e ,
266 # s t a r t i n g at a g iven time
267 let CreateAddit iona lTr ip =
268 fun (Veh : int , Home : int , NoNeigh : int ,
269 Ttota l : durat ion , Tbegin : i n s t an t )
270 ( ( ifthenelse ( rng intN (100) < 80 , 1 ,
271 ifthenelse ( rng intN (100) < 50 , 2 , 3) )
272 feed namedtransformstream [ NoDests ]
273 extend [ S0 : Home,
274 S1 : ifthenelse ( . NoDests >=1 ,
275 SelectDestNode (Veh , NoNeigh ) , Home ) ,
276 S2 : ifthenelse ( . NoDests >=2 ,
277 SelectDestNode (Veh , NoNeigh ) , Home ) ,
278 S3 : ifthenelse ( . NoDests >=3 ,
279 SelectDestNode (Veh , NoNeigh ) , Home ) ]
280 extend [ D0 : . S1 , D1 : . S2 , D2 : . S3 , D3 : Home ]
281 projectextend [ NoDests
282 ; Trip0 : ifthenelse ( . S0 # .D0,
283 Path2Mpoint ( shortestpath (
284 ber l ingrapht ime , . S0 , .D0) , Tbegin ) ,
285 [ const mpoint value ( ) ] ) ,
286 Trip1 : ifthenelse ( . S1 # .D1,
287 Path2Mpoint ( shortestpath (
288 ber l ingrapht ime , . S1 , .D1) , Tbegin ) ,
289 [ const mpoint value ( ) ] ) ,
290 Trip2 : ifthenelse ( . S2 # .D2,
291 Path2Mpoint ( shortestpath (
292 ber l ingrapht ime , . S2 , .D2) , Tbegin ) ,
293 [ const mpoint value ( ) ] ) ,
294 Trip3 : ifthenelse ( . S3 # .D3,
295 Path2Mpoint ( shortestpath (
296 ber l ingrapht ime , . S3 , .D3) , Tbegin ) ,
297 [ const mpoint value ( ) ] ) ]
298 extend [ Pause0 : CreatePause ( ) ,
299 Pause1 : CreatePause ( ) , Pause2 : CreatePause ( ) ]
300 extend [ Result : ifthenelse ( . NoDests < 2 ,
301 . Trip0 translateappend [ . Trip1 , . Pause0 ] ,
302 ifthenelse ( . NoDests < 3 ,
303 ( . Trip0 translateappend [ . Trip1 , . Pause0 ] )
304 translateappend [ . Trip2 , . Pause1 ] ,
305 ( ( . Trip0 translateappend [ . Trip1 , . Pause0 ] )
306 translateappend [ . Trip2 , . Pause1 ] )
307 translateappend [ . Trip3 , . Pause2 ] ) ) ]
308 extract [ Result ] ) ) ;
309

310 # (6 . 4 . 8 ) Function CreateDay
311 # Creates a c e r t a i n v eh i c l e ’ s movement
312 # for a s p e c i f i e d day
313 let CreateDay = fun ( Veh i c l e Id : int , DayNo : int ,
314 PathWork : path , PathHome : path ,
315 HomeIdent : int , NoNeighb : i n t )
316 ifthenelse (
317 ( ( weekday of ( create instant (DayNo , 0 ) ) = "Sunday" ) or
318 ( weekday of ( create instant (DayNo , 0 ) ) = "Saturday" ) ) ,
319 ( ifthenelse ( rng intN (100) < 40 ,
320 CreateAddit iona lTr ip ( Vehic le Id , HomeIdent , NoNeighb ,
321 [ const durat ion value (0 18000000) ] ,
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322 create instant (DayNo,32400000) + CreatePauseN (120 ) ) ,
323 [ const mpoint value ( ) ] )
324 ifthenelse ( rng intN (100) < 40 ,
325 CreateAddit iona lTr ip ( Vehic le Id , HomeIdent , NoNeighb ,
326 [ const durat ion value (0 18000000) ] ,
327 create instant (DayNo , 68400000) + CreatePauseN (120 ) ) ,
328 [ const mpoint value ( ) ] ) concat ) ,
329 ( ( Path2Mpoint (PathWork ,
330 create instant (DayNo , 28800000)
331 + CreateDurationRhoursNormal ( 2 . 0 ) )
332 Path2Mpoint (PathHome ,
333 create instant (DayNo , 57600000)
334 + CreateDurationRhoursNormal ( 2 . 0 ) )
335 concat )
336 ifthenelse ( rng intN (100) < 40 ,
337 CreateAddit iona lTr ip ( Vehic le Id , HomeIdent , NoNeighb ,
338 [ const durat ion value (0 14400000) ] ,
339 create instant (DayNo , 72000000) + CreatePauseN (90 ) ) ,
340 [ const mpoint value ( ) ] ) concat ) )
341 within [ ifthenelse ( hour of ( inst ( final ( . ) ) ) between [ 6 , 8 ] ,
342 [ const mpoint value ( ) ] , . ) ] ;
343

344 # (6 . 4 . 9 ) Function RandModel ( ) : Return a random
345 # ve h i c l e model s t r i n g :
346 let ModelArray = makearray ("Mercedes -Benz" , "Volkswagen" ,
347 "Maybach" , "Porsche" , "Opel" , "BMW" , "Audi" , "Acabion" ,
348 "Borgward" , "Wartburg" , "Sachsenring" , "Multicar" ) ;
349 let RandModel = fun ( )
350 get ( ModelArray , rng intN ( size ( ModelArray ) ) ) ;
351

352 # (6 . 4 . 1 0 ) Function RandType ( ) : Return a random v e h i c l e
353 # type (0 = passenger , 1 = bus , 2 = truck ) :
354 let TypeArray = makearray ("passenger" , "bus" , "truck" ) ;
355 let RandType = fun ( )
356 get (TypeArray , ifthenelse ( ( rng intN (100) < 90 ) , 0 ,
357 ( ( ifthenelse ( ( rng intN (100) < 50 ) , 1 , 2) ) ) ) ) ;
358

359 # (6 . 4 . 1 1 ) Function Licence ( ) : Return the unique l i c e n c e
360 # s t r i n g f o r a g iven v eh i c l e−Id ’No ’ :
361 # for ’No’ in [0 ,26999 ]
362 let LicenceFun = fun (No : i n t )
363 ifthenelse ( (No > 0) and (No < 1000) ,
364 "B-" + char ( rng intN (26) + 65) + char ( rng intN (25) + 65)
365 + " " + num2string (No) ,
366 ( ifthenelse ( (No mod 1000) = 0 ,
367 "B-" + char ( (No div 1000) + 65) + " "

368 + num2string ( rng intN (998) + 1) ,
369 "B-" + char ( (No div 1000) + 64) + "Z "

370 + num2string (No mod 1 0 0 0 ) ) ) ) ;
371

372 # (6 . 4 . 1 2 ) Function Crea teVeh ic l e s ( ) :
373 # Create data f o r ’NumVehicle ’ v e h i c l e s and
374 # ’NumDays ’ days s t a r t i n g at ’ StartDay ’
375 let CreateVeh ic l e s = fun (NumVehicleP : int ,
376 NumDaysP : int , StartDayP : i n t )
377 v eh i c l e feed head [ NumVehicleP ] {v}
378 labourPath feed {p}
379 symmjoin [ . Id v = . . Id p ]
380 intstream ( StartDayP , ( StartDayP + NumDaysP) − 1)
381 transformstream
382 product
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383 projectextend [ ; Id : . Id v , Day : . elem ,
384 TripOfDay : CreateDay ( . Id v , . elem , . ToWork p , . ToHome p ,
385 . HomeNode v , . NoNeighbours v ) ]
386 sortby [ Id , Day ]
387 groupby [ Id ; Trip :
388 (group feed projecttransformstream [ TripOfDay ] concatS )
389 sim fillup mpoint [ create instant ( StartDayP − 1 ,0 ) ,
390 create instant ( ( StartDayP + NumDaysP) + 1 ,0 ) ,
391 TRUE, FALSE, FALSE] ]
392 extend [ L icence : LicenceFun ( . Id ) ,
393 Type : RandType ( ) , Model : RandModel ( ) ]
394 consume ;
395

396 # (6 . 4 . 1 3 ) Create Movement data f o r NUMCARS v e h i c l e s and
397 # NUMDAYS days
398 query sim set rng ( 14 , TRIPRANDSEED ) ;
399

400 # long time ob s e r va t i on o f o b j e c t s
401 let dataScar = CreateVeh ic l e s (NUMCARS, NUMDAYS, STARTDAY) ;
402

403 #============================================================
404 #=== Sect ion 6 . 5 : Der iv ing the Trip Based Representa t ion ===
405 #============================================================
406

407 # obse r va t i on o f s i n g l e t r i p s
408 let dataMcar =
409 dataScar feed
410 projectextendstream [ Id , Licence , Type ,
411 Model ; Subtr ip : . Trip sim trips [MINPAUSE, MINVELOCITY ] ]
412 addcounter [ TripId , 1 ] remove [ Subtr ip ] consume ;
413

414 let dataMtrip =
415 dataScar feed
416 projectextendstream [ L icence
417 ; SubTrip : . Trips [MINPAUSE, MINVELOCITY ] ]
418 addcounter [ TripId , 1 ] remove [ L icence ] consume ;
419

420 #============================================================
421 #=== Sec t ion 6 . 6 : Creat ing Query Re la t i ons ===
422 #============================================================
423

424 # SAMPLESIZE random node p o s i t i o n s
425 let QueryPoints =
426 intstream (1 , SAMPLESIZE) namedtransformstream [ Id ]
427 extend [ Pos : get ( nodes2 , rng intN ( no components ( nodes2 ) ) ) ]
428 consume ;
429 let QueryPoints1 = QueryPoints feed head [ 1 0 ] consume ;
430 let QueryPoints2 = QueryPoints feed filter [ . Id > 10 ]
431 head [ 1 0 ] consume ;
432

433 # SAMPLESIZE random reg ions
434 let QueryRegions =
435 intstream (1 , SAMPLESIZE) namedtransformstream [ Id ]
436 extend [ Region : circle ( get ( nodes2 , rng intN ( no components (
437 nodes2 ) ) ) , rng intN (997) + 3 . 0 , rng intN (99) + 1 ) ]
438 consume ;
439 let QueryRegions1 = QueryRegions feed head [ 1 0 ] consume ;
440 let QueryRegions2 = QueryRegions feed filter [ . Id > 10 ]
441 head [ 1 0 ] consume ;
442

443 # SAMPLESIZE random in s t a n t s

32



444 let QueryInstants =
445 intstream (1 , SAMPLESIZE) namedtransformstream [ Id ]
446 extend [ I n s tant : create instant (STARTDAY, 0)
447 + create duration ( rng real ( ) ∗ NUMDAYS ) ]
448 consume ;
449 let QueryInstants1 = QueryInstants feed head [ 1 0 ] consume ;
450 let QueryInstants2 = QueryInstants feed filter [ . Id > 10 ]
451 head [ 1 0 ] consume ;
452

453 # SAMPLESIZE random per iod s
454 let QueryPeriods =
455 intstream (1 , SAMPLESIZE) namedtransformstream [ Id ]
456 extend [
457 Sta r t In s t an t : create instant (STARTDAY, 0)
458 + create duration ( rng real ( ) ∗ NUMDAYS ) ,
459 Duration : create duration ( abs ( rng gaussian ( 1 . 0 ) ) )
460 ]
461 projectextend [ Id ; Period : theRange ( . S ta r t In s tant ,
462 . S t a r t I n s t an t + . Duration , TRUE, TRUE) ]
463 consume ;
464 let QueryPeriods1 = QueryPeriods feed head [ 1 0 ] consume ;
465 let QueryPeriods2 = QueryPeriods feed filter [ . Id > 10 ]
466 head [ 1 0 ] consume ;
467

468 # SAMPLESIZE random Licences
469 let L i c enc eL i s t =
470 dataScar feed project [ L icence ] addcounter [ Id , 1 ] consume ;
471 let L i c en c eL i s t I d = L i c enc eL i s t createbtree [ Id ] ;
472 let QueryLicences =
473 intstream (1 , SAMPLESIZE) namedtransformstream [ Id1 ]
474 loopjoin [ L i c en c eL i s t I d L i c enc eL i s t
475 exactmatch [ rng intN (NUMCARS) + 1 ] ]
476 project [ Id , L icence ] consume ;
477 let QueryLicences1 = QueryLicences feed head [ 1 0 ] consume ;
478 let QueryLicences2 = QueryLicences feed filter [ . Id > 10 ]
479 head [ 1 0 ] consume ;

B Alternative Selection of Nodes

1

2 let r eg i on s1 = makearray (
3 circle ( makepoint ( 9 450 . 0 , 1 1700 . 0 ) , 5 000 . 0 , 5 0 ) ,
4 rectangle2 (−4500 ,4000 ,950 ,8000) rect2region ,
5 rectangle2 (−2300 ,7500 ,7700 ,16000) rect2region ,
6 circle ( makepoint (7600 , 5000) , 5000 .0 , 30) ,
7 rectangle2 (8700 ,30000 ,−3000 ,21000) rect2region ,
8 rectangle2 (−20000 ,36000 ,
9 −9000 ,32000) rect2region ) ;

10

11 let pa r t i t i o n 1 =
12 intstream (0 , size ( r e g i on s1 ) − 1)
13 namedtransformstream [ i ] extend [
14 reg : ( intersection ( get ( reg ions1 , . i ) ,
15 nodes2 ) ) minus ( intstream ( 0 , . i − 1)
16 namedtransformstream [m]
17 extend [ tmpp : intersection ( get (
18 reg ions1 , .m) , nodes2 ) ]
19 aggregate [ tmpp
20 ; fun ( p1 : po ints , p2 : po in t s )
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21 p1 union p2
22 ; [ const po in t s value ( ) ] ] ) ]
23 distribute [ i ] loop [ . feed extract [ reg ] ]
24

25 let Nodes pos = Nodes feed addid sortby [ Pos ]
26 bulkloadrtree [ Pos ]
27

28 let selectHomePos = fun ( )
29 get ( pa r t i t i on1 ,
30 rng intN (100) feed transformstream
31 projectextend [ ; ind :
32 ifthenelse ( . elem < 40 , 0 ,
33 ifthenelse ( . elem < 60 , 1 ,
34 ifthenelse ( . elem < 75 , 2 ,
35 ifthenelse ( . elem < 85 , 3 ,
36 ifthenelse ( . elem < 93 , 4 , 5 ) ) ) ) ) ]
37 extract [ ind ] )
38 feed namedtransformstream [ Al lPos ]
39 extend [ Pos : get ( . AllPos ,
40 rng intN ( no components ( . Al lPos)− 1 ) ) ]
41 extract [ Pos ]
42

43 let selectHomeNode = fun ( )
44 selectHomePos ( ) feed
45 namedtransformstream [ P1 ]
46 extendstream [ Id : Nodes pos Nodes
47 windowintersects [ . P1 ]
48 projecttransformstream [ NodeId ] ]
49 extract [ Id ]
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