
A Tool for Nesting and Clustering Large Objects*

Stefan Dieker, Ralf Hartmut Güting, and Miguel Rodŕıguez Luaces
FernUniversität Hagen, Praktische Informatik IV, D-58084 Hagen, Germany

{stefan.dieker, gueting, miguel.rodriguez-luaces}@fernuni-hagen.de

Abstract

In implementations of non-standard database systems, large objects are often embedded
within an aggregate of different types, i.e. a tuple. For a given size and access probability of
a large object, query performance depends on its representation: either inlined within the
aggregate or swapped out to a separate object. Furthermore, the implementation of complex
data models often requires nested large objects, and access performance is highly influenced
by the clustering strategy followed to store the resulting tree of large objects.

In this paper, we describe a large object extension which automatically clusters nested
large objects. A rank function is developed which indicates the suitability of a large object
being inserted into a given cluster. We present two clustering algorithms of different run-
time complexity, both using the rank function, and a series of simulations is performed to
compare them to each other as well as to two trivial ones. One of the algorithms proves to
compute the most efficient clustering in all tests.

1 Introduction

For the support of scientific applications in many cases the relational model is too limited,
and more complex data models as well as systems implementing them are needed. Two major
research directions to provide these are extensible and object-oriented DBMSs.

Extensible systems first and foremost support the addition of new data types with corre-
sponding operations (“abstract data types”) in the role of attribute types for relations or objects.
This includes the support of such types on all levels of the system, for example, in indexing, or
in query optimization. For many applications sufficient “modeling power” is gained already by
this relatively simple change to the DBMS data model. Note that by the ADT approach the
internal structure and complexity of the data types is hidden to the “surrounding” DBMS data
model, which may still be as simple as the relational model.

A first class of extensible systems offers a fixed data model which may be relational or
object-relational and allows extensions by packages of related abstract data types. For example,
Informix Universal Server [Inf98] allows one to add “data blades” and numerous such packages
for various purposes (e.g. spatial types, time series, image, ...) are already available.

More ambitious levels of extensibility allow changes to the DBMS object model as such. One
stream of research [CDRS86, CDF+94, GM93] has tried to provide toolkits with components
such as a storage manager, generic indexes, or a query optimizer generator. Other approaches
like Predator [SLR97] or SECONDO [GDF+99, DG99] still offer a kind of “system frame” with
well-defined interfaces for extensions which may now be more general than just addition of
attribute data types.

The object-oriented approach offers in particular type constructors such as set, list, or tuple
that can be applied in an orthogonal way, to model complex objects. In this case the internal
structure of objects is visible to the DBMS.

A common concern in the implementation of data type packages for extensible systems
and of object-oriented systems is the need to handle large objects requiring many pages of
storage. Usually the implementation environments (e.g., storage manager tools), offer a large

*This work was partially supported by the CHOROCHRONOS project, funded by the EU under the Training
and Mobility of Researchers Programme, Contract No. ERB FMRX-CT96-0056.

1

object (LOB) abstraction. A common subset of operations provided by all the large object
abstractions includes creation, deletion, reading and writing portions of the LOB, and resizing.

A problem is the implementation of data types whose representations may vary in size from
very small to very large. Consider, for example, the implementation of a polygon data type
represented by a list of vertices. A polygon value could represent the borders of the US state of
Colorado (which are exactly a rectangle) or those of Norway (which have thousands of vertices
because of the many fjords). Since representations can be large, it is necessary to use the LOB
abstraction for implementing them.

On the other hand, these data types are generally not used as stand-alone objects, but
rather as components of a comprising structure, e.g. as attribute values in a tuple. Then, if
representations are small, it is better to store them “inline” within a storage block representing
a tuple. Of course, if representations are large, it is better to store them as separate LOBs,
especially if these values are accessed only rarely.

We have presented in [DG98] a tool that allows database implementors to use efficiently
large objects even if actual instances can be small. A new abstraction for large objects is offered
which automatically switches the representation of large objects from an in-aggregation to a
stand-alone one. The decision is based on a threshold size analytically computed from the
access probability and the size of the object. Large objects in this abstraction are called FLOBs
(Faked Large OBjects).

However, whereas the tool nicely supports the implementation of “atomic” data types (such
as polygon), it is not sufficient for implementing type constructors. These occur both in the
implementation of more complex systems of data types to be provided as extension packages,
and in the implementation of object-oriented data models. Consider a data type that arises from
the application of a type constructor to some other type (e.g. list(polygon)). The representation
of such a data type needs to organize a set of representations of values of the argument types.
If the argument types employ FLOBs themselves, we immediately arrive at a tree of storage
blocks which may be small or large, that is, a FLOB tree. The generalized problem is then,
given the sizes and access probabilities of the storage blocks, to determine an efficient storage
layout or clustering of the tree, that is, a partitioning into components stored as LOBs.

In this paper, we extend the tool presented in [DG98] and describe a programming interface
which offers nested FLOBs (or, more precisely “nestable” FLOBs), and so supports a direct
and elegant implementation of type constructors. This is illustrated by an advanced application
example involving spatio-temporal data types. We provide efficient algorithms for clustering
FLOB trees, and simulation experiments to study the quality of the resulting clusterings.

The paper is structured as follows: Section 2 presents the basic concepts of our approach,
together with an example application. Two clustering algorithms are presented and analyzed
in Section 3. Section 4 demonstrates the efficiency of using nested FLOBs by means of some
experiments. Related work is discussed in Section 5. Conclusions are given in Section 6.

2 Nested Faked Large Objects

In this section, we first present an example that allows us to show in more detail the purpose
of the tool described in this paper. We then review the concept of FLOBs (faked large objects)
from [DG98]. This is extended to Nested FLOBs in the last subsection.

2.1 A Motivating Application Example

The main purpose of the tool is the support of the implementation of complex application-
specific data type extension packages. Such packages of types and operations (sometimes called

2

“data blades”) play an important role in the implementation of database systems for scientific
applications.

Our example deals with spatio-temporal data types [EGSV99, GBE+98], a collection of types
and operations that allow one to represent the temporal development of spatial and other
values by data types, and to formulate queries over them by means of the operations. For
example, there are data types moving point and moving region. A moving point describes
the time-dependent position of an object in the 2D plane, and a moving region describes the
time-dependent position and extent (i.e., regions cannot only move, but also grow or shrink).
Conceptually, a value of the moving point data type is a function from time into point values,
and a value of type moving region a function from time into region values.

The paper [GBE+98] presents a design of types and operations with an emphasis on closure
and consistency. This design is at an abstract level, which means that temporal data types
are indeed viewed as (arbitrary) functions from time into their respective domains; it means
more generally that the domains of data types are defined in terms of infinite sets, without
considering finite representations. The paper [FGNS99] proceeds to develop a discrete model
where finite representations for all data types of the abstract model of [GBE+98] are given, and
corresponding data structures are defined. We now show a part1 of the type system of [FGNS99]
(see Table 1).

→ BASE int, real, string, bool
→ SPATIAL point, region

BASE ∪ SPATIAL → UNIT const
→ UNIT upoint, uregion

UNIT → MAPPING mapping

Table 1: Signature describing the discrete type system

The type system is given in the form of a signature. A signature in general has sorts and
operations and defines a set of terms. Sorts control the applicability of operations. Here the role
of sorts is taken by kinds2 and that of operations by type constructors. The terms generated by
this signature are the types available in this type system. In Table 1, for example BASE and
SPATIAL are kinds, int, region, and mapping are type constructors. Some types generated by
this signature are int, const(region), mapping(uregion), or mapping(const(region)).

The types have the following meaning: int, real, string, bool are simple basic types, point
is a point in the plane. Type region is a set of polygons with polygonal holes.

Type constructor mapping serves to describe temporal values. The idea is to represent the
temporal development as a set of disjoint time intervals with associated values; such a pair is
called a unit. The associated value can either be a constant, or some description of a “simple”
function of time.

The upoint data type describes linear movement of a point during the unit’s time interval.
Hence type mapping(upoint) can represent a moving point. Type uregion describes a region
value whose vertices move linearly during the unit’s time interval; hence mapping(uregion) can
represent a moving region.

The const type constructor transforms a given argument type (from the kinds BASE
or SPATIAL) into a unit type by adding a time interval to it. This allows us to repre-
sent temporal values describing stepwise constant functions of time. For example, the type
mapping(const(int)) describes the development of an integer value (e.g. a salary) over time,

1To simplify, this is deliberately incomplete; so don’t worry about missing types.
2The term “kind” is used in programming language theory to describe “the type of types”; here it suffices to

view a kind as a set of types.

3

and mapping(const(region)) can represent a region changing only in discrete steps (e.g. the
boundary of a parcel).

Since time intervals within a mapping are disjoint, they can be totally ordered, and the data
structure for mapping should basically be an array of units ordered by time intervals. Note,
however, that mapping has to accomodate units of fixed size (e.g. upoint) or widely varying
size (e.g. uregion or const(region)). Note also that it should be able to accomodate data types
that can be used independently as well (e.g. region). In the following subsections we show how
varying size data types such as region can be stored efficiently using FLOBs, and how type
constructors like mapping can be implemented in terms of Nested FLOBs.

2.2 Review of the FLOB Concept

As already mentioned in the introduction, a common problem in the implementation of non-
standard data types is that the representations of their values may be very large and of possibly
unpredictable size, so that values of the same type may also have very small representations.
The region type is an example for this. Furthermore, such values occur in aggregations such as
objects or tuples in which case they are usually called attributes. If attribute values are small,
they are better represented inline within the storage block of a tuple representation.

In [DG98] a new large object abstraction called a FLOB is described. It offers an interface
similar to those usually offered by large object abstractions (LOBs) provided by storage man-
agers, and it is in fact implemented on top of the large object concept provided by SHORE.
However, the FLOB implementation cooperates with a module in charge of constructing and
accessing aggregations, called the tuple manager. Depending on the size and access probability
of a FLOB, the value is stored within the tuple storage block (in memory as well as on disk),
or as a separate large object.

In a bit more detail, the “agreement” between the tuple manager and an attribute data type
implementation is that the attribute type is represented in a block of storage (called the root
block) which may contain logical pointers to a fixed number of other storage blocks managed as
FLOBs.3 Pointers to FLOBs are called FLOB handles. Figure 1 shows on the left the general
storage layout for attribute types, one with zero FLOBs, and another type with three FLOBs.
On the right a tuple is shown. Besides some administrative information for managing the tuple,
it contains a part for attribute root blocks and then a part for inlined FLOBs.

root block tuple

attr. root blocks inline FLOBsadm.

root block

FLOB FLOB FLOB

FLOB handle

Figure 1: General storage layout of attributes and tuple

Figure 2 shows how this is used for the representation of data types int and region. The
region representation contains three FLOBs to represent arrays for vertices, polygons, and
holes, respectively. On the right a tuple with an int and a region attribute is shown; for this
particular tuple instance, two of its FLOBs are stored inlined and the third as a separate LOB.

3In fact, there exists another abstraction on top of FLOBs called a database array which is an extensible array
of components of a fixed size. Hence an attribute type can be implemented as a fixed size root block plus a fixed
number of variable sized arrays. However, for the discussion in this paper the database array abstraction is not
so relevant.

4

int region int region

Figure 2: Storage layout for int and region types and a tuple containing an int and a region
attribute

The implementation of this concept uses three abstractions (i.e. classes, interfaces) called Tuple,
Attribute, and FLOB in addition to the data type being implemented. These interact as shown
in Figure 3 where a line between classes indicates a “uses” relationship.

<Data Type>

implements Attribute
Tuple

Attribute FLOB

Figure 3: Interaction between classes

Their operations are shown in Table 2. We cannot discuss all operations in detail here, but

Tuple Attribute FLOB
Create
Destroy
Open
Close

Save
Get
Put
GetID

NumOfFLOBs
GetFLOB

Create
Destroy
Open
OpenMemory
Close

Read
Write
GetSize
Resize
SetProb
GetProb

Table 2: Abstractions Tuple, Attribute, and FLOB

only give a brief overview. For a detailed description see [DG98].
The FLOB abstraction manages a large object that is possibly small and in memory. A

FLOB can be created and destroyed, opened (i.e., made accessible in memory) and closed, and
portions of it can be read and written. It can also be resized and the current size be determined.
Finally one can set an access probability which can later be retrieved from it.

A data type implementation may contain a fixed number of FLOB handles. Usually a
data type will be implemented as a record with FLOB handles as components. A data type
implementation has to implement the Attribute interface.

The Attribute interface is used by the tuple manager to access FLOBs contained in attribute
values. Its operation (method) NumOfFLOBs (): integer returns the number of FLOBs used
in this data type. Operation GetFLOB (n: integer): FLOB returns the FLOB handle of the
n-th FLOB in the attribute value.

The Tuple abstraction manages the tuple representation. Besides the usual operations for
creating and destroying, opening and closing, the essential operations are Get (n: integer):
Attribute and Put (n: integer; a: Attribute) which allow one to get and set the n-th attribute
value.

5

Of particular interest here is the Save () operation. Its general purpose is to commit changes
to the in-memory representation of the tuple to the underlying storage manager. It is this
operation which computes the storage layout of a tuple. When a tuple is created, and possibly
when it is opened (depending on the implementation), a list of attribute type descriptors is
passed as an argument to Create and Open, respectively. From this, Save knows the sizes of
attribute root blocks and can lay out the first part of the tuple. Through the Attribute interface,
it can access the FLOB handles contained in attribute values and determine for each FLOB its
size and access probability which are the basis for the layout decisions.

2.3 Nested FLOBs

The FLOB concept suffices to implement efficiently storage management for tuples with em-
bedded “atomic” attributes of varying size. In our example, we can efficiently represent the
region type. But it does not offer enough support for implementing type constructors such
as mapping which need to embed in their representation values of other data types possibly
containing FLOBs.

Consider the two type constructors const and mapping in our example. Both are applicable
to simple fixed size data types as well as to varying size data types containing FLOBs. The only
direct and clean implementation one can think of has a storage layout as shown in Figure 4.

const

argument root block

mapping

array of argument root blocks

Figure 4: Storage layout for const and mapping type constructors

If we instantiate the const constructor with data types int and region, we get the storage
layouts shown in Figure 5.

const int regionconst

Figure 5: Storage layout for const(int) and const(region) types

If we then apply the mapping constructor to the types const(int) and const(region), we
obtain the storage layout shown in Figure 6.

mapping

const(int) const(int) const(int)

mapping

const(region) const(region)

Figure 6: Storage layout for mapping(const(int)) and mapping(const(region)) types

It turns out that the FLOB handle in mapping points to a FLOB tree, that is, FLOBs
contain embedded FLOB handles pointing to other FLOBs. Clearly the generalized storage

6

concept needed for the implementation of non-standard data types including type constructors
is that a data type is implemented as an attribute root block containing a fixed number of
FLOB handles pointing to FLOB trees.

To implement this, one needs to slightly change the implementation concept of Section 2.2.
The first addition is that we must also be able to ask a FLOB for the FLOB handles contained in
it. This means that a FLOB also has to implement the Attribute interface, which is now renamed
more appropriately into Component. Hence we obtain relationships between abstractions as
shown in Figure 7.

<Data Type>Tuple

Component

implements Component

FLOB

implements Component

Figure 7: Revised interaction between classes

Second, in contrast to a data type implementation, the number of FLOB handles embedded
into a FLOB may vary, and their positions are not fixed. Hence one must be able to explicitly
inform a FLOB about a FLOB handle that has been written into it, and the FLOB must store
this information somewhere (outside the area that can be read and written by a user, i.e., a
client of the FLOB interface). For registering FLOB handles we provide the following interface
methods for a FLOB:

RegisterHandlePos (offset: integer);
RemoveHandlePos (offset: integer);

The FLOB uses this information to answer the questions that can be asked via the Component
interface. The tuple manager can in this way obtain all information that it needs to cluster
FLOBs contained in subtrees into storage areas. Such algorithms are developed and analyzed
in Section 3. When the tuple is saved, each cluster computed by the algorithms is stored as a
LOB of the underlying storage manager. Whenever a tree element, either the tuple or a FLOB,
is read, the entire cluster containing this element is restored in main memory.

User-Defined FLOB Groups

The interface for nested FLOBs developed so far allows a database implementor to set access
probabilities for FLOBs and so to express how likely it is that a FLOB is accessed given its
parent in the tree is read. In this way one can establish a strong or a weak connection between
a FLOB node and its father in the FLOB tree.

We introduce one additional feature that appears very useful in the implementation of non-
standard data types, and which allows one to express relationships between siblings in the FLOB
tree. Namely, a database implementor may know that several FLOBs, which are children of
the same component in the tree, are always (or often) accessed together. Hence one would like
to put them together into a FLOB group, and so enforce that the clustering algorithm puts
them together into a single storage area. Conceptually, in the FLOB tree these sibling nodes
are merged into a single node.

To make this possible, we extend the FLOB interface by operations to create and destroy
FLOB groups, to register FLOB handle positions with respect to FLOB groups, and to manage
probabilities for FLOB groups. The interface is:

7

CreateGroup (numOfFLOBs: integer; offsets: array of integer; probability: real):
integer;

RegisterHandlePos (group, offset: integer);
RemoveHandlePos (group, offset: integer);
SetProb (group: integer; probability: real);
GetProb (group: integer): real;
DestroyGroup (group: integer);

The first operation CreateGroup creates a FLOB group and initializes it by registering numOf-
FLOBs FLOBs whose positions within this FLOB are passed in the array offsets. Also, the
probability for accessing the FLOB group is passed. The operation returns an identifier for the
newly created group. The second and third operation overload those given above by using an
additional group parameter and so manage these FLOB handles within that group. The fourth
and fifth operation set and get probability values for a group (also overloading those for separate
FLOBs). The last operation removes a group and “unregisters” all the FLOB handles in it.

The Component interface is also changed a bit to make the tuple manager aware of FLOB
groups:

NumOfFLOBGroups (): integer
NumOfFLOBsInGroup (group: integer): integer;
GetFLOB (FLOBNumber, group: integer): FLOB;

So one can ask for the number of FLOB groups in this component and then for the number
of FLOBs within each FLOB group. Finally, one can get FLOB handle FLOBNumber within
group group.

To simplify this interface, all the “non-grouped” FLOBs in this component (that have been
registered by RegisterHandlePos with only a single argument), are viewed as belonging to a
FLOB group 0. Hence the tuple manager will consider FLOBs in group 0 not as a user-defined
FLOB group, but as separate FLOBs.

Note that it is technically still possible to get a FLOB handle belonging to a group and to
set its access probability individually; however, this will be ignored in clustering by the tuple
manager and hence has no effect.

In summary, the interface of abstractions Component and FLOB now looks as shown Table 3.
The operations for Tuple are the same as before.

Component FLOB
NumOfFLOBGroups
NumOfFLOBsInGroup
GetFLOB

Create
Destroy
Open
OpenMemory
Close
Read
Write
GetSize
Resize

SetProb
GetProb
RegisterHandlePos
RemoveHandlePos
CreateGroup
DestroyGroup

Table 3: Revised abstractions Component, and FLOB

8

3 Analysis and Algorithms

The aim of this section is to develop algorithms which determine a good clustering for a nested
FLOB structure by means of the given information: the size of each FLOB, the structure of
references, basically the parent of each FLOB, and for each FLOB the conditional probability
that it is read given its parent is read. Section 3.1 formally defines nested FLOB structures
and analyzes the access probabilities of blocks consisting of several FLOBs. In Section 3.2 we
introduce an appropriate cost model for read access to large objects, and Section 3.3 presents
two resulting algorithms able to find good clusterings.

3.1 Basic Data Structures

3.1.1 FLOB Trees

A straightforward representation of nested FLOBs is a FLOB tree. The nodes of a FLOB tree
correspond to FLOBs. FLOB f ′ is a son of FLOB f iff the value of f contains a handle to
f ′. The edges in a FLOB tree are labeled with the conditional probability p that a son is read
given its father is read. Throughout the paper we assume 0 < p ≤ 1. Excluding p = 0 does
not compromise the generality of our analysis since storing an object which is never read is not
sensible.

A

E

H I J K

L M

B C D

F G

c d

g

e

f h k

m

j

l

b

i

Figure 8: Sample FLOB tree

We will use the following operations on FLOB trees:

Operation Semantics
Sons(f) The set of all sons of node f

Subtree(f) The set of all nodes in the subtree rooted by f , excluding f
S(f) The size of the FLOB value of f in disk pages
P (e) The label of edge e
P (f) 1, if node f is the root of the tree, otherwise the label of the edge from f ’s

father to f
Nodes(f, f ′) The set of all nodes in the path from f to f ′, excluding f

P (f ′, f) The conditional probability of reading f ′ given f is read:
∏

f∈Nodes(f,f ′)
P

(

f
)

3.1.2 FLOB Tree Partitions

A FLOB tree partition is a 4-tuple (V, E, r,P) with V the set of nodes in the tree, E ⊆ V × V
the set of edges in the tree, r ∈ V the root, and P a partition of V , i.e. the elements of P,
called blocks, are disjoint subsets of V , and

⋃

B∈P
B = V .

9

Figure 9 shows one partitioned version of the sample FLOB tree in Figure 8. Each of the
blocks α to ε corresponds to a cluster of FLOBs.

A

E

H I J K

L M

B C D

F G

c d

g

e

f h k

m

j

l

b

i

α

β
γ

δ

ε

α

Figure 9: Sample FLOB tree partition

With FLOB tree partitions, additional operations will prove useful later on:

Operation Semantics
Roots(B) The set of all roots of subtrees in B: {f ∈ B | @f ′ ∈ B : f ∈ Subtree(f ′)}

S(B) The sum of the FLOB value sizes in B:
∑

f∈B
S(f)

Nodes∗(f,B) The set of all nodes in the paths from f to any FLOB in B, excluding f
P (B, f) The probability that block B is read given FLOB f is read.

P (B, f) can be computed as follows. Let “f” and “B” denote the events that “FLOB f is
read” and “block B is read”, respectively. Block B is read if at least one of the FLOBs in B is
read:

P (B, f) = P (“B”|“f”) = P
((

⋃

f ′∈B
“f ′”

)

∣

∣ “f”
)

The computation of this probability exploits two basic observations:

b

c

B

A

α

C

(a) P (“α”) = b

dC D

B

c

b

A

α

d

FE G

c

e f g

b

(b) P (“α”) = b · P+ �c, d�
Figure 10: Clippings from FLOB tree partitions

1. Only the FLOBs in Roots(B) contribute to P
(

⋃

f ′∈B
“f ′”

)

. We show this for a block

containing one root, depicted in Figure 10(a). Label c is the probability that any FLOB

10

in subtree C is accessed. Given FLOB A is read, the probability that block α is read is the
probability P (“B” ∪ “C”) that at least one FLOB in α is read. From probability theory
we know that

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2) (1)

for any two events E1 and E2. Thus the probability to access α is

P (“α”) = P (“B” ∪ “C”) = P (“B”) + P (“C”)− P (“B” ∩ “C”) = b + bc− bc = b

The extension to blocks rooted by multiple roots is easy, considering a multi-root block
as a union of single-root blocks.

2. From probability theory we know that the function P+ computes the probability P (E1 ∪
· · · ∪ Em) from the probabilities e1, . . . , em for the independent events E1 to Em:

P+(e1, . . . , em) =
m

∑

i=1

ei −
m−1
∑

i=1

m
∑

j>i

eiej +
m−2
∑

i=1

m−1
∑

j>i

m
∑

k>j

eiejek

− · · · + · · · − (−1)m e1e2 · · · em

(2)

For events E1 to Em which are not independent, but rather have a common base event
E 6∈ {E1, . . . Em} such that, once E happens, probabilities P (E1|E), . . . , P (Em|E) are
independent, we use (2) to compute

P (E1 ∪ · · · ∪ Em) = P (E) · P (E1 ∪ · · · ∪ Em|E)

= P (E) · P+(P (E1|E), . . . , P (Em|E)).
(3)

Figure 10(b) illustrates how (3) contributes to determining the probability P (B, f) for reading
a block given some higher-level FLOB is read. Let b be the probability that at least one of those
nodes in α, which can be reached through edge b, is read given FLOB A is read. Similarly, c
and d are the probabilities that at least one of those nodes in α are read which can be reached
through edge c and d, respectively, given FLOB B is read. Then due to (3) we know that

P (α, A) = b = P ((“E” ∪ “F”) ∪ “G”) = b · P+(c · d).

Resuming, we give the following recursive definition of P (B, f):

P (B, f) =

{

1 if f ∈ B,
P+(P (f1) · P (B, f1), . . . , P (fk) · P (B, fk)) otherwise,

(4)

with {f1, . . . , fk} = Sons(f) ∩Nodes∗(f,B).

3.2 Cost Model

Storage managers typically arrange the pages representing a LOB value in segments of adjacent
disk pages. For each LOB there is an index, for instance a B-tree, which keeps track of all
the segments used to store a LOB value. It depends on the specific implementation and its
applications whether LOBs of a given size tend to consist of some large segments or many small
segments. The solid line in Figure 11 qualitatively illustrates how the read access time for a
LOB might depend on its size. The linear line segments depict reading a single segment of

11

d

d

d

d

d

ac
ce

ss
 ti

m
e

d

c

LOB size

Figure 11: LOB access time, qualitative

pages. Each segment is preceded by a segment offset d corresponding to the mean time for
searching the LOB index and positioning the disk head. Finally, the start offset c is the sum
of the time needed by the storage manager to prepare read access, for instance acquiring locks
and loading the LOB index, and the segment offset.

The dotted line shows a linear approximation of the solid line. Due to the constant gradient
of costs for reading a single segment, the linear approximation is very good if LOBs are stored in
only a few, large segments. In practice, however, also for LOBs stored in many small segments
the linear approximation is of sufficient quality due to the small deviation of segment offsets
from the constant value d and the small variance in the length of segments.

Thus we use a linear cost model, assuming the costs for reading a LOB is sufficiently well
computed by

CS(n) = c + g · n (5)

with n the number of disk pages to be read, c the time needed for some initial actions taking
place exactly once, and gradient g the time needed to read a single disk page.

By means of (4) and (5) we can now define the expected costs CT for reading a FLOB tree
partition as the costs for reading the cluster containing the root of the tree plus the expected
costs for reading the other clusters in the tree:

CT (V, E, r,P) =
∑

B∈P
P (B, r) · CS(S(B)). (6)

Applying this formula to the FLOB tree partition in Figure 9, CT computes to

1 · CS(S(α)) + b · P+(f, g) · CS(S(β)) + b · h · CS(S(γ)) + b · P+(d, e) · CS(S(δ))

+ e · P+(j, k) · CS(S(ε)).

Here we already have taken into account that calling P+ with a single argument returns the
value of the argument: P+(x) = x.

It is the task of the tool described in this paper to find a good partition for a given FLOB
tree. Exhaustive search finds the optimal partition, but cannot be used due to the high number
of partitions of a given set of n elements, known to be the n-th Bell number [GKP94].4 Instead,
in Section 3.3 we present algorithms running in O(n) and O(n · h) (n: number of nodes, h:
height of the tree) finding reasonably good solutions.

4Already the 12th Bell number is beyond 4 million.

12

3.3 Algorithms

3.3.1 Rank Functions

In [DG98] we determined the expected costs to read a tuple with embedded FLOBs as follows.
A tuple is a pair (t, F), consisting of a core tuple t and a set F = {f1, f2, . . . , fn} of n FLOBs,
n ≥ 0. Due to the variable size of FLOBs we cannot calculate the costs of reading a tuple
exactly, but we can approximate the expected costs if we know the probability rf of a FLOB f
to be read whenever the comprising tuple is read:

CT (t, F) = CS(S(t)) +
∑

f∈F

{

rf · CS(S(f))+ (1− rf) · 0 if f is LOB,
rf · g · S(f) + (1− rf) · g · S(f) otherwise.

(7)

In most cases the core tuple will fit onto a single disk page. Applying this assumption yields
the following simplified cost formula:

CT (t, F) = CS(1) +
∑

f∈F

{

rf · CS(S(f)) if f is LOB,
g · S(f) otherwise.

(8)

Obviously, Equation (8) returns minimal costs if each of the terms of the sum returns minimal
costs. This in turn holds if for each of the FLOBs f1 to fn the better of either representation
alternative — inlined or swapped out — has been chosen, which is the case if

rf · CS(S(f)) < g · S(f) (9)

holds for those FLOBs f ∈ F that are swapped out to a LOB and does not hold for those
FLOBs that are stored within the tuple byte string.

In the more complex situations arising from the possibility to nest FLOBs addressed in this
paper, not only a tuple access, but also a FLOB access can be the base event upon which other
FLOBs are read. Furthermore, not only those FLOBs referenced directly by the base objects,
but all FLOBs in the subtree rooted by the base object should be considered for possible inlining
with the base object. So the version of (9) regarding our framework for nested FLOBs is given
by

P (f ′, f) · CS(S(f ′)) < g · S(f ′) ∀ f ′ ∈ Subtree(f). (10)

The left-hand side computes the expected costs for reading a FLOB f ′ which is stored in an
external LOB given f has been read. The right-hand side shows the costs for reading f ′ if it is
stored together with its base object f .

Another representation of (10) is
(

1
P (f ′, f)

− 1
)

· S(f ′) >
c
g

∀ f ′ ∈ Subtree(f). (11)

The ratio c
g is a system-dependent constant which can be determined easily by running a test

program reading large objects of different sizes, as described in Section 4.
Based on (11) we define the rank function R as follows:

R(f, f ′) =

(

1
P (f ′,f) − 1

)

· S(f ′)
c
g

(12)

13

The greater the value of R(f, f ′), the higher is the rank of inserting f ′ in a block different from
the one rooted by f . If R(f, f ′) < 1, it is more efficient to store f ′ together with f in a common
cluster.

For convenience, we will also use another version of R, taking as parameter the conditional
probability that FLOB node f ′ is accessed, rather than the source node:

R̃(f ′, p) =

(

1
p − 1

)

· S(f ′)
c
g

(13)

3.3.2 An O(n) Algorithm

Algorithm 1 Find a FLOB tree partition in O(n) time

algorithm Partition1(f , p, isroot)
input: f is the root of a FLOB subtree, p is the conditional probability that f is accessed given

the root of f ’s block is accessed, and isroot is a flag indicating whether f is the root of a
block and thus the block can be output after all other block members have been found.
To find a partition for a given FLOB tree rooted by r we call Partition1(r, 1, true).

output: A block of FLOB nodes containing f is returned, possibly to be merged with the
father’s block. Complete blocks are output. After termination, the set of all output
blocks is a partition of the input tree.

method:
result ← {f}
for all f ′ ∈ Sons(f) do

if R̃(f ′, p · P (f ′)) ≥ 1 then
Partition1(f ′, 1, true) {ignore return values}

else
result ← result ∪ Partition1(f ′, p · P (f ′), false)

end if
end for
if isroot then output result end if
return result

end Partition1

Algorithm 1 finds a partition of the set of FLOBs in a FLOB tree such that it is efficient to
store each block in a single FLOB cluster, using the rank function R in a top-down traversal.
Essentially, it checks for each son of a node whether it should be included in the node’s block.
If this is not the case, the son becomes the root of a new block.

Algorithm 1 visits each node exactly once, thus running in O(n). We pay for such a good
run-time complexity by considering only a small subset of all possible partitions. To be specific,
only partitions will be found whose blocks contain single, complete subtrees.

Due to the limited search space, Algorithm 1 cannot find blocks like α in Figure 9, because
the path connecting node A and M leaves α. Furthermore, blocks like β, δ, and ε are not found;
they consist of more than a single subtree.

3.3.3 An O(n · h) Algorithm

Algorithm 2 searches a larger search space. It processes all FLOBs in a tree in a preorder
traversal by computing for all nodes f and all nodes f ′ ∈ Subtree(f) whether f ′ should be

14

Algorithm 2 Find a FLOB tree partition in O(n · h) time

algorithm Partition2(f)
input: f is the root of a FLOB tree all of whose nodes are unmarked.
output: Complete blocks are output. After termination, the set of all output blocks is a

partition of the input tree.
method:

if f is not yet marked then
result ← {f}
mark f

else
result ← ∅

end if
for all f ′ ∈ Subtree(f) do

if f ′ is not yet marked and R(f, f ′) < 1 then
result ← result ∪ f ′

mark f ′

end if
end for
if result 6= ∅ then output result end if
for all f ′ ∈ Sons(f) do Partition2(f ′) end for

end Partition2

inserted in the block rooted by f .
The run-time costs of this algorithm applied to the root of a FLOB tree are given by

CPartition2(f) = a + b · |Subtree(f)|+
∑

f ′∈Sons(f)

CPartition2(f
′). (14)

Here a is some initial cost for a single call of Partition2, and b is the cost for checking for a single
node in the subtree whether it should be included in the root block or not. To rewrite (14) as a
function of n, the number of nodes in the FLOB tree, and h, the height of the tree, we consider
the arising costs for processing a FLOB tree level-wise. For every node in the FLOB tree cost a
has to be added to the entire costs, since each node of the tree is visited exactly once. Further-
more, for each level l containing nodes f1 to fk, the costs b · (|Subtree(f1)|+ · · ·+ |Subtree(fk)|)
must be taken into account. Since all subtrees of nodes of the same level are disjoint we know
that |Subtree(f1)|+ · · ·+ |Subtree(fk)| < n, thus giving rise to:

CPartition2(f) < n · a +
h

∑

l=0

b · n = n · (a + (h + 1) · b). (15)

So the run-time complexity of Partition2 is in O(n · h).
Notice that block δ in Figure 9 cannot be found by Algorithm 2, either: Starting with FLOB

A, block α is built. In the following steps FLOBs D and E become roots of distinct blocks and
thus cannot belong to the same block.

3.3.4 Extensions

The run-time complexity of Algorithm 2 can be decreased easily by setting a minimal size
parameter, indicating the expected minimal size of FLOB values. This parameter can be used

15

to limit the length of paths to be considered. With increasing path length, the probability of
accessing a FLOB reached by the path decreases exponentially. Figure 12 shows for different
values of the system-dependent constant c

g the relationship between access probability and
threshold size. For instance, for a c

g -value of 0.5 and a minimal FLOB value size of 16 words of

storage (64 bytes), we need not consider paths with an edge label product >
(1

2

)6 =
(1

4

)3 =
(1

8

)2,
because the FLOBs reached by such paths are not small enough to be included in the root block.

1

4

16

64

256

1024

4096

16384

(0.5)^10(0.5)^8(0.5)^6(0.5)^4(0.5)^21

th
re

sh
ol

d
si

ze
 (

by
te

s)

�

probability of FLOB access

c/g = 4
c/g = 2
c/g = 1

c/g = 0.5
c/g = 0.25

Figure 12: Threshold size

4 Simulations

In this section we present some of the simulations we performed to evaluate the quality of
the algorithms presented in Section 3.3. As a first step, we determined the system-dependent
constants required to compute the rank function as well as the cost for reading a LOB on a
real system; this is described in Section 4.1. The actual simulation results are then presented
in Section 4.2.

4.1 System-Dependent Constants

To determine reasonable values for the system-dependent constants c and g, we performed
access-time measurements on a SUN Ultra-1 workstation with 128 MB main memory, Solaris
2.6, and SHORE 2.0. The SHORE buffer pool was set to 1 MB.

We subsequently created LOBs (SHORE records) of size < 1, 2, . . . , 10 > disk pages and
repeated this ordered creation 20 times, thereby avoiding many small LOBs being placed on
contiguous disk pages. This prevents us from misinterpretation of cache effects when reading
LOBs ordered by size later on.

After LOB creation, the test data is read in LOB size order. The time necessary for reading
all 20 LOBs of same size is logged once for each size. Figure 13 illustrates the results. The solid
line depicts the dependency between the size of objects to be read and the elapsed time while
reading 20 such objects. The time unit is 1

100 second, which is the finest granularity for time
measurements on the hardware we used.5

The dotted line is a linear approximation of the measured data, calculated by applying the
method of least squares to the sample data. The resulting linear function is approximately

5This coarse time granularity was the reason to repeat all object retrievals 20 times; otherwise the access of
all objects with size ≤ 18 would have been reported to be 1.

16

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

ac
ce

ss
 ti

m
e

(s
ec

/1
00

)

�

size (#pages)

measured data
linear approximation

Figure 13: LOB access time

defined by y = 6.57 + 1.75x. Thus we conclude the system-dependent constants c, g, and c
g to

be 6.57
20 ≈ 0.329, 1.75

20 ≈ 0.088, and 6.57
1.75 ≈ 3.75, respectively.

4.2 Results

Then, we compared four different algorithms as follows. Alg. 1 is the O(n) algorithm proposed
in Section 3.3, clustering entire subtrees. Its O(n · h) extension is referred to as Alg. 2. In
addition to that, we also used two trivial algorithms: Alg. 3 stores each FLOB in a LOB on
its own, and Alg. 4 stores a complete tree in a common cluster in depth-first order. In a single
simulation run, we create a FLOB tree, apply each of the four algorithms to the tree, and
compute the expected costs for accessing the resulting tree partitions according to Equation 6.

In a first series of simulation runs, we created complete trees with constant FLOB size,
access probability, height, and degree. We used tall (degree = 2, height = 12) and wide (degree
= 20, height = 3) trees, small (64 Bytes) and large (10 pages = 81200 Bytes) FLOBs, and
low (0.05) and high (0.8) conditional access probabilities. Table 4 shows the expected costs for
accessing the tree partitions produced by the different algorithms.

Tree FLOB Access Access Costs (sec/100)
Shape Size Probability Alg. 1 Alg. 2 Alg. 3 Alg. 4

tall small low 0.34 0.34 0.37 5.99

tall small high 6.00 6.00 246.69 6.00

tall large low 0.47 0.47 0.47 6.98

tall large high 870.99 935.11 902.44 1291.96

wide small low 0.95 0.91 1.32 6.16

wide small high 6.16 6.16 1439.05 6.49

wide large low 3.95 3.95 3.95 28.66

wide large high 4819.16 4880.58 5268.70 5341.73

Table 4: Access costs for complete trees

In general, the partitions produced by Algs. 1 and 2 are of almost the same high quality.
In each simulation, either Alg. 3 computes a partition of similar quality, while Alg. 4 performs

17

much worse, or vice versa. Neither trivial algorithm produces a good result in all simulations.
Thus, Alg. 1 or Alg. 2 are the best choice here.

There is no qualitative difference in the results obtained by partitioning tall or wide trees. To
further explore the impact of the tree structure on algorithm performance, in a second simulation
series we repeated the first one, now creating sparse trees instead of complete ones. We omit
the results here, since they do not show any qualitative difference to Table 4. Apparently the
tree structure does not influence the choice of the best algorithm.

To see the advantage of Alg. 2, we again created complete trees (degree: 4, height: 6). For
each node, however, access probability and size were set randomly. The access probabilities
were uniformly distributed in]0, 1]. For 1

10 of the node we set a large size, for 9
10 a small one.

Basically, small sizes were normally (64, 64
2) distributed, large sizes were normally (81200, 81200

2)
distributed. In the rare case of a size < 1, a new random size was generated instead. The
average costs after ten experiments were as follows:

Alg. 1 Alg. 2 Alg. 3 Alg. 4
16.95 17.53 52.36 117.90

While for each algorithm the result values showed a notable variance in this ten experiments
— the highest expected cost differed by almost factor 4 from the lowest one — the ratios of
expected costs for different algorithms were very stable. In particular, in all experiments Alg.
2 produced a partition slightly worse than the one returned by Alg. 1! For an explanation, let
us consider the main difference between Alg. 1 and Alg. 2. Following a path towards a leaf,
whenever Alg. 1 encounters a node which should not be included into the block B of its father,
no other node in that path will be inserted into B later. In contrast to that, Alg. 2 is able to
“jump over” nodes in a path. Apparently, in many cases this presumed advantage turns out to
be a disadvantage, since deeper nodes are assigned to the blocks of higher nodes in a too greedy
manner. Consider a little example tree with root a, b a son of a, and c a son of b. Let a and
b be assigned to different blocks. Then Alg. 2 essentially decides whether to insert c into the
block rooted by a or not by comparing the expected access cost of a block {a, c} and the cost of
storing c in a block on its own; the possibly optimal alternative with a block {b, c} is ignored.

Finally, we simulated reading tuples containing a mapping(const(region)) value, as de-
scribed in Section 2. Remember that a mapping value is represented using a FLOB, imple-
menting a variable-sized array of units. A unit might be represented as a time interval (8
Bytes), a set of flags (8 Bytes), and a FLOB handle (20 Bytes) referencing a region value.
In our simulation, a region value consists of segments, each of them represented as a pair of
half-segments. Thus we assume the representation of a segment to require 2 · (4 · 4) = 32 Bytes.

We created four different trees representing a tuple with an embedded value of type
mapping(const(region)). We varied the number of units (10 or 100) and the number of seg-
ments in a region (30 or 300). The access probabilities of the region values were set to those
corresponding to a binary search on the mapping: < . . . , 1

2 , . . . , 1, . . . , 1
2 , . . . >. The resulting

access costs are the left-hand values in Table 5. Again Alg. 1 proves its superiority.
To test the impact of probability settings, we also computed the expected costs for binary

search on partitions resulting from setting all region access probabilities to 0.5. They are
printed behind the original costs for each tree and Algs. 1 and 2 in Table 5. For small numbers
of units with only small regions, the expected costs are the same, because a single cluster is
created anyway. Obviously, with increasing number of units and growing size of regions, setting
probabilities correctly becomes more and more important, because with constant probabilities
Algs. 1 and 2 cluster too many regions with the FLOB representing the array of units.

After these simulations, Alg. 1 is clearly the algorithm of choice, since it produces the best
partitions for all the tested cases, while there is no faster alternative. Another result is that

18

Access Costs (sec/100)
Units Segments

region Alg. 1 Alg. 2 Alg. 3 Alg. 4

10 30 0.44 / 0.44 0.44 / 0.44 1.07 0.44

10 300 0.95 / 1.38 0.98 / 1.38 1.23 1.38

100 30 0.96 / 1.41 1.00 / 1.41 1.63 1.41

100 300 1.67 / 10.75 1.71 / 10.75 1.94 10.75

Table 5: Access costs for mapping trees with correct/incorrect probability settings

access performance is sensitive to strongly incorrect settings of a FLOB’s access probability. It
might be necessary to analyze the access patterns of the algorithms invoked by user queries,
maintain access statistics, initially run the system in training mode, etc., to find appropriate
probability settings.

5 Related Work

Lots of research efforts have been made to develop efficient implementations of persistent large
objects. As a result, a variety of powerful large object representations is at the disposal of the
implementor of a non-standard database system, all of them emphasizing different properties
like efficient insertion in the middle of an object, guaranteed data throughput for sequential
access, etc.

Within all those large object abstractions, there is not paid any attention to the storage
environment of large objects. In toolkits like SHORE and object-relational systems like Informix
Universal Server, the DBI has direct access to the large object interface and is able (and obliged)
to determine the way large objects are used for value representation. Thus, the responsibility for
efficient use of large objects is simply passed to the DBI. For instance, the Paradise GIS, using
SHORE, does automatic switching from inlined to swapped out value representation with a
threshold of about 0.7 disk pages for its array ADT [PYK+97]. However, in Paradise automatic
switching is not a general concept but restricted to the array ADT.

With the Spatial Datablade of Informix Universal Server, a similar mechanism is imple-
mented for its spatial data types. The API of Informix Universal Server allows one to implement
representation switching by the notion of an opaque type [Inf98]. The user has to define a set of
support functions for each opaque type which will be called by the system frame for importing,
exporting, casting, etc. of values of the respective type. Within the implementation of the
assign support function the user has to code manually whether an instance of the respective
opaque type should be inlined or swapped out.

The work described in this paper started with [DG98]. Here the concepts and a sample
C++ implementation of a tool managing tuples containing FLOBs is presented, automatically
switching the representation of embedded large objects according to the object’s size and a
threshold size determined analytically. It turned out, however, that the single-level FLOB
hierarchy provided by [DG98] is not sufficient to support the implementation of data models
allowing nested or even recursive definitions of variable-sized types. These can be found in
application-specific non-standard data models as well as in more general models like the object-
oriented model.

As a consequence, clustering of nested structures has been a research issue since the first
variants of object-oriented systems have been implemented. For implementations of the hierar-
chical model, Schkolnick [Sch77] presents an O(n) algorithm computing a clustering for a given

19

type tree. This tree is essentially constructed using the schema information given by the user.
The algorithm returns the optimal clustering with respect to a predefined access pattern and
the underlying cost model based on page faults.

Chang and Katz [CK89] also use “knowledge of structural relationships and inheritance”, i.e.,
schema information, for clustering objects. Furthermore, statistics about access frequencies in a
real-world CAD application and additional user hints for clustering objects are considered. Their
clustering algorithm essentially chooses a placement for each newly created instance based on
the static information about the instance and its access frequencies. With changing information,
reclustering is performed at run-time.

In ORION, usually all instances of a class are stored in a common segment [KBC+87,
KBG89]. A set of objects related by ORION’s IS-PART-OF relationship is called a composite
object ; the user may issue “Cluster” messages to determine a good clustering for composite
objects. Furthermore, the clustering strategy takes into account versioning information.

Cheng and Hurson [CH91] propose to store entire complex objects in chunks of contiguous
pages. Creation of new objects possibly triggers reclustering actions. The object order in a
chunk is computed by a level clustering algorithm, using access frequency statistics or user
hints, similar to Kruskal’s algorithm for constructing a minimum cost spanning tree.

The clustering approach in O2 uses placement trees, indicating related objects, and formal
descriptions of access methods’ characteristics given by the database administrator [BDH92].
A cost model essentially considering page-faults and main-memory overload is the basis for
dynamically adapting the initial clustering.

Other research on clustering in object-oriented database systems explores more precise cost
models for specific environments, e.g., Markov chains to analyze caching in a client-server en-
vironment with objects smaller than a disk page [TN91, TN92], alternative search strategies
like simulated annealing [HLL94], or specific applications, for instance knowledge-based systems
[RG96].

All the work on clustering mentioned above either exploits schema information, or directly
controls characteristics of the underlying storage manager like buffer allocation and replacement
policies, or both. Firstly, however, with database toolkits like Exodus [CDRS86] or SHORE
[CDF+94], or in generic database development environments like Volcano [GM93], Predator
[SLR97], or Secondo [GDF+99, DG99], there is no prescribed data model; thus we cannot
assume any schema information. Secondly, from a software engineering point of view it was
preferable to provide a general interface enabling us to use different storage managers rather
than to implement one from scratch, since there is already a great variety of up-to-date storage
managers which have proven to be reliable and efficient.

The generality of our approach is mainly founded by the cost model. Most other clustering
strategies either do not set up a cost model at all, heuristically exploiting schema information
or statistics, or use cost models which restrict the maximum size of objects to values less than
a disk page. The cost metric usually is the number of page faults, ignoring the benefits of
accessing data located on contiguous disk pages. In contrast to that, our cost model takes into
account that reading a segment of contiguous pages is superior to reading scattered pages. As
a consequence, our cost model does not only consider page faults, but rather different costs for
accessing the first page of a segment and its subsequent pages, and is able to process arbitrary
object sizes.

Finally, we set off the lack of impact on the buffer management strategy of the underlying
storage manager at least partially by reading entire clusters, as described in Section 2.3, thereby
enforcing preemptive caching in the application’s memory space.

20

6 Conclusions

We have presented in this paper a large object extension that automatically clusters trees
of nested objects. A sound and general interface was described, and two different clustering
techniques using a cost model based on access probabilities and object sizes were given. In a
series of simulations, we analyzed how the algorithms compare to each other and to two trivial
ones. The results showed that they improve efficiency and that one outperforms the other in
all situations.

The main contribution of our work is that we assume only few basic features on the under-
lying storage manager, resulting in a generic tool that can be used with many different storage
managers and in many different environments. In addition to that, the behaviour of the clus-
tering algorithm can be influenced by means of hints and access probabilities, but even without
this information, using our tool increases performance considerably. An important difference to
other approaches is that no schema information is used in the algorithms, hence they do not
depend on a particular data model.

We expect this work to be very useful in scientific applications allowing for the definition
of complex data types. So far, large objects are considered untyped byte strings. We plan to
provide higher abstraction levels like arrays, trees, lists, or graphs on top, which will benefit
from the characteristics of the tool.

The implementation of the advanced spatio-temporal data model sketched in Section 2 using
our tool is ongoing work.

References

[BDH92] V. Benzaken, C. Delobel, and G. Harrus. Clustering Strategies in O2: An Overview. In
F. Bancilhon, C. Delobel, and P. Kanellakis, editors, Building an Object-Oriented Database
System. The Story of O2, chapter 17, pp. 385–410. Morgan Kaufmann, 1992.

[CDF+94] M.J. Carey, D.J. DeWitt, M.J. Franklin, N.E. Hall, M.L. McAuliffe, J.F. Naughton, D.T.
Schuh, M.H. Solomon, C.K. Tan, O.G. Tsatalos, S.J. White, and M.J. Zwilling. Shoring
Up Persistent Applications. In Proc. ACM SIGMOD Conference, pp. 383–394, Minneapolis,
1994.

[CDRS86] M.J. Carey, D.J. DeWitt, J.E. Richardson, and E.J. Shekita. Object and File Management in
the Exodus Extensible Database System. In Proc. of the 12th VLDB Conference, pp. 91–100,
Kyoto, 1986.

[CH91] J.R. Cheng and A.R. Hurson. Effective Clustering of Complex Objects in Object-Oriented
Databases. In Proc. ACM SIGMOD Conference, pp. 22–31, Denver, 1991.

[CK89] E.E. Chang and R.H. Katz. Exploiting Inheritance and Structural Semantics for Effective
Clustering and Nuffering in an Object-Oriented DBMS. In Proc. ACM SIGMOD Conference,
pp. 348–357, Portland, 1989.

[DG98] S. Dieker and R.H. Güting. Efficient Handling of Tuples with Embedded Large Objects.
Technical Report Informatik 236 (http://www.fernuni-hagen.de/inf/pi4/papers/FLOBs.pdf),
FernUniversität Hagen, 1998. To appear in Data & Knowledge Engineering, 32(3):247–269,
March 2000.

[DG99] S. Dieker and R.H. Güting. Plug and Play with Query Algebras: SECONDO. A Generic
DBMS Development Environment. Technical Report Informatik 249, FernUniversität Hagen,
Praktische Informatik IV, 1999.

[EGSV99] M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-Temporal Data Types:
An Approach to Modeling and Querying Moving Objects in Databases. GeoInformatica,
3(3):265–291, 1999.

21

[FGNS99] L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. A Data Model and Data Structures
for Moving Objects Databases. Technical Report Informatik 260, FernUniversität Hagen,
1999. To appear in Proc. ACM SIGMOD Conference 2000.

[GBE+98] R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider, and
M. Vazirgiannis. A Foundation for Representing and Querying Moving Objects. Techni-
cal Report Informatik 238, FernUniversität Hagen, 1998. To appear in ACM Transactions on
Database Systems.

[GDF+99] R.H. Güting, S. Dieker, C. Freundorfer, L. Becker, and H. Schenk. SECONDO/QP: Imple-
mentation of a Generic Query Processor. In Proc. of the 10th Intl. Conf. on Database and
Expert Systems Applications (DEXA’99), pp. 66–87, Florence, 1999.

[GKP94] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science, 2nd ed. Addison-Wesley, 1994.

[GM93] G. Graefe and W.J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient
Search. In Proc. of the 9th IEEE Intl. Conf. on Data Engineering, pp. 209–218, Vienna, 1993.

[HLL94] K.A. Hua, S.D. Lang, and W.K. Lee. A Decomposition-Based Simulated Annealing Technique
for Data Clustering. In Proc. of the Thirteenth ACM Symposium on Principles of Database
Systems (PODS ’94), pp. 117–128, Minneapolis, 1994.

[Inf98] Informix Software, Inc. Extending INFORMIX-Universal Server: Data Types, version 9.1,
1998. Online version (http://www.informix.com).

[KBC+87] W. Kim, J. Banerjee, H.T. Chou, J.F. Garza, and D. Woelk. Composite Object Support in
an Object-Oriented Database System. ACM SIGPLAN Notices, 22(12):118–125, 1987.

[KBG89] W. Kim, E. Bertino, and J.F. Garza. Composite Objects Revisited. In Proc. ACM SIGMOD
Conference, pp. 337–347, Portland, 1989.

[PYK+97] J. Patel, J. Yu, N. Kabra, K. Tufte, B. Nag, J. Burger, N. Hall, K. Ramasamy, R. Lueder,
C. Ellmann, J. Kupsch, S. Guo, J. Larson, D. DeWitt, and J. Naughton. Building a Scaleable
Geo-Spatial DBMS: Technology, Implementation, and Evaluation. In Proc. ACM SIGMOD
Conference, pp. 336–347, Tucson, 1997.

[RG96] A. Ramanujapuram and J.E. Greer. A Hybrid Object Clustering Strategy for Large
Knowledge-Based Systems. In Proc. of the 12th IEEE Intl. Conf. on Data Engineering,
pp. 247–257, New Orleans, 1996.

[Sch77] M. Schkolnick. A Clustering Algorithm for Hierarchical Structures. ACM Transactions on
Database Systems, 2(1):27–44, 1977.

[SLR97] P. Seshadri, M. Livny, and R. Ramakrishnan. The Case for Enhanced Abstract Data Types.
In Proc. of the 23rd VLDB Conference, pp. 66–75, Athens, 1997.

[TN91] M.M. Tsangaris and J.F. Naughton. A Stochastic Approach for Clustering in Object Bases.
In Proc. ACM SIGMOD Conference, pp. 12–21, Denver, 1991.

[TN92] M.M. Tsangaris and J.F. Naughton. On the Performance of Object Clustering Techniques.
In Proc. ACM SIGMOD Conference, pp. 144–153, San Diego, 1992.

22

