
MOVING OBJECT LANGUAGES

Ralf Hartmut Güting
Fakultät für Mathematik und Informatik

Fernuniversität Hagen, Germany

SYNONYMS
Moving Object Languages; Query Languages for Moving Objects; Spatio-
Temporal Query Languages

DEFINITION
The term refers to query languages for moving objects databases. Corresponding database
systems provide concepts in their data model and data structures in the implementation to
represent moving objects, i.e., continuously changing geometries. Two important
abstractions are moving point, representing an entity for which only the time dependent
position is of interest, and moving region, representing an entity for which also the time
dependent shape and extent is relevant. Examples of moving points are cars, trucks, air
planes, ships, mobile phone users, RFID equipped goods, or polar bears; examples of
moving regions are forest fires, deforestation of the Amazone rain forest, oil spills in the
sea, armies, epidemic diseases, hurricanes, and so forth.

There are two flavors of such databases. The first, which we call the location management
perspective, represents information about a set of currently moving objects. Basically one
is interested in efficiently maintaining their locations and asking queries about the current
and expected near future positions and relationships between objects. In this case, no
information about histories of movement is kept. The second we call the spatio-temporal
data perspective; here the complete histories of movements are represented. The goal in
the design of query languages for moving objects is to be able to ask any kind of questions
about such movements, perform analyses, derive information, in a way as simple and
elegant as possible. Yet such queries must be executed efficiently.

HISTORICAL BACKGROUND
The field of moving objects databases with the related query languages came into being in
the late nineties of the last century mainly by two parallel developments. First, the group
around Wolfson in a series of papers [13, 15, 16, 17] developed a model that allows one to
keep track in a database of a set of time dependent locations, e.g., to represent vehicles.
They observed that one should store in a database not the locations directly, which would

require high update rates, but rather a motion vector, representing an object’s expected
position over time. An update to the database is needed only when the deviation between
the expected position and the real position exceeds some threshold. At the same time this
concept introduces an inherent, but bounded uncertainty about an object’s real location.
The group formalized this model introducing the concept of a dynamic attribute. This is an
attribute of a normal data type which changes implicitly over time. This implies that
results of queries over such attributes also change implicitly over time. They introduced a
related query language FTL (future temporal logic) that allows one to specify time
dependent relationships between expected positions of moving objects. Hence this group
established the location management perspective.

Second, the European project CHOROCHRONOS set out to integrate concepts from
spatial and temporal databases and explored the spatio-temporal data perspective. This
means, one represents in a database time-dependent geometries of various kinds such as
points, lines, or regions. Earlier work on spatio-temporal databases had generally admitted
only discrete changes. This restriction was dropped and continuously changing geometries
were considered. Güting and colleagues developed a model based on the idea of spatio-
temporal data types to represent histories of continuously changing geometries [5, 9, 6, 2].
The model offers data types such as moving point or moving region together with a
comprehensive set of operations. For example, there are operations to compute the
projection of a moving point into the plane, yielding a line value, or to compute the
distance between a moving point and a moving region, returning a time dependent real
number, or moving real, for short. Such data types can be embedded into a DBMS data
model as attribute types and can be implemented as an extension package.

A second approach to data modeling was pursued in CHOROCHRONOS by Grumbach
and colleagues who applied the constraint model to the representation of moving objects
[7, 11] and implemented a prototype called Dedale. Constraint databases can represent
geometries in n-dimensional spaces; since moving objects exist in 3D (2D + time) or 4D
(3D + time) spaces, they can be handled by this approach. Several researchers outside
CHOROCHRONOS also contributed to the development of constraint-based models for
moving objects.

SCIENTIFIC FUNDAMENTALS
In the following two subsections we describe two major representatives for the location
management and the spatio-temporal data flavor of moving objects databases in some
detail, namely the MOST model and FTL language, and the approach of spatio-temporal
data types. In a short closing subsection some further work related to languages for
moving objects is mentioned.

Modeling and Querying Current Movement - the MOST Model and FTL Language
In this section, moving objects databases based on the location management perspective
and a related query language are discussed. That is, the database keeps track of a
collection of objects moving around currently and one wishes to be able to answer queries
about the current and expected near future positions. Such sets of entities might be taxi-

cabs in a city, trucks of a logistics company, or military vehicles in a military application.
Possible queries might be:

• Retrieve the three free cabs closest to Cottle Road 52 (a passenger request position).
• Which trucks are within 10 kms of truck T70 (which needs assistance)?
• Retrieve the friendly helicopters that will arrive in the valley within the next 15 min-

utes and then stay in the valley for at least 10 minutes.

Statically, the positions of a fleet of taxi-cabs, for example, could be easily represented in
a relation

taxi-cabs(id: int, pos: point)

Unfortunately this representation needs frequent updates to keep the deviation between
real position and position in the database small. This is not feasible for large sets of
moving objects.

The MOST (moving objects spatio-temporal) data model [13, 16], discussed in this
section, stores instead of absolute positions a motion vector which represents a position as
a linear function of time. This defines an expected position for a moving object. The
distance between the expected position and the real position is called the deviation.
Furthermore, a distance threshold is introduced and a kind of contract between a moving
object and the database server managing its position is assumed. The contract requires that
the moving object observes the deviation and sends an update to the server when it
exceeds the threshold. Hence the threshold establishes a bound on the uncertainty about an
object’s real position.

The MOST model relies on a few basic assumptions: A database is a set of object classes.
Each object class is given by its set of attributes. Some spatial data types like point, line, or
polygon with suitable operations are available. Object classes may be designated as spatial
which means they have a single spatial attribute. Spatial operations can then be directly
applied to objects, e.g. distance(o1, o2) for two objects o1 and o2. Besides object classes,
the database contains an object called Time which yields the current time at every instant.
Time is assumed to be discrete and can be represented by integer values. The value of the
Time object increases by one at each clock tick (e.g. every second).

Dynamic Attributes
A fundamental new concept in the MOST model is that of a dynamic attribute. Each
attribute of an object class is classified to be either static or dynamic. A dynamic attribute
is of a standard data type (e.g. int, real) within the DBMS conceptual model, but changes
its value automatically over time. This means that queries involving such attributes also
have time dependent results, even if time is not mentioned in the query and no updates to
the database occur.

For a data type to be eligible for use in a dynamic attribute, it is necessary that the type has
a value 0 and an addition operation. This holds for numeric types but can be extended to
types like point. A dynamic attribute A of type T is then represented by three subattributes
A.value, A.updatetime, and A.function, where A.value is of type T, A.updatetime is a time

value, and A.function is a function f: int → T such that at time t = 0, f(t) = 0. The semantics
of this representation is called the value of A at time t and defined as

value(A, t) = A.value + A.function(t - A.updatetime) for t ≥ A.updatetime

When attribute A is mentioned in a query, its dynamic value value(A, t) is meant.

Representing Object Positions
A simple way of modeling objects moving freely in the xy-plane would be to introduce an
attribute pos with two dynamic subattributes pos.x and pos.y. For example, one might
define an object class for cars:

cars(license_plate: string, pos: (x: dynamic real, y: dynamic real))

For vehicles, a more realistic assumption is that they move along road networks. A more
sophisticated modeling of time dependent positions in MOST uses a loc attribute with six
subattributes loc.route, loc.startlocation, loc.starttime, loc.direction, loc.velocity, and
loc.uncertainty. Here loc.route is a (pointer to) a line value (a polyline) describing the
geometry of the road on which the vehicle is moving. Say that on loc.route, one chooses a
point as origin and a particular direction as positive direction. Then, the initial location
loc.startlocation is given by its distance from the origin; this distance is positive if the
direction from the origin to the initial location is in the positive direction, otherwise it is
negative. The velocity also is negative or positive accordingly. Startlocation, starttime,
and velocity correspond to the components of a dynamic attribute explained above. The
value of loc at time t, value(loc, t) is now a position on the route polyline defined in the
obvious way. Query evaluation may take the uncertainty into account.

Semantics of Queries, Query Types
In traditional databases, the semantics of a query are defined with respect to the current
state of a database. This is not sufficient for the MOST model, as queries may refer to
future states of a database. A database state is a mapping that associates each object class
in the database with a set of objects of appropriate types, and the Time object with a time
value. We denote by o.A and o.A.B attribute A of object o and subattribute B of attribute A
of object o, respectively. In database state s, the value of o.A is denoted s(o.A) and the
value of the Time object as s(Time). For each dynamic attribute A, its value in state s is
value(A, s(Time)).

Semantics of queries are now defined relative to a database history. A database history is
an infinite sequence of database states, one for each clock tick, beginning at some time u,
hence is su, su+1, su+2, ... An update at some time t > u will affect all database states from t
on. Hence with each clock tick we get a new database state, and with each update a new
database history. We denote by Q(H, t) a query Q evaluated on database history H
assuming a current time t.

There are now two types of queries, namely instantaneous and continuous query.1 An
instantaneous query issued at time t is evaluated once on the history starting at time t,
hence as

Q(Ht, t) (instantaneous query)

In contrast, a continuous query is (conceptually) reevaluated once for each clock tick,
hence as a sequence of instantaneous queries

Q(Ht, t), Q(Ht+1, t+1), Q(Ht+2, t+2), ... (continuous query)

The result of a continuous query changes over time; at time u the result of Q(Hu, u) is
valid. Of course, reevaluating the query on each clock tick is not feasible, instead, the
evaluation algorithm for such queries is executed only once and produces a time
dependent result, in the form of a set of tuples with associated time stamps. Reevaluation
is necessary only for explicit updates.

The Language FTL (Future Temporal Logic)
The query language associated with the MOST model is called FTL (future temporal
logic). We first show a few example queries formulated in FTL.

1. Which trucks are within 10 kms of truck T70?
RETRIEVE t
FROM trucks t, trucks s
WHERE s.id = ’T70’ ∧ dist(s, t) <= 10

Here nothing special happens, yet, the result is time dependent.

2. Retrieve the helicopters that will arrive in the valley within the next 15 minutes and
then stay in the valley for at least 10 minutes.
RETRIEVE h
FROM helicopters h
WHERE eventually_within_15 (inside(h, Valley) ∧

always_for_10 (inside(h, Valley))

Here Valley is a polygon object.

The general form of a query in FTL is2

RETRIEVE <target-list> FROM <object classes> WHERE <FTL-formula>

The interesting part is the FTL formula. FTL formulas are similar to first-order logic,
hence are built from constants, function symbols, predicate symbols, variables and so
forth. Some special constructs in the definition of formulas are the following:

• If f and g are formulas, then f until g and nexttime f are formulas

The semantics of a formula are defined with respect to

1. There exists a further query type, persistent query, which is omitted here.
2. In the original literature about FTL, a single class of moving objects is assumed and the FROM

clause omitted.

• a variable assignment µ which associates with each variable in the formula a corre-
sponding database object (e.g. for s, t in the first example query µ = [(s, T10), (t,
T20)] where Ti are truck objects in the database)

• a database state s on history h

We then define what it means for a formula to be satisfied at state s on history H with
respect to variable assignment µ (satisfied at (s, µ) for short). The semantics of the special
constructs are defined as follows:

• f until g is satisfied at (s, µ) :⇔ either g is satisfied at (s, µ), or there exists a future
state s’ on history H such that (g is satisfied at (s’, µ) ∧ for all states si on history H
before state s’, f is satisfied at (si, µ)).

• nexttime f is satisfied at (s, µ) :⇔ f is satisfied at (s’, µ) where s’ is the state imme-
diately following s in history H.

Based on these temporal operators with well-defined semantics, some derived notations
can be defined:

• eventually g ≡ true until g
• always g ≡ (¬ eventually (¬ g))

In addition, it is useful to have bounded temporal operators:

• f until_within_c g asserts that there exists a future time within c units of time from
now such that g holds and until that time f will hold continuously

• f until_after_c g asserts that there exists a future time after at least c units of time
from now such that g holds and until that time f will hold continuously.

Based on these, one can again define further bounded temporal operators:

• eventually_within_c g ≡ true until_within_c g
• eventually_after_c g ≡ true until_after_c g
• always_for_c g ≡ g until_after_c true

So now we have explained the semantics of the constructs used in example query 2 above.

Evaluation
The algorithm for evaluating FTL queries can here only be briefly sketched. The basic
idea is to compute a relation for every subformula of the given FTL formula bottom up,
starting from atomic formulas like dist(s, t) <= 10. The relation Rf for subformula f
has an attribute for each free variable occuring in f, and two attributes for time stamps
tstart, tend. Hence the relation for formula dist(s, t) <= 10 has schema (s, t, tstart, tend).
It has a tuple (o, o’, T, T’) for every pair of objects O, O’ and for every maximal time
interval [T, T’] such that objects O, O’ are within distance 10 throughout the interval
[T, T’]. For operators combining two subformulas such as f ∧ g or f until g it is then
possible to compute their relations essentially by joins over common object identifier
attributes (equal variables in both subformulas), manipulating the time stamps in an
appropriate way.

The result relation for the complete formula is the result for a continuous query. As time
progresses, tuples of this relation can be added to or removed from the current result. It
can also be used to answer an instantaneous query selecting just the tuples valid at the time
of issuing this query.

Modeling and Querying History of Movement - Spatio-Temporal Data Types
In this section we discuss the spatio-temporal data perspective for moving objects
databases. That is, we consider the geometries stored in spatial databases and allow them
to change continuously over time. Some of the most important abstractions used in spatial
databases are

• point - an object for which only the position in space is relevant
• line - a curve often representing connections such as roads, rivers
• region - representing objects for which the extent is relevant
• partition - subdivisions of the plane, e.g. of a country into states
• network - graph or network structures over roads, rivers, power lines, etc.

Such abstractions are usually captured in spatial data types, consisting of the type together
with operations.

Spatio-Temporal Data Types
The idea of the approach [5] presented in the following is to introduce spatio-temporal
data types that encapsulate time dependent geometries with suitable operations. For
moving objects, point and region appear to be most relevant, leading to data types moving
point and moving region, respectively. The moving point type can represent entities such
as vehicles, people, or animals moving around whereas the moving region type can
represent hurricanes, forest fires, armies, or flocks of animals, for example. Geometrically,
values of spatio-temporal data types are embedded into a 3D space (2D + time) if objects
move in the 2D plane, or in a 4D space if movement in the 3D space is modeled. Hence, a
moving point and a moving region can be visualized as shown in Figure 1.

Figure 1: A moving point and a moving region

In the following, we first motivate the approach by introducing an example database with
spatio-temporal data types, providing a number of operations on these data types, and for-
mulating queries using these operations. We then discuss the underlying design principles
for types and operations, the distinction between abstract model and discrete model in
defining the semantics of types, and the structure of type system and operations in more
detail. Finally, the implementation strategy is briefly outlined.

x

y

t

Example Operations and Queries
As a simple example, suppose we have two relations representing cars and weather
conditions, whose movements have been recorded.

cars (license_plate: string, trip: moving(point))
weather (id: string, area: moving(region))

Assume further, some available operations on these types, used in queries below, are the
following:

In these signatures, moving is viewed as a type constructor that transforms a type α into a
time dependent version of that type, moving(α). These operations use further data types:

• instant, representing an instant of time
• periods, representing a set of disjoint time intervals
• intime(α), where intime is a type constructor building pairs of an instant and a value

of another type α.

The operations have the following meaning: Trajectory and traversed compute the
projection of a moving point or moving region into the 2D plane; deftime computes the
projection on the time axis. The intersection of a moving point and a moving region is a
moving point again containing the parts of the moving point inside the moving region.
Atinstant evaluates the moving object at a particular instant of time, returning an
(instant, α) pair. Inst and val allow access to the components of such pairs. Duration
returns the total length of time intervals in a periods value (say, in seconds). Operator
theinstant constructs instants of time for a variable number of integer arguments (here
four) in the order year, month, day, hour, minute, and second returning the first instant of
time of such a time interval.

The following queries can then be formulated:

1. What was the route taken by the car “DO-GL 871”?
SELECT trajectory(trip) AS route
FROM cars WHERE license_plate = “DO-GL 871”

2. What was the total area swept by the fog region with identifier “F276”?

Signature Operation

moving(point) → line trajectory
moving(region) → region traversed
moving(α) → periods deftime
moving(point) × moving(region) → moving(point) intersection
moving(α) × instant → intime(α) atinstant
intime(α) → instant inst
intime(α) → α val
periods → int duration
int × int × int × int → instant theinstant

SELECT traversed(area) AS fogarea
FROM weather WHERE id = “F276”

3. How many cars stayed in the fog area for more than 30 minutes?
SELECT count(*)
FROM cars AS c, weather AS w
WHERE duration(deftime(intersection(c.trip, w.area))) > 1800

4. Where was the fog area at 5pm (on the respective day January 8, 2007)?
SELECT val(atinstant(area, theinstant(2007, 1, 8, 17)))
FROM weather WHERE id = “F276”

Goals in the Design of Types and Operations
The examples have illustrated the basic approach of using spatio-temporal data types.
Starting from this idea, the question is how exactly data types and operations should be
chosen. Such a systematic design was given in [9] and the types and operations above are
already part of that design. The design pursues the following goals:

• Closure of type system. Type constructors should be applied systematically and con-
sistently. This means in particular:

– For all base types of interest, there exist related temporal (“moving”) types.
– For all temporal types (whose values are functions from time into some

domain), there exist types to represent their projection into domain and range.
• Genericity. There will be a large set of data types. Operations should be designed in

a generic way to cover as many types as possible.
• Consistency between nontemporal and temporal types. The structure of a temporal

type, taken at a particular instant of time, should agree with the structure of the cor-
responding static type.

• Consistency between nontemporal and temporal operations. For example,
val(atinstant(intersection(mp, mr), t))

= intersection(val(atinstant(mp, t)), val(atinstant(mr, t))

Abstract and Discrete Model
Before considering the type system in more detail, one should understand the meaning of
data types. There exists a choice at what level one defines the semantics of types. For
example, a moving point could be viewed in two ways:

• A continuous function from time (viewed as isomorphic to the real numbers) into
the Euclidean plane, i.e., a function f: R → R2.

• A polyline in the 3D space representing such a function.

The essential difference is that in the first case, one defines the semantics of the type in
terms of infinite sets without fixing a finite representation. In the second case a finite
representation is chosen. The first is called an abstract model and the second a discrete
model. Note that there are many discrete models for a given abstract model. For example,
a moving point might also be represented as a sequence of splines. The properties of such
models can be summarized as follows:

• Abstract models are mathematically simple, elegant, and uniform, but not directly
implementable.

• Discrete models are more complex and heterogeneous, but can be implemented.

As a consequence, the design of spatio-temporal data types proceeds in two steps: First, an
abstract model of types and operations is designed. Second, a discrete model to represent
(a large part of) the abstract model is constructed.

Type System
The structure of the type system is illustrated in Figure 2. It reflects the design goals stated
above.

Projections of standard types are represented as sets of disjoint intervals over the
respective base type; the range type constructor yields such types range(α) for base type
α. Projections of time dependent geometries can generally be of different data types. For
example, a moving point can “jump around”, i.e., change position in discrete steps,
yielding a points value (set of points) as a projection. Or it can move continuously,
yielding a line value (a curve in the plane). Note that line and region values can have
multiple components, so that the respective projection operations are closed. The
intime(α) types have been omitted in this figure.

Operations
The design of operations proceeds in three steps:

1. Carefully design operations for nontemporal types, using generic definition tech-
niques.

2. By a technique called lifting make them all time dependent in a way consistent with
the static definition.

3. Add specialized operations for the temporal types.

There is a comprehensive set of operations first on the nontemporal types having classes
of operations such as predicates, set operations, aggregate, numeric, distance and direction

Figure 2: Structure of the type system

int
real
string
bool

point
points
line
region

moving(int)
moving(real)
moving(string)
moving(bool)

moving(point)
moving(points)
moving(line)
moving(region)

range(int)
range(real)
range(string)
range(bool)

points
line
region

periods

instant

all
temporal
types for
these

all
projec-
tions
to the
range

all projections to the domain

operations. Second, these are all lifted which means each of their arguments may become
time dependent which makes the result time dependent as well. Third, specialized
operations on temporal types have classes of operations addressing projection to domain
and range, interaction with values in domain and range, and operations to deal with rate of
change (e.g. derivative).

Implementation
Implementation is based on the discrete model proposed in [6] using algorithms for the
operations studied in [2]. The discrete model uses the so-called sliced representation as
illustrated in Figure 3. A temporal function value is represented as a time-ordered

sequence of units where each unit has an associated time interval and time intervals of
different units are disjoint. Each unit is capable of representing a piece of the moving
object by a “simple” function. Simple functions are linear functions for moving points or
regions, and quadratic polynomials (or square roots of such) for moving reals, for
example.

Within a database system, an extension module (data blade, cartridge, extender, etc.) can
be provided offering implementations of such types and operations. The sliced
representation is basically stored in an array of units.1 Because values of moving object
types can be large and complex, the DBMS must provide suitable storage techniques for
managing large objects. A large part of this design has been implemented prototypically in
the SECONDO extensible DBMS [1] which is available for download [12].

Some Further Work on Moving Object Languages

Moving Objects in Networks
The model of spatio-temporal data types presented in the previous section has been
extended to model movement in networks [8]. A network is modeled as a set of routes and
junctions between routes. Four data types gpoint, gline, moving(gpoint) and moving(gline)
are introduced to represent static and moving network positions and regions, respectively.
Representative entities on a highway network would be gas stations, construction areas,
vehicles, or traffic jams, for example. Some advantages over a model with free movement

Figure 3: Sliced representation of a moving(real) and a moving(points) value

1. It is a bit more complicated in case of variable size units as for a moving region, for example.

t

v

x

y

t

are that descriptions of moving objects become much more compact (as they do not
contain geometries any more), that relationships between moving objects and the
underlying network can be easily used in queries, and that connectivity of the network is
considered, e.g. for network distance or shortest path computations.

Spatio-Temporal Predicates and Developments
Erwig and Schneider [3, 4] extend the spatio-temporal data type approach by considering
developments of topological relationships over time. They develop a language to describe
such developments in predicates that can then be used for filter and join conditions on
moving objects. For example, consider an air plane traversing a storm area. The
topological relationship between the moving point and the moving region will be disjoint
for a period of time, then meet for an instant, then inside for a time interval, then meet
again and finally disjoint again. The framework first allows one to obtain basic spatio-
temporal predicates by aggregating a static topological relationship over all instants of a
time interval. This is essentially done by lifting (as explained above) and existential or
universal quantification. Existing predicates can then be sequentially composed to derive
new predicates. For example, one may define a predicate Cross to describe a development
like the passing of the air plane through the storm as:

Cross := Disjoint meet Inside meet Disjoint

Uncertain Trajectories
A moving point (Figure 1) in the 2D + time space is in the literature often called a
trajectory. If we represent it discretely as a polyline and take an uncertainty threshold into
account, geometrically we obtain the shape of a kind of slanted cylinder (Figure 4). It is

only known that the real position is somewhere inside this volume. Based on this model,
Trajcevski et al. [14] have defined a set of predicates between a trajectory and a region in
space taking uncertainty and aggregation over time into account, namely

Figure 4: Geometry of an uncertain trajectory

PossiblySometimeInside
SometimePossiblyInside

PossiblyAlwaysInside
AlwaysPossiblyInside

> > > >

x

y

t

They also give algorithms for evaluating such predicates.

A text book covering the topics presented in this article in more detail is [10].

KEY APPLICATIONS
Query languages of the first kind, that is, for querying current and near future movement
like the MOST model described, are the foundation for location-based services. Service
providers can keep track of the positions of mobile users and notify them of upcoming
service offers even some time ahead. For example, gas stations, hotels, shopping centres,
sightseeing spots, or hospitals in case of an emergency might be interesting services for
car travelers.

Several applications need to keep track of the current positions of a large collection of
moving objects, for example, logistics companies, parcel delivery services, taxi fleet
management, public transport systems, air traffic control. Marine mammals or other
animals are traced in biological applications. Obviously, the military is also interested in
keeping track of fighting units in battlefield management.

Query languages of the second kind - for querying history of movement - are needed for
more complex analyses of recorded movements. For example, in air traffic control one
may go back in time to any particular instant or period to analyse dangerous situations or
even accidents. Logistics companies may analyze the paths taken by their delivery
vehicles to determine whether optimizations are possible. Public transport systems in a
city may be analyzed to understand reachability of any place in the city at different periods
of the day. Movements of animals may be analyzed in biological studies. Historical
modeling may represent movements of people or tribes and actually animate and query
such movements over the centuries.

Query languages of the second kind not only support moving point entities but also
moving regions. Hence also developments of areas on the surface of the earth may be
modeled and analyzed like the deforestation of the Amazone rain forest, the Ozone hole,
development of forest fires or oil spills over time, and so forth.

FUTURE DIRECTIONS
Recent research in databases has often addressed specific query types like continuous
range queries or nearest neighbour queries, and then focused on designing efficient
algorithms for them. An integration of the many specific query types into complete
language designs as presented in this entry is still lacking. Uncertainty may be treated
more completely also in the approaches for querying history of movement. A seemless
query language for querying past, present, and near future would also be desirable.

DefinitelySometimeInside
SometimeDefinitelyInside

DefinitelyAlwaysInside
AlwaysDefinitelyInside

CROSS REFERENCES
1. Spatio-Temporal Data Types
2. Trajectory

RECOMMENDED READING

[1] Almeida, V.T., Güting, R.H. and Behr, T. (2006). Querying Moving Objects in SECONDO. Proc.
Mobile Data Management Conf., 47-51.

[2] Cotelo Lema, J.A., Forlizzi, L., Güting, R.H., Nardelli, E., and Schneider, M. (2003). Algorithms
for Moving Object Databases. The Computer Journal, 46(6), 680-712.

[3] Erwig, M., and Schneider, M. (1999). Developments in Spatio-Temporal Query Languages. IEEE
Int. Workshop on Spatio-Temporal Data Models and Languages (STDML), 441-449.

[4] Erwig, M., and Schneider, M. (2002). Spatio-Temporal Predicates. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 14(4), 881-901.

[5] Erwig, M., Güting, R.H., Schneider, M., and Vazirgiannis, M. (1999). Spatio-Temporal Data Types:
An Approach to Modeling and Querying Moving Objects in Databases. GeoInformatica 3, 265-
291.

[6] Forlizzi, L., Güting, R.H., Nardelli, E., and Schneider, M. (2000). A Data Model and Data Struc-
tures for Moving Objects Databases. Proc. ACM SIGMOD Conf. (Dallas, Texas, USA), 319-330.

[7] Grumbach, S., Rigaux, P., and Segoufin, L. (1998). The DEDALE System for Complex Spatial
Queries. Proc. ACM SIGMOD Conf. (Seattle, Washington), 213-224.

[8] Güting, R.H., Almeida, V.T. de, and Ding, Z. (2006). Modeling and Querying Moving Objects in
Networks. VLDB Journal, 15(2), 165-190.

[9] Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., and
Vazirgiannis, M. (2000). A Foundation for Representing and Querying Moving Objects in Data-
bases. ACM Transactions on Database Systems 25, 1-42.

[10] Güting, R.H. and Schneider, M. (2005). Moving Objects Databases. Morgan Kaufmann Publishers.

[11] Rigaux, P., M. Scholl, L. Segoufin, and S. Grumbach (2003). Building a Constraint-Based Spatial
Database System: Model, Languages, and Implementation. Information Systems, 28(6), 563-595.

[12] SECONDO System. Available for download at http://www.informatik.fernuni-hagen.de/import/pi4/
Secondo.html/

[13] Sistla, A.P., Wolfson, O., Chamberlain, S., and Dao, S. (1997). Modeling and Querying Moving
Objects. Proc. 13th Int. Conf. on Data Engineering (ICDE, Birmingham, U.K.), 422-432.

[14] Trajcevski, G., Wolfson, O., Hinrichs K., and Chamberlain, S. (2004). Managing Uncertainty in
Moving Objects Databases. ACM Transactions on Database Systems (TODS), 29(3), 463-507.

[15] Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., and Mendez, G. (1998). Cost and Imprecision in
Modeling the Position of Moving Objects. Proc. 14th Int. Conf. on Data Engineering (ICDE,
Orlando, Florida), 588-596.

[16] Wolfson, O., Sistla, A.P., Chamberlain, S., and Yesha, Y. (1999). Updating and Querying Databases
that Track Mobile Units. Distributed and Parallel Databases 7, 257-387.

[17] Wolfson, O., Xu, B., Chamberlain, S., and Jiang, L. (1998). Moving Objects Databases: Issues and
Solutions. Proc. 10th Int. Conf. on Scientific and Statistical Database Management (SSDBM,
Capri, Italy), 111-122.

	taxi-cabs(id: int, pos: point)
	cars(license_plate: string, pos: (x: dynamic real, y: dynamic real))
	RETRIEVE t
	FROM trucks t, trucks s
	RETRIEVE h
	FROM helicopters h
	WHERE eventually_within_15 (inside(h, Valley) Ÿ
	always_for_10 (inside(h, Valley))
	RETRIEVE <target-list> FROM <object classes> WHERE <FTL-formula>
	Figure 1 : A moving point and a moving region

	cars (license_plate: string, trip: moving(point))
	weather (id: string, area: moving(region))
	SELECT trajectory(trip) AS route
	FROM cars WHERE license_plate = “DO-GL 871”
	SELECT traversed(area) AS fogarea
	FROM weather WHERE id = “F276”
	SELECT count(*)
	FROM cars AS c, weather AS w
	WHERE duration(deftime(intersection(c.trip, w.area))) > 1800
	SELECT val(atinstant(area, theinstant(2007, 1, 8, 17)))
	Figure 2 : Structure of the type system
	Figure 3 : Sliced representation of a moving(real) and a moving(points) value
	Figure 4 : Geometry of an uncertain trajectory

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

