
 
 

Managing Moving Objects on Dynamic Transportation Networks 
 

Zhiming Ding         Ralf Hartmut Güting 
Praktische Informatik IV, Fernuniversität Hagen, D-58084 Hagen, Germany 

{zhiming.ding, rhg}@fernuni-hagen.de 
 
 

Abstract 
 

One of the key research issues with moving objects 
databases (MOD) is the modeling of moving objects. In 
this paper, a new moving objects database model, Moving 
Objects on Dynamic Transportation Networks (MODTN), 
is proposed. In MODTN, moving objects are modeled as 
moving graph points which move only within predefined 
transportation networks. To express general events of the 
system, such as traffic jams, temporary constructions, 
insertion and deletion of junctions or routes, the 
underlying transportation networks are modeled as 
dynamic graphs so that the state and the topology of the 
graph system at any time instant can be tracked and 
queried. Besides, to track the location of network 
constrained moving objects, a location update mechanism 
is provided, and the corresponding uncertainty 
management issues are analyzed. 
 
1.  Introduction 
 

With the development of wireless communications and 
positioning technologies, the concept of moving objects 
databases (MOD) has become increasingly important, and 
has posed a great challenge to the database community. 
Existing database management systems (DBMS’s) are not 
well equipped to handle continuously changing data, such 
as the locations of moving objects [19]. Therefore, new 
modeling methods are needed to solve this problem. 

In recent years, a lot of research has been focused on 
the MOD technology, and many models and algorithms 
have been proposed. In [18, 19, 13], Wolfson et al. have 
proposed a Moving Objects Spatio-Temporal (MOST) 
model which is capable of tracking not only the current, 
but also the near future positions of moving objects. Su et 
al. in [15] have presented a data model for moving objects 
based on linear constraint databases. Chon et al. in [1] 
have proposed a Space-Time Grid Storage model for 
moving objects. In [7, 3, 8], Güting et al. have presented a 
data model and data structures for moving objects based 
on abstract data types. Besides, Pfoser and Jensen et al. in 
[10, 12] have discussed the indexing problem for moving 
object trajectories. However, nearly none of these works 

have treated the interaction between moving objects and 
the underlying transportation networks in any way.  

More recently, increasing research interests are focused 
on modeling transportation networks and network 
constrained moving objects. Vazirgiannis et al. in [17] 
have discussed moving objects on fixed road networks, 
Papadias et al. in [9] have presented a framework to 
support spatial network databases. In [14], the authors 
have presented a computational data model for network 
constrained moving objects. Besides, the index problems 
of network constrained moving objects have also been 
studied [4, 11]. However, all these works have only 
considered static transportation networks, and moreover, 
none of these works have dealt with the relationship 
between the discrete presentation of moving objects and 
the location update policies. The uncertainty management 
issues for network constrained moving objects are not 
discussed either. 

To explore these research issues, we propose a new 
moving objects database model, Moving Objects on 
Dynamic Transportation Networks (MODTN), in this 
paper. MODTN is an extension to our work presented in 
[6], which deals with the modeling of moving objects in 
static transportation networks at the abstract level.  

The remaining part of this paper is organized as 
follows. Section 2 formally defines the MODTN model, 
Section 3 discusses the location update mechanism of 
MODTN, Section 4 analyzes location computation 
methods and uncertainty management issues, and Section 
5 finally concludes the paper. 

 

2.  The MODTN Model 
 

The modeling of moving objects on dynamic 
transportation networks is composed of two relatively 
independent steps. The first step is the modeling of the 
underlying transportation networks. Since the 
transportation networks can be subject to discrete changes 
over time, they should be modeled as “dynamic” graphs 
which allow us to express state changes (such as traffic 
jams and blockages caused by temporary constructions) 
and topology changes (such as insertion and deletion of 
junctions or routes). For simplicity, “dynamic 



transportation networks” and “dynamic graphs” will be 
used interchangeably throughout this paper. 

In modeling dynamic graphs, we utilize a state-based 
method. The basic idea is to associate a temporal attribute 
to every route or junction of the graph system so that the 
state of the route or junction at any time instant can be 
retrieved. Since the changes to the graph system are 
discrete, we can use a series of temporal units to represent 
a temporal attribute with each temporal unit describing 
one single state of the route or junction during a certain 
time period. As a result, the whole spatio-temporal history 
of the graph system can be stored and queried.  

The second step is the modeling of moving objects on 
the graph system which has been handled in the first step. 
Since in most cases a moving object can be viewed as a 
point, moving objects are modeled as moving graph points 
in MODTN. A moving graph point is a function from time 
to graph point, which can be represented as a group of 
moving units in the discrete model. The methodology 
proposed in this paper can be easily extended to deal with 
more complicated situations where moving objects need 
to be modeled as moving graph lines or moving graph 
regions. 
 
2.1. Overview of the System Architecture 
 

In the following discussion, we suppose that in the 
whole MOD system, there can be multiple graphs 
coexisting while each graph is composed of a set of routes 
and a set of junctions. For each route, its geometry is 
described by a polyline so that it can actually assume an 
arbitrary shape instead of just a straight line. A junction 
connects two or more routes of the graph system. The 
connected routes can come from one graph (in this case, 
the junction is called “in-graph junction”), or belong to 
different graphs (in this case, the junction is called “inter-
graph junction”). A junction can locate in the middle of a 
route, or at the beginning/end of the route. Figure 1 
illustrates a graph system which is composed of two 
graphs.  

Figure 1. Graph system consisting of two graphs 

Moving objects can move inside one graph and 
transfer from one route to another via in-graph junctions. 

They can also transfer from one graph to another via inter-
graph junctions. In the system, both moving objects and 
the underlying transportation networks are dynamic – 
moving objects change their locations continuously, while 
transportation networks change their states and topologies 
discretely.  

In order to envisage the above ideas, we give an 
example. This example shows how a modern logistic 
system works. We suppose that in such a system, 
transportation vehicles are uniquely identified and each of 
them is equipped with a portable computing platform and 
some other integrated location tracking equipments so that 
its location at any time instant can be retrieved.  

We assume that such a logistic system, which is 
responsible for cargo delivery services, exists in the 
Verkehrsverbund Rhein-Ruhr (VRR) area of Germany. 
The whole highway network of the VRR area is expressed 
as a graph in the database. Besides, the street network of 
each city in this area is also stored as an independent 
graph. As a result, the whole system is composed of 
multiple graphs which can overlap each other, as shown in 
Figure 2. 

Figure 2. Architecture of the MODTN system 

For a certain vehicle, it can move either by highway 
between two cities, or by street inside a city, during its 
whole journey. Therefore, it can pass through several 
different graphs during one trip. Since both historical and 
current location information is kept in the database, the 
system can support the following queries: “tell me the 
location of vehicle x310 at 2:00 PM of last Friday” and 
“find all vehicles that are currently in the Hagener street”.   

Besides, since the general events (such as traffic jams, 
car accidents, insertion and deletion of routes or 
junctions) of the graph system are stored in dynamic 
graphs, the following queries: “tell me the topology of the 
Hagen street network at time t” and “find the current 
traffic jam in the Hagener street and the moving objects 
affected by it” can also be handled.  

To speed up query processing, both moving objects and 
dynamic graphs should be indexed. The database records 
and the index structures contain location information 
covering a time period from the past until the future. 
Therefore, when location updates occur, both database 
records and the index need to be modified. 

 

HighwayNet 

loc. updates 

loc. updates 

db. updates 

db. updates 

Moving Object 

Moving Object 

Traffic Jam 

CityStreetNet-1 

CityStreetNet-2 

*
2j
 

*
1j

 
Routes of Street-Net 
 
Routes of Train-Net 
 
In-Graph Junctions 
 
Inter-Graph Junctions 

r 

j 

j* 

j1 j2 

j3 

j4 

j5 

r1 

r2 
r2 

r1 

r3 

r3 
r4 

r4 

r5 

Graph1:Street-Net Graph2:Train-Net 



2.2. The Data Model 
 
Let’s first deal with the transportation networks. In the 

MODTN model, the whole transportation networks are 
modeled as a dynamic graph system.  

Definition 1 (dynamic graph system) A dynamic 
graph system, GS, is defined as a set of dynamic graphs 
and inter-graph junctions: 

GS = {G1, G2, …, Gn,  j
*
1 , j *

2 , …, j *
m } 

where n m 1, m m 0, Gi (1 [ i [ n) is a dynamic graph, and 

j *
k  (1 [ k [ m) is an inter-graph junction (see Definition 

5). 
Definition 2 (dynamic graph) A dynamic graph, G, is 

defined as a pair: 

G = ( R, J ) 

where R is a set of dynamic routes and J is a set of 
dynamic in-graph junctions. 

Definition 3 (dynamic route) A dynamic route of 
graph G, denote by r, is defined as follows: 

r = (gid, rid, route, len, fdr, tp) 

where gid and rid are identifiers of G and r respectively, 
route is a polyline which describes the geometry of r, len 
is the length of the route, fdr c {0, 1, 2} is the traffic flow 
directions allowed in the route, and tp is the temporal 
attribute (see Definition 6) associated with r.  

The polyline route in the above definition can be 
defined as a series of points in the Euclidean space. For 
simplicity, we suppose that the graph system is spatially 
embedded in the X%Y plane so that the polyline can be 
presented as a series of points in the X%Y plane. The 
polyline is considered directed, whose direction is from 
the first vertex to the last vertex, which enables us to 
speak of the beginning point (or 0-end) and the end point 
(or 1-end) of the route. 

The traffic flow directions allowed in a route can have 
three possibilities, which are specified by fdr, whose value 
can assume 0, 1, 2, which corresponds to “from 0-end to 
1-end”, “from 1-end to 0-end”, and “both directions 
allowed” respectively. 

Definition 4 (dynamic in-graph junction) A dynamic 
in-graph junction of graph G, denoted by j, is defined as 
follows: 

j = (gid, jid, loc, ((ridi, posi))
n
i 1= , m, tp) 

where gid and jid are identifiers of G and j respectively, 
loc is the location of j which can be presented as a point 

value in the X%Y plane, ((ridi, posi))
n
i 1=  describes the 

routes connected by j, m is the connectivity matrix of j, 
and tp is the temporal attribute associated with j.  

(ridi, posi) (1 [ i [ n ) in the above definition indicates 
the ith route connected by j, where ridi is the identifier of 

the route and posi c [0, 1] describes the position of the 
junction inside the route. We suppose that the total length 
of any route is 1, and then every location in the route can 
be presented by a real number p c [0, 1].  

The matrix m describes the connectivity of the 
junction. It contains possible matches of traffic flows in 
the routes connected by the junction, and the element 
value associated with each match can assume either 0 or 1, 
which indicates whether moving objects can transfer from 
the “in” traffic flow to the “out” traffic flow through this 
junction, as shown in Figure 3. 

Figure 3. A junction and its connectivity matrix 

As illustrated in Figure 3, route r1 allows moving 
objects running in both directions so that it can have two 
traffic flows, r1+ and r1-. Route r2 is a one-way street so 
that it has only one traffic flow, r2-. These three traffic 
flows can have 9 combinations, and the value 
corresponding to each combination describes the 
transferability of the two traffic flows.  

Definition 5 (dynamic inter-graph junction) A 
dynamic inter-graph junction, denoted by j*, is defined as 
follows: 

j* = (jid, loc, tp, ((gidi, ridi, posi))
n
i 1= , m, tp)   

The definition of the inter-graph junction is very 
similar to that of the in-graph junction. The 3-tuple (gidi, 
ridi, posi) (1 [ i [ n ) describes the routes connected by j*, 
which can come from different graphs. 

Definition 6 (temporal attribute) The temporal 
attribute associated with a junction or a route, denoted by 
tp, describes the state history of the junction or route, 
which is defined as a sequence of the following form: 

tp =((Ii, si))
n
i 1=  

where Ii is a time interval, si is the state (see Definition 7) 
of the junction or route during Ii. (Ii, si) (1 [ i [ n) is 
called the ith temporal unit of tp. For a valid temporal 
attribute, the following conditions should be satisfied: 

(1) ≤i, j c {1, … n}, i g j: Ii 3 Ij = — 
(2) ≤i c {1, … n-1}: Ii , Ii+1  (, means “before” in 

time series)  
(3) 

1

1

  = [ min( ), max( )]
n

i n

i

I I I
=
∪

. 

For a certain temporal unit (Ii, si) (1 [ i [ n), Ii is 
composed of two time instant values, min(Ii) and max(Ii), 

r2 

r1 

a) a junction and the traffic flows in it           b) the connectivity matrix 

(in)        r1+    r1-    r2-  

r1+  

r1-   

r2- 

1       0       1 

0       1       0 

0       1       1 0-end 1-end 

0-end 

1-end r2- 

r1+ 
r1- 

(out) 



which indicate the starting point and the endpoint of Ii 
respectively. min(Ii) must be a defined value while max(Ii) 
can be either defined or undefined. If max(Ii) is an 
“undefined” value Ω, then Ii is called an open temporal 
unit. Otherwise it is called a closed temporal unit. 
Semantically, Ω means “until now”. Therefore, if a 
junction or route is still active in the transportation 
network, its temporal attribute will contain exactly one 
open temporal unit, which forms its last temporal unit. 
Otherwise, if it has already been deleted from the 
transportation network, then its temporal attribute will 
only contain closed temporal units.  

The insertion and deletion time of a junction or a route 
can be decided by min(I1) and max(In) respectively. 
Figure 4 illustrates an example temporal attribute value. 

Figure 4. An example temporal attribute value 

Definition 7 (state) A state of a junction or a route, 
denoted by s, is defined as follows:  

s = (σ, (bri, BPi)
n
i 1= ) 

where σ c {opened, closed, blocked}. If σ = blocked, then 

s must be associated with a route, and (bri, BPi)
n
i 1= is 

needed in this situation to describes the blockages of the 
route where bri describes the reason (traffic-jam, 
construction, traffic-control, etc.), and BPi ` [0, 1] 
describes the location, of the ith blockage of the route.  

In the above definition, we assume that the location of 
the blockage is static so that it can be expressed as a 
closed interval over [0, 1], whose boundaries indicate the 
location of the borders of the blockage.  

In dynamic transportation networks, a junction can 
have two states: opened and closed, and a route can have 
three states: opened, closed, and blocked. If a junction or 
a route is opened, then it is entirely available to moving 
objects. If a junction or a route is closed, then it is entirely 
unavailable to moving objects, which means that no 
moving objects are allowed to stay or move on any part of 
it. A closed junction or route is not deleted from the 
system. Instead, it is only temporarily unavailable to 
moving objects and can be reopened afterwards. 

The blocked state is used to describe a special kind of 
state of a route, which means “partially available” to 
moving objects. That is, the unblocked part of the route is 
still available to moving objects, but no moving objects 
can move through the blocked part. Figure 5 gives an 
example blocked route. 

Figure 5. A blocked route with moving objects 

In the dynamic graph system, since every junction or 
route has a temporal attribute associated, we can know its 
state at any given time instant. This is very useful in 
moving objects databases since a lot of queries can only 
be processed efficiently by accessing the states of the 
transportation networks. For instance, “please tell me all 
the routes which are currently blocked by traffic jams and 
the moving objects affected by them”. Besides, through 
the temporal attribute, we can also know the life span of 
any junction or route of the graph system so that the 
topology changes of the transportation networks can also 
be expressed and queried. For instance, “find the shortest 
path from a to b at time instant t”. 

Based on the above definitions for dynamic 
transportation networks, we can then define some useful 
data types, graph point, graph route section, graph line, 
and graph region, which form the basis for the modeling 
and querying of moving objects. Let graph(gid), 
junct(jid), junct(gid, jid), route(gid, rid)  be functions 
which return the graph, the junction, and the route 
corresponding to the specified identifiers respectively. 

Definition 8 (graph point) A graph point is a point 
residing in the graph system. The set of graph points of 
graph system GS, denoted by GP, is defined as follows: 

GP ={jid* | junct(jid*) c interjuncts(GS) } 4   
{(gid, jid) | junct(gid, jid) c injuncts(GS) } 4  
{(gid,rid,pos) | route(gid,rid) c routes(GS), posc[0,1]}  

where interjuncts(GS), injuncts(GS) and routes(GS) are 
the set of inter-graph junctions, the set of in-graph 
junctions, and the set of routes of GS respectively. 

Definition 9 (graph route section) A graph route 
section is a part of a route. The set of graph route sections 
of graph system GS, denoted by GRS, can be defined as 
follows: 
GRS={(gid,rid,S) | route(gid, rid) c routes(GS), S ` [0,1]}  

Definition 10 (graph line) A graph line is a polyline 
inside the graph system, which can be defined by just 
specifying the vertices of the polyline. The set of graph 
lines of graph system GS, denoted by GL, can be defined 
as the following form: 

GL = { (vertexi) 1
n
i=  | n m 2, vertexi = (gidi, ridi, posi) c GP, 

and: 
(1) ∀ i c {1, … n-1}:  

route(gidi, ridi) = route(gidi+1, ridi+1) - 
Eucl(vertexi) = Eucl(vertexi+1) = Eucl (getjunct 
(vertexi, vertexi+1)); 

(2) ∀ i∈ {1, … n-1} : viable(vertexi, vertexi+1) } 

Blockage 

t 

 [t1, t2), (opened, —) 

 [t2, t3), (blocked, {(traffic-jam, [0.2,0.3])}) 

 [t3, t4),  (closed, —) 

 [t4 , Ω), (opened, —) 

opened blocked closed opened 

t1                      t2           t3              t4             tnow 

a) state changes of  a route                b) the corresponding temporal units 



In the above definition, the function Eucl(gp) returns 
the Euclidean value of a graph point, getjunct(vertexi, 
vertexi+1) returns the junction in which vertexi, vertexi+1 
are located. viable(vertexi, vertexi+1) means that through 
route(gidi, ridi) or getjunct(vertexi, vertexi+1), moving 
objects can transfer from vertexi to vertexi+1.  

Graph lines are considered as directed paths in the 
transportation network, whose directions are determined 
by the vertex series. 

Definition 11 (graph region) A graph region is 
defined as a set of junctions and a set of route sections. 
The set of graph regions of the graph system GS, denoted 
by GR, is defined as follows: 

GR = {(V, W) | V  `  GJ, W ` GRS } 

where GJ = {jid* | junct(jid*) c interjuncts(GS) } 4 {(gid, 
jid) | junct(gid, jid) c injuncts(GS) }. Different from the 
graph line, a graph region can contain an arbitrary set of 
graph route sections.  

Based on the above definitions of network constrained 
data types, we can then model moving objects on the 
dynamic graph system. In MODTN, moving objects are 
modeled as moving graph points.  

Definition 12 (moving graph point) A moving graph 
point, mgp, is defined as a function from time to graph 
point, that is: 

mgp = f: T → GP 

where T is the domain of time, and GP is the domain of 
graph point of the graph system. 

In the above definitions, most data types are defined 
discretely so that they can be implemented directly. The 
only exception is the moving graph point data type. In 
implementation, Definition 12 should be translated into a 
discrete representation. That is, a moving graph point is 
expressed as a set of moving units, and each moving unit 
describes one single moving pattern of the moving object 
for a certain period of time. 

Definition 13 (discrete presentation of moving 
graph point) a discrete presentation of moving graph 
point, dmgp, is defined as a sequence: 

dmgp = ((ti, (gidi, ridi, posi), vmi)) 1
n
i=   

where ti is a time instant, (gidi, ridi, posi) = gpi is a graph 
point describing the location of the moving object at time 
ti, and vmi is the speed measure of the moving object at 
time ti. (ti, (gidi, ridi, posi), vmi) = µi is called the ith 
moving unit of dmgp. 

The speed measure vm is a real number value. Its 
abstract value is equal to the speed of the moving object, 
while its sign (either positive or negative) depends on the 
direction of the moving object. If the moving object is 
moving from 0-end towards 1-end, then the sign is 
positive. Otherwise, if it is moving from 1-end to 0-end, 
the sign is negative.  

For a valid discrete presentation of moving graph point, 
the following conditions should be met: 

(1) ≤i c {1, … n-1} :  
 route(gidi, ridi) = route(gidi+1, ridi+1) -  
 Eucl(gpi) = Eucl(gpi+1) = Eucl(getjunct (gpi,gpi+1)); 
(2) ≤i c {1, … n-1} : viable(gpi, gpi+1); 
(3) ≤i c {1, … n-1} : ti < ti+1, and the moving object is 

assumed to move at even speed between ti and ti+1.  
Figure 6 gives an example discrete representation of a 

moving graph point. 

Figure 6. An example moving graph point value 

In Definition 13, we assume that between two 
consecutive moving units, moving objects move at even 
speed. As a result, the location of moving objects can be 
computed by interpolation (see Subsection 4.1). However, 
this is only an ideal situation. In real world MOD 
applications, the moving units are generated by location 
updates (see Section 3), and the moving object is only 
moving roughly at even speed between two moving units. 
As a result, the location of moving objects is uncertain 
between two location updates, and we have to take the 
uncertainty problem into consideration. When uncertain 
management is considered, the above definition of moving 
point is actually interpreted as a “moving route section”. 
In this paper, we still call this definition “moving graph 
point” to keep consistency.  

For a running moving object, its last moving unit 
contains predicted information. We call the last moving 
unit “active moving unit”, which contains key information 
for location update strategies (see Section 3).  
 
3.  Location Update Strategies of MODTN 
 
The above data model enables us to present the 
information of moving objects and the underlying 
transportation networks in databases. However, this is still 
not enough because for a running MOD system, it is 
impossible to get all the real-time information from the 
system manually so that a mechanism should be provided 
to collect the data automatically.  

For the transportation networks, since the topology and 
state changes are discrete and relatively less frequent, the 
database records can be maintained manually by issuing 
update commands. It is also possible that some of the state 
changes (such as traffic jams) can be reported to the 
database automatically. For instance, some techniques in 

 a) journey of a moving object            b) corresponding moving unites 

r1 

tnow 

r4 

r5 

r2 

r3 

r6 
r3 

r6 

t2 

t3 

t1 

   t3, (g1, r1, 1), — 

   t4, (g1, r6, 0 ), v3 

   t5, (g1, r6, 0.7 ), v4 

   t1, (g1, r1, 0  ), v1 

   t2, (g1, r1, 0.5), v2 

r8 

t4 

t5 

active moving unit 



transportation engineering enable the system to detect car 
accidents and their locations automatically by examining 
the change of traffic flows so that the database can be 
updated real-time to reflect up-to-date situations.  

However, it is nearly impossible to track the real-time 
location of moving objects in a running MOD system by 
manually issuing database commands. Therefore, we need 
a location update mechanism to track moving objects 
automatically.  

In [18, 19] Wolfson et al. have discussed the location 
update policies for the MOST model. The basic idea can 
be summarized as “predict and compare”. That is, the 
system makes a prediction according to the current 
moving pattern of the moving object. During its move, the 
moving object compares its actual position measured by 
GPS with the computed position. Whenever the difference 
between them reaches a certain threshold, a location 
update is triggered to modify the database information. 
This idea provides a general principle for location update 
policies in MOD system. In MODTN model, however, 
this basic principle can be optimized since the moving 
objects are not modeled in the Euclidean space directly, 
but modeled in predefined transportation networks.  

 
3.1. Basic Ideas of Location Update in MODTN 

 
In MODTN, we suppose that every moving object is 

equipped with a portable computing platform which is 
connected with some other integrated devices such as the 
sensor communicator, the wireless interface, and the 
milemeter which measures the distance covered by the 
moving object in a certain route. In every junction of the 
transportation networks, there are a group of sensors 
installed so that whenever a moving object transfers from 
one route to another via the junction, it gets a notification 
which will trigger a location update. The sensors are 
associated with some information exchanging equipments 
which will send the route identifier, the location of the 
junction inside the route, and the sign for speed measures 
to the moving object when it enters into a new route. (As 
an alternative to the sensors and milemeters, GPS can also 
be used to fulfill the location update purpose. With a local 
algorithm, the moving object can transform the location 
information from the GPS (with the (x, y) format) to the 
(rid, pos) form, where rid is the identifier of the route 
where the moving object is located, and pos c [0, 1] is the 
location of the moving object inside the route. In this 
paper, we focus on the sensor alternative. The same 
location update strategies are suited for the GPS case). 

The basic idea behind the location update policy of 
MODTN is the “Inertia Principle”. That is, the system 
assumes that the moving object will continue to move 
along the current route at roughly steady speed for some 
more time, and whenever this assumption becomes 
invalid, the moving object will initiate a location update 

so that the up-to-date information of the moving object 
can be reported to the database server. 

When a moving object mo initiates its journey in the 
MOD system from a junction, it needs to send a location 
update message msgu to the server, which contains the 
following information: 

msgu = (mid, tu, (gidu, ridu, posu), vmu) 

where mid is the identifier of mo, tu is the time when the 
location update is triggered, (gidu, ridu, posu) = gpu is the 
location (expressed as a graph point) of mo at time tu, and 
vmu is the speed measure of mo at time tu. The sign of vmu 
can be determined from the information received from the 
sensor when the moving object enters into a new route via 
a junction.  

When receiving this first location update message, the 
server will extract the information contained in it and 
generate a corresponding moving unit. This moving unit 
will be saved to the moving graph point value of the 
moving object (at this moment, the moving unit is also the 
active moving unit). The moving object also needs to keep 
the active moving unit for location update purposes.  

During its move, the moving object will compare its 
actual moving parameters (current route identifier, 
location, and speed) with the moving pattern contained in 
the active moving unit. Whenever certain conditions are 
met, a location update will be triggered so that the 
location of the moving object can be tracked. In MODTN, 
there are 3 kinds of location updates, the ID-Triggered 
Locations Update (ITLU), the Distance-Threshold-
Triggered Location Update (DTTLU), and the Speed-
Threshold-Triggered Location Update (STTLU). Among 
them, only ITLU and DTTLU are basic ones while 
STTLU is optional and is needed only when uncertainty 
management is involved (see Subsection 4.2). 

When receiving a location update message, the server 
will extract the information contained in the message and 
generate a corresponding moving unit. This new unit is 
then appended to the corresponding moving graph point 
value of the moving object.  
 
3.2. ID-Triggered Location Update (ITLU) 
 

As stated earlier, in MODTN, every junction is 
equipped with a group of sensors so that whenever a 
moving object transfers from one route to another, a 
location update will be triggered to reflect the change of 
route identifiers, as shown in Figure 7 (we draw the 
sensors according to their functionalities. In real-world 
applications some of them can be combined). 

In Figure 7(a), moving objects m1 and m2 will trigger 
an ITLU respectively, while m3 will not, since it doesn’t 
change to another route even though it passes through a 
junction.  



Figure 7. ID-triggered location update 

For m1, suppose that it passes by sensor s1 at time t5, 
and passes by sensor s6 at time t6. The location update 
will be triggered at time t6, and two location update 
messages will be sent to the server via one communication 
package through the wireless interface. The server can 
then extract two moving units and save them to the 
corresponding moving graph point value of m1, as shown 
in Figure 7(b).  

At time t6, except the location update, some other 
computations and adjustments are also need for moving 
object m1. For instance, the information exchanging 
equipment associated with sensor s6 will send the 
identifier of the new route, the location of the junction 
inside the new route, and the sign of speed measures to 
m1. Besides, the milemeter of m1 is refreshed according 
to the newly received information. 
 
3.3. Distance-Threshold-Triggered Location 

Update (DTTLU) 
 

During its move along a certain route, mo will 
compare its actual position measured by the milemeter 
with the computed position derived from the active 
moving unit. The computed position at the current time 
instant tnow, denoted by posnow, can be computed with the 
following formula: 

posnow  = posn  +  vm n × (tnow – tn)  

where posn and tn are the position and the time 
corresponding to the last location update respectively. If 
the difference between the actual position and posnow, 
denoted by ε, exceeds a certain predefined threshold ξ (for 
instance, 0.5 kilometer) then a new location update is 
triggered to report the actual location of the moving 
object, as shown in Figure 8.  

Figure 8. Dist.-threshold-triggered loc. update 

During this process, some transformation is needed 
since the speed and the milemeter are using real 

measuring unites (such as kilometer) while the graph 
positions are expressed with a real number value p c [0, 
1]. However, this transformation is trivial since the length 
of every route is available from the database. 

When evaluating the computed position, a special case 
should be considered when the moving object is near the 
end of the route and the actual speed is lower than the 
predicted one. In this case, the computed position can 
exceed the scope of [0, 1] and we can interpret these extra 
values as the distance covered by the moving object in 
other routes after the current route is finished, so that the 
location update policy does not need to be changed. 

When receiving a distance threshold triggered location 
update message, the server will extract one moving unit 
from it and will append the unit to the corresponding 
moving graph point value of the moving object, as 
illustrated in Figure 8(b).  
 
3.4. Speed-Threshold-Triggered Location 

Update (STTLU) 
 

If we compute the locations of moving objects through 
interpolation (see Subsection 4.1), ITLU and DTTLU are 
enough to track the locations of moving objects. However, 
for the sake of uncertainty management (see Subsection 
4.2), especially to reduce uncertainty as more as possible, 
we need another kind of location update, Speed-
Threshold-Triggered Location Update (STTLU). 

As stated earlier, the active moving unit of the moving 
object, µn, contains the current moving pattern of the 
moving object, and the moving object is expected to move 
roughly at the speed indicated in µn. During its move, the 
moving object will compare its actual speed with the 
speed contained in µn. Whenever the difference between 
them exceeds a certain predefined threshold ψ (for 
instance, 10 kilometer/hour), then a location update is 
triggered. In this way, we can be assured that between any 
two consecutive location updates (suppose the 
corresponding moving units are µi = (ti, (gidi, ridi, posi), 
vmi) and µi+1 = (ti+1, (gidi+1, ridi+1, posi+1), vmi+1), the 
speed of the moving object is between (|vmi| - ψ) and (|vmi| 
+ ψ) ( |vmi| is the abstract value of vmi ). 

When receiving a speed-threshold-triggered location 
update message, the server will extract one moving unit 
from it and append the new moving unit to the 
corresponding moving graph point value of the moving 
object. 

 

4.  Querying the Location of Moving Objects 
 

In this section, we discuss how the location of a 
moving object can be computed from its moving units. 
We suppose that the corresponding moving graph point 
value of an active moving object, mo, is as follows:  

  t1, (g1, ra, 1), v1 

m1 

m2 

m3

  t4, (g2, r2, 0), v4 

  t5, (g2, r2, 0.35), — 

  t6, (g2, r1, 0.7), v5 

: 
: 

r1 

r1 

a) ID-triggered location update                 b) corresponding moving unites of m1 

s7 s6 

s3 

s8 

s1 

active moving unit 

2 new moving units 
from ITLU 

s5 

s4 
s2 

r2 r2 

  t1, (g1, ra, 1), v1 

a) distance-threshold-triggered loc. update      b) corresponding moving unites 

ε 

last loc. update 

computed loc. actual loc. 

  t5, (g2, r2, 0.35), — 

  t6, (g2, r1, 0.7), v5 

  t7, (g2, r1, 0.3), v6 

: 

: 

active moving unit 

1 new moving  
unit from DTTLU 



mgpoint = ((ti, (gidi, ridi, posi), vmi)) 1
n
i=  

Let µi = (ti, (gidi, ridi, posi), vmi) (1 [ i [ n) be the ith 
moving unit of the moving object, and gpi=(gidi, ridi, posi) 
be the location of the moving object at time ti. For the 
sake of simplicity, we assume that the speed measure vmi 
is positive, which means that the moving object is moving 
from 0-end towards 1-end along route(gidi, ridi). The 
methodology can be easily adapted to the situation when 
the speed measure is negative.  

Let v max
i = vmi + ψ and v min

i = vmi – ψ where ψ is the 

speed threshold. 
 

4.1. Computing the Locations of Moving Objects 
through Interpolation 

 
The location of a moving object can be computed 

through interpolation. By interpolation, the move of the 
moving object between any two location updates is 
approximated to an even speed move. For the query: 
“where is moving object mo at time tq?”, the answer, 
which is a graph point gpq = (gidq, ridq, posq), can be 
computed in the following way. 

Case 1.  ≥ i c {1, …, n} : tq = ti  

In this case, tq happens to be a location update time, 
and the location information contained in µi can be 
returned directly as the result. That is: 
gpq = (gidi, ridi, posi) 

Case 2.  ≥ i c {1, …, n – 1} : ti < tq < ti+1 

In this case, tq is between two consecutive location 
updates, and the corresponding moving units µi, µi+1 need 
to be further checked in this situation. If route(gidi, ridi) = 
route(gidi+1, ridi+1), then according to the location update 
policies described in Section 3, we can be assured that the 
moving object is on route(gidi, ridi) at time tq, and its 
location at tq is a graph point gpq = (gidi, ridi, posq) where 
posq can be computed with the following formula: 

posq  = posi + 
1

1

i i

i + i

pos  - pos

t  - t

+
 ×  (tq - ti) 

If route(gidi, ridi) g route(gidi+1, ridi+1), then from the 
location update strategies described in Section 3 we know 
that µi and µi+1 are generated by an ITLU, Eucl(gpi) = 
Eucl(gpi+1), and at time tq the moving object is in junction 
getjunct(gpi, gpi+1). The graph point corresponding to this 
junction will be returned as the final result. 

Case 3.  tn < tq  ≤  tnow 

In this case, we know that the moving object is still 
on route(gidn, ridn). Otherwise, there would be an ITLU 
triggered after tn. Therefore, the location of the moving 
object at time tq is a graph point gpq = (gidn, ridn, posq) 
where posq can be computed as follows: 

posq  = posn +  vn × (tq – tn)  

By computing the location of a moving object 
through interpolation, the location of the moving object at 
any time instant can be simply presented as a graph point. 
As a result, the query processing mechanism and the query 
language of the MOD system can be simplified. Besides, 
the location update mechanism can also be simplified 
since the third kind of location update, STTLU, is not 
necessary in this case.  

The result from the above computing method is only 
an approximate description of the actual location, and the 
error introduced is closely related to the distance threshold 
ξ. 

 
4.2. Querying Moving Objects with Uncertainty 

Considered 
 

Even though in a lot of MOD applications, the 
interpolation technique described in Subsection 4.1 is 
sufficient, a better solution is to take the uncertainty 
brought about by the location update policy into 
consideration. As stated in [19], the location of a moving 
object other than location update time is actually 
uncertain. Therefore, we should introduce the concept of 
“possible location” in presenting the location of the 
moving object instead of just expressing it as a precise 
point.  

In MODTN, the uncertainty management problem can 
be better solved because the possible location of a moving 
object at any historical or present time instant is reduced 
to a route section (See Figure 9). In the following 

discussion, we suppose that ξ, v max
i , and v min

i  have 

already been transformed to the [0, 1] scope according to 
the length of the corresponding route. Besides, we will 
focus on the uncertainty caused by sampling method alone 
so that we assume the uncertainty caused by other factors 
to be negligible. 

Figure 9. Possible locations of a moving object 

Case 1.  ≥ i c {1, …, n} : tq = ti 

In this case, the possible location of the moving object 
is a graph point gpq = (gidi, ridi, posi). 

Case 2.  ≥ i c {1, …, n – 1} : ti < tq < ti+1 

If route(gidi, ridi) = route(gidi+1, ridi+1), then we can be 
assured that the moving object is on route(gidi, ridi), and 

0-end 

1-end 

possible loc. 
at tq (ti<tq<ti+1) 

ith loc. update (i+1)th loc. update 

the last loc. update 
possible loc. 

at t *
q

 (tn<t *
q
≤tnow) 



its possible position is a graph route section grsq = (gidi, 
ridi, segq) where segq ` [0, 1] and satisfies the following 
conditions: 

1) segq ` [ *
qpos – ξ, *

qpos + ξ], where *
qpos = posi +  

vmi × (tq – ti). Otherwise there would be a DTTLU 
between ti and ti+1; 

2) segq ` [posi + v min
i × ( tq – ti ), posi + v max

i × ( tq – ti )], 

where v min
i × ( tq – ti ) and v max

i × ( tq – ti ) are the 

shortest and the longest distances the moving object can 
cover during <t (<t = tq – ti) time without triggering an 
STTLU;  

3) segq `  [posi+1 – v max
i × (ti+1 – tq), posi+1 – v min

i × (ti+1 – 

tq)]. Otherwise, the moving object would not be able to 
arrive at gpi+1 in time without triggering a speed 
triggered location update. 
To sum up, the possible location of the moving object 

is:  

segq = [0, 1] 4 [ *
qpos – ξ, *

qpos + ξ] 4  

[posi + v min
i × ( tq – ti ), posi + v max

i × ( tq – ti )] 4 

[posi+1 – v max
i × (ti+1 – tq), posi+1 – v min

i × (ti+1 – tq)] 

where *
qpos  = posi +  vmi × (tq – ti). 

If route(gidi, ridi) g route(gidi+1, ridi+1), then we know 
that µi and µi+1 are generated by an ITLU. In this case, the 
possible location of the moving object is a graph point 
which corresponds to getjunct(gpi, gpi+1). 

Case 3.  tn < tq   ≤  tnow 

In this case, we know that the moving object is still on 
route(gidn, ridn). Otherwise, there would be an ITLU 
triggered after the last location update. Therefore, the 
location of the moving object at time tq is a graph route 
section grsq = (gidn, ridn, segq) where segq ` [0, 1] and 
satisfies the following conditions: 

1) segq ` [ ◊

qpos – ξ, ◊

qpos + ξ], where ◊

qpos = posn +  

vmn × (tq – tn). Otherwise there will be a DTTLU 
triggered after tn; 

2) segq ` [posn + v min
n × ( tq – tn ), posn + v max

n × ( tq – tn )]. 

Otherwise there will be an STTLU triggered after tn;  
Therefore, segq can be computed as follows: 

segq = [0, 1] 4  [ ◊

qpos – ξ, ◊

qpos + ξ] 4   

[posn + v min
n × ( tq – tn ), posn + v max

n × ( tq – tn )] 

where ◊

qpos = posn +  vmn × (tq – tn). 

By computing the location of the moving object with 
uncertainty involved, the moving graph point defined in 
Definition 13 is actually interpreted as a moving graph 
route section. We still call the definition “moving graph 

point” in this paper just for the sake of consistency. 
Besides, when uncertainty is involved, we need to adapt 
related operations to the uncertainty context. For instance, 
the inside operation can be extended to inside_possibly 
and inside_definitely, as stated in [16].  

 
4.3. Prediction of the Future Locations of 

Moving Objects 
 
Since we assume that moving objects can only move 

inside the predefined transportation networks, we can 
predict their future locations more accurately. Suppose the 
query is: “tell me the location of moving object mo at tq (tq 
> tnow)”. The predicted location of the moving object can 
be computed in the following way (we assume that 
moving objects do not submit moving plans proactively). 

First, the algorithm needs to search in the graph system 
and to decide a “foreseeable future path”, ffp, according to 
the possible position of the moving object at time tnow(see 
Subsection 4.2). ffp is a graph line which starts from the 
computed position of the moving object at time tnow(see 
Subsection 3.3) and finishes at the first junction after 
which multiple consecutive traffic flows exist, as shown in 
Figure 10.  

Figure 10.  Predicting future locations 

Then, the system needs to predict a future speed for 
the moving object. This can be fulfilled either by using the 
speed contained in µn (if tq is not too far away from tnow), 
or by computing an average speed from the speed 
information contained in the moving units of the moving 
object. In the latter case, the speed can be computed like 
this: 

v  = 
1

1
1

1

(| | ( )) | | ( )
n

i i i n now n
i

now

vw t t vw t t

t t

−
+

=
× − + × −

−
∑  

where |vm| is the abstract value of vm. With v  known, we 
can predict the distance the moving object can cover in 
<t* time (<t* = tq - tnow) as follows: 

d = v  × <t* 

From ffp and d we can get a graph point value gpq 

which is the predicted position of the moving object at 
time tq. According to different applications, gpq can be 
either presented directly as the final result, or extended to 
a graph line value. In the latter case, we need to impose an 

the last loc. update 

r1 r1 
r2 

r3 

r2 

r4 

r5 

r5 

computed pos. at tnow 

predicted pos. at tq 

possible loc. after ffp 

gpq 

tnow 

foreseeable future path 

possible pos. at tnow 



error-factor, which can be a function of <t*, to gpq so that 
the final result can be a graph line value. 

In MODTN we confine the prediction to the scope of 
the foreseeable future path ffp, since after ffp the moving 
object can have multiple possible directions, so that its 
possible position can explode, as shown in Figure 10.  

 

5.  Conclusions 
 

One of the key research issues with moving objects 
databases (MOD) is the modeling of moving objects. In 
this paper, a new moving objects database model, Moving 
Objects on Dynamic Transportation Networks (MODTN), 
is proposed. In MODTN, transportation networks are 
modeled as dynamic graphs and moving objects are 
modeled as moving graph points. Besides, a location 
update mechanism is provided and the related uncertainty 
management issues are analyzed. 

We have designed a rich set of data types and 
operations for moving objects and the underlying dynamic 
graphs (which will be presented in another paper). These 
data types and operations have been partly implemented in 
C++ as three algebra modules, spatial algebra, dynamic 
graph algebra, and moving object algebra, in the Secondo 
system [2]. Secondo is a new generic environment 
supporting the implementation of database systems for a 
wide range of data models and query languages. Besides, 
a graphical user interface, which can display spatial 
objects, transportation networks, and moving objects, has 
been implemented in Java.  

Compared with other moving object models, MODTN 
has the following features: 1) the system is enabled to 
support logic road names, while queries based on 
Euclidean space can also be supported; 2) both history 
and current location information can be queried, and the 
system can also support future location queries based on 
the predicted information; 3) location update policies can 
be optimized since the change of direction alone will not 
trigger a location update; 4) uncertainty problem can be 
better managed because the possible position of a moving 
object at any historical or present time instant is reduced 
to a moving route section; and 5) general events of the 
system, such as blockages and topology changes can also 
be expressed so that the system is enabled to deal with the 
interaction between the moving objects and the underlying 
transportation networks.  

 

Acknowledgements 
 

This research was supported by the Deutsche 
Forschungsgemeinschaft (DFG) research project 
“Databases for Moving Objects” under the grant number 
Gu-293/8-1. 

 

References 
 
[1] Chon H D, Agrawal D, Abbadi A E. Using Space-Time 

Grid for Efficient Management of Moving Objects, Proc. of  
MobiDE 2001, CA, USA, 2001. 

[2]  Dieker S, Güting R H, Plug and Play with Query Algebras: 
SECONDO. A Generic DBMS Development Environment. 
Proc. of IDEAS 2000, Yokohoma, Japan, 2000. 

[3]  Forlizzi L, Güting R H, Nardelli E, Schneider M. A Data 
Model and Data Structures for Moving Objects Databases. 
Proc. ACM SIGMOD Conference, TX, USA, 2000. 

[4] Frentzos E. Indexing objects moving on fixed networks, 
Proc. of SSTD’03, Santorini island, Greece, July, 2003. 

[5] Güting R H, Second-Order Signature: A Tool for 
Specifying Data Models, Query Processing, and 
Optimization. Proc. ACM SIGMOD Conference. 
Washington, USA, 1993. 

[6] Güting R H, Almeida V T, Ding Z, Modeling and Querying 
Moving Objects in Networks, Fernuniversität Hagen, 
Informatik-Report 308, 2004.  

[7]  Güting R H, Böhlen M H, Erwig M, Jensen C S, Lorentzos 
N A, Schneider M, Vazirgiannis M. A Foundation for 
Representing and Querying Moving Objects. ACM 
Transactions on Database Systems, 25(1), 2000. 

[8] Lema J A C, Forlizzi L, Güting R H, Nardelli E, Schneider 
M, Algorithms for Moving Objects Databases. The 
Computer Journal, 46(6), 2003 

[9] Papadias D, Zhang J, Mamoulis N, Tao Y. Query 
processing in spatial network databases, Proc. of  
VLDB’03, Berlin, Germany, 2003. 

[10] Pfoser D, Jensen C S, Theodoridis Y. Novel Approach to 
the Indexing of Moving Object Trajectories. Proc. of 
VLDB’00, Cairo, Egypt, 2000. 

[11] Pfoser D, Jensen C S. Indexing of Network-Constrained 
Moving Objects, Proc. of GIS’03, Louisiana, USA, 2003 

[12] Saltenis S, Jensen C S, Leutenegger S T, Lopez M A. 
Indexing the Position of Continuously Moving Objects. 
Proc. of ACM SIGMOD 2000, TX, USA, 2000. 

[13] Sistla A P, Wolfson O, Chamberlian S, Dao S. Modeling 
and querying Moving Objects. Proc. of ICDE 1997, 
Birmingham, UK, 1997. 

[14] Speicys L, Jensen C S, Kligys A. Computational data 
modeling for network-constrained moving objects, Proc. of 
GIS’03, Louisiana, USA, 2003  

[15] Su J, Xu H, Ibarra O. Moving Objects: Logical 
Relationships and Queries, Proc. of SSTD’01, CA, USA, 
2001. 

[16] Trajcevski G, Wolfson O, Chamberlain S, Zhang F, The 
Geometry of Uncertainty in Moving Objects Databases, 
Proc. of EDBT’02, Prague, Czech Republic, March 2002.  

[17] Vazirgiannis M, Wolfson O. A Spatiotemporal Query 
Language for Moving Objects on Road Networks, Proc. of 
SSTD’01, CA, USA, 2001. 

[18] Wolfson O, Chamberlain S, Dao S, Jiang L. Location 
Management in Moving Objects Databases. Proc.of 
WOSBIS’97, Budapest, Hungary, 1997.  

[19] Wolfson O, Xu B, Chamberlain S, Jiang L. Moving Object 
Databases: Issues and Solutions. Proc. of SSDBM’98, 
Capri, Italy, July 1998. 


