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Abstract

Reporting the motion patterns in moving objects data has been the focus of many re-
search projects recently. Group spatiotemporal patterns are the movement patterns, in
space and time, formed by groups of moving objects, such as flocks, concurrence, en-
counter, etc. There exist, in the literature, smart algorithms for matching some of these
patterns. These solutions, however, address specific patterns and require specialized data
representation and indexes. They share too little to be integrated into a single system.
There is a need for a generic query method. In this paper, we propose a language that can
consistently express and evaluate a wide range of group spatiotemporal pattern queries.
We formally define the language operators, illustrate the evaluation algorithms, and dis-
cuss the optimization methods. Several examples are given to showcase the expressive
power of the language.

1 Introduction

Spatiotemporal data are geometries that change their position and/or extent over time. Such
kind of data exists everywhere around us (e.g. traces of vehicles, vegetation regions of certain
plants, flocks of migrating birds, etc.). The advances in the positioning and sensor technologies
have made it easier and cheaper to collect the traces of movement. The increasing amount of
moving object data calls for analysis tools to better understand it. Therefore, spatiotemporal
data mining is receiving a lot of attention recently.

Spatiotemporal pattern (STP) queries belong to this category of analysis tools. Generally
they describe sets of changes/events that the moving objects conduct during their movement
with some temporal order, and probably reflect interesting phenomena. According to the num-
ber of objects involved in the pattern, STPs might be individual or group. An example for
individual STP queries is:
Find all trains that encountered a delay of more than half an hour after passing through a snow
storm.
The example shows an STP that is a sequence of two predicates:train crosses a snow storm,
anddelay of train>= 30 min. The pattern can be completely evaluated for everytrain, hence
the nameindividual. An individual STP query, hence, reports the moving objects that fulfill a
set of predicates in a certain temporal order.
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On the other hand, agroup STP queryreports the patterns that involve a collective move-
ment of several moving objects, e.g.
Find a flock of geese migrating in northern direction.
The query looks for a group of geese traveling close to each other, in a flock, in northern di-
rection. Answering such a query requires analysing the trajectories of several moving objects,
and their spatiotemporal relationships to one another.

The individual STP queries were previously studied, and an expressive language was pro-
posed in [17]. In this paper, we focus on group STP queries. The group STP queries are
required for many application domains such as the behavioral study of animals, traffic moni-
toring, analyzing soccer games, etc. The topic has recently attracted many researchers as we
discuss in Section 2. The techniques for reporting group STPs are eitheronline (i.e. continu-
ously searching for the pattern instances in a data stream), oroffline(i.e. searching for pattern
instances in the historical trajectories of the moving objects). This paper focuses on theoffline
pattern search.

This paper proposes an extensible language that is able to express and evaluate a wide range
of group STP queries consistently. We also propose optimization methods for these queries.
The proposed language design pays a lot of attention to the issues related tosystem integration.
That is, the inputs and the outputs of the language operators are carefullydesigned to integrate
with the query language of a spatiotemporal DBMS.

Most of the related work goes in the direction of providing algorithms for the efficient
matching of specific STPs. With the exception of the work in [14], there are no proposals that
offer such a language, up to our knowledge. This approach has, however, limitations that we
discuss in detail.

The rest of this paper is organized as follows. Section 2 reviews the closely related work.
Section 3 describes the moving objects representation that we assume in this paper. We give
a non-formal illustration for the proposed language in Section 4. The formal definitions of
the language operators follow in Sections 5, 6, and 7. The utility of the proposed language
is demonstrated in Section 8 by several query examples. Section 9 describes the optimization
of the language operators. Finally we conclude in Section 10, and tell about our future work
plans.

2 Related Work

In their work, Dodge et al [5] presented a systematic taxonomy of movementpatterns, along
with an extensive survey of this area of research. They proposed a set of dimensions to classify
the movement patterns, underlining the commonalities between them. Their work suggests that
a generic toolbox for pattern search can be designed based on such a classification.

Andrienko and Andrienko have several publications that focus on solutions based on vi-
sual analytics, for example [3]. In particular, a set of data transformations, computations, and
visualization techniques is defined, that could enable a human analyst to discover interesting
patterns in large masses of moving objects data.

The algorithmic solutions of the problem tend to address very specific patterns. They share
too little to be integrated within one system context. Moreover, there is no wide agreement on
the definitions of the patterns. Table 1 lists some of these works. The table shows, for instance,
two of the definitions of theflock pattern. The first is proposed in [15] and [8]. The pattern
matching is done using the REMO approach, that we discuss below in detail. The second
definition appears in [4]. The trajectories are represented as points in a high dimensional space,
indexed by askip quad tree. A flock query is then modeled as a count query to the skip quad
tree. Theconvoypattern [13] is another variant of the flock pattern.
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The MoveMine application [16] implements several recent algorithms for group STPs, and
trajectory clustering and classification. The application offers a GUI to setthe parameters of
every algorithm and to visualize the results. MoveMine did not show, however, efforts towards
integrating these pattern matching algorithms in a unified computational framework.

Table 1: Examples for the Group STPs

1 Concurrence[14]: n moving point objects (MPO)
showing the same motion attribute value (e.g. speed,
azimuth) at timet.

2 Trend-setter[14]: One trend-setting MPO anticipates
the motion ofm others, so that they show the same
motion attribute value.

3 (m, r) Flock [15], [8]: At leastm MPOs are within a
circular region of radiusr and they move in the same
direction.

4 (m, r, d) Leadership[15], [8]: At leastm MPOs are
within a circular region of radiusr, and they move in
the same direction. At least one of them was already
moving in this direction for at leastd time steps.

5 (m, r) Convergence[15], [8]: At leastm MPOs will
pass through the same circular region of radiusr, as-
suming they keep their direction.

6 (m, r) Encounter[15], [8]: At leastm MPOs will be
simultaneously inside the same circular region of ra-
diusr (assuming they keep their speed and direction).

7 (m, r, d) Convoy [13]: At least d consecutive
timesteps, during which an (m, r) Density-based Clus-
ter is defined.

8 (m, r, d) Flock [4]: At least d consecutive timesteps,
such that for every timestep there is a disk of radiusr

that contains all them MPOs.

The work by Laube et al. [14] proposes the REMO (RElative MOtion) model. It is the
most closely related work to this paper. It defines a language that can consistently express a
number of group STP queries. Briefly, the model defines a 2D matrix, where the rows represent
the moving objects, and the columns represent a series of time instants. Whereas the columns
are clearly ordered by time, the rows have no inherent order. The elements of the matrix are
the values of some predefined motion attribute (e.g. object’s speed, azimuth, acceleration, etc.)
computed for the moving object (row) at the time instant (column). The REMO matrix is hence
a 2D string, where 2D string patterns can be searched for. The pattern query is expressed by
means of regular expressions. The model could successfully expresstheconcurrence, and the
trend-setterpatterns [14]. We see the following shortcomings in the REMO approach:
(1) The size of the REMO matrix is proportional to the database size. One would even need to
maintain several matrices for several motion attributes.
(2) The REMO matrix does not inherently support the analysis based on theobject locations
(e.g. spatial proximity constraints between the moving objects). The model is extended in
[15] to support such analysis functions as second class citizens. Thatis, first the analysis
is done on the REMO matrix, then the analysis part that requires object locations is done
on the results. For example, according to the REMO model aflock pattern is aconcurrence
pattern plus spatial proximity constraints. This would require that the flock members match
the concurrence pattern (i.e. concurrently share similar values for the motionattributes). Such
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a definition is clearly restrictive (e.g. cows in a flock may move around, without leaving their
flock, with different speed and/or azimuth).
(3) The model cannot express the patterns that are described based on object interactions. The
motion attributes in the REMO matrix describe every object independently of the other objects.
Patterns that are described based on the mutual relationships between the moving objects (e.g.
north of, closer than) cannot be expressed.
(4) The REMO matrix handles the time discretely. It does not directly supportcontinuous
trajectories. Trajectory sampling is known to incur inaccuracies in the data representation.

Up to our knowledge, this work by Laube et al. is the only one that proposes a generic
language for group STP queries. The above analysis calls for a new approach that overcomes
these problems.

3 The Underlying Data Model

This paper builds on the moving objects data model proposed in [12] and [7]. This section
describes the parts of the model that will be used in the rest of the paper. We use the Second-
Order Signature (SOS) [9] for the formal definitions. It is a tool for specifying data models,
query processing, and optimization rules. It lets the user first define the type system (the first
signature), then define polymorphic operations on the types (the second signature).

A signature consists ofsortsandoperators, and generates a set ofterms. In the first sig-
nature, the one defining the type system, sorts are calledkinds, operators are calledtype con-
structors, and terms are calledtypes. That is, type constructors operate on kinds to generate
types. We briefly describe the type system, and the query language of [12] and [7] in Sections
3.1 and 3.2. Then we extend this type system in Section 3.3.

3.1 The Base Type System

The upper part of Table 2 shows the type system of [7]. The bold parts are extensions that will
be described in Section 3.3. The left, and middle columns display the argument and the result
kinds, and the right column displays the type constructors. Kinds are sets of types. The kind
DATA, for instance, contains four types. A type constructor that acceptsno arguments is a
constant, and yields a single type (e.g.int , point). A type constructor that accepts arguments
generates a set, possibly infinite, of types (e.g.range(int), ...,range(instant)).

The upper part of Table 2 defines abstract data types (ADT) for movingobject representa-
tion, as was proposed in [7]. The lower part describes a relational datamodel, where ATTR =
DATA ∪ ... ∪ MAPPING. We restrict ourselves in this paper to the relational model. It is how-
ever possible to introduce similar solutions for other database models (e.g. object relational,
XML, etc.).

Table 2 defines the syntax of the type system. The semantics is defined by assigning a
domain for every type. The base types (e.g.int , string , etc.) have similar domains as in
programming languages, except that their domains here are extended by the valueundefined
(e.g.Dreal = R ∪ {undefined}, whereDtype denotes the domain oftype).

This type system defines two kinds for moving objects: UNIT and MAPPING.Together,
the two kinds define the so-calledsliced representationof moving objects [7]. That is, the
complete movement of a moving object during a certain observation period is decomposed into
slices, each of which describes the movement during a smaller time interval. An objectof kind
UNIT represents a singleslice. An object of kind MAPPING is a set of UNITs/slices.

Let Dinstant denote the domain of time instantsinstant , isomorphic toR. Let Interval be
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Table 2: The Type System

→ IDENT ident

→ DATA int , bool , real , string
→ DISCRETE int , bool , string
→ SPATIAL point , region, line
→ TIME instant

DATA ∪ TIME → RANGE range

DATA ∪ SPATIAL → COLL set

DATA ∪ SPATIAL ∪ COLL → TEMPORAL intime

DISCRETE∪ COLL → UNIT constunit

→ UNIT ureal , upoint , uline,
uregion

UNIT → MAPPING mapping

(ident × ATTR)+ → TUPLE tuple

TUPLE → REL rel

TUPLE → STREAM stream

the set of time intervals defined as:

Interval ={(t1, t2, lc, rc)| t1, t2 ∈ Dinstant , lc, rc ∈ {false, true},

t1 ≤ t2, (t1 = t2) ⇒ lc = rc = true}

That is, a time interval can be left-closed and/or right-closed as indicated bythe values oflc
andrc respectively. It is also possible that the interval collapses into a single time instant.

A type in the UNIT kind describes a pair consisting of a time interval and a temporal
function. The temporal function describes the evolution of the value of the moving object
during the associated time interval. For the types that have discrete domains (i.e. DISCRETE
∪ COLL), the temporal function is a constant, and the type constructorconstunit constructs
their unit types. LetDσ be the domain of a typeσ ∈ DISCRETE∪ COLL. The domain of the
corresponding unit type is:

Dconstunit(σ) = Interval ×Dσ

For example, the domainDconstunit(bool) = Interval × {false, true,undefined}. For the types
that have continuous domains (e.g.real , point), the domains of their unit types are defined
individually. For example, the domain of the unit point is:

Dupoint = Interval × (R2 × R2)

The unit point describes a linearly moving point in the form(I, ((x1, y1), (x2, y2))). The posi-
tion of the point at timet ∈ I is

(x1 +
(x2 − x1)(t− I.t1)

I.t2 − I.t1
, y1 +

(y2 − y1)(t− I.t1)

I.t2 − I.t1
)

A type in the MAPPING kind describes the complete movement of a moving object during
some observation periods. It is therefore represented as a set of UNITs.
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Definition 1 ∀ unit in UNIT, letDunit denote its domain. The domain of the typemapping(unit)
is:

Dmapping(unit) = {U ⊂ Dunit | ∀(i1, f1) ∈ U, (i2, f2) ∈ U :

(i) i1 = i2 ⇒ f1 = f2

(ii) i1 6= i2 ⇒ (i1 ∩ i2 = ∅) ∧

(i1 adjacenti2 ⇒ ¬((i1, f1) mergeable(i2, f2)))}

�

wherei1 adjacenti2 :⇔ (i1.t2 = i2.t1) ∨ (i1.t1 = i2.t2), andmergeableyields true if the
two units can be merged together. It is defined according to the unit type. For constant units
(constunit):

((i1, f1) mergeable (i2, f2)) = (f1 = f2).

Forupoint , for instance,mergeableyields true if both units have the same direction and speed,
and share one end point. This last condition ensures that a moving object has a unique rep-
resentation, the one with the minimum number of units. Note that the definition allows for
temporal gaps during which the moving object is undefined. In the following,the types in
MAPPING are denoted by a precedingm (e.g.mint , mpoint , mbool ). Figure 1 illustrates an
mpoint object.

Figure 1: The sliced representation of anmpoint
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[”2003-11-20-06:06” ”2003-11-20-06:06:08.692”[,

(16229.0 1252.0), (16673.0 1387.0)

[”2003-11-20-06:06:08.692” ”2003-11-20-06:06:24.776”[,

(16673.0 1387.0), (16266.0 1672.0)

[”2003-11-20-06:06:24.776” ”2003-11-20-06:06:32.264”[,

(16266.0 1672.0), (16444.0 1818.0)

[”2003-11-20-06:06:32.264” ”2003-11-20-06:06:39.139”],

(16444.0 1818.0), (16144.0 2227.0)

3.2 The Query Language

A large number of operations is defined for the type system described above, see [7] and [12].
They fall into three classes:

1. Static operations defined on the non-temporal types (e.g. topological predicates, set
operations, aggregations).

2. Spatiotemporal operations offered for the temporal types (e.g. trajectory of anmpoint ,
evaluation of anmregion for a given instant of time).

3. Lifted operations offered for combinations of moving and non-moving types. Basically
they are time-dependent versions of the static operations.

A large part of this moving objects model is implemented in the SECONDOsystem [1], [10].
It consists of three modules: the kernel, the query optimizer, and the graphical user interface.

The SECONDO kernel accepts queries in a language called the SECONDO executable lan-
guage. It is a procedural language, in which one specifies step-by-step methods for achieving
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the results. It consists of the three classes of operations above and of query processing opera-
tions of the relational model, usually applied in a stream processing mode. Essentially it is a
precisely defined notation for query plans.

Whereas other database systems represent query plans as operator trees generated by the
optimizer, SECONDOto our knowledge is unique in offering a complete syntax for query plans
and a corresponding language level that is accessible to the user. In other words, the user can
type query plans directly; these are parsed, checked for correct composition of operations, and
then executed.

The SECONDO optimizer offers an SQL-like language like other database systems. The
three classes of operations mentioned above are integrated into this level aswell. The optimizer
uses cost based optimization to map SQL queries into query plans of the SECONDOexecutable
language. Any plan that the optimizer generates could as well be typed directly by a user.

The language for group spatiotemporal pattern queries we describe in thispaper requires
extensions to a database system both at the levels of query processing and of query optimiza-
tion. The first step is to extend query processing by new operators. Thesecond step is to also
extend the optimizer to make use of the new query processing operators andto apply further
optimizations.

In the sequel, we will first embed our proposed language into the SECONDO executable
language. Since this language level is accessible to the user, we will explainthe concepts at
this level and formulate also example queries at this level, making use of SECONDO query
processing operations as needed. This allows us to explain the language interms of precisely
defined query processing operations and their related algorithms, withoutbeing bothered by
the additional level of complexity resulting from embedding into SQL and queryoptimization.
Later in Section 9 we explain the second step of integrating the language operations into the
SQL language on top of the optimizer.

Here we briefly introduce the executable language level. LetPhoneBookbe a relation with
the type:rel (tuple(<(Name,string), (Phone,string)>)). A query that finds the entries with
the nameAli Mahmoudis:

query PhoneBook feed
filter[.Name contains "Ali Mahmoud"] consume;

The feedoperator reads a relation from disk and converts it into a tuple stream. Theconsume
operator does the opposite. Thefilter operator evaluates a boolean expression for every input
tuple, and yields the tuples that fulfill it. For such stream processing operations usually a postfix
syntax is defined so that one can conveniently write query operators in theorder in which they
are applied. The signatures of these operators are:

rel(tuple) → stream(tuple) feed #

stream(tuple) → rel(tuple) consume #

stream(tuple)× (tuple → bool) → stream(tuple) filter #[ ]

string × string → bool contains #

wheretupleis a type variable that can be instantiated with any type in TUPLE. The last column
in the signature shows the operator syntax, where # denotes the operator, and denotes an
argument. We will describe more operations in the sequel.

3.3 Extending the Type System

We extend the type system in [7] by the kind COLL as shown in bold in Table 2. This is to
introduce the moving set typemset (i.e. mset denotesmapping(constunit(set))). It repre-
sents a set whose elements are changing over time. The domainDmset of the typemset can
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be obtained by applying Definition 1. That is, letelembe a type variable that can be instan-
tiated by any type in DATA∪ SPATIAL, and letDelem be its domain. The domain of the
typeset is Dset = P(Delem), and the domain of the typeconstunit(set) is Dconstunit(set) =
Interval ×Dset . FinallyDmset is obtained from Definition 1 asDmapping(constunit(set)). The
typemset is used to represent the groups of moving objects that match a group STP query, as
will be shown in Section 4. We also define the setMSetPart, which is required for the operator
definitions, as follows:

Definition 2 LetMSetPart be a subset ofDmset defined as:

MSetPart = { {(i1, f1), ..., (in, fn)} ∈ Dmset |

∃ i ∈ Interval : i = (i1 ∪ ... ∪ in)}

�

That is, an element of theMSetPart is anmset instance that has no definition gaps within its
definition time. Its definition time can be represented as a single time interval.

4 The Proposed Language

This section roughly illustrates the proposed language. The details of the operators, their formal
definitions, and the evaluation algorithms follow in Sections 5, 6, and 7, respectively. The
proposed language is a nested operator structure having three levels. In the bottom-most level
are the time-dependent predicates. These are operations that yieldmbool values. They are
part of the model in [12] and [7] that we described in Section 3. Figure 2 illustrates the time-
dependent predicateinside, whose signature is:

mpoint × region → mbool inside #

It yields true in the time intervals during which thempoint object is spatially located within
theregion object, false otherwise.

The group STPs are typically expressed based on some motion attributes (e.g. direction,
area, distance between objects, etc.). These attributes can be the raw coordinates (e.g. find cars
meeting in down town), a derivative (e.g. find a cattle moving with high speed),or a second
derivative (e.g. find oil spills increasing their area). Time-dependent predicates are able to
express conditions on such attributes. They are also defined for all kindsof moving objects
(e.g. mpoint , mregion, mreal ). We express the group STP queries on top of them, hence
allowing for complex analysis on all kinds of motion attributes and all types of moving objects.

 378.3

 397.7

t Trip

R

x

y

t

FALSE

TRUE

 378.3  397.7
t

Trip inside R

Figure 2: Time-dependent Predicates

In the second level are thepatternoidoperators. A patternoid is a simple group STP such
asflock, convergence, concurrence, etc. This is in contrast to the composite group STPs which
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consist of several patternoids (e.g. aconvergencefollowed by aflock). In this paper, we
describe two patternoid operators, thegpatternand thecrosspattern. Both of them are built
on top of the time-dependent predicates. Thegpatternoperator expresses the patternoids in
terms of independently computed motion attributes of the moving objects. Theconcurrence
patternoid, for instance, is a group of objects that concurrently fulfill some time-dependent
predicate. The time-dependent predicate is evaluated for every moving object independently
from other objects.

Thecrosspatternoperator expresses the patternoids that can be described in terms of dual
interactions between the moving objects (e.g.flock, convoy, convergence, etc.). A flock, for in-
stance, is expressed in terms of the distance between pairs of moving objects. Thecrosspattern
operator, in contrast to thegpatternoperator, evaluates the time-dependent predicate for pairs
of moving objects.

Thereportpatternis the top-most operator at the third level. It allows for expressing com-
posite group STPs. It allows one to specify constraints (e.g. temporal andspatial) between a
list of patternoids. In the following, we show three examples that illustrate thegpattern, the
crosspattern, and thereportpatternoperators, respectively. We assume the schema:

Gazelles[Id:int , Trip: mpoint ]

Example 1 Find a group of 20 gazelles that move concurrently with a speed of more than20
km/h, for at least 10 minutes.

let ten minutes= create_duration(0, 600000);
query Gazelles feed
gpattern[.Id, speed(.Trip) > 20.0, ten minutes, 20, "atleast"]
transformstream consume;

Thegpatternoperator gets a stream of tuples. It evaluates the time-dependent predicatespeed(.Trip)
> 20.0for every tuple in the stream. Using the evaluatedmbools, it finds the groups with cardi-
nality of at least 20gazelles, that concurrently fulfill the time-dependent predicate, for at least
10 minutes. The result of thegpatternoperator is represented as astream(mset), as will be de-
scribed later in detail. Within the results, gazelles are represented by their identifiers, which are
supplied by the argument.Id. The transformstreamcasts thestream(mset) result ofgpattern
into astream(tuple(<(elem,mset)>)), so that it can be passed to theconsumeoperator.

The following example illustrates thecrosspatternoperator.

Example 2 Find a group of at least 20 gazelles moving simultaneously for 10 minutes towards
some place of meeting.

The example describes a relaxed version of theconvergencepatternoid in Table 1. The def-
inition in the table requires that the gazelles keep their movement direction (azimuth) to the
meeting place unchanged. Gazelles that change their direction, to maneuveraround some ob-
stacle, for instance, will not be reported. In the following query, we express convergence in
terms of the continuous decrease in the dual distance between the gazelles.

query Gazelles feed {a} Gazelles feed {b}
symmjoin[.Id_a < ..Id_b]
crosspattern[.Id_a, .Id_b,
isdecreasing(distance(.Trip_a, .Trip_b)),
ten minutes, 20, "clique" )]

transformstream consume;

Since thecrosspatternoperator requires pairs of gazelles in the input stream, theGazelles
relation is first self-joined by thesymmjoinoperator. The.Id a and .Id b arguments of the
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crosspatternoperator tell it about the identifiers of the pair of gazelles. The time-dependent
predicate is evaluated for every input tuple. This computes a kind oftime-dependent join. That
is, two tuples from the originalGazellesrelation join together whenever the time-dependent
predicate holds.

This join result is represented as a time-dependent graph, as will be defined in Section 7.
The nodes of this graph are the gazelles (i.e. every node correspondsto an identifier of a
gazelle), and the time-dependent edges are the evaluatedmbools. An edge exists between two
nodes, whenever thembool is true (i.e. the two gazelles are getting closer to each other).

The last three arguments in thecrosspatternoperator define search criteria for a special
subgraph within this time-dependent graph. In this example, we look for acliquecontaining at
least 20 nodes, that lasts for a duration of at least ten minutes. Aclique in this case means that
every gazelle in the clique is continuously getting closer to every other gazellein the clique.
One can specify other sub-graph types according to the patternoid one isdescribing (e.g.a
connected component).

The self-join of the Gazelles relation in this example is a brute force solution to obtain
pairs of gazelles. For an efficient execution, one would use an index to retrieve only the pairs
of gazelles that have chances to fulfill the time-dependent predicate. In Section 9.2, we propose
an approach to integrate thecrosspatternoperator with the query optimizer.

The following example illustrates thereportpatternoperator.

Example 3 Find a group of at least 20 gazelles which moved simultaneously for 10 minutes
towards some place of meeting, then moved together with a speed of at least 20km/h.

The query describes a composite pattern that consists of the two patternoidsin the previous
examples. They are composed together based on three constraints: (1) atemporal constraint
restricting the concurrence patternoid to occur after the convergence patternoid, (2) a spatial
constraint that the concurrence patternoid starts from the final location of the convergence
patternoid (i.e. the place of meeting), (3) and an attribute constraint that the same group of
moving objects matches the two patternoids.The query looks as follows:

let then = vec("abab", "aa.bb", "aabb");
query reportpattern[

concurrence: Gazelles feed
gpattern[.Id, speed(.Trip) > 20.0, ten minutes, 20, "atleast"],

converge: Gazelles feed {g1} Gazelles feed {g2}
symmjoin[.Id_g1 < ..Id_g2]
crosspattern[.Id_g1, .Id_g2,
isdecreasing(distance(Trip_g1, Trip_g2)),
ten minutes, 20, "clique" ];

stconstraint(.converge, .concurrence, then)]
extend[
concMReg: fun(t1: TUPLE) Gazelles feed

mset2mreg(.Id, .Trip, attr(t1, concurrence)),
convMReg: fun(t2: TUPLE) Gazelles feed

mset2mreg(.Id, .Trip, attr(t2,.converge)]
extend[
convFinSet: val(final(.converge))
concInitSet: val(initial(.concurrence))
convFinReg: val(final(.convMReg))
concInitReg: val(initial(.concMReg))]

filter[.convFinSet intersection .concInitSet count >= 20]
filter[.convFinReg intersects .concInitReg]
filter[not(sometimes(area(.concMReg)> 8000.0)]
consume;
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The reportpatternoperator in this query contains two patternoid operators, and one temporal
constraint. The two patternoids are given the aliasesconcurrenceandconverge. These aliases
are required to refer to the patternoids in the rest of the query. This is analogous to attribute
aliases in standard SQL. The temporal constraint is expressed by thestconstraintoperator. It
states thatconvergehappens firstthen concurrence, wherethenis defined by thelet command
before the query.

Each of the termsabab, aa.bb, aabbthat definethendescribes a relationship between two
time intervals. The start and the end time instants of the first interval are denoted aa, and
those of the second interval are denotedbb. The order of the symbols describes the interval
relationship visually. The dot symbol denotes the equality. For example, the relationaa.bb
between the intervalsi1, i2 denotes the order: ((i1.t1 < i1.t2) ∧ (i1.t2 = i2.t1) ∧ (i2.t1 <

i2.t2)). The temporal relationshipthenexpresses the disjunction of its three components.
Each of the two patternoid operators yields astream(mset). Everymset represents a group

of moving objects that matches the patternoid. Note that the group members may be changing
over time, because moving objects may be joining or leaving the group, as long as the group
cardinality does not go below the threshold. Therefore, a patternoid is represented as anmset

rather than aset .
The reportpatternoperator computes the product of themset streams coming from the

patternoid operators, and filters it using the temporal constraints. In this example, a pair of
msets fulfill the temporal constraint if their definition times fulfill thethenrelationship (i.e. by
fulfilling any of its three components). As will be explained in Section 5, anmset in the result
of a patternoid operator belongs to the setMSetPart. This is to guarantee that its definition
time is a single time interval, hence temporal constraints can be applied to pairs of them. The
reportpatternoperator in this query yields the a tuple stream with the type (schema):

stream(tuple(< (concurrence,mset), (converge,mset) >))

The spatial and the attribute constraints between the two patternoids are applied to this tuple
stream. The firstextendoperator adds two attributes:concMRegandconvMReg. They are
mregion representations of theconcurrenceand theconvergepatternoids. Each of them repre-
sents the convex-hull of the gazelle locations at every time instant. Now the tuple stream has
the schema:

stream(tuple(< (concurrence,mset), (converge,mset),

(concMReg,mregion), (convMReg,mregion) >))

The secondextendoperator adds four attributes, namelyconvFinSetandconcInitSet, the final
and initial values of theconvergeandconcurrencemsets, andconvFinRegandconcInitReg,
the final and initial values of the corresponding moving region representations created in the
previous step. At this point, the schema is:

stream(tuple(< (concurrence,mset), (converge,mset),

(concMReg,mregion), (convMReg,mregion),

(convFinSet, set), (concInitSet, set),

(convFinReg, region), (convMReg, region) >))

The attribute constraint is expressed by the firstfilter operator in the query. It enforces that
the set of gazelles at the final time instant ofconvergeand the set of gazelles at the initial time
instant ofconcurrencehave at least 20 gazelles in common. The spatial constraint is expressed
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Table 3: The Proposed Language

(string)+ → stvector vec #( )
tuple × (tuple → interval)2 × stvector → bool stconstraint #( , , )
stream(tuple)× (tuple → int)× (tuple → mpoint)

×mset → mregion mset2mreg #( , , , )
stream(tuple)× (tuple → int)× (tuple → mpoint)

×mset → stream(mpoint) mset2mpoints #( , , , )
stream(tuple)× (tuple → int)× (tuple → mbool)

×duration × int × string → stream(mset) gpattern #[ , , , , ]
stream(tuple)× (tuple → int)2 × (tuple → mbool)

×duration × int × string → stream(mset) crosspattern #[ , , , , , ]
(ident × stream(mset))+ × (tuple → bool)+

→ stream(tuple(< (ident ,mset)+ >)) reportpattern #[ ; ]

by the secondfilter operator. It enforces that the region representingconvergeat its final time
instant, and the region representingconcurrenceat its initial time instant intersect.

The lastfilter operator constrains the gazelles inconcurrenceto keep close to one another
in a circle of area 8000 m2. We added this to illustrate how the spatial proximity constraints
can be applied to the results of thegpatternoperator in a way similar to [15].

Table 3 lists the signatures of the operators that constitute the proposed language. The
stvector is a type that represents the temporal relationships, such asthen, in a compact integer
representation. Theinterval type represents a time interval. The following sections describe
these operators formally.

5 The Reportpattern Operator

In this section, we formally define thereportpatternoperator. It gets two lists: a list of pat-
ternoid operators each of which has an alias, and a list of temporal constraints. Syntactically,
the reportpatternoperator requires that a patternoid operator yields astream(mset), and that
a temporal constraint is a mapping (tuple → bool ). Semantically, the result of a patternoid op-
erator is required be a subset ofMSetPart . This is required to be able to evaluate the temporal
constraints, as will be explained below in this Section.

We start by defining a language for the temporal constraints. A similar language was de-
fined in [17], in the context of individual STP queries. Given two time intervals, each of which
may degenerate into a time instant, there are 26 possible relationships between them. We define
a setIR consisting of 26 terms, each of which expresses one such relationship. That is:

IR = {aabb, abba, bbaa, a.bab, aa.bb, a.bba, bb.aa, baa.b,

abab, aba.b, baba, a.ba.b, baab, a.abb, bb.a.a, a.a.bb, bba.a,

ba.ab, b.baa, aa.b.b, b.b.aa, aab.b, ab.ba, a.ab.b, b.ba.a, a.a.b.b}

where a term inIR is formally defined as follows. Leti1, i2 ∈ Interval, ir = s1s2...sk ∈ IR,

Let rep(sj) =































i1.t1 if sj is the firsta in ir

i1.t2 if sj is the seconda in ir

i2.t1 if sj is the firstb in ir

i2.t2 if sj is the secondb in ir

. if sj = .
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i1 and i2 fulfill s1s2...sk :⇔ ∀j ∈ {1, ..., k − 1} :

(i)sj 6= . 6= sj+1 ⇒ rep(sj) < rep(sj+1)

(ii)sj+1 = . ⇒ rep(sj) = rep(sj+2)

Two time intervalsi1, i2 ∈ Interval fulfill a setof interval relationships if they fulfill any
of them, that is:

i1 andi2 fulfill SI ⊆ IR :⇔ ∃ ir ∈ SI : i1 andi2 fulfill ir

Syntactically, thevecoperator in Table 3 allows for composing suchSI subsets, and represent-
ing them as an object of typestvector .

Let P = {p1 , ..., pn} be a set of patternoid operators. A temporal constraint onP is an
element of the set:

TC(P ) = {1..n} × {1..n} × P(IR)

It is hence a binary constraint that assigns a pair of patternoid operators fromP a set of interval
relationships. Syntactically, it is expressed by thestconstraintoperator in Table 3.

Let P = {p1 , ..., pn} be a set of patternoid operators. Leteval(pi) denote the evaluation
of the patternoid operatorpi ∈ P , that is,eval(pi) ⊂ MSetPart. We define the set ofcandidate
assignmentsCA(P ) as:

CA(P ) = eval(p1)× ...× eval(pn)

That is, theCA(P ) is simply the Cartesian product of the result streams of the patternoid
operators.

Let ca = (v1 , ..., vn) ∈ CA(P ) and letc = (j, k, SI) ∈ TC(P ) be a temporal constraint.

ca fulfills c :⇔ deftime(vj) and deftime(vk) fulfill SI

wheredeftime(vi) is the time interval during which themset vi is defined. Since thereport-
pattern operator requires that a result from a patternoid operator belongs toMSetPart, it is
guaranteed thatdeftime(vi) yields a single time interval.

Let C ⊆ TC(P ) be a set of temporal constraints. The set ofsupported assignmentsof C
is defined as:

SA(P,C) = {ca ∈ CA(P ) | ∀ c ∈ C : ca fulfills c}

That is, for acandidate assignmentto be asupported assignment, it must fulfill all the con-
straints inC. A supported assignment, hence, contains a singlemset instance for every patter-
noid, and fulfills all the temporal constraints. The result of thereportpatternoperator is the set
of supported assignments. That is:

Definition 3 The reportpatternoperator is a pair (P,C), whereP = {p1 , ..., pn} is a set
of patternoid operators, andC ⊆ TC(P ) is a set of temporal constraints. Its evaluation is
defined as:

eval((P,C)) = SA(P,C)

�

In order to evaluate thereportpatternoperator, we use the classical model of theconstraint
satisfaction problem CSP. A similar approach was adopted in [17]. A CSP is a triple〈X,D,C〉,
whereX is a set of variables,D is a set of the initial domains ofX, andC is a set of constraints.
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The solution of the CSP is a set of tuples, each of which contains one value from the domain of
each variable, and fulfills all the constraints inC. Such a tuple is called asupported assignment
of the CSP.

The definitions of thereportpatternoperator and the CSP map to one another. The CSP
variablesX are the patternoid operators. The domainDi of a variableXi consists of themsets
that result when evaluating the corresponding patternoid operator. TheCSP constraints are the
temporal constraints in thereportpatternoperator.

This CSP is solved incrementally, as illustrated in Algorithm 1. The algorithm solves the
CSPk−1 (i.e. havingk − 1 variables) first, then extends it to the CSPk. Note that evaluating
the domain of a variable is equivalent to evaluating a patternoid operator. Since such an evalu-
ation is expected to be expensive, we wish to minimize the number of evaluated CSP variable
domains, in the case that no solutions exist. The incremental evaluation allows for an early
stop if a solution to the CSPk−1 cannot be found, avoiding the unnecessary evaluation of the
remaining patternoid operators.

TheAgendastores the patternoid operators (i.e. the variables), that are not yet evaluated.
In every iteration, one patternoid operator is selected from the Agenda and evaluated by the
Pick function. The selection heuristic tries to discover as soon as possible whether the CSP
has no solutions. It selects the variable from the Agenda that leads to the evaluation of the
largest number of constraints inC during the current iteration. The same selection method was
adopted in [17].

The sub-CSP, that consists of all the patternoid operators that are evaluated so far, is solved
by theextendfunction in Algorithm 2. Only consistent solutions (i.e. patternoids that fulfill
the temporal constraints) remain in the supported assignments setSA. The algorithm stops
immediately and returns an empty stream once the setSAis empty. A temporal constraint, as
illustrated in Table 3, accepts atuplecontaining as many attributes as the number of patternoid
operators. This tuple is dynamically generated by thereportpatternoperator during execution,
and passed as a parameter to thestconstraintoperator, as illustrated in lines 10 and 12 in
Algorithm 2. The attribute names within it are the aliases of the patternoid operators. The
attributes values are the definition times of the patternoids in a candidate assignment. The
stconstraintoperator assigns two attributes from this input tuple a set of interval relationships
composed by thevecoperator.

Algorithm 1: reportpattern

Input : P: (ident , stream(mset))+ – a set of patternoid operators,C: (tuple→ bool )+ –
a set of temporal constraints

Output : R: stream(tuple(<(ident , mset)+>))
1 let SA: list(list(mset)) be a list of supported assignments, initially empty;
2 let Agenda:= P;
3 while Agenda is not emptydo
4 i := pick pi from Agenda; // select and remove one variable from

the Agenda
5 let d := evaluatepi.second;
6 extend(SA, d, i, C);
7 if SA is emptythen
8 return an empty stream;
9 let R := construct the result stream fromSA;

10 return R;
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Algorithm 2: extend(SA: list(list(mset)), d: stream(mset)), i: int , C: (tuple→ bool )+)

1 if SA is emptythen
2 foreachv: mset in d do
3 insert a new rowsa into SAhavingsa[i] = v;
4 else
5 let CA be a list of candidate assignments, initially empty;
6 foreach sa in SAdo
7 foreachv: mset in d do
8 let ca := sa;
9 ca[i] := v;

10 let ca tuple:= construct a tuple fromca;
11 foreachc: (tuple→ bool ) in C do
12 SetArgument(c, ca tuple);
13 if ca tuple fulfills cthen insertca into CA;
14 SA:= CA;

6 The Gpattern Operator

This section formally defines thegpatternoperator. Mainly it reports groups of moving objects
that simultaneously fulfill a time-dependent predicate. It has two forms:

• S gpattern[id, α, d, n, “exactly”].
• S gpattern[id, α, d, n, “atleast”].

whereS is a stream of tuples representing the whole set of moving objects. It contains a
moving object attribute, and an identifier attribute, which is required for a technical reason, to
represent the moving object within the results.id is a function that maps a tuple inS into the
value of this identifier attribute,α is the time-dependent predicate,d > 0 is aduration (e.g.
in milliseconds) that decides the minimum duration of the patternoid, andn > 0 is anint that
decides the size of the group. In the following definitions, we deal withS as a set of moving
objects, ignoring the technical detail of its representation as a stream of tuples.

The evaluation of the first form of thegpatternoperator is:
eval( S gpattern[ id, α, d, n, “exactly” ] ) =

{{(I, V )}|V ⊆ S, |V | = n, I ∈ Interval , length(I) ≥ d,

∀t ∈ I, ∀e ∈ V : (α(e))(t),

∀I ′ such thatI ′ ∈ Interval , I ⊂ I ′ :

∃e ∈ V, ∃t ∈ I ′ : ¬(α(e))(t)}

where length(I) = I.t2 − I.t1, and(α(e))(t) ∈{false, true} is the evaluation of the time-
dependent predicateα for the moving objecte at the time instantt. The operator yields groups
of exactlyn moving objects. Therefore, everymset in the result contains only one unit (I, V ).
The last condition guarantees that only the longest duration patternoids are reported, to avoid
an infinite number of results.

The definition allows a moving object to belong to several groups in the result.This is
required to report all possible combinations of exactlyn objects. This is helpful in expressing
thetrend-setterpattern, for instance. That is, a group of exactlyk moving objects matches some
patternoid description, followed by another group of at leastj moving objects that matches the
same description.
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To define the semantics of the second form of thegpatternoperator, we need to define some
auxiliary operations:

mbool → bool always #( )

mbool → bool sometimes #( )

mset × set → mbool ⊂,⊆ #

data ×mset → mbool ∈ #

mapping → range(instant) deftime #( )

mbool × bool → mbool at #

wherealwaysyields true if its argument has the value true all over its definition time. On the
other hand,sometimesyields true if its argument is ever true. The time-dependent versions
of the set predicates⊂,⊆, and∈ yield true at the time instants/intervals during which their
corresponding standard predicates hold.1 Thedeftimeoperation yields the set of time intervals
and/or instants during which a moving object is defined. Finally, theat operation restricts the
definition time of a moving object to the time intervals and/or instants during which its value
is equal to the second argument.

Given agpatternoperator in the formS gpattern[ id, α, d, n, “atleast” ], we first define
the setM as:

M = {X|X ∈ MSetPart , always(X ⊆ S), always(|X| ≥ n),

(∀e such thatsometimes(e ∈ X) :

P = deftime((e ∈ X) at true) ⇒

(i) ∀I ∈ P : length(I) ≥ d

(ii) ∀t ∈ P : (α(e))(t))}

The setM contains all possible matches of the patternoid. A group of moving objects that
matches this patternoid can change (i.e. objects may join and/or leave the group). The last four
lines ensure that, each time an object joins the group, it stays for a duration of at leastd. The
setM might contain an infinite number of matches. To avoid this, we restrict it to the matches
that are maximal in the number of moving objects, and maximal in their definition times. That
is:

eval( S gpattern[ id, α, d, n, “atleast” ] ) =

{X|X ∈ M,

(∄Y ∈ M such thatdeftime(X) ⊂ deftime(Y )),

(∄Y ∈ M such that(deftime(X) = deftime(Y ) ∧ sometimes(X ⊂ Y )))}

The evaluation of thegpatternoperator is illustrated in Algorithm 3. It uses the auxiliary
functions shown in Algorithms 4 - 6. It also uses the time-dependentunionoperation formsets,
which is defined as follows:

(o1 ∪ o2)(t) =























o1(t) ∪ o2(t), if isdef(o1(t)) ∧ isdef(o2(t))

o1(t), if isdef(o1(t)) ∧ ¬isdef(o2(t))

o2(t), if¬isdef(o1(t)) ∧ isdef(o2(t))

undef if¬isdef(o1(t)) ∧ ¬isdef(o2(t))

whereo1, o2 aremset instances,t is a time instant, andisdef yields true iff its argument is
defined.
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Algorithm 3: gpattern(S: stream(tuple), id: (tuple→ int), α: (tuple→ mbool ), n: int ,
d: duration, q: enum{exactly, atleast}) → stream(mset)

1 letR be astream(mset), initially empty;
2 letAccumulator be anmset , initially empty;
3 foreachs: tuple inS doAccumulator = Accumulator ∪ mbool2mset(α(s), id(s));
4 letChanged := true;
5 while Changeddo
6 Changed := DeleteUnitsBelowSize(Accumulator, n);
7 Changed := Changed ∨ DeleteElemsBelowDuration(Accumulator, d);
8 while Accumulator has more unitsdo
9 let head := Head(Accumulator);

10 Accumulator := Rest(Accumulator);
11 if q = atleastthenR.Add(head);
12 elseR.Add( ExactSubsets(head, n, d));
13 return R;

Algorithm 4: mbool2mset(mb: mbool , id: int) → mset

1 letms be anmset , initially empty;
2 foreach (I, true): ubool in mb doms.AddUnit(I, {id});
3 return ms;

Algorithm 3 accumulates the evaluations of the time-dependent predicate, forall the mov-
ing objects in the input stream, in themset instanceAccumulator. A moving object identi-
fier appears in theAccumulatorin the time intervals/instants during which it fulfills the time-
dependent predicate. The size and duration thresholdsn, d are then applied to theAccumulator.
Finally, the lastwhile loopiterates over theAccumulatorto generate the result stream.

In every iteration, units are read till a definition gap is met (i.e. a time interval/instant
during which theAccumulatoris undefined). This is called thehead, and it belongs to the
setMSetPart. Therefore,headis already one result for thegpatternin the case ofatleast. In
the case ofexactly, all the maximal duration subsets ofheadthat have a cardinality ofn are
generated and added to the result stream.

7 The Crosspattern Operator

Thecrosspatternoperator expresses a patternoid in terms of a time-dependent predicate eval-
uated for pairs of moving objects. Many patternoids can be expressed in this way (e.g. flock,
convoy, convergence, etc.). Hence, it allows one to express patternoids on the spatiotemporal
relationships between objects.

Formally, letS be a set of moving objects. Letα be a time-dependent predicate that can be
applied to pairs of moving objects. We define thepattern graphas follows:

PG(S, α) = {(n1, n2, p)|n1, n2 ∈ S, p ∈ Range(Instant), ∀t ∈ p : (α(n1, n2))(t)}

That is, apattern graphis a set of time-dependent edges in the form(n1, n2, p). An edge
connects its two vertices whenever the time-dependent predicateα is fulfilled. The set of graph

1When the set operations⊂,⊆, and∈ are used in queries and typed at a keyboard, they are denoted asisprop-
ersubset, issubset, andin, respectively.
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Algorithm 5: DeleteUnitsBelowSize(Accumulator: mset , n: int) → bool

1 letChanged be abool , initially false;
2 foreach (I, s): uset in Accumulator do
3 if s.CountElems()< n then
4 Accumulator.DeleteUnit((I, s));
5 Changed := true;
6 return Changed;

Algorithm 6: DeleteElemsBelowDuration(Accumulator: mset , d: duration) → bool

1 letChanged be abool , initially false;
2 let s be a set, initialized by all the moving object identifiers in all the units of
Accumulator;

3 foreachelem: int in s do
4 let p := deftime(elem∈ Accumulator);
5 foreach I : interval in p do
6 if length(I) < d then
7 Accumulator.DeleteElemPart(elem, I);
8 Changed := true ;
9 return Changed;

vertices is not explicitly represented in the pattern graph. Rather, a vertexexists in the graph
as long as at least one edge connects to it. Hence, the set of vertices is also time-dependent.
The pattern graph is a kind of an analytical space, where patternoids canbe searched for. The
connectivity of the graph tells about the interaction between the moving objectsbased on the
α function.

A temporal scan of a pattern graph yields afully dynamic graph(i.e. a standard graph
that undergoes a sequence of edge/node additions and/or deletions). There exist already, in
the area of graph theory, algorithms for answering connectivity querieson dynamic graphs
(e.g. finding connected components). These algorithms efficiently update the solution after
a change happens to the graph, rather than re-evaluating the query from scratch. A review
of such techniques can be found in [6]. We can safely assume that all types of connectivity
queries that are supported for standard graphs, are also supportedfor dynamic graphs (e.g.
Walk, Clique, Connected Component). That is, if we lack algorithms that efficiently search
for certain subgraph types in a dynamic graph, the search will be done inefficiently (i.e. by
re-evaluating the query after every change to the graph). Thecrosspatternoperator is able to
search for various subgraph types within thepattern graph(e.g. Walk, Clique, Knot) using
such techniques.

Given a pattern graphPG(S, α) and an instant of timet, the temporal functionPG(S, α)(t)
yields the standard graph(N,E), whereE is the set of edges inPG(S, α) that are defined at
time t, andN is the set of nodes connected to at least one edge inE.

In the following definition, we use themset type to represent the results of the crosspattern
operator. The elements of themset are the moving objects (i.e. the nodes of the pattern graph)
that fulfill the patternoid. Note that such a representation ignores the graph edges in the results.

LetU ⊆ S×S be a set of candidate pairs2 of elements fromS and letS′ = π1(U)∪π2(U),

2We useU as input to the crosspattern operator instead ofS to be able to do some prefiltering. For example,
interesting pairs of candidates fromS may be those coming close to each other during their lifetime, and they
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where for a set of tuplesV , πi(V ) denotes the projection on thei-th component. SoS is
reduced toS′, the elements mentioned inU . Given an application of thecrosspatternoperator
in the formU crosspattern[id1, id2, α, d, n, “clique”], we first define the setQ as:

Q ={X ∈ MSetPart | always(X ⊆ S′)

∧ (∀(I, V ) ∈ X, ∀t ∈ I :

V is amaximal cliquein PG(S′, α)(t) ∧ |V | ≥ n)

∧ (∀e such thatsometimes(e ∈ X) :

P = deftime((e ∈ X) at true) =⇒ ∀I ∈ P ) : length(I) ≥ d}

An elementX ∈ Q is anmset instance representing one group of moving objects that match
the patternoid. Themaximal cliquecondition guarantees that the number of moving objects in
a result is maximal. We mention theclique in this definition as an example. Clearly it can be
replaced by other subgraph types. Now we define the evaluation of thecrosspatternoperator
as:

eval( U crosspattern[id1, id2, α, d, n, “clique”]) =

{X ∈ Q | ∄Y ∈ Q such that(deftime(X) ⊂ deftime(Y )∧

(∀t ∈ deftime(X) : X(t) = Y (t)))}

whereX(t), Y (t) are theset values ofX,Y at timet. This definition adds to the definition of
Q the condition that the definition time of a result is maximal, thus avoiding an infinite number
of results.

The evaluation algorithm of thecrosspatternoperator is not listed in this paper to keep
the scope of the paper focused. It requires the introduction of specialized data structures for
answering connectivity queries on thepattern graph. While themset type was sufficient for
the definitions above, it is not sufficient for the evaluation algorithm since itdoesn’t store
edge information. We plan to present these data structures and the algorithmin a separate
manuscript.

8 Examples

This section illustrates the expressive power of the proposed language by showing several query
examples. We focus on expressing the patternoids in Table 1, as a kind of comparison with the
other techniques.

Example 4 Find a flock of at least 20 gazelles moving within a circle of radius 30 m for a
duration of 10 minutes.

This is a (20, 30m, 10min) flock, similar to number 8 in Table 1. The difference is, that the
notion of time here is continuous. The query looks as follows:

query Gazelles feed {a} Gazelles feed {b}
symmjoin[.Id_a < ..Id_b]
crosspattern[.Id_a, .Id_b,
distance(.Trip_a, .Trip_b) < 30.0, ten minutes, 20, "clique" )]

transformstream consume;

can possibly be determined efficiently using indexes. Evaluating instead allpairs fromS may be prohibitively
expensive.
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Example 5 Find a convoy of at least 20 gazelles moving within a circle of radius 30 m fora
duration of 10 minutes.

The convoy patternoid (number 7 in Table 1) is a variant of the above flockpatternoid. Unlike
a flock, the members of a convoy may change. This can be expressed as follows:

query Gazelles feed {a} Gazelles feed {b}
symmjoin[.Id_a < ..Id_b]
crosspattern[.Id_a, .Id_b,
distance(.Trip_a, .Trip_b) < 30.0,
one minute, 20, "clique" )]

transformstream
filter[inst(final(.elem)) - inst(initial(.elem))
>= ten minutes] consume;

That is, every object in the patternoid stays at least one minute, while the patternoid itself exists
for at least ten minutes, as enforced by thefilter operator. The effect of this is, that the objects
of the patternoid may change.

Example 6 Find a leadership pattern that consists of: 3 gazelles heading in Northern direction,
followed by a moving cluster of 20 gazelles.

A moving clusteris another variant of a flock. Every member is required to keep a small
distance tosome(rather thanall) other members.

let follow = vec("baba", "bab.a", "baab");
query
reportpattern[
leader: Gazelles feed

gpattern[.Id, mdirection(.Trip) between
[45.0, 135.0], three minutes, 3, "exactly"],

cluster: Gazelles feed {g1} Gazelles feed {g2}
symmjoin[.Id_g1 < ..Id_g2]
crosspattern[.Id_g1, .Id_g2,
distance(Trip_g1, Trip_g2) < 30.0,
ten minutes, 20, "cc" ];

stconstraint(.cluster, .leader, follow)]
extend[clusterMReg: fun(t: TUPLE) Gazelles feed
mset2mreg(.Id, .Trip, attr(t, cluster))]

extend[leaderFinSet: val(final(.leader)),
clusterInitSet: val(initial(.cluster))]

filter[always(mdirection(rough_center(.clusterMReg))
between [45.0, 135.0]) and
(.leaderFinSet issubset .clusterInitSet)]

consume;

wheremdirectioncomputes the time-dependent angle, in degrees, of the moving point from the
x-axis, andrough centercomputes the center of a moving region as a moving point. The query
finds aleadergroup, followed by a moving cluster, where both are heading between north-east
and north-west. The moving cluster patternoid is expressed as aconnected component(cc) in
the pattern graph, rather than aclique in the case of the flock patternoid in Example 4.

Example 7 The encounter patternoid is a variant of the convergence patternoid, in Example 2.
It is a convergence that ends with the moving objects meeting together. We express it as follows:
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query Gazelles feed {a} Gazelles feed {b}
symmjoin[.Id_a < ..Id_b]
crosspattern[.Id_a, .Id_b,
isdecreasing(distance(.Trip_a, .Trip_b)),
20, ten minutes, "clique" )]

transformstream
extend[convMReg: fun(t2: TUPLE) Gazelles feed
mset2mreg(.Id, .Trip, attr(t2, .elem)]

filter[area(val(final(.convMReg)))
<= const_pi() * 30.0 * 30.0]

consume;

that is, the gazelles at the end instant of the patternoid are required to be within a circular area
with radius of 30 m.

9 Optimization

This section discusses the optimization of the group STP queries. We assume that an optimizer
framework for moving object databases exists. The techniques that we propose in this section
extend such an optimizer framework, so that it is able to generate optimized execution plans
for the group STP queries. In order to make this discussion concrete, wedescribe the proposed
optimization techniques in the context of the SECONDO optimizer [11]. These techniques are
however generic, and it should be possible to apply them in other optimizer frameworks.

The SECONDO optimizer accepts queries in an SQL-like syntax, and generates optimal
execution plans in the syntax that was used for the query examples in the preceding sections
(i.e. the SECONDO executable language). We start by defining an SQL-like syntax for the
proposed language operators. The user is supposed to use it in writing the group STP queries.
We then define translation rules to map these SQL-like queries into efficient execution plans.

Since the three operatorsreportpattern, gpattern,andcrosspatternyield streams, we define
them in the SQL-like syntax astable expressions(i.e. expressions that compute tables). That
is, they can be used in the FROM clause, for instance. The syntax is as follows:

table_expr ::= reportpattern( [ p expr, p expr [, p expr ...] ],
[temporal constraint [, temporal constraint ...]] )

p_expr ::= p_operator as alias
p_operator ::= gpattern( table_expr, id, α, d, n, q ) |

crosspattern(table_expr, id1, id2, α, d, n, q )

The following query illustrates the SQL-like syntax for Example 6:

SELECT leader, cluster,
FROM (
SELECT leader, cluster,
val(final(leader)) as leaderFinSet,
val(initial(cluster)) as clusterInitSet,
mset2mreg(Gazelles, Id, Trip, cluster) as clusterMReg

FROM
reportpattern([

gpattern(Gazelles, id, mdirection(Trip) between [45.0, 135.0],
three minutes, 3, "exactly") as leader,

crosspattern(
( SELECT * FROM Gazelles g1, Gazelles g2
WHERE g1.Id < g2.Id ),
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g1.Id, g2.Id, distance(g1.Trip, g2.Trip)< 30,
ten minutes, 20, "scc")] as cluster,

[stconstraint(cluster, leader, follow)] ))
WHERE
[always(mdirection(rough_center(clusterMReg)) between [45.0, 135.0]),
leaderFinSet issubset clusterInitSet]

The straightforwardtranslation ruleof thereportpatternoperator is as follows:

reportpattern([p1 as a1, ..., pn as an], [tc1, ..., tcm])
→ reportpattern[a1 : p1, ..., an : pn; tc1, ..., tcm]

where atranslation ruledefines one way of generating the execution plan for an SQL-like
expression. It has the structure:

SQL-likeexpr→ Executableexpr [:- conditions]

The optional conditions at the end of the rule specify the circumstances under which the rule is
applicable. There may be several valid translations for the same expression. Optimizers apply
different techniques for selecting the best translation (e.g. cost-basedoptimization). The fol-
lowing subsections illustrate the translation rules for the three operatorsgpattern, crosspattern,
andreportpattern.

9.1 Optimizing the Gpattern Operator

Thegpatternoperator evaluates for every tuple in the input stream the time-dependent predi-
cate. Obviously, a tuple whose evaluatedmbool is always false cannot be part of a result. We
would like to use indexes to remove such tuples from the input stream beforeevaluating the
gpatternoperator. The optimizer should be able to analyze the time-dependent predicates and
translate them into index accesses if possible. In other words, we need to extend the optimizer
with translation rules for the time-dependent predicates.

We assume that the underlying system has already translation rules for the standard (i.e.
non-temporal) selection predicates. That is, given a query that consistsof a table expression
in stream, and a standard selection predicatef that is applied to it, it is possible to invoke a
function optimize(in stream, f ), which yields an optimal execution plan for this query. If the
in streamis a scan of a database relation,optimizemight yield an index scan if relevant. If it is
not possible to use indexes, it yields the straightforward planin stream filter [f ].

We define the translation rules of the time-dependent predicates on top of thetransla-
tion rules of the standard predicates. A similar approach was successfullyadopted in [17].
The idea is to map every time-dependent predicatep into a standard predicatef such that
f ⇔ sometimes(p). For example:

mpoint × region → mbool inside #

is mapped into the standard predicate:

mpoint × region → bool passes #

whereinside is the time-dependent predicate illustrated in Figure 2, andpassesis a standard
predicate that yields true if thempoint object ever passes through theregion object. A list of
such mappings can be found in [17].

This mapping allows for using the existing optimization framework of standard predicates,
in order to optimize the time-dependent predicates, and accordingly thegpatternoperator.
That is, letmap(p) denote the standard predicate mapping (as explained above) of the time-
dependent predicatep. The translation rule of thegpatternoperator is as follows:
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gpattern(S, id, α, d, n, q)
→ optimize(S,map(α)) gpattern[id, α, d, n, q]

The following example illustrates this translation rule. Suppose that we wish to express a
group STP query calleddrinking, that reports groups of gazelles that gather to drink from some
lake. The SQL-like query would be as follows:

SELECT mset2mreg(Gazelles, Id, Trip, elem) as drinking
FROM gpattern(
Gazelles, Id, Trip inside buffer(theLake, 50),
half hour, 20, "atleast");

Thegpatternoperator in this query yields a relation that contains onemset attribute with the
default nameelem. Thebufferoperator creates a zone around the regiontheLakewith an extent
of 50 m. The query finds groups of gazelles that concurrently stay within adistance of 50 m
from theLake, for at least half an hour. A possible execution plan that the optimizer generates
for this query is:

query Gazelles Trip sptuni
windowintersectsS[bbox(buffer(theLake, 50))]
sort rdup Gazelles gettuples
filter[.Trip passes buffer(theLake, 50)]
gpattern[.Id, .Trip inside buffer(theLake, 50),
half hour, 20, "atleast")

transformstream
extend[drinking: fun(t: TUPLE) Gazelles feed
mset2mreg(.Id, .Trip, attr(t, elem))

consume;

In order for the optimizer to generate this execution plan, it first mapsα (i.e. Trip inside
buffer(theLake, 50)) intomap(α) (i.e.Trip passes buffer(theLake, 50)).
TheGazelles Trip sptuni in the execution plan is a spatial R-tree index on the units of
theTrip attribute that we assume to exist in the database. Theoptimize(S,map(α)) generates
the index access that is illustrated in the execution plan, instead of simply scanning theGazelles
relation. It produces a window query to the R-tree index using the boundingbox of the buffer
region around the lake, and refines the result using thepassesstandard predicate. Thus, only
the tuples that sometimes fulfill the time-dependent predicateinsideare passed to thegpattern
operator.

9.2 Optimizing the Crosspattern Operator

The optimization of thecrosspatternoperator is similar to that of thegpatternoperator. The
only difference is that the time-dependent predicate in thecrosspatternoperator is applied to
pairs of moving objects. So, it is handled as a join predicate rather than a selection predicate as
in thegpatternoperator. Nevertheless, the strategy is the same.

The time-dependent predicatep in thecrosspatternoperator is mapped into a standard join
predicate bymap(p). We assume that the optimizer defines a functionoptimize(S1, S2, f) that
accepts two table expressionsS1, S2 and a standard join predicatef and yields an optimized
execution plan. The translation rule hence is as follows:

crosspattern(S, id1, id2, α, d, n, q)
→ optimize(S, S,map(α)) crosspattern[id1, id2, α, d, n, q]
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9.3 Optimizing the Reportpattern Operator

As described in Section 5, thereportpatternoperator is evaluated incrementally by solving the
CSPk−1 first, then extending it to CSPk. During the evaluation, the algorithm knows temporal
information from the patternoid operators evaluated so far, and from the temporal constraints.
This temporal information can be used to restrict the definition time of the input trajectories
before the evaluation of the remaining patternoid operators. Consider, for example, areport-
patternoperator containing two patternoid operatorsp1, p2, and a temporal constraintstcon-
straint(p1, p2, vec(“aabb”)). If we know, after evaluatingp1, that the earliest ending group in
its result ends at timet1, a supported assignment ofp2 can only start aftert1. We can safely
restrict the definition time of the input trajectories tot > t1 before evaluatingp2. Thus,p2
receives shorter trajectories, and its evaluation time decreases.

This would require a change to Algorithm 1 of thereportpatternoperator. Line 5 of the
algorithm needs to be replaced by two steps: (1) given the set of temporalconstraints, the set of
supported assignmentsSA, and the next patternoid operator to be evaluatedpi, the first step is
to perform atemporal reasoningto compute the time periods on which a solution ofpi can be
consistent, (2) to tell the patternoid operatorpi to use these computed time periods to restrict
the definition times of the input trajectories before evaluating its time-dependentpredicate.

It is possible to transform the temporal constraints within thereportpatternoperator, so
that the temporal reasoning is performed using theBasic Point Algebra(BPA) [19]. The BPA
performs reasoning over time points, and supports the four point relations{<,>,=, ?}, where
? is the universal constraint (i.e. can be replaced by any of the other three relations). In the
following, we illustrate this transformation.

In Section 5, we have defined the set of temporal relationshipsIR. An elementir ∈ IR can
be decomposed into three time point relations/constraints between four time pointvariables.
That is, given two time intervalsi1 andi2, ir defines a total order(t1⊙1 t2⊙2 t3⊙3 t4), where
{t1, t2, t3, t4} = {i1.t1, i1.t2, i2.t1, i2.t2}, and⊙i ∈ {<,=}.

It is, hence, possible to represent the set of temporal constraints within a given reportpat-
tern operator as a BPA constraint network. Given areportpatternoperator withn patternoid
operators andm temporal constraints each consisting of at mostk terms, the corresponding
BPA constraint network has2n nodes and a maximum of3mk constraints. The2n nodes rep-
resent start and end time points of then patternoids. The upper bound of3mk constraints exists
because each of themk constraint terms is transformed into 3 BPA constraints. Note thatk is
bounded by 26, the size of the setIR, but in practice is a small number, as can be seen in the
examples.

Checking the consistency of the BPA constraint network, and computing the closure (i.e.
deriving the temporal relation between every pair of nodes) is performedin O(n3). The al-
gorithm was first proposed by Allen [2] for his interval algebra, and was proven by Vilan et
al. [19] to work for the BPA as well. It contains two interface functions:Add, andClose. The
network is constructed by callingAddfor every point constraint. TheCloseis called afterwards
to compute the consistency, and the closure. A BPA network is either inconsistent, or it must
induce a strict partial order [18].

The modified algorithm for evaluatingreportpatternis illustrated in Algorithm 7. The
functionConstructBPANetworkin Line 3 constructs the BPA constraint network and computes
the closure using Allen’s algorithm as described above. In every iteration, the consistent pe-
riods for the selected patternoid operator are computed, Lines 7 – 11. In the first iteration,
thesa periodsobject is set to the maximal time interval[0,∞], because there is no temporal
information available yet to restrict the trajectories. Starting from the seconditeration, the con-
sistent periods of the selected patternoid operatorpi are computed w.r.t. everysa ∈ SA. The
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union of all these time periods is the result of the temporal reasoning.

Algorithm 7: reportpattern

Input : P: (ident , stream(mset))+ - a set of patternoid operators,C: (tuple→ bool )+ - a
set of temporal constraints

Output : R: stream(tuple(<(ident , mset)+>))
1 let SA: list(list(mset)) be a list of supported assignments, initially empty;
2 let Agenda:= P;
3 let BPANetwork:= ConstructBPANetwork(P, C);
4 if BPANetwork is not consistentthen return an empty stream;
5 while Agenda is not emptydo
6 i := pick pi from Agenda;
7 let sa periods: range(instant) be initially empty;
8 if SA is emptythen sa periods:= [0,∞];
9 foreachsa in SAdo

10 let cp := GetConsistentPeriods(BPANetwork, sa, pi);
11 sa periods:= sa periods∪ cp;
12 SetArgument(pi, sa periods);
13 let d:= evaluatepi.second;
14 extend(SA, d, i, C);
15 if SA is emptythen
16 return an empty stream;
17 let R := construct the result stream fromSA;
18 return R;

It remains now to use the computedsa periodsto restrict the trajectories’ definition time.
To do this, we need to redefine the patternoid operatorsgpatternandcrosspatternas functions
that accept an argument of typerange(instant). That is, a patternoid operator becomes a
function with the signature:

periods → stream(mset)

whereperiods denotesrange(instant). Accordingly the signature of thereportpatternopera-
tor in Table 3 is changed into:

(ident × (periods → stream(mset)))+ × (tuple → bool)+

→ stream(tuple(< (ident ,mset)+ >)) reportpattern #[ ; ]

This change in the signature allows thereportpatternoperator to pass the computedsa periods
to the patternoid operators at run-time, as illustrated in line 12 of Algorithm 7.

At the same time, we wish to keep the signature of the operatorsgpatternandreportpattern
unchanged, so that it is possible to use them outside thereportpatternoperator, as in Examples
1, 2, 4, 5, and 7. Therefore, we keep thegpatternand reportpatternunchanged, and define
similar operatorsgpattern2and reportpattern2that accept the additionalperiods argument.
In the SQL-like syntax, the user does not need to pay attention to this syntactical difference.
He/she will always be using thegpatternand thecrosspatternoperators in the queries. In the
execution plan, they will be translated intogpattern2andcrosspattern2if they happen to be
inside thereportpatternoperator. The translation rule of thereportpatternoperator instructs
the optimizer to do this. We omit it here, because it is trivial.

Before illustrating the translation rules for thegpattern2and thecrosspattern2operators,
we show in the following a part of the execution plan that the optimizer should produce for the
reportpatternoperator in the SQL-like query in Section 9.
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query reportpattern[
leader: fun(p: periods) Gazelles feed
gpattern2[.Id, mdirection(.Trip atperiods p)

between [45.0, 135.0],
three minutes, 3, "exactly"],

...

Notice the function headerfun(p: periods)that precedes thegpattern2operator. The function
argumentp is set by thereportpatternoperator during execution. Notice also how this argument
is used to restrict the gazelle trajectories in the part.Trip atperiods p. The operatoratperiods
restricts the definition time of a moving object to a givenperiods value.3

The translation rules for the operatorsgpattern2andcrosspattern2need to parse the time-
dependent predicate, and apply theatperiodsoperator to the moving object arguments coming
from the input stream. The translation rules for thegpattern2operator would look like the
following:

gpattern(S, Id, α, D, N, Q)
-> fun(Name: periods) optimize(S, map(α2))

gpattern2[Id, α2, D, N, Q] :-
insideReportpattern,
generateRandomVariableName(Name),
isArgument(attr(Attr, S), α),
isMapping(attr(Attr, S)),
concat atom([attr(Attr, S), ’atperiods’, Name],
’’, Attr1),

replaceArgument(attr(Attr, S), α, Attr1, α2), !.

gpattern(S, Id, α, D, N, Q)
-> fun(Name: periods) optimize(S, map(α))

gpattern2[Id, α, D, N, Q] :-
insideReportpattern,
generateRandomVariableName(Name).

where the conditions under which the rules apply are written in a Prolog syntax. The two rules
make sure in the beginning that this translation happens inside thereportpatternoperator, hence
the SQL-likegpatternis translated into the executablegpattern2. The first rule adds the time-
dependent predicateα to the execution plan modified asα2. This is done under the conditions
that there are some arguments ofα that are attributes in the tuple streamS, and that they are
of the kind MAPPING. In such a case, theatperiodsoperator is applied to these arguments in
the execution plan. If any of the two conditions fail, the second rule addsα unchanged to the
execution plan. Similar translation rules are added also for thecrosspattern2operator.

10 Conclusions

In this paper, we have proposed a language for group spatiotemporal pattern (STP) queries.
The language is both expressive and extensible. The query examples in the paper show that
arbitrarily complex group STP queries can be expressed. Essentially patterns are composed of
patternoids, and patternoids are expressed on top of time-dependent predicates. Each of these

3Actually, the optimization method uses a time interval found for the first patternoid to restrict the time intervals
that need to be considered for the second and further patternoids. Hence in this example, the restriction would be
really effective for the second, thecrosspatternoperator. Nevertheless we explain the mechanism in terms of the
gpatternoperator.
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three layers is both expressive and extensible. The overall expressive power of the language is
a kind of multiplication of their expressive powers.

In this paper, we have defined two patternoid operators. They are able toexpress patternoids
in terms of theindependent movement, and thedual interactionbetween moving objects. An
opportunity for future work is to propose a patternoid operator forteam interactions. Such
patternoids can occur in soccer games, for instance (e.g. the offside trap). Mainly they describe
groups of moving objects, where every individual shows some individual movement pattern,
and these patterns relate together and show some group STP.

The representation of the pattern results asmsets allows for nesting group STP queries
into more complex queries. It is possible, for instance, to build individual STP queries on the
results of a group STP query. That is, one can create moving region representations of the
mset results and further process these moving regions. One can also build group STP queries
on the results of other group STP queries (e.g. find a group of at least 5animal flocks that meet
around a lake).

We have also proposed methods of optimization that are extensible. They do not require
specialized index structures. Rather, they are built on top of the existing optimization frame-
work.

The language design that we proposed in this paper takes into consideration the integration
with a moving object DBMS. We are currently implementing it in the context of the SECONDO

system. It is an extensible DBMS framework where a large part of the movingobjects model
that we assume is implemented. We also intend to elaborate more on the optimization part and
work it out in more detail.
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