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Abstract

Reporting the motion patterns in moving objects data has Heefocus of many re-
search projects recently. Group spatiotemporal pattermghe movement patterns, in
space and time, formed by groups of moving objects, such eksfla¢oncurrence, en-
counter, etc. There exist, in the literature, smart alparg for matching some of these
patterns. These solutions, however, address specificmatiad require specialized data
representation and indexes. They share too little to bejiated into a single system.
There is a need for a generic query method. In this paper, a@oge a language that can
consistently express and evaluate a wide range of grouptgaporal pattern queries.
We formally define the language operators, illustrate treuation algorithms, and dis-
cuss the optimization methods. Several examples are givehdwcase the expressive
power of the language.

1 Introduction

Spatiotemporal data are geometries that change their position and/or exgetinte. Such
kind of data exists everywhere around us (e.g. traces of vehiclestatem regions of certain
plants, flocks of migrating birds, etc.). The advances in the positioningearsmbstechnologies
have made it easier and cheaper to collect the traces of movement. Tlasingramount of
moving object data calls for analysis tools to better understand it. Thefesforéotemporal
data mining is receiving a lot of attention recently.

Spatiotemporal pattern (STP) queries belong to this category of analylis @enerally
they describe sets of changes/events that the moving objects condunct th&ir movement
with some temporal order, and probably reflect interesting phenomewardiag to the num-
ber of objects involved in the pattern, STPs might be individual or group.eXample for
individual STP queries is:

Find all trains that encountered a delay of more than half an hour aftesipasthrough a snow
storm

The example shows an STP that is a sequence of two preditet#scrosses a snow storm
anddelay of train>= 30 min The pattern can be completely evaluated for eveiy, hence
the namendividual. An individual STP query, hence, reports the moving objects that fulfill a
set of predicates in a certain temporal order.



On the other hand, group STP queryeports the patterns that involve a collective move-

ment of several moving objects, e.g.

Find a flock of geese migrating in northern direction

The query looks for a group of geese traveling close to each other, atlg th northern di-
rection. Answering such a query requires analysing the trajectoriesvefa moving objects,
and their spatiotemporal relationships to one another.

The individual STP queries were previously studied, and an expesksgiguage was pro-
posed in [17]. In this paper, we focus on group STP queries. ThepgBIP queries are
required for many application domains such as the behavioral study of lantnadfic moni-
toring, analyzing soccer games, etc. The topic has recently attracted ps@archers as we
discuss in Section 2. The techniques for reporting group STPs are eitlee (i.e. continu-
ously searching for the pattern instances in a data strearojflioe (i.e. searching for pattern
instances in the historical trajectories of the moving objects). This papesdemn theffline
pattern search.

This paper proposes an extensible language that is able to expressadesa wide range
of group STP queries consistently. We also propose optimization methodsfw tlueries.
The proposed language design pays a lot of attention to the issues relsysteto integration.
That is, the inputs and the outputs of the language operators are cadefsifyned to integrate
with the query language of a spatiotemporal DBMS.

Most of the related work goes in the direction of providing algorithms for tifieient
matching of specific STPs. With the exception of the work in [14], there angroposals that
offer such a language, up to our knowledge. This approach hagveowimitations that we
discuss in detail.

The rest of this paper is organized as follows. Section 2 reviews thdyciesated work.
Section 3 describes the moving objects representation that we assume irptris\pe give
a non-formal illustration for the proposed language in Section 4. The fadefmitions of
the language operators follow in Sections 5, 6, and 7. The utility of the pemptanguage
is demonstrated in Section 8 by several query examples. Section 9 degbelb@ptimization
of the language operators. Finally we conclude in Section 10, and telt aboduture work
plans.

2 Related Work

In their work, Dodge et al [5] presented a systematic taxonomy of movepadtgrns, along
with an extensive survey of this area of research. They propossticbddimensions to classify
the movement patterns, underlining the commonalities between them. Their voordsts that
a generic toolbox for pattern search can be designed based on daskifiaation.

Andrienko and Andrienko have several publications that focus ortisnkibased on vi-
sual analytics, for example [3]. In particular, a set of data transformsticomputations, and
visualization techniques is defined, that could enable a human analyst tvatiseteresting
patterns in large masses of moving objects data.

The algorithmic solutions of the problem tend to address very specific patfEney share
too little to be integrated within one system context. Moreover, there is ho widegnt on
the definitions of the patterns. Table 1 lists some of these works. The tals,dboinstance,
two of the definitions of thdlock pattern. The first is proposed in [15] and [8]. The pattern
matching is done using the REMO approach, that we discuss below in detasl.séldond
definition appears in [4]. The trajectories are represented as pointsgh dimensional space,
indexed by askip quad tree A flock query is then modeled as a count query to the skip quad
tree. Theconvoypattern [13] is another variant of the flock pattern.
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The MoveMine application [16] implements several recent algorithms farg8¥Ps, and
trajectory clustering and classification. The application offers a GUI tetheeparameters of
every algorithm and to visualize the results. MoveMine did not show, hexyetforts towards
integrating these pattern matching algorithms in a unified computational framework

Table 1: Examples for the Group STPs

1 Concurrence[14]: n moving point objects (MPO)
showing the same motion attribute value (e.g. speed,
azimuth) at time:.

2 Trend-settef14]: One trend-setting MPO anticipates
the motion ofm others, so that they show the same
motion attribute value.

3 (m,r) Flock[15], [8]: At leastrm MPOs are within a
circular region of radiug and they move in the same
direction.

4 (m,r,d) Leadership[15], [8]: At leastm MPOs are
within a circular region of radiug, and they move in
the same direction. At least one of them was already
moving in this direction for at leagttime steps.

5 (m,r) Convergencdl5], [8]: At leastm MPOs will
pass through the same circular region of radiuas-
suming they keep their direction.

6 (m,r) Encounter[15], [8]: At leastm MPOs will be
simultaneously inside the same circular region of ra-
diusr (assuming they keep their speed and direction).

7 (m,r,d) Convoy [13]: At least d consecutive
timesteps, during which amr{, r) Density-based Clus-
ter is defined.

8 (m,r,d) Flock [4]: At leastd consecutive timesteps,
such that for every timestep there is a disk of radius
that contains all then MPOs.

The work by Laube et al. [14] proposes the REMO (RElative MOtion) rhottes the
most closely related work to this paper. It defines a language that caistmntly express a
number of group STP queries. Briefly, the model defines a 2D matrix,atherrows represent
the moving objects, and the columns represent a series of time instants.a#/lereolumns
are clearly ordered by time, the rows have no inherent order. The elemiethhe matrix are
the values of some predefined motion attribute (e.g. object’s speed, azimeeleration, etc.)
computed for the moving object (row) at the time instant (column). The REMGOxisitience
a 2D string, where 2D string patterns can be searched for. The pattery ig expressed by
means of regular expressions. The model could successfully expegsancurrenceand the
trend-settempatterns [14]. We see the following shortcomings in the REMO approach:

(1) The size of the REMO matrix is proportional to the database size. Onlel\ween need to
maintain several matrices for several motion attributes.

(2) The REMO matrix does not inherently support the analysis based avbjbet locations
(e.g. spatial proximity constraints between the moving objects). The modetesded in
[15] to support such analysis functions as second class citizens. ig Hatt the analysis
is done on the REMO matrix, then the analysis part that requires object logdasiadone
on the results. For example, according to the REMO modtlck pattern is aconcurrence
pattern plus spatial proximity constraints. This would require that the flock resmhatch
the concurrence pattern (i.e. concurrently share similar values for the nattidgoutes). Such
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a definition is clearly restrictive (e.g. cows in a flock may move around, witleawing their
flock, with different speed and/or azimuth).
(3) The model cannot express the patterns that are described asbpkct interactions. The
motion attributes in the REMO matrix describe every object independently ofhlee abjects.
Patterns that are described based on the mutual relationships betweervihg obgects (e.g.
north of, closer than) cannot be expressed.
(4) The REMO matrix handles the time discretely. It does not directly supgmmtinuous
trajectories. Trajectory sampling is known to incur inaccuracies in the datesentation.

Up to our knowledge, this work by Laube et al. is the only one that prapasgeneric
language for group STP queries. The above analysis calls for a nawamh that overcomes
these problems.

3 The Underlying Data Model

This paper builds on the moving objects data model proposed in [12] andl'fd$ section
describes the parts of the model that will be used in the rest of the papeaus&\the Second-
Order Signature (SOS) [9] for the formal definitions. It is a tool forcifyéng data models,
query processing, and optimization rules. It lets the user first define pleesiystem (the first
signature), then define polymorphic operations on the types (the seigmadse).

A signature consists afortsandoperators and generates a set@ims In the first sig-
nature, the one defining the type system, sorts are chilhety operators are calletype con-
structors and terms are calletypes That is, type constructors operate on kinds to generate
types. We briefly describe the type system, and the query language] @id27] in Sections
3.1 and 3.2. Then we extend this type system in Section 3.3.

3.1 The Base Type System

The upper part of Table 2 shows the type system of [7]. The bold partsxéensions that will
be described in Section 3.3. The left, and middle columns display the arguntktiiearesult
kinds, and the right column displays the type constructors. Kinds are fsigises. The kind
DATA, for instance, contains four types. A type constructor that acoeptarguments is a
constant, and yields a single type (eifit, point). A type constructor that accepts arguments
generates a set, possibly infinite, of types (eag.ge(int), ..., range(instant)).

The upper part of Table 2 defines abstract data types (ADT) for mmbiert representa-
tion, as was proposed in [7]. The lower part describes a relationahuadel, where ATTR =
DATA U ... U MAPPING. We restrict ourselves in this paper to the relational model. Itis ho
ever possible to introduce similar solutions for other database models (gagt mddational,
XML, etc.).

Table 2 defines the syntax of the type system. The semantics is definedidpyiraps
domainfor every type. The base types (e.@ut, string, etc.) have similar domains as in
programming languages, except that their domains here are extendeel \mlubundefined
(€.9. Dyeqt = R U {undefined}, whereDy,,,. denotes the domain ofpe).

This type system defines two kinds for moving objects: UNIT and MAPPINggether,
the two kinds define the so-callesliced representatiolof moving objects [7]. That is, the
complete movement of a moving object during a certain observation periodosg®sed into
slices each of which describes the movement during a smaller time interval. An abjlecd
UNIT represents a singldice. An object of kind MAPPING is a set of UNITs/slices.

Let D;,stane denote the domain of time instantsstant, isomorphic taR. Let Interval be



Table 2: The Type System

— IDENT ident

— DATA int, bool, real, string
— DISCRETE int, bool, string

— SPATIAL point, region, line

— TIME instant
DATA U TIME — RANGE range
DATA U SPATIAL — COLL set
DATA U SPATIAL UCOLL — TEMPORAL intime
DISCRETEU COLL — UNIT constunit

— UNIT ureal, upoint, uline,

Uureqion

UNIT — MAPPING  mapping
(ident x ATTR)T — TUPLE tuple
TUPLE — REL rel
TUPLE — STREAM stream

the set of time intervals defined as:

Interval ={(t1,t2,lc,rc)| t1,ta € Dipstant, lc,Tc € {false, true,
t1 < tog, (tl = tz) =lc=rc= true}

That is, a time interval can be left-closed and/or right-closed as indicatéigebyalues ofc
andrc respectively. It is also possible that the interval collapses into a single tirtantns

A type in the UNIT kind describes a pair consisting of a time interval and a teshpor
function. The temporal function describes the evolution of the value of thangmbject
during the associated time interval. For the types that have discrete domaiid§E@RETE
U COLL), the temporal function is a constant, and the type construetettunit constructs
their unit types. LeD, be the domain of a type € DISCRETEU COLL. The domain of the
corresponding unit type is:

DM(U) = Interval x D,

For example, the domaiP .,nstunit(reor) = Interval x {false, true,undefingd For the types
that have continuous domains (e.geal, point), the domains of their unit types are defined
individually. For example, the domain of the unit point is:

D ypoint = Interval x (R2 X RQ)

The unit point describes a linearly moving point in the farm((z1, y1), (2, y2))). The posi-
tion of the point attime < I is

(.Tg—xl)(t—f.t1) (yg—yl)(t—f.tl)

Tt 1t MY 1414 )

(3?1 +

A type in the MAPPING kind describes the complete movement of a moving ohjeicio
some observation periods. It is therefore represented as a set ®5UNI



Definition 1 YV unit in UNIT, letD,,,,;; denote its domain. The domain of the typepping(unit)
is:

D papping(unit) = U C Dunit | ¥(i1, f1) € U, (i2, f2) € U :
(i) i1 =i = f1 = fo
(19) 11 # ig = (i1 Nz :®) A
(i1 adjacent, = —((i1, f1) mergeabldis, f2)))}
O

wherei; adjacentis < (i1.te = i9.t1) V (i1.t1 = i2.t2), andmergeableyields true if the
two units can be merged together. It is defined according to the unit typecoRstant units
(constunit):

((i1, f1) mergeable (i2, f2)) = (f1 = f2).

For upoint, for instancemergeablegyields true if both units have the same direction and speed,
and share one end point. This last condition ensures that a moving obgeet tmique rep-
resentation, the one with the minimum number of units. Note that the definition altows f
temporal gaps during which the moving object is undefined. In the followtimegtypes in
MAPPING are denoted by a preceding(e.g. mint, mpoint, mbool). Figure 1 illustrates an
mpoint object.

Figure 1: The sliced representation of @point

["2003-11-20-06:06" "2003-11-20-06:06:08.692"[,

t (16229.0 1252.0), (16673.0 1387.0)

["2003-11-20-06:06:08.692" "2003-11-20-06:06:24.776"],

(16673.0 1387.0), (16266.0 1672.0)

['2003-11-20-06:06:24.776" "2003-11-20-06:06:32.264",

(16266.0 1672.0), (16444.0 1818.0)

y ["2003-11-20-06:06:32.264" "2003-11-20-06:06:39.1397],

X (16444.0 1818.0), (16144.0 2227.0)

3.2 The Query Language

A large number of operations is defined for the type system describee adee [7] and [12].
They fall into three classes:

1. Static operations defined on the non-temporal types (e.g. topologmdicates, set
operations, aggregations).

2. Spatiotemporal operations offered for the temporal types (e.g. trajesftan mpoint,
evaluation of annregion for a given instant of time).

3. Lifted operations offered for combinations of moving and non-movinggyBasically
they are time-dependent versions of the static operations.

A large part of this moving objects model is implemented in tae SNDOsystem [1], [10].
It consists of three modules: the kernel, the query optimizer, and theigehpker interface.

The SEcoNDoOkernel accepts queries in a language called theciDo executable lan-
guage It is a procedural language, in which one specifies step-by-step detboachieving
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the results. It consists of the three classes of operations above andrgfayocessing opera-
tions of the relational model, usually applied in a stream processing modentia#iget is a
precisely defined notation for query plans.

Whereas other database systems represent query plans as opeestgetnerated by the
optimizer, £CcoNDOto our knowledge is unique in offering a complete syntax for query plans
and a corresponding language level that is accessible to the useretnattds, the user can
type query plans directly; these are parsed, checked for corneiagition of operations, and
then executed.

The SEconDo optimizer offers an SQL-like language like other database systems. The
three classes of operations mentioned above are integrated into this lexal. akhe optimizer
uses cost based optimization to map SQL queries into query plans of teN® o executable
language. Any plan that the optimizer generates could as well be typetydbea user.

The language for group spatiotemporal pattern queries we describe paihes requires
extensions to a database system both at the levels of query processiofcarery optimiza-
tion. The first step is to extend query processing by new operatorssédumnd step is to also
extend the optimizer to make use of the new query processing operatots apply further
optimizations.

In the sequel, we will first embed our proposed language into #eo&DO executable
language. Since this language level is accessible to the user, we will ekgatoncepts at
this level and formulate also example queries at this level, making use ©@b$D0 query
processing operations as needed. This allows us to explain the languagasnof precisely
defined query processing operations and their related algorithms, whikmg bothered by
the additional level of complexity resulting from embedding into SQL and qaptiynization.
Later in Section 9 we explain the second step of integrating the languagatiopsrinto the
SQL language on top of the optimizer.

Here we briefly introduce the executable language level PbeineBoolbe a relation with

the type:rel(tuple(<(Name,string), (Phonestring)>)). A query that finds the entries with
the nameAli Mahmoudis:

query PhoneBook feed
filter[.Nane contains "Ali Mhnoud"] consune;

Thefeedoperator reads a relation from disk and converts it into a tuple streamcaortseime
operator does the opposite. Thiléer operator evaluates a boolean expression for every input
tuple, and yields the tuples that fulfill it. For such stream processing tipesaisually a postfix
syntax is defined so that one can conveniently write query operators andbein which they

are applied. The signatures of these operators are:

rel(tuple) — stream (tuple) feed _#
stream(tuple) — rel(tuple) consume  _#
stream(tuple) x (tuple — bool) — stream(tuple) filter -]
string X string — bool contains _F

wheretupleis a type variable that can be instantiated with any type in TUPLE. The last column
in the signature shows the operator syntax, where # denotes the oparatordenotes an
argument. We will describe more operations in the sequel.

3.3 Extending the Type System

We extend the type system in [7] by the kind COLL as shown in bold in Tableh?s i to
introduce the moving set typaset (i.e. mset denotesmapping(constunit(set))). It repre-
sents a set whose elements are changing over time. The dadmgin of the typemset can
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be obtained by applying Definition 1. That is, Elembe a type variable that can be instan-
tiated by any type in DATAU SPATIAL, and letD.;.,, be its domain. The domain of the
type set is Dset = P(Dejem), @and the domain of the typenstunit(set) iS D copstunit(set) =
Interval X Dset. Finally Dy, is obtained from Definition 1 @B, ping(constunit(set))- 1He
type mset is used to represent the groups of moving objects that match a group $MP asl
will be shown in Section 4. We also define the BEetPart which is required for the operator
definitions, as follows:

Definition 2 Let MSetPart be a subset ab,,,..; defined as:

MSetPart = { {(i1, f1), .-, (in, fn)} € Dmset|
i e Interval : i = (i1 U...Uip)}

]

That is, an element of th&/SetPart is anmset instance that has no definition gaps within its
definition time. Its definition time can be represented as a single time interval.

4 The Proposed Language

This section roughly illustrates the proposed language. The details oféhators, their formal
definitions, and the evaluation algorithms follow in Sections 5, 6, and 7, céggly. The
proposed language is a nested operator structure having three leméds.dottom-most level
are the time-dependent predicates. These are operations thatnfiedd values. They are
part of the model in [12] and [7] that we described in Section 3. Figure &titites the time-
dependent predicateside whose signature is:

mpoint X reqion — mbool inside _F

It yields true in the time intervals during which thepoint object is spatially located within
the region object, false otherwise.

The group STPs are typically expressed based on some motion attributedifeagion,
area, distance between objects, etc.). These attributes can be the rdinates (e.g. find cars
meeting in down town), a derivative (e.g. find a cattle moving with high speed,second
derivative (e.g. find oil spills increasing their area). Time-dependesdigates are able to
express conditions on such attributes. They are also defined for all &fndeving objects
(e.g. mpoint, mregion, mreal). We express the group STP queries on top of them, hence
allowing for complex analysis on all kinds of motion attributes and all types ofimgosbjects.

Trip inside R

TRUE

397.7

378.3

FALSE

3783 3977

Figure 2: Time-dependent Predicates

In the second level are thgatternoidoperators. A patternoid is a simple group STP such
asflock convergenceconcurrenceetc. This is in contrast to the composite group STPs which

8



consist of several patternoids (e.g.canvergencdollowed by aflock). In this paper, we
describe two patternoid operators, tipgatternand thecrosspattern Both of them are built
on top of the time-dependent predicates. Tpatternoperator expresses the patternoids in
terms of independently computed motion attributes of the moving objects.cdt®irrence
patternoid, for instance, is a group of objects that concurrently fulfithessime-dependent
predicate. The time-dependent predicate is evaluated for every movject aimependently
from other objects.

The crosspatterroperator expresses the patternoids that can be described in termg of dua
interactions between the moving objects (dlock, convoy, convergence, 8t flock, for in-
stance, is expressed in terms of the distance between pairs of moving objestgosspattern
operator, in contrast to thgpatternoperator, evaluates the time-dependent predicate for pairs
of moving objects.

Thereportpatternis the top-most operator at the third level. It allows for expressing com-
posite group STPs. It allows one to specify constraints (e.g. temporad@ail) between a
list of patternoids. In the following, we show three examples that illustratepla¢tern the
crosspatterpand thereportpatternoperators, respectively. We assume the schema:

Gazelles[ld:int, Trip: mpoint]

Example 1 Find a group of 20 gazelles that move concurrently with a speed of more€han
km/h, for at least 10 minutes.

|l et ten.m nutes= create_duration(0, 600000);

query Gazelles feed
gpattern[.1d, speed(.Trip) > 20.0, ten.m nutes, 20, "atleast"]
transfornmstream consune;

Thegpatternoperator gets a stream of tuples. It evaluates the time-dependent peegead(. Trip)
> 20.0for every tuple in the stream. Using the evaluateldols, it finds the groups with cardi-
nality of at least 20gazelles, that concurrently fulfill the time-dependent predicate, foaat le
10 minutes. The result of thopatternoperator is represented astaeam(mset), as will be de-
scribed later in detail. Within the results, gazelles are represented by thifiets, which are
supplied by the argumenid. Thetransformstreantasts thestream(mset) result ofgpattern
into astream(tuple(<(elem,mset)>)), so that it can be passed to tthensumeperator.

The following example illustrates theosspatterroperator.

Example 2 Find a group of at least 20 gazelles moving simultaneously for 10 minutesdswar
some place of meeting.

The example describes a relaxed version ofdbevergencepatternoid in Table 1. The def-
inition in the table requires that the gazelles keep their movement direction (azitautie
meeting place unchanged. Gazelles that change their direction, to maaeowed some ob-
stacle, for instance, will not be reported. In the following query, weres® convergence in
terms of the continuous decrease in the dual distance between the gazelles.

query Gazelles feed {a} Gazelles feed {b}
symmjoin[.ld_a < ..ld_b]
crosspattern[.ld_a, .1d_b,

i sdecreasi ng(di stance(.Trip_a, .Trip_b)),
ten_.m nutes, 20, "clique" )]
transformstream consune;

Since thecrosspatternoperator requires pairs of gazelles in the input stream Gheelles
relation is first self-joined by theymmjoinoperator. Theld_a and.ld_b arguments of the



crosspatterroperator tell it about the identifiers of the pair of gazelles. The time-degrgnd
predicate is evaluated for every input tuple. This computes a kitichefdependent joirThat

is, two tuples from the originaGazellesrelation join together whenever the time-dependent
predicate holds.

This join result is represented as a time-dependent graph, as will bed&filsection 7.
The nodes of this graph are the gazelles (i.e. every node correstmiaasidentifier of a
gazelle), and the time-dependent edges are the evaludieds. An edge exists between two
nodes, whenever th@bool is true (i.e. the two gazelles are getting closer to each other).

The last three arguments in tliceosspatternoperator define search criteria for a special
subgraph within this time-dependent graph. In this example, we lookdlig@e containing at
least 20 nodes, that lasts for a duration of at least ten minuteBgéein this case means that
every gazelle in the clique is continuously getting closer to every other gazdhe clique.
One can specify other sub-graph types according to the patternoid diesdsbing (e.g.a
connected component

The self-join of the Gazelles relation in this example is a brute force solutionttinob
pairs of gazelles. For an efficient execution, one would use an indetrteve only the pairs
of gazelles that have chances to fulfill the time-dependent predicatectio8 9.2, we propose
an approach to integrate theosspatterroperator with the query optimizer.

The following example illustrates theportpatternoperator.

Example 3 Find a group of at least 20 gazelles which moved simultaneously for 10 minutes
towards some place of meeting, then moved together with a speed of at |éasit0

The query describes a composite pattern that consists of the two patteimdigsprevious
examples. They are composed together based on three constraintgerfipaal constraint
restricting the concurrence patternoid to occur after the convergexitammwid, (2) a spatial
constraint that the concurrence patternoid starts from the final locatitimecconvergence
patternoid (i.e. the place of meeting), (3) and an attribute constraint thaathe group of
moving objects matches the two patternoids.The query looks as follows:

|l et then = vec("abab", "aa.bb", "aabb");
query reportpattern|
concurrence: Gazelles feed
gpattern[.ld, speed(.Trip) > 20.0, ten.mnutes, 20, "atleast"],
converge: Cazelles feed {gl} Gazelles feed {g2}
symmjoin[.ld gl < ..I1d_g2]
crosspattern[.ld g1, .1d_g2,
i sdecreasi ng(distance(Trip_gl, Trip_g2)),
ten_m nutes, 20, "clique" ];
stconstraint(.converge, .concurrence, then)]
ext end[
concMReg: fun(tl: TUPLE) Gazelles feed
nset2nreg(.1d, .Trip, attr(tl, concurrence)),
convMreg: fun(t2: TUPLE) Gazelles feed
nmset2nreg(.1d, .Trip, attr(t2,.converge)]
ext end[
convFi nSet: val (final (.converge))
conclnitSet: val (initial(.concurrence))
convFi nReg: val (final (.conviMRreq))
conclnitReg: val (initial(.concVReg))]
filter[.convFinSet intersection .conclnitSet count >= 20]
filter[.convFinReg intersects .conclnitReg]
filter[not(sonetimes(area(.concMReg)> 8000.0)]
consune;
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The reportpatternoperator in this query contains two patternoid operators, and one temporal
constraint. The two patternoids are given the ali@sexurrenceandconverge These aliases
are required to refer to the patternoids in the rest of the query. This isgnes to attribute
aliases in standard SQL. The temporal constraint is expressed Bycthestraintoperator. It
states thatonvergehappens firsthen concurrencewherethenis defined by théet command
before the query.

Each of the termabab, aa.bb, aabthat definehendescribes a relationship between two
time intervals. The start and the end time instants of the first interval are deaatend
those of the second interval are denobdd The order of the symbols describes the interval
relationship visually. The dot symbol denotes the equality. For examplegtagonaa.bb
between the intervalg, i, denotes the order:(4;.t; < i1.t2) A (i1.te = i9.t1) A (ig.t1 <
i9.t2)). The temporal relationshifnenexpresses the disjunction of its three components.

Each of the two patternoid operators yieldg@am (mset). Everymset represents a group
of moving objects that matches the patternoid. Note that the group members negniggng
over time, because moving objects may be joining or leaving the group, asdahg group
cardinality does not go below the threshold. Therefore, a patternoigriesented as amset
rather than a&et.

The reportpatternoperator computes the product of theet streams coming from the
patternoid operators, and filters it using the temporal constraints. In thism@g, a pair of
msets fulfill the temporal constraint if their definition times fulfill thkeenrelationship (i.e. by
fulfilling any of its three components). As will be explained in Section in the result
of a patternoid operator belongs to the B&etPart This is to guarantee that its definition
time is a single time interval, hence temporal constraints can be applied to paiesrof Tine
reportpatternoperator in this query yields the a tuple stream with the type (schema):

stream (tuple(< (concurrencemset), (convergemset) >))

The spatial and the attribute constraints between the two patternoids aredapgliés tuple
stream. The firsextendoperator adds two attributegoncMRegand convMReg They are
mregion representations of theoncurrenceand theconvergepatternoids. Each of them repre-
sents the convex-hull of the gazelle locations at every time instant. Now tleedinpam has
the schema:

stream (tuple(< (concurrencemset), (convergemset),
(concMRegmregion), (convMReg mregion) >))

The seconaxtendoperator adds four attributes, namenvFinSetandconclnitSetthe final
and initial values of th&onvergeand concurrencemsets, andconvFinRegand conclnitReg
the final and initial values of the corresponding moving region represemsacreated in the
previous step. At this point, the schema is:

stream(tuple(< (concurrencemset), (convergemset),
(concMRegmregion), (convMReg mregion ),
(convFinSetset), (conclnitSetset),
(convFinRegregion), (convMReg region) >))

The attribute constraint is expressed by the filgr operator in the query. It enforces that
the set of gazelles at the final time instantohvergeand the set of gazelles at the initial time
instant ofconcurrencéhave at least 20 gazelles in common. The spatial constraint is expressed
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Table 3: The Proposed Language

(string)™ — stvector vec #(2)
tuple x (tuple — interval)? x stvector — bool stconstraint  _ #(_, _, -)
stream (tuple) x (tuple — int) x (tuple — mpoint)

xmset — mregion mset2mreg #H(y oo o)
stream(tuple) x (tuple — int) X (tuple — mpoint)

xmset — stream(mpoint) mset2mpoints #(_, _, _, -)
stream (tuple) x (tuple — int) X (tuple — mbool)

x duration x int x string — stream(mset) gpattern SH#L L o o ]
stream (tuple) x (tuple — int)? x (tuple — mbool)

x duration X int X string — stream(mset) crosspattern  _#[, -, -, -, _, ]
(ident x stream(mset))™ x (tuple — bool)™

— stream(tuple(< (ident, mset)™ >)) reportpattern  #[_; ]

by the secondilter operator. It enforces that the region representiogvergeat its final time
instant, and the region representcmncurrenceat its initial time instant intersect.

The lastfilter operator constrains the gazellescioncurrenceo keep close to one another
in a circle of area 8000 f We added this to illustrate how the spatial proximity constraints
can be applied to the results of thpatternoperator in a way similar to [15].

Table 3 lists the signatures of the operators that constitute the proposed@ngThe
stvector is a type that represents the temporal relationships, suittegasn a compact integer
representation. Théterval type represents a time interval. The following sections describe
these operators formally.

5 The Reportpattern Operator

In this section, we formally define theportpatternoperator. It gets two lists: a list of pat-
ternoid operators each of which has an alias, and a list of temporal amnsirSyntactically,
the reportpatternoperator requires that a patternoid operator yieldg-@am(mset), and that

a temporal constraint is a mappingle — bool). Semantically, the result of a patternoid op-
erator is required be a subset@Set Part. This is required to be able to evaluate the temporal
constraints, as will be explained below in this Section.

We start by defining a language for the temporal constraints. A similar lgegwas de-
fined in [17], in the context of individual STP queries. Given two time iraésveach of which
may degenerate into a time instant, there are 26 possible relationships betareei\ta define
a set/R consisting of 26 terms, each of which expresses one such relation$tapisT

IR = {aabb, abba, bbaa, a.bab, aa.bb, a.bba, bb.aa, baa.b,

abab, aba.b, baba, a.ba.b, baab, a.abb, bb.a.a, a.a.bb, bba.a,
ba.ab, b.baa, aa.b.b, b.b.aa, aab.b, ab.ba, a.ab.b, b.ba.a} a.a.b.b

where a term inR is formally defined as follows. L&t, is € Interval, ir = s189...5; € IR,
i1.t1 If s; isthefirstain ir

i1.ty if s; isthe secon@in ir

Let rep(s;j) = q ia.t; if s; isthefirstbin ir

io.ta If s; isthe secontbin ir

If Sj:.
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i1 and ig fulfill syse..sp = Vjie{l,...,k—1}:
(1)sj # - # sj1 = rep(sj) < rep(sjt)
(17)sj41 = . = rep(s;) = rep(sj+2)

Two time intervals, io € Interval fulfill a setof interval relationships if they fulfill any
of them, that is:

i1 andig fulfill ST C IR < Fir € SI : 4; andiy fulfill ir

Syntactically, thevecoperator in Table 3 allows for composing sughsubsets, and represent-
ing them as an object of typgvector.

Let P = {ps,...,pn} be a set of patternoid operators. A temporal constrainPas an
element of the set:

TC(P) ={l..n} x{1.n} x P(IR)

Itis hence a binary constraint that assigns a pair of patternoid opefedor P a set of interval
relationships. Syntactically, it is expressed by steonstraintoperator in Table 3.

Let P = {ps,...,pn} be a set of patternoid operators. lestalp;) denote the evaluation
of the patternoid operatgr, € P, that is,evalp;) C MSetPart We define the set afandidate
assignment€'A(P) as:

CA(P) = eval(p1) X ... X eval(pn)

That is, theCA(P) is simply the Cartesian product of the result streams of the patternoid
operators.
Letca = (vy,...,v,) € CA(P) and letc = (4, k, SI) € TC(P) be a temporal constraint.

ca fulfills c:& deftime(v;) and deftime(vy) fulfill ST

wheredeftime(v;) is the time interval during which theuset v; is defined. Since theeport-
pattern operator requires that a result from a patternoid operator belonikStiPart it is
guaranteed thateftime(v;) yields a single time interval.

Let C C TC(P) be a set of temporal constraints. The sesa@bported assignments C
is defined as:

SA(P,C) ={cae CA(P) |VYce C:ca fuffills c}

That is, for acandidate assignmeid be asupported assignment must fulfill all the con-
straints inC'. A supported assignment, hence, contains a singlg instance for every patter-
noid, and fulfills all the temporal constraints. The result ofrdygortpatternoperator is the set
of supported assignments. That is:

Definition 3 The reportpatterroperator is a pair ¢,C), whereP = {p;,...,p,} is a set
of patternoid operators, and’ C T'C'(P) is a set of temporal constraints. Its evaluation is
defined as:

eval((P,C)) = SA(P,C)

O

In order to evaluate theeportpatternoperator, we use the classical model of tbastraint
satisfaction problem CSR similar approach was adopted in [17]. ACSP is atripte D, C),
whereX is a set of variabled) is a set of the initial domains of , andC' is a set of constraints.
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The solution of the CSP is a set of tuples, each of which contains one valatie domain of
each variable, and fulfills all the constraintg(in Such a tuple is calledsupported assignment
of the CSP.

The definitions of theeportpatternoperator and the CSP map to one another. The CSP
variablesX are the patternoid operators. The domAijof a variableX; consists of thensets
that result when evaluating the corresponding patternoid operatolC$Reconstraints are the
temporal constraints in theportpatternoperator.

This CSP is solved incrementally, as illustrated in Algorithm 1. The algorithm sahe
CSPR,_; (i.e. havingk — 1 variables) first, then extends it to the GSMote that evaluating
the domain of a variable is equivalent to evaluating a patternoid operatoe Siich an evalu-
ation is expected to be expensive, we wish to minimize the number of evaluakRedati8ble
domains, in the case that no solutions exist. The incremental evaluation allows &arly
stop if a solution to the CSP; cannot be found, avoiding the unnecessary evaluation of the
remaining patternoid operators.

The Agendastores the patternoid operators (i.e. the variables), that are not yeamc
In every iteration, one patternoid operator is selected from the Agerdlaatuated by the
Pick function. The selection heuristic tries to discover as soon as possible evlibehCSP
has no solutions. It selects the variable from the Agenda that leads toah&aton of the
largest number of constraintsdnduring the current iteration. The same selection method was
adopted in [17].

The sub-CSP, that consists of all the patternoid operators that aragbo far, is solved
by theextendfunction in Algorithm 2. Only consistent solutions (i.e. patternoids that fulfill
the temporal constraints) remain in the supported assignmen&Asdthe algorithm stops
immediately and returns an empty stream once th&aés empty. A temporal constraint, as
illustrated in Table 3, acceptdaple containing as many attributes as the number of patternoid
operators. This tuple is dynamically generated byrémmrtpatternoperator during execution,
and passed as a parameter to sheonstraintoperator, as illustrated in lines 10 and 12 in
Algorithm 2. The attribute names within it are the aliases of the patternoid operatbe
attributes values are the definition times of the patternoids in a candidate assignfine
stconstraintoperator assigns two attributes from this input tuple a set of interval resiiijos
composed by theecoperator.

Algorithm 1: reportpattern

Input: P: (ident, stream(mset))™ — a set of patternoid operatof3; (tuple — bool)™ —
a set of temporal constraints

Output: R: stream(tuple(<(ident, mset)t>))

let SA list(list(mset)) be a list of supported assignments, initially empty;

let Agenda=P;

while Agenda is not emptyo

i :=pickp; fromAgenda; // sel ect and renove one variable from

t he Agenda

5 letd := evaluatep;.second

6 extendBA d, i, C);

7 if SA is emptyhen

8

9

A W N P

\ return an empty stream;
let R := construct the result stream froB8#A
10 return R;
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Algorithm 2: extendBA list(list(mset)), d: stream(mset)), i: int, C: (tuple — bool)™)
if SAis emptyhen

foreachv: mset in d do
| insert a new rovsainto SAhavingsdi] = v;

1
2
3
4 else

5 let CAbe a list of candidate assignments, initially empty;
6 foreach sain SAdo

7 foreachv: mset in d do

8

9

letca:=sa
cali] :=v;
10 let ca tuple:= construct a tuple frora;
11 foreachc: (tuple— bool) in C do
12 SetArgumentg, catuple);
13 if ca_tuple fulfills ctheninsertcainto CA;
14 SA:=CA

6 The Gpattern Operator

This section formally defines thgpatternoperator. Mainly it reports groups of moving objects
that simultaneously fulfill a time-dependent predicate. It has two forms:

e S gpattern{d, o, d, n, “exactly].
e S gpattern{d, o, d, n, “atleast].

where S is a stream of tuples representing the whole set of moving objects. It cerdain
moving object attribute, and an identifier attribute, which is required for anteahreason, to
represent the moving object within the resulig.is a function that maps a tuple finto the
value of this identifier attributey is the time-dependent predicate;> 0 is a duration (e.g.
in milliseconds) that decides the minimum duration of the patternoidrand) is anint that
decides the size of the group. In the following definitions, we deal Wids a set of moving
objects, ignoring the technical detail of its representation as a streamles$.tup

The evaluation of the first form of thgpatternoperator is:

eval S gpattern[ id, o, d, n, “exactly ]) =

H{UI,V)}HV C S, |V|=n,I € Interval,length(l) > d,
Vi e I,Ve € V : (afe))(t),
VI' suchthatl’ € Interval, I C I :
JeeV,3tel : =(ale))(t)}

wherelength(I) = I.to — I.t;, and(af(e))(t) e{false, trug is the evaluation of the time-
dependent predicatefor the moving object at the time instant. The operator yields groups
of exactlyn moving objects. Therefore, everyset in the result contains only one unit, (V).
The last condition guarantees that only the longest duration patterneidsported, to avoid
an infinite number of results.

The definition allows a moving object to belong to several groups in the reshls is
required to report all possible combinations of exaetlgbjects. This is helpful in expressing
thetrend-settepattern, for instance. That is, a group of exaétiyoving objects matches some
patternoid description, followed by another group of at Igasbving objects that matches the
same description.
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To define the semantics of the second form ofgpatternoperator, we need to define some
auxiliary operations:

mbool — bool always #(-)
mbool — bool sometimes #(-)
mset X set — mbool c,C - -
data x mset — mbool € _#H
mapping — range(instant) deftime #(_)
mbool x bool — mbool at -F -

wherealwaysyields true if its argument has the value true all over its definition time. On the
other hand sometimeyields true if its argument is ever true. The time-dependent versions
of the set predicates, C, and € yield true at the time instants/intervals during which their
corresponding standard predicates holthe deftimeoperation yields the set of time intervals
and/or instants during which a moving object is defined. Finallyatiaperation restricts the
definition time of a moving object to the time intervals and/or instants during whichlite va
is equal to the second argument.

Given agpatternoperator in the fornt gpattern[ id, «, d, n, “atleast ], we first define
the setM as:

M = {X|X € MSetPart,always(X C 5), always|X| > n),
(Ve such thasometimege € X)) :
P = deftime((e € X) at true) =

(i) VI € P:length(I) > d

(i) Vt € P: (afe))(t))}
The setM contains all possible matches of the patternoid. A group of moving objects that
matches this patternoid can change (i.e. objects may join and/or leave th¢. grbepast four
lines ensure that, each time an object joins the group, it stays for a durtidteastd. The
setM might contain an infinite number of matches. To avoid this, we restrict it to the emtch
that are maximal in the number of moving objects, and maximal in their definition tinines. T

is:
eval S gpattern[ id, o, d, n, “atleast ] ) =

{X|X e M,
(Y € M such thadeftime(X) c deftime(Y)),
(Y € M such thatdeftime(X) = deftime(Y) A sometimesX C Y)))}

The evaluation of thgpatternoperator is illustrated in Algorithm 3. It uses the auxiliary
functions shown in Algorithms 4 - 6. It also uses the time-dependg@nhoperation fonnsets,
which is defined as follows:

01(t) Uoa(t), ifisdef(oi(t)) Aisdefloa(t))

o1(t), if isdef(o1(t)) A —isdef(oa(t))
(01U 02)(t) = L ,

09(t), if misdef(o1(t)) A isdef(oz(t))

undef if-isdef(o; (t)) A —isdef(oz(t))

whereo;, 0o aremset instancest is a time instant, andsdef yields true iff its argument is
defined.
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Algorithm 3: gpatternf§: stream(tuple), id: (tuple — int), «: (tuple — mbool), n: int,
d: duration, q¢: enun{exactly, atleag) — stream(mset)

1 let R be astream(mset), initially empty;

2 let Accumulator be anmset, initially empty;

3 foreachs: tuple in .S do Accumulator = Accumulator U mbool2msetg(s), id(s));
4 let Changed = true;

5 while Changeddo

6 Changed = DeleteUnitsBelowSize{ccumulator, n);

7 Changed = Changed vV DeleteElemsBelowDuratiodccumulator, d);
8 while Accumulator has more unitslo

9 let head := Head(@ccumulator);

10 Accumulator = Rest@Accumulator);

11 if g = atleastthen R.Add(head);

12 else R.Add( ExactSubsetaead, n, d));

13 return R;

Algorithm 4: mbool2msetf:b: mbool, id: int) — mset

1 letms be anmset, initially empty;
2 foreach (I, true): ubool in mb do ms.AddUnit(Z, {id});
3 return ms;

Algorithm 3 accumulates the evaluations of the time-dependent predicatd, ttoe mov-
ing objects in the input stream, in theset instanceAccumulator A moving object identi-
fier appears in théccumulatorin the time intervals/instants during which it fulfills the time-
dependent predicate. The size and duration threshgldare then applied to thisccumulator
Finally, the lastwhile loopiterates over théccumulatorto generate the result stream.

In every iteration, units are read till a definition gap is met (i.e. a time interval/instan
during which theAccumulatoris undefined). This is called tHeead and it belongs to the
setMSetPart Therefore headis already one result for thgpatternin the case oftleast In
the case okxactly all the maximal duration subsets loéadthat have a cardinality of are
generated and added to the result stream.

7 The Crosspattern Operator

The crosspatterroperator expresses a patternoid in terms of a time-dependent prediahte ev
uated for pairs of moving objects. Many patternoids can be expresses wdi (e.g. flock,
convoy, convergence, etc.). Hence, it allows one to express pattermo the spatiotemporal
relationships between objects.

Formally, letS be a set of moving objects. Letbe a time-dependent predicate that can be
applied to pairs of moving objects. We define gradtern graphas follows:

PG(S,a) = {(n1,n2,p)|n1,n2 € S,p € Range(Instant),Vt € p: (a(n1,n2))(t)}

That is, apattern graphis a set of time-dependent edges in the fdmm, n2,p). An edge
connects its two vertices whenever the time-dependent predidatielfilled. The set of graph

"When the set operatiors, C, ande are used in queries and typed at a keyboard, they are denoisut@s-
ersubsetissubsetandin, respectively.
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Algorithm 5: DeleteUnitsBelowSize{ccumulator: mset, n: int) — bool

1 let Changed be abool, initially false;

2 foreach (I, s): uset in Accumulator do
3 if s.CountElems(x n then

4 Accumulator.DeleteUnit((, s));
5 Changed := true;

6 return Changed;

Algorithm 6: DeleteElemsBelowDuratiod(ccumulator: mset, d: duration) — bool

1 let Changed be abool, initially false;

2 let s be a set, initialized by all the moving object identifiers in all the units of
Accumulator;

3 foreachelem: int in s do

4 let p := deftime(eleme Accumulator);

5 foreach I : interval in p do

6 if length(l) < d then

7 Accumulator.DeleteElemPar¢{em, I);

8

9

Changed := true ;
return Changed,;

vertices is not explicitly represented in the pattern graph. Rather, a \@figts in the graph
as long as at least one edge connects to it. Hence, the set of vertices tisnalslependent.
The pattern graph is a kind of an analytical space, where patternoidsecsgarched for. The
connectivity of the graph tells about the interaction between the moving olasési on the
« function.

A temporal scan of a pattern graph yield$udly dynamic graph(i.e. a standard graph
that undergoes a sequence of edge/node additions and/or deletidrese ékist already, in
the area of graph theory, algorithms for answering connectivity querietynamic graphs
(e.g. finding connected components). These algorithms efficiently updatolition after
a change happens to the graph, rather than re-evaluating the quergdratch. A review
of such techniques can be found in [6]. We can safely assume that al tfpconnectivity
gueries that are supported for standard graphs, are also supfartg¢ghamic graphs (e.g.
Walk, Clique, Connected Component). That is, if we lack algorithms thaiezifly search
for certain subgraph types in a dynamic graph, the search will be dofiigmwtly (i.e. by
re-evaluating the query after every change to the graph).cidgsspatterroperator is able to
search for various subgraph types within fredtern graph(e.g. Walk, Clique, Knot) using
such techniques.

Given a pattern grapRG (.S, «) and an instant of timg the temporal functio®G (S, ) (t)
yields the standard graghV, E), whereE is the set of edges iRG(S, «) that are defined at
timet, andN is the set of nodes connected to at least one edd@g in

In the following definition, we use thewset type to represent the results of the crosspattern
operator. The elements of theset are the moving objects (i.e. the nodes of the pattern graph)
that fulfill the patternoid. Note that such a representation ignores thé gdges in the results.

LetU C S x S be a set of candidate pairsf elements frons and letS” = 71 (U)Ums(U),

2\We uselU as input to the crosspattern operator instead ¢6 be able to do some prefiltering. For example,
interesting pairs of candidates froftmay be those coming close to each other during their lifetime, and they
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where for a set of tuple¥’, m;(V') denotes the projection on thieh component. S& is
reduced toS’, the elements mentioned {h. Given an application of therosspatterroperator
in the formU crosspatternidy, ids, o, d, n, “clique”], we first define the sep as:

Q ={X € MSetPart | alwayg X C S')
ANV, V)e X Vtel:
V is amaximal cliquen PG(S’, a)(t) A [V| > n)
A (Ve such thasometimege € X) :
P = deftime((e € X) attrue) = VI € P) : length(I) > d}

An elementX € (@ is anmset instance representing one group of moving objects that match
the patternoid. Thenaximal cliquecondition guarantees that the number of moving objects in
a result is maximal. We mention tleique in this definition as an example. Clearly it can be
replaced by other subgraph types. Now we define the evaluation afdkspatterroperator
as:

eval U crosspatternidy, ids, o, d, n, “clique™) =

{X € Q| 3Y € Q such that(deftime(X) C deftime(Y)A
(V¢ € deftime(X) : X(t) = Y (1))}

whereX (t), Y (t) are theset values ofX, Y at timet. This definition adds to the definition of
@ the condition that the definition time of a result is maximal, thus avoiding an infinite aumb
of results.

The evaluation algorithm of therosspatternoperator is not listed in this paper to keep
the scope of the paper focused. It requires the introduction of speclaliata structures for
answering connectivity queries on tpattern graph While the mset type was sufficient for
the definitions above, it is not sufficient for the evaluation algorithm sincodésn’t store
edge information. We plan to present these data structures and the algorithseparate
manuscript.

8 Examples

This section illustrates the expressive power of the proposed languagewing several query
examples. We focus on expressing the patternoids in Table 1, as a kiathpadson with the
other techniques.

Example 4 Find a flock of at least 20 gazelles moving within a circle of radius 30 m for a
duration of 10 minutes.

This is a @0, 30m, 10min) flock similar to number 8 in Table 1. The difference is, that the
notion of time here is continuous. The query looks as follows:

query Gazelles feed {a} Gazelles feed {b}
symmjoin[.ld_a < ..1d_b]
crosspattern[.ld_a, .l1d_b,
di stance(.Trip_a, .Trip_b) < 30.0, ten.mnutes, 20, "clique" )]
transformstream consung;

can possibly be determined efficiently using indexes. Evaluating instegdiedl from.S may be prohibitively
expensive.
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Example 5 Find a convoy of at least 20 gazelles moving within a circle of radius 30 ra for
duration of 10 minutes.

The convoy patternoid (number 7 in Table 1) is a variant of the above flattkrnoid. Unlike
a flock, the members of a convoy may change. This can be expressdtbas f

query Gazelles feed {a} Gazelles feed {b}

symmjoin[.ld a < ..l1d_b]

crosspattern[.ld_a, .1d_b,
di stance(. Trip_a, .Trip_b) < 30.0,
one_m nute, 20, "clique" )]

transfornstream

filter[inst(final(.elem) - inst(initial(.elen))
>= ten_m nutes] consune;

That is, every object in the patternoid stays at least one minute, while thenpédtéself exists
for at least ten minutes, as enforced by fitter operator. The effect of this is, that the objects
of the patternoid may change.

Example 6 Find a leadership pattern that consists of: 3 gazelles heading in Nortinectiah,
followed by a moving cluster of 20 gazelles.

A moving clusteiis another variant of a flock. Every member is required to keep a small
distance tsome(rather tharall) other members.

let follow = vec("baba", "bab.a", "baab");
query
reportpattern|
| eader: Gazelles feed
gpattern[.ld, ndirection(.Trip) between
[45.0, 135.0], threem nutes, 3, "exactly"],
cluster: Gazelles feed {gl} Gazelles feed {g2}
symmjoin[.ld gl < ..l1d_g2]
crosspattern[.ld g1, .1d g2,
di stance(Trip_gl, Trip_g2) < 30.0,
ten_m nutes, 20, "cc" ];
stconstraint(.cluster, .leader, follow)]
extend[clusterMReg: fun(t: TUPLE) Gazelles feed
nset2nreg(.ld, .Trip, attr(t, cluster))]
ext end[ | eader Fi nSet: val (final (.| eader)),
clusterlnitSet: val(initial(.cluster))]
filter[always(ndirection(rough_center(.clusterVreqg))
between [45.0, 135.0]) and
(.l eaderFinSet issubset .clusterlnitSet)]
consune;

wheremdirectioncomputes the time-dependent angle, in degrees, of the moving point from the
x-axis, andough centercomputes the center of a moving region as a moving point. The query
finds aleadergroup, followed by a moving cluster, where both are heading betweén-aast

and north-west. The moving cluster patternoid is expressedasragected componefitc) in

the pattern graph, rather tharl&quein the case of the flock patternoid in Example 4.

Example 7 The encounter patternoid is a variant of the convergence patternoigamyite 2.
Itis a convergence that ends with the moving objects meeting together. \Wsexas follows:
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query Gazelles feed {a} Gazelles feed {b}
symmjoin[.ld_a < ..ld_b]
crosspattern[.ld_a, .1d_b,

i sdecreasi ng(di stance(. Trip_a, .Trip_b)),
20, ten_mnutes, "clique" )]
transfornstream
ext end[ convMReg: fun(t2: TUPLE) Gazelles feed
nset2nreg(.ld, .Trip, attr(t2, .elem]
filter[area(val (final (.convMReq)))
<= const_pi() * 30.0 = 30.0]
consune;

that is, the gazelles at the end instant of the patternoid are required to lire avitincular area
with radius of 30 m.

9 Optimization

This section discusses the optimization of the group STP queries. We assirae tptimizer
framework for moving object databases exists. The techniques thatopes® in this section
extend such an optimizer framework, so that it is able to generate optimizedtiexeplans
for the group STP queries. In order to make this discussion concretieseeibe the proposed
optimization techniques in the context of thec®NDo optimizer [11]. These techniques are
however generic, and it should be possible to apply them in other optimaeeWworks.

The SECONDO optimizer accepts queries in an SQL-like syntax, and generates optimal
execution plans in the syntax that was used for the query examples in tedimg sections
(i.e. the ECONDO executable language). We start by defining an SQL-like syntax for the
proposed language operators. The user is supposed to use it in wréiggptinp STP queries.
We then define translation rules to map these SQL-like queries into efficiectittan plans.

Since the three operataegportpattern, gpatterrandcrosspatterryield streams, we define
them in the SQL-like syntax aable expressionf.e. expressions that compute tables). That
is, they can be used in the FROM clause, for instance. The syntax is asgvllo

tabl e_expr = reportpattern([ p-expr, p-expr [, p-expr ...]]1
[tenporal constraint [, tenporal constraint ...]])

p_expr = p_operator as alias

p_oper at or = gpattern(table_expr, id, « d, n, q) |

crosspattern(t abl e_expr, idy, ids, o, d, n, q)

The following query illustrates the SQL-like syntax for Example 6:

SELECT | eader, cluster,
FROM (
SELECT | eader, cluster,
val (final (I eader)) as | eaderFinSet,
val (initial (cluster)) as clusterlnitSet,
nmset 2nr eg(Gazel les, 1d, Trip, cluster) as clusterMReg
FROM
reportpattern(]
gpattern(Gazelles, id, ndirection(Trip) between [45.0, 135.0],
three mnutes, 3, "exactly") as |eader
crosspattern(
( SELECT * FROM Gazelles g1, Gazelles g2
WHERE gl1.1d < g2.1d ),
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gl.ld, g2.1d, distance(gl. Trip, g2.Trip)< 30,
ten mnutes, 20, "scc")] as cluster,
[stconstraint(cluster, |eader, follow] ))
VWHERE
[al ways(ndirection(rough_center(clusterVReg)) between [45.0, 135.0]),
| eader Fi nSet i ssubset clusterlnitSet]

The straightforwardranslation ruleof thereportpatternoperator is as follows:

reportpatterngf; as ay, ..., pn as an), [tci, ..., tem])
— reportpatternfy : p1, ..., an : Pn; tc, ..., tepy]

where atranslation ruledefines one way of generating the execution plan for an SQL-like
expression. It has the structure:

SQL-likeexpr— Executableexpr[:- conditiong

The optional conditions at the end of the rule specify the circumstances wiich the rule is
applicable. There may be several valid translations for the same expre€gitmizers apply
different techniques for selecting the best translation (e.g. cost-loggiization). The fol-
lowing subsections illustrate the translation rules for the three opeigattern crosspatterpn

andreportpattern

9.1 Optimizing the Gpattern Operator

The gpatternoperator evaluates for every tuple in the input stream the time-depenaelit p
cate. Obviously, a tuple whose evaluatetool is always false cannot be part of a result. We
would like to use indexes to remove such tuples from the input stream befaheating the
gpatternoperator. The optimizer should be able to analyze the time-dependentgtesdand
translate them into index accesses if possible. In other words, we nexighal ¢he optimizer
with translation rules for the time-dependent predicates.

We assume that the underlying system has already translation rules faatiteursl (i.e.
non-temporal) selection predicates. That is, given a query that con$iateable expression
in_stream and a standard selection predicatinat is applied to it, it is possible to invoke a
function optimiz€in_stream f), which yields an optimal execution plan for this query. If the
in_streamis a scan of a database relatioptimizemight yield an index scan if relevant. Ifitis
not possible to use indexes, it yields the straightforward ptasiream filter [ f].

We define the translation rules of the time-dependent predicates on top thiisa-
tion rules of the standard predicates. A similar approach was successfigpted in [17].
The idea is to map every time-dependent predigaisto a standard predicatg such that
f < sometimesgp). For example:

mpoint X reqgion —  mbool inside _H#_

is mapped into the standard predicate:

mpoint X reqgion —  bool passes _H#_

whereinsideis the time-dependent predicate illustrated in Figure 2, @a&bess a standard
predicate that yields true if thepoint object ever passes through th@ion object. A list of
such mappings can be found in [17].

This mapping allows for using the existing optimization framework of standadigates,
in order to optimize the time-dependent predicates, and accordinglgptatern operator.
That is, letmap(p) denote the standard predicate mapping (as explained above) of the time-
dependent predicaje The translation rule of thgpatternoperator is as follows:
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gpatternf, id, a, d, n, q)
— optimize(S, map(«)) gpattern{d, o, d, n, q]

The following example illustrates this translation rule. Suppose that we wistptegxa
group STP query calledrinking, that reports groups of gazelles that gather to drink from some
lake. The SQL-like query would be as follows:

SELECT nset 2nreg(Gazelles, 1d, Trip, elem as drinking
FROM gpatt er n(

Gazelles, Id, Trip inside buffer(theLake, 50),

hal f _hour, 20, "atleast");

The gpatternoperator in this query yields a relation that contains enet attribute with the
default namelem Thebufferoperator creates a zone around the regfi@h.akewith an extent
of 50 m. The query finds groups of gazelles that concurrently stay withistance of 50 m
from theLake for at least half an hour. A possible execution plan that the optimizergese
for this query is:

query Gazel | es_Tri p_spt uni

wi ndowi nt er sect sS[ bbox( buf f er (t heLake, 50))]

sort rdup Gazelles gettuples

filter[.Trip passes buffer(theLake, 50)]

gpattern[.ld, .Trip inside buffer(theLake, 50),
hal f _hour, 20, "atleast")

transf ornmstream

extend[drinking: fun(t: TUPLE) Gazelles feed
nset2nreg(.ld, .Trip, attr(t, elen))

consune;

In order for the optimizer to generate this execution plan, it first nmafie. Tri p i nsi de

buf f er (t heLake, 50))intomap(a)(i.e.Tri p passes buffer(theLake, 50)).
TheGazel | es_Tri p_spt uni inthe execution plan is a spatial R-tree index on the units of
theTrip attribute that we assume to exist in the database.optienize(S, map(a)) generates
the index access that is illustrated in the execution plan, instead of simplyiisganeGazelles
relation. It produces a window query to the R-tree index using the boutdirngf the buffer
region around the lake, and refines the result usingpissestandard predicate. Thus, only
the tuples that sometimes fulfill the time-dependent predicaideare passed to thgpattern
operator.

9.2 Optimizing the Crosspattern Operator

The optimization of therosspatterroperator is similar to that of thgpatternoperator. The
only difference is that the time-dependent predicate inctbespatterroperator is applied to
pairs of moving objects. So, itis handled as a join predicate rather thancéiaelgredicate as
in thegpatternoperator. Nevertheless, the strategy is the same.

The time-dependent predicatén thecrosspatterroperator is mapped into a standard join
predicate bynap(p). We assume that the optimizer defines a functigtimize(S1, Sa, f) that
accepts two table expressiofig, So and a standard join predicafeand yields an optimized
execution plan. The translation rule hence is as follows:

crosspatterrt{; idy , ids, v, d, m, q)
— optimizgsS, S, map(«)) crosspatternifly, ids, a, d, n, q]
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9.3 Optimizing the Reportpattern Operator

As described in Section 5, thieportpatternoperator is evaluated incrementally by solving the
CSB,_, first, then extending it to CSP During the evaluation, the algorithm knows temporal
information from the patternoid operators evaluated so far, and from tiygoi@l constraints.
This temporal information can be used to restrict the definition time of the ingattosies
before the evaluation of the remaining patternoid operators. Considexxdmple, aeport-
patternoperator containing two patternoid operatpisp2, and a temporal constraistcon-
straint(p1, p2, veq“aabb™)). If we know, after evaluating,, that the earliest ending group in
its result ends at time,, a supported assignment pf can only start aftet;. We can safely
restrict the definition time of the input trajectoriestto> ¢, before evaluating,. Thus,psy
receives shorter trajectories, and its evaluation time decreases.

This would require a change to Algorithm 1 of treportpatternoperator. Line 5 of the
algorithm needs to be replaced by two steps: (1) given the set of tengomstraints, the set of
supported assignmenss!, and the next patternoid operator to be evaluatethe first step is
to perform atemporal reasoningo compute the time periods on which a solutiorpptan be
consistent, (2) to tell the patternoid operappto use these computed time periods to restrict
the definition times of the input trajectories before evaluating its time-depepokfitate.

It is possible to transform the temporal constraints within régortpatternoperator, so
that the temporal reasoning is performed usingBhasic Point AlgebrgdBPA) [19]. The BPA
performs reasoning over time points, and supports the four point reldtions, =, 7}, where
? is the universal constraint (i.e. can be replaced by any of the other thlations). In the
following, we illustrate this transformation.

In Section 5, we have defined the set of temporal relationgtitp&\n elementr € IR can
be decomposed into three time point relations/constraints between four timevaodatiles.
That is, given two time intervalg andis, ir defines a total orddit; ©1 to ®2t3 ®3t4), Where
{t1, to, ts, t4} = {il.tl, 11.t2,19.11, ig.tg}, ando; € {<, Z}.

Itis, hence, possible to represent the set of temporal constraints witerargportpat-
tern operator as a BPA constraint network. Givereportpatternoperator withn patternoid
operators andn temporal constraints each consisting of at moserms, the corresponding
BPA constraint network ha&: nodes and a maximum 8ink constraints. Th&n nodes rep-
resent start and end time points of thpatternoids. The upper boundf.k constraints exists
because each of thek constraint terms is transformed into 3 BPA constraints. Noteftligt
bounded by 26, the size of the gdt, but in practice is a small number, as can be seen in the
examples.

Checking the consistency of the BPA constraint network, and computinddbere (i.e.
deriving the temporal relation between every pair of nodes) is perfoimétn?). The al-
gorithm was first proposed by Allen [2] for his interval algebra, and weoven by Vilan et
al. [19] to work for the BPA as well. It contains two interface functioAstd, andClose The
network is constructed by callingddfor every point constraint. Th€loseis called afterwards
to compute the consistency, and the closure. A BPA network is either intamisisr it must
induce a strict partial order [18].

The modified algorithm for evaluatinggportpatternis illustrated in Algorithm 7. The
functionConstructBPANetworlk Line 3 constructs the BPA constraint network and computes
the closure using Allen’s algorithm as described above. In every iteratierconsistent pe-
riods for the selected patternoid operator are computed, Lines 7 — 11e firghiteration,
the sa periodsobject is set to the maximal time intervi@ll oc], because there is no temporal
information available yet to restrict the trajectories. Starting from the seiteradion, the con-
sistent periods of the selected patternoid openatare computed w.r.t. everu € SA. The
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union of all these time periods is the result of the temporal reasoning.

Algorithm 7: reportpattern

Input: P: (ident, stream(mset))™ - a set of patternoid operatofS; (tuple — bool)™ - a
set of temporal constraints
Output: R: stream(tuple(<(ident, mset)t>))
1 let SA list(list(mset)) be a list of supported assignments, initially empty;
2 let Agenda=P;
3 let BPANetwork= ConstructBPANetworlg, C);
4 if BPANetwork is not consistetiten return an empty stream;
5 while Agenda is not empigo
6 i := pick p; from Agenda
7 let sa.periods range(instant) be initially empty;
8 if SA is emptyhen saperiods:= [0, co;
9 foreachsa in SAdo
10 let cp := GetConsistentPeriod3PANetworksa, p;);
11 saperiods:= sa periodsU cp;
12 SetArgumenty;, sa_periods;
13 let d:= evaluatep;.second
14 extendBA d, i, C);
15 if SA is emptyhen

16 \ return an empty stream;
17 let R := construct the result stream fro8#
18 return R;

It remains now to use the computed periodsto restrict the trajectories’ definition time.
To do this, we need to redefine the patternoid operagpasternandcrosspatterras functions
that accept an argument of typenge(instant). That is, a patternoid operator becomes a
function with the signature:
periods — stream(mset)

whereperiods denotesrange(instant). Accordingly the signature of theeportpatternopera-
tor in Table 3 is changed into:

(ident x (periods — stream(mset)))™ x (tuple — bool)™
— stream(tuple(< (ident, mset)™ >)) reportpattern  #[_; |

This change in the signature allows tieportpatternoperator to pass the computeaperiods
to the patternoid operators at run-time, as illustrated in line 12 of Algorithm 7.

At the same time, we wish to keep the signature of the opergp@aernandreportpattern
unchanged, so that it is possible to use them outsideeffertpatternoperator, as in Examples
1,2, 4,5, and 7. Therefore, we keep thgatternand reportpatternunchanged, and define
similar operatorgypattern2and reportpattern2that accept the additionakriods argument.
In the SQL-like syntax, the user does not need to pay attention to this syatatifference.
He/she will always be using ttgpatternand thecrosspatterroperators in the queries. In the
execution plan, they will be translated ingpattern2and crosspatternf they happen to be
inside thereportpatternoperator. The translation rule of tmeportpatternoperator instructs

the optimizer to do this. We omit it here, because it is trivial.

Before illustrating the translation rules for tigpattern2and thecrosspattern2perators,
we show in the following a part of the execution plan that the optimizer shoolduge for the
reportpatternoperator in the SQL-like query in Section 9.
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query reportpattern|
| eader: fun(p: periods) Gazelles feed
gpattern2[.1d, ndirection(.Trip atperiods p)
bet ween [45.0, 135.0],
threem nutes, 3, "exactly"],

Notice the function headdun(p: periods)that precedes thgpattern2operator. The function
argumenp is set by theeportpatternoperator during execution. Notice also how this argument
is used to restrict the gazelle trajectories in the pEiip atperiods p The operatoatperiods
restricts the definition time of a moving object to a givemiods value3

The translation rules for the operatggattern2andcrosspatternzeed to parse the time-
dependent predicate, and apply #iperiodsoperator to the moving object arguments coming
from the input stream. The translation rules for tiattern2operator would look like the
following:

gpattern(S, Id, o, Db N, Q
-> fun(Nane: periods) optimze(S, map(a2))
gpattern2[ld, o2, DL N, @ :-

i nsi deReportpattern,

gener at eRandonVar i abl eNane( Nane) ,

i sArgunment (attr(Attr, S), «),

i sMappi ng(attr(Attr, S)),

concat atom([attr(Attr, S), ’'atperiods’, Nane],
U, Attrl),

repl aceArgunent (attr(Attr, S), «, Attrl, «2), !.

gpattern(S, Id, o, Db N, Q

-> fun(Nanme: periods) optimze(S, map(«))
gpattern2[ld, «, Db N, @ :-

i nsi deReportpattern,

gener at eRandonVar i abl eNane( Nane) .

where the conditions under which the rules apply are written in a Prologxsyhite two rules
make sure in the beginning that this translation happens insideqbepatternoperator, hence
the SQL-likegpatternis translated into the executalgpattern2 The first rule adds the time-
dependent predicateto the execution plan modified a2. This is done under the conditions
that there are some argumentscothat are attributes in the tuple stregmand that they are
of the kind MAPPING. In such a case, thgperiodsoperator is applied to these arguments in
the execution plan. If any of the two conditions fail, the second rule adaischanged to the
execution plan. Similar translation rules are added also focrib&spattern2perator.

10 Conclusions

In this paper, we have proposed a language for group spatiotem@dtetrp(STP) queries.
The language is both expressive and extensible. The query examplespaghr show that
arbitrarily complex group STP queries can be expressed. Essentiallyngadte composed of
patternoids, and patternoids are expressed on top of time-dependditiapes. Each of these

3Actually, the optimization method uses a time interval found for the first patigto restrict the time intervals
that need to be considered for the second and further patternoidse lkitethis example, the restriction would be
really effective for the second, tlmosspatterroperator. Nevertheless we explain the mechanism in terms of the
gpatternoperator.
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three layers is both expressive and extensible. The overall exgrgxsier of the language is
a kind of multiplication of their expressive powers.

In this paper, we have defined two patternoid operators. They are axXpress patternoids
in terms of thendependent movememnd thedual interactionbetween moving objects. An
opportunity for future work is to propose a patternoid operatortéam interactions Such
patternoids can occur in soccer games, for instance (e.g. the offgileNfainly they describe
groups of moving objects, where every individual shows some indiVichazement pattern,
and these patterns relate together and show some group STP.

The representation of the pattern resultsragts allows for nesting group STP queries
into more complex queries. It is possible, for instance, to build individu® §leries on the
results of a group STP query. That is, one can create moving regiogseyations of the
mset results and further process these moving regions. One can also build §1d queries
on the results of other group STP queries (e.qg. find a group of at leamitrial flocks that meet
around a lake).

We have also proposed methods of optimization that are extensible. Theyt dequire
specialized index structures. Rather, they are built on top of the existiigination frame-
work.

The language design that we proposed in this paper takes into considéhnatiotegration
with a moving object DBMS. We are currently implementing it in the context of thec@bDo
system. It is an extensible DBMS framework where a large part of the mabjegts model
that we assume is implemented. We also intend to elaborate more on the optimizateamdpar
work it out in more detail.
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