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Abstract

Systems of spatial data types and operations, or spatial algebras, are fundamental for
the implementation of spatial database systems. Several designs of such algebras have
been proposed in the last decade, and recently commercial DBMS offer such algebras in
the form of extension packages (e.g. “data blades”). However, actual implementations are
generally severely restricted when compared to designs in the literature. A main reason
is that at the implementation level one cannot further ignore the problems of robustness
and topological correctness arising from the discrete number representations used in com-
puters. Therefore, implemented packages either avoid “problematic” operations, or accept
inconsistencies and topological errors in the answers of queries due to rounding effects.

The ROSE algebra [GS95|, proposed and implemented earlier, goes a long way to-
wards avoiding such problems; since it was defined from scratch with robustness problems
in mind. Tt is founded on a discrete geometric basis called a realm. The ROSE algebra
guarantees a correct behavior of operations and has an entirely robust implementation.
Unfortunately, the realm concept and its interaction with DBMS are difficult to imple-
ment, and certain kinds of topological problems still remain.

In this paper we introduce the concept of dual grid, which provides a new approach
for the representation of spatial information that avoids any robustness and topological
correctness problem and allows a less restrictive implementation of spatial algebras. As
an example, we show how can it be used for implementing the ROSE algebra without
realms, and show that such an implementation does not suffer from the side effects and
disadvantages of the original realm-based one.

1 Introduction

In the past, a big research effort has been spent in the development of database systems able
to deal with spatial information. With the appearance of the extensible database technology
some of this effort has moved to the development of modules to extend the actual database
models (e.g. the relational model) and implementations with support for spatial data, allowing
an integrated management of both spatial and non-spatial information.

*This work was partially supported by the CHOROCHRONOS project, funded by the EU under the
Training and Mobility of Resarchers Programme, Contract No. ERB FMRX-CT96-0056.



Within this effort, of fundamental importance has been the development of generic spatial
algebras, as for example [G1it88, SH91, Ege94, GS95]. Such algebras pursue two basic goals.
On the one hand, they provide a set of spatial data types able to suitably and efficiently
represent the kind of spatial data managed in a wide set of application environments. On the
other hand, they offer a suitable set of operations over these types that fulfils the requirements
of those applications.

The main problem in translating the expressiveness of these generic spatial algebras to the
real world (that is, commercial databases) is that they are usually defined over a continuous
domain, but for their implementation we need to use discrete representations for the spatial
types. For example, a value of type point is represented as a pair of coordinates, each of them
represented as a 32 bit signed integer number, each of the segments of a line is represented
by its two end points and each of the polygons of a region value is represented as a sequence
of points (the vertices).

The problems arising from such a restriction are far from trivial. For example, the repre-
sentation of values is not closed any more under the set operations (e.g. forming the union
or intersection of regions). The straightforward solution to such problems (as for example,
to approximate the non-representable points by the closest representable ones) makes the op-
erations closed,! but violates the basic properties of set theory. For example, for regions A
and B, the laws A C (AUB), (ANB) C Aor (A\ B)N B = { do not hold any more,
generating inconsistencies between the answers. Whereas in certain domains (e.g. graphical
user interfaces) such rounding errors may be acceptable, they cannot be tolerated in query
evaluation, since they may lead to wrong answers. For example, the intersection of a river
and a highway may be found to lie neither on the river nor on the highway.

Actual spatial extensions for commercial databases can usually be classified in one of the
following two groups, depending on their approach to this problem:

1. They do not provide any operation that is not closed under the selected discrete rep-
resentation. That usually means that they provide only predicates over spatial data
types and operations for composing and decomposing such objects (e.g. operations for
constructing the segment between two given points).

2. They provide the whole set of operations, but for those operations that are not closed
over the selected discrete representation they return an approximation of the result.

Examples of the first group of spatial implementations are Illustra 2D Spatial Datablade [11194]
and earlier versions of Oracle’s spatial extension ( Oracle8 Spatial Cartridge) [Ora97]. Illustra’s
extension provides data types Point, Line (in the mathematical sense), Segment, Path (a
polyline), Polygon and Polygon Set (a region as a set of polygons with holes), apart from
some other data types as Circle, Ellipse or Boz. The operations that it provides to the user
are basically predicates and operations for decomposing/constructing a value (for example,
retrieving the n-th Line Segment of a Path or constructing the Line Segment having as end
points two given Point values).” Any operations that become non-closed over the discrete
representation used, as the set operations, are not provided.

! Artificially closed, because now we are not implementing the intersection operation (for instance), but an
approzimated intersection operation.

2The only exception to this are operations that are already expected to return approximated values, as
getting the aproximation of an Ellipse value as a Polygon or getting the bounding box of any spatial value.



DB2’s Spatial Extender [Dav98| (by ESRI, available also under Informiz) and recent ver-
sions of Oracle’s extension (Oracle8i Spatial Cartridge) [Ora99] are examples of implementa-
tions belonging to the second group. DB2’s extension provides a wide set of data types, as
point, points, polylines and polygons, as well as sets of them. It provides also a wide set of
operations, including the set operations, but, as mentioned, returns only approximate answers.

A proposal in the area of spatial databases that addresses the robustness problem already
at the conceptual level is the ROSE algebra [GS95]. The ROSE algebra uses an underlying
discrete geometric basis called a realm [GS93]. Intuitively, a realm contains a consistent
representation of all geometric data of an application. All numerical problems are treated at
the realm level. Values of spatial data types are defined on top of realms which ensures that
all operations (including the set operations) return consistent answers (for example, all the
laws A C (AUB), (AnNB) C Aor (A\ B)N B = { hold in the implementation). However,
some side problems are introduced by the use of realms that make the implementation of such
an algebra in existing commercial database systems difficult. We will discuss these problems
in more detail below.

Our goal in the rest of the paper is to propose a solution for solving the closure and
consistency problems for the spatial operations proposed in the ROSE algebra, without adding
the side effects introduced by the realms approach. The basic idea is to control the resolutions
for the representations of points and of line equations and so to guarantee that all intersections
can be represented without error.

The problem of robustness and topological correctness of geometric computation has of
course also been addressed in the computational geometry literature [DS90, For85]. One can
distinguish perturbation-free approaches (e.g. [KM83, OTUS87|) where the idea is to perform
geometric computations with sufficiently high precision such that no errors occur; the task
is to determine how many digits are needed to represent the result of the used geometric
primitives exactly. Perturbation approaches (e.g. [DS90, GM95, Mil89, Sch94]) allow one to
slightly change the input data or the results of computations in order to be able to represent
data at a fixed level of precision. In this context, the realm-based ROSE algebra can be
viewed as an application of the perturbation approach within spatial databases, and the dual
grid based ROSE algebra proposed in this paper uses instead a perturbation-free technique.
Compared to the computational geometry setting in general, in this paper we study a special
situation arising from the fact that the set of operations of the ROSE algebra has been designed
specifically to be closed over a realm basis. This means that no new geometries are created by
ROSE operations (only existing points and line segments are rearranged) which is also crucial
for the dual grid approach presented here.

In Section 2 we review the ROSE algebra and the realm-based approach proposed in it.
In Section 3 we introduce the concept of dual grid and show its suitability for solving the
closure and consistency problems. In Section 4 we show how the original implementation of
the ROSE algebra [GARS95| can be adapted to use the dual grid approach, inheriting all its
advantages and solving the open problems of the original implementation based on realms.
Finally, Section 5 concludes the paper and points to future research directions.

2 Review: The Realm-Based Approach

In [GS95] the ROSE algebra is proposed. It offers the spatial data types points (a set of isolated
points in the plane), lines (a set of line segments) and regions (a set of non overlapping polygons



(a) Elements in a realm (b) Some objects over the realm

Figure 1: Example of objects over a realm

with holes). The set of operations provided includes a wide set of spatial predicates as well
as binary operations over spatial types, including the set operations. In contrast to other
proposals, the definition of the ROSE algebra takes into account the fact that values need to
be finitely represented, and introduces an underlying discrete geometric basis called a realm
for ensuring the consistency of answers returned by the DBMS.

A realm is basically a finite set of points and non-intersecting line segments over a discrete
domain (a grid). Spatial values are represented in the database in terms of points and segments
present in the realm. For example, given the realm in Figure 1, A and B would be valid regions
values, I would be a valid lines value and P would be a valid points value.

Whenever a new spatial object (represented at the lowest level in terms of points and line
segments) is inserted into the database, its points and segments are inserted into the realm
and the spatial object is rewritten in terms of elements of the new realm.

For each point or segment that is inserted in the realm, some extra steps must be followed
to ensure that the resulting realm is a valid one:

1. When a new point P is inserted, any segment S, in the realm containing P in its interior
(i.e. P lies on S, but is not an end point of S,.) is split into two new segments connecting
the original end points with P. The original segment is replaced by the new ones in the
realm, and any spatial object using it is modified to reflect this change.

2. When a new segment S is inserted into the realm, its end points are also inserted. If S
contains a realm point P, in its interior, it is split at P.. Furthermore, all intersections of
S with segments already present in the realm are determined. For each true intersection
point P; of S with some segment S; a closest grid point P; is determined. Then, a
redrawing of S is performed which transforms S into a polyline (a sequence of line
segments) passing through all the grid points P;. (This process of redrawing is explained
in more detail below.) Each segment S; is redrawn as well to pass through P, its grid
intersection point with S. Finally, all changes in segments are propagated to the database
to modify the spatial objects using these segments.

To explain the redrawing (originally proposed in [GY86]), the concept of an envelope is needed.
For a segment S, its envelope consists (roughly) of the grid points immediately below or above
it. Figure 2 shows the grid points forming the envelope of S.



Figure 2: Redrawing of a segment S

Intuitively, the process of redrawing can be easily understood if we view the segment S
as a rubber band and the points on the envelope of S as nails on a board. When a second
segment 5, is found that intersects it in a point P, we grab the rubber band at point P and
pull it around the closest nail P’. As a result, the rubber band will touch one or more nails of
the board (of the envelope). The resulting list of segments is the redrawing of S. This is also
illustrated in Figure 2. This approach guarantees that the polyline into which the segment is
decomposed always remains within the envelope of the original segment. For more details, see
[GS93].

The use of realms as the basis for the representation of spatial objects has the following
advantages:

o It enforces geometric consistency of spatial objects. For example, the common part of
the boundary of two adjacent regions will belong completely to both regions and be
exactly the same in both of them.

e It guarantees closure properties for the spatial objects. For example, the intersection of
two regions A and B can always be represented, because it will be just a new combination
of segments of the realm belonging to regions A and B.

e Simplicity and efficiency of spatial operations. Given that no intersection points between
segments need to be detected, the algorithms for implementing spatial operations are
more simple and more efficient.

o It ensures numerical correctness and robustness of geometric computations. Those prob-
lems arise basically in the computation of intersection points of line segments, which in
general will not lie on the grid. As there is no pair of segments in the realm that in-
tersects, this problem does not arise when performing geometrical computations. All
these problems are solved at the realm level, whenever a new value is inserted into the
database.

However, the realm approach has also some disadvantages, some of which make the use of
a realm-based representation in commercial databases (e.g. offering the ROSE algebra as an
extension module) difficult:

o Relationships between points and segments can change after rewriting. The rewriting of
segments can cause points of the realm that previously did not lie on the segment to now
lie on it. This can change topological relationships between point objects and objects
of type lines and regions. This problem could be solved (as pointed out in [GS93|) by



adding the restriction that points of the realm cannot lie on the envelope of segments
already in the realm.

e Complexity of data structures. The original implementation proposed in [GS95|, with
a layer representing the realm and the representation of spatial objects referencing the
elements of the realm of which they are composed, results in a rather complex repre-
sentation. The use of virtual realms, as proposed in [MPF*96, FDP*99]|, simplifies it.
The spatial objects are directly represented in the database in a realmized form (making
intersection points explicit), but without further references to realm elements. Instead of
storing the corresponding realm explicitly, the portion of it that is needed is dynamically
computed whenever a new insertion is performed, reducing in that way the size of the
data stored in the database and the time needed to recover the spatial objects from it.

e Space overhead. Due to the rewriting process, a segment of a spatial object can be
decomposed into multiple subsegments in the realm. If the overlapping of spatial objects
in one area of the plane is high, the overhead produced can lead to a considerable increase
in the space needed to store the objects of such an area. Indeed, the fact of representing
the object with a higher number of segments will negatively affect the efficiency of the
spatial operations.

e Complexity and efficiency of updates. Given that the update of spatial objects in the
database can lead to a cascade of rewritings, the efficiency of update operations can be
seriously affected, mainly if the spatial object is inserted into an area of the plane with
a high concentration of objects.

e Values can change without directly modifying them. A region A stored in the database
can slightly change its value just because the insertion of a second region B has caused
the rewriting of some of the segments in the realm that compose it. This will be true
even if the user that inserted B has no access rights for modifying A.

e Consistency over time: although consistency between answers is guaranteed as long as
no new values are introduced in the database, it is not guaranteed between operations
performed with different contents of the database. After introducing a new value in the
database, the answers of the algebra operations will be consistent again, but perhaps
not with respect to the answers given before inserting the new value. For example,
the answer to (A \ B)U(A N B) can be different from A if a third object C' has been
inserted into the database between the computation of (A \ B) and (AN B). This might
complicate transaction management. Moreover, it is a problem for applications in which
the time dimension (transaction time) is relevant and hence the consistency of answers
over time is also a requirement.

3 The Dual Grid Approach

The reason why the use of realms solves most of the problems when implementing the ROSE
algebra is that the set of operations of this algebra has a nice property: given the set of
segments and points defining the boundary of the arguments of the operation, the result (if it
is a spatial value) can be constructed using only segments and points already present in the
input arguments, or subsegments or points resulting from the intersection of input segments.



As the redrawing process performed in the insertion of new segments in the realm decomposes
them into subsegments, making the intersection points explicit, the operations of the ROSE
algebra only need to recombine (in the appropriate way) the elements of the input values for
building the result.

However, the fact that in general the intersection points do not lie on the underlying grid
causes the rewriting process to modify the exact value represented, and the insertion of new
objects can again modify the value of objects previously stored. This is the main reason of the
unsolved problems of the realm approach, as for example the inconsistencies between answers
over time.

A solution for solving those remaining problems would be to find a discrete representation
for spatial data types that ensures that any intersection point found and used in the redrawing
process can be exactly represented, avoiding in that way to modify the spatial value to be
stored in the database or any other value already stored. Instead, only their representations
would change.

In a rough description, what we need is a domain set G, for points and a domain set G's
for segments fulfilling the following three properties:

1. The end points of any segment of G5 are points of G),.

2. For any two non-collinear segments S, S9 € (G, their intersection point P = 57 NSy, if
it exists, belongs to G,,.

3. For any segment S = (P,, ), S € G, and any P € G, if P € S and P ¢ {P,, B},
then the subsegments S, = (P,, P) and Sy = (P, P») belong to G.

Such a pair of domains G, and G, we will call a dual grid. If valid spatial values are restricted
to those whose boundary can be represented using only points and segments belonging to G,
and G, the insertion of a new spatial object will only lead (in the worst case) to a change in
the representation of some of the spatial objects in the database (due to the rewriting process),
but their values will remain unmodified, and hence the consistency between answers over time
will also be guaranteed.

The requirements above mean, first of all, that the domain C'oord over which the coordi-
nates of points in (&, are defined has to be closed under the arithmetic operations 4, —, *, and
/. This requirement is needed to be able to represent the intersection point of two segments.
A subset of the real numbers that fulfils such a requirement are the rational numbers (Q).
Given the obvious need of a finite representation, the coordinate domain must be restricted
to a subset of the rational numbers.

Definition 3.1. The domain of point coordinates C'oord(n, m) is defined as the set of rational
numbers whose numerator and denominator can be represented with integer numbers of n and
m bits, respectively,” that is, Coord(n,m) = {z € Q | = = 22 num,den € Z, [num| < 2",

0 < den < 2™, n,m € N}.

We will see later on that the use of a C'oord(n, m) domain for the coordinates will be
enough for defining a closed representation.

9We are intentionally ignoring the bit required for representing the sign of these numbers. To take it into
account would only make these explanations more complex. Just keep in mind that whenever we speak about
a numeric value the extra bit required for the sign is implicit.



Definition 3.2. A grid of points G/p(n, m) is defined as the set of points that can be repre-
sented with coordinates in C'oord(n, m), that is, G,(n,m) = {(z,y) | z,y € Coord(n,m)}.

Proposition 3.1. G,(n,m) C G,(n+1,m+ j), Vi, 5 > 0.

The proof is really obvious and hence we will omit it.

Once the set of valid points G, has been defined, the set of valid segments GG, must be
defined in such a way that the intersection of two segments (when the result is a point) belongs
to Gip.

Definition 3.3. A grid of segments Gs(n, m) is defined as the set of segments S = (P, F;),
such that P,, P, € Gp(n, m) and their supporting lines can be represented with equations
Az 4+ B -y = C having integer coefficients, with |A| and |B| smaller than v2m~! and
C] < 2=

}

gm—1

The bounds on the values of the coefficients A, B and C' ensure that the intersection point
of any pair of segments Sy, Sy € G5(n, m) belongs to G,(n, m).

Theorem 3.1. The intersection of any two segments of Gs(n, m) (if not empty) is either a
segment of G5(n, m) or a point of G,(n, m). Formally, V51,5, € Gs(n,m), (51 NSy =1)
V(81083 € Gs(n,m)) vV (S1NS; € Gp(n,m)).

Proof. If Sy NS, is a segment, it must belong to Gs(n, m), because the resulting segment
must have the same supporting line as S; and S; (and hence fulfil the requirements for the
coefficients) and each of its end points is an end point of either S; or Sy, and therefore belongs
to Gp(n, m).

If S; NSy is a point, either S1 N .S is an end point of both S; and S; (because they meet
at their end point) or, given r: A,z + B,y = C, and s: Asz 4+ Bsy = C; the supporting lines
of Sy and S, respectively,

EaARe

S NS, = P = Cs B ’ As C _ (numx’ numy>
A, B, A, B, den den
As  Bs As B

Let us denote by ||A]|, || B|| and ||C|| the maximum values that |A|, |B| and |C| can have,
respectively. Then,

2n—1 .
[rama| = |B,Cr =BG, <2 |B] - €] <2 V2PT - o =2
In the same way,
2n—1
numy | = |A,Cs — A,Co| < 2+ ||A|| - ||C] < 2 V27T _gn

£/ 9m—1 -

den] = |A,B, = A,B,| < 2-[[A]|-|[B]| < 2 V2T /27T = "

Therefore, given that |num;| < 2", |[num,| < 2" and |den| < 2™, it is proved that
S1 NSy € Gp(n,m). O



Proposition 3.2. Vi,5 > 0,5 <2-i: Gs(n,m) CGs(n+i,m+7j).

Proof. We have already seen that G,(n, m) C Gp(n+ 1, m + j). Hence, all what we have to
prove is that for any segment S belonging to GGs(n, m) the coefficients of its supporting line
also fulfil the requirements for Gs(n+14, m+j). For coefficient A, it is clear that if A < v/2m~1

then also A < V2(m+i)=1_1In the same way, this is shown for coefficient B. For coefficient C,
gn—1 2(n+i)—1

we can see that if C' < Tt then also C' < NCICTTE, because

9(n+i)—1 on—1 91

Va1 a1 \fad

and

22'
- > 1
27

j<2=>V2 <2

Hence, G,(n, m) C Gp(n +1i,m+ j). 0

Definition 3.4. A dual grid DG(n, m) is defined as a pair of grids G,(n, m) and G4(n,m),
where G/p(n, m) is a grid of points and G5(n, m) is a grid of segments. Formally speaking,
DG (n,m) = Gp(n, m) U Gs(n, m).

The dual grid defined above fulfils the three requirements identified previously, and hence
its use as the base for the representation of spatial objects ensures that the insertion of new
elements into a realm does not modify the value of any spatial object in it. As a result, it
solves the consistency problems over time, as well as most of the remaining problems of the
realms-based approach.

Corollary 3.1. Vi, > 0, j < 2 -4, any element of a dual grid DG(n, m) is also an element
of a dual grid DG(n+i,m+ j).

Proof. Obvious given that G,(n, m) C Gp(n+1i,m+j) and Gs(n,m) C Gs(n+1i,m+j). O

This last property defines the restrictions that have to be fulfilled to ensure that data
provided in one dual grid resolution can be imported into a table where a different resolution
is used (for example, when importing data from another database). It also provides a way of
improving the resolution of the dual grid used by a set of spatial data without altering at all
such data.

For the successful use of the dual grid approach as the base for the representation of spatial
objects, however, it would be interesting to provide some extra properties to allow a better
interaction between database and external applications:

e Data in the database can be exported using a resolution B for points (including end
points of segments) and B’ for segment slopes.

e Data using a resolution B for points and a resolution B’ for segment slopes can be loaded
into the database.

e Data using a resolution A for points and end points of segments, with no restrictions for
segment slopes, can be loaded into the database.



The first and second point ensure that data can be exported and re-imported into the database
without loss of information. The third point ensures that data in more usual formats (where
no restrictions for segment slopes exist) can be loaded into the database. Such properties are
interesting to ensure that user applications can effectively interact with the spatial database,
retrieve and modify spatial objects and store them back in the database, as well as for being
able to import currently existing data. Whereas the first and second points are already fulfilled
by any dual grid, we need to study some further properties of dual grids for selecting the subset
that most suitably fulfils the third one.

Proposition 3.3. Let G,(n,1) be a grid of points with integer coordinates (that is, the
only valid value for the denominator is 1). Then, VS = (P, i), Py, P € Gp(n,1) + S €
Gs(3n+3,2n+ 3).

Proof. To make the proof more readable, let n’ = 3n + 3 and m’ = 2n 4+ 3. What we have to
prove is that VS = (P, P), P., Py € Gp(n,1) 1 S € Gs(n', m').

It is clear that G,(n,1) C G,(n', m') and hence P,, P, € G,(n’, m’). Therefore, the only
thing that needs to be proved is that VP,, P, € G)p(n, 1), the supportingliner : A-z+B-y=C
of segment S = (P,, P) has |A| and |B| smaller than v2m'-1 = /2(2n+3)-1 — 97+1 apd

!
gn'—1 9(8n+3)—1 _ 92n41
|C| < gm!—1 T Vo(@nt3) -1 T 2 .

Given P, = (X,, Y,) and Py, = (X3, V3), the coefficients of the supporting line are A =
Y, =Yy, B= X, — X, and C' = XY, — X, Y. It is easy to see that:

|A|:|Ya_}/b|<2n_|_2n:2n+1

|B] = | X — X,| < 2" 42" = 2H!

|C| — |XbYa _ Xﬂ}/b| < 9n ., gn _|_27’L L9n — 227’L+1 S 22n+1

a

Proposition 3.4. Let G,(n,m) be a grid of points. Let P, = (Z§Zex Z27Tav) apd p, =

deng deng
nump, NUM . . 4 .
("Zens®, ~gem,t) be two points with homogeneous® coordinates such that Py, P, € Gy(n,m).

Let S = (P, P). Then, S € Gs(3n+m + 3, 2n+2m + 3).5

Proof. To make the proof more readable let n’ = 3n+ m+ 3 and m’ = 2n + 2m + 3, that is,
we have to prove that S € G4(n', m’).

In the previous proof for points with integer coordinates we have already seen that the
supportinglineof Sisr: A2+ B-y=C,withA=Y,—-Y,, B= X;—X,and C' = XY, — X, V.
In this case,

NUMgy UMy, deny - numgy, — den, - numy,

A= - =

den, deny den, + deny

*Two coordinates are called homogeneous if they have the same denominator.

®Note that we give an upper bound for the values of n and m in the required segment grid G(n, m), and
do not define the minimum for them. In specific cases (as in the one with integer coordinates shown above) a
segment grid with slightly smaller sizes for numerator and denominator could be used.

10



B nuMy, NUMg,  deng - numy, — deny - numy,
deny, den, den, + deny

= nUMp; NUMgy  NUMge NUMpy  NUMpy - NUM gy — NUM gy * DUy

deny den, den, deny den, - deny

Such a line is equivalent to the line r' : A" -2 + B -y = C’, where
Yy )

A'= A -den, - deny = deny, - NUMgy — den, « numpy,
B'= B .den, - deny = den,  nump, — deny, » num,,,

C'=C - den, - deny = numpy - nUMgy — NUM gy - DU,

Hence,
‘A" = |deny - numgy — deng - nump,| < gntmtl
‘B" = |den, - numy, — deny, - num,,| < 2"t
‘C" = |numpy - numgy, — numg, - numy,| < 227!

It is easy to see that:

Vam'=T = \/(nt2m43)-1 — gntm+l 5 | 4]
Vom'=1 — y/9(2n+2m43)-1 — gntm+1 - ‘B"

n'=1 3n+m+3)—1 3n+m+2
2 _ 2( ) _2 +m+ el
\/Qm/_l \/2(2n+2m+3)_1 on+m+1
Therefore, S € Gs(3n + m + 3, 2n + 2m + 3). -

As a result of the previous analysis, we can reach the following conclusions. If we intend to
import external data, then we have two basic possibilities. One is to use an optimized dual grid
to be able to load data where the point coordinates are integer numbers of n bits (this would
be the resolution A mentioned above). In this case, (as we have seen in the previous analysis)
the best option is to use a dual grid DG (3n + 3, 2n + 3). The other option is to optimize the
dual grid to accept external data whose points are represented with homogeneous coordinates
(the same denominator for both coordinates), where n bits are used for the numerator and
m for the denominator (this would be another example of a resolution A). In this case, the
optimal dual grid would be DG(3n+ m+ 3, 2n+2m + 3). Such a dual grid would also accept
data with integer coordinates of n + % bits. Note that one special case of data provided in
such an homogeneous format is the case when point coordinates are represented as fixed point
decimal numbers. If 7 bits are used for the integer part and m bits are used for the decimal
part, then we can represent those points with homogeneous coordinates with 7 + m bits for
the numerator and m bits for the denominator.
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4 Adapting the ROSE Algebra

In the original implementation proposed for the ROSE algebra [GdRS95, GS95] all the spatial
data types are defined over a realm, in which all the intersection points between the boundaries
of the spatial objects are made explicit at insertion time, and their values are approximated,
if needed, to the closest representable point. The points of the realm are points with unsigned
integer coordinates of a given size n (in bits).

It is important to note that the algorithms implementing operations of the ROSE algebra
rely on the fact that all intersection points are explicit. They are generally more simple and
more efficient because of this. On the other hand, these algorithms will crash or yield wrong
results if they receive arguments with intersecting segments.

The basic idea for implementing a realm-less version of the ROSE algebra (which can
also be viewed as using an implicit realm) is to represent data over a dual grid such that
all intersection points are representable exactly. In addition, we need to make sure that the
algorithms receive only arguments that do not have proper segment intersections. In the
sequel we first explain how a realm can be represented over a dual grid, and in the next step,
how the (explicit) realm can be omitted altogether.

For representing a realm over a dual grid DG(n,m), the domain of valid points of the
realm must be G, (n, m), and the set of valid segments must be G5(n, m). Formally, a realm
over a dual grid DG(n, m) is a subset R = P U S of DG(n, m) such that:

1. PCGy(n,m), S CGs(n,m)
2. Vpe PVs € S: —(pins)

3. Vs,t €S, s#t: —(s intersects t) A =(s overlaps t)

The predicates in, intersects, and overlaps are defined precisely in [GS93|. Informally, they
mean that a point does not lie on a segment except possibly on an end point, that two segments
do not intersect except in their end points, and that two collinear segments can only touch in
an end point.

Now operations provided for importing data into the database® should check that the input
data conform to the dual grid requirements. If the data to be imported is represented with a
resolution of type A (e.g. integer coordinates of size i such that DG(3i43, 2i4+3) C DG(n, m)),
then no check needs to be performed. This will be the normal case when importing data from
external sources.

Otherwise, the import algorithm must check that the type of the input coordinates is
compatible with the one used in the dual grid (the resolution B for end points) and the
supporting lines of all segments of the input values fulfill the restrictions given for segments
of a dual grid (the resolution B’ for segment slopes). This case will normally only occur when
data have been exported previously from a dual grid database of the same resolution.

As a result, it is guaranteed, that intersection points can be represented as realm points.
One can now proceed as before inserting data into a realm (splitting segments at intersection
points), but with the following advantages:

o Relationships between points and segments are not altered by the redrawing process.

% Although they are not part of the ROSE algebra, they should be provided when implementing an spatial
extension for a database.
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(a) Non realm-based arguments. (b) Realm-based arguments.

Figure 3: Construction of a realm with the arguments of a ROSE operation

e Insertion of new data does not modify other data in the database. The new inserted
data are also inserted without modifying their values.

e Consistency of answers over time is also guaranteed.
Yet, two problems of the realm-based approach remain in this case:

o Complexity of updates. Although the cascade of rewritings in the realm is reduced when
using dual grid (because now when a segment in the realm is decomposed, the resulting
segments still contain the same set of points, and hence the new segments will not
intersect extra points or segments of the realm), the rewriting process can still produce
a considerable overhead when the new data are located in areas of the plane with a high
density of objects.

e Space overhead. Although some decompositions of segments are avoided because no
modifications of the values represented in the realm are produced, one should still expect
a considerable overhead for data located in high density areas of the plane.

However, there exists a better solution: Given that now the use of a realm does not modify the
data stored in the database, the ROSE operations will return the same value whether the realm
is constructed with all the objects of the database or it is constructed only with the arguments
of the operation. Hence, instead of storing in the database the realm-based representation of
the data, we can simply store the data as they are inserted into the database. Whenever a pair
of spatial objects is used as argument of an operation, a preprocessing step (realmizator) is
added that computes a realm-based version of the two arguments, where only the intersection
points between them are made explicit (any other objects in the database are ignored). This
is illustrated in Figure 3. This realm-based version is then passed to the ROSE algebra
algorithm, which computes the result. Such a preprocessing algorithm can, for example, be
implemented as a variant of the well-known plane-sweep algorithm by Bentley and Ottmann
for finding intersections of line segments [BO79]| (see also [PS85]) which requires O(n log n+ k)
time where n is the total number of line segments and k£ the number of intersections. Note
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Figure 4: Replacement of realms by a preprocessing step before applying an operation

that one can implement this algorithm once and for all and then apply all ROSE operations
unchanged, instead of modifying all the ROSE algorithms to detect intersections.”

Optionally, a post-processing step (derealmizator) can be added to normalize the result
(e.g. to melt into one those contiguous segments of the returned object that are collinear).
Both pre- and post-processing steps are illustrated in Figure 4. Currently, an open question is
whether using the “realmization” preprocessing step causes a significant overhead with respect
to the time requirements for executing a ROSE operation, or whether that overhead can be
neglected. In many cases, the ROSE operations are implemented by means of plane sweeps
themselves and have a similar time complexity as the preprocessing algorithm mentioned above
[GARS95].

Clearly, there is a trade-off involved here: Storing all objects in a realm-based fashion
with explicit intersections increases space requirements. It also increases processing time for
operations due to the larger representation of objects. On the other hand, the preprocessing
algorithm is not needed which saves some time. The other (realm-less) option needs less space
and manipulates smaller object representations, but needs the realmization algorithm. We
plan in the near future an experimental evaluation to investigate the effects of this trade-off.

5 Conclusions

In this paper we have presented the dual grid, a new approach in the representation of spatial
objects that solves the robustness problems in the computation of spatial operations and
ensures the consistency between answers. This has been done by selecting an appropriate
discrete representation for the spatial values that is completely closed under the set of target
operations, in this case the operations of the ROSE algebra. We have also shown how the use
of a dual grid as the domain set of realms not only solves the open problems of the original
implementation of the ROSE algebra, but also simplifies the insertion of elements into the
database and allows a very efficient representation of spatial values.

The dual grid approach provides closure and consistency between answers for an important
set of operations, including the set operations. Although some other interesting operations
are left® (e.g. the convez-hull operation or the computation of Voronoi diagrams), we expect
the consistency between answers for such operations not to be so important as for the set

7Of course, adapting all the ROSE algorithms separately is also possible, and might lead to a slightly more
efficient execution, but involves a quite large amount of work, complicates algorithms, and may introduce new
errors into an already well-tested software package.

8Such operations are not part of the ROSE algebra because they would not be closed over the realm basis.
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operations. For example, an implementation of the conwvez-hull operation that returns an

approximate result but ensures that all the generator points are contained in it is not likely

to produce consistency problems between answers, because the more important properties of

the result as well as its more important relationships with the arguments are fulfilled.
Further work in this area is:

e Implementation of the ROSE algebra over a dual grid, using the preprocessing algorithm
instead of realms. Such an implementation, as an extension package for Secondo and
Informiz Illustra, is already in development and almost finished.

e Comparison of the efficiency of the implementation of the ROSE algebra over a dual grid
using a stored realm-based representation (& la wirtual realms) and the same implemen-
tation without realm, using the preprocessing algorithm instead.

e Studying extensions of the ROSE algebra by operations creating new geometries (which
were not possible in the realm-based approach) in such a way that closure over the
dual grid is maintained. For example, a convex hull operator applied to a points value
might return the smallest convex polygon enclosing the points with boundary segments
contained in the dual grid.

Finally, let us remark that although the proposal of this paper is relatively simple and easily
implementable, it solves an important problem in offering the only spatial database alge-
bra with guaranteed robustness and correctness properties besides the (original, realm-based)
ROSE algebra. Compared to the original ROSE algebra, the relatively complex realm ma-
chinery (especially the redrawing) and its interaction with a DBMS need not be implemented
any more; yet, the correctness properties of the dual grid approach are even better than those
of the realm-based ROSE algebra.
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