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Abstract

Motivated by applications in e.g. VLSI-design, computer graphics, databases,
computational geometry is concerned with studying the computational complexity
of elementary geometric problems. This thesis is a rather broad study of one
specific problem of this kind, the contour problem: Given a set of iso-oriented
rectangles in the plane, compute the boundary of their union.

The thesis consists of three main parts. In the first part we present the first
time-optimal solution of the contour problem, achieved by means of a line-sweep
algorithm. Furthermore we investigate a more general problem: The i-area is de-
fined as the region of the plane covered by exactly i rectangles. We describe a
number of line-sweep algorithms to compute i-contours (boundaries of i-areas)
and i-measures (sizes of i-areas). Some of those algorithms are time- and/or
space-optimal.

The algorithmic paradigm of divide-and-conquer so far had typically not been
applied to sets of planar objects other than points. Line-sweep appeared to be
the only suitable method to treat for instance sets of rectangles efficiently.
We overcome the conceptual difficulties of divide-and-conquer by introducing a
new idea called separational representation of planar objects. The new technique

permits efficient divide-and-conquer solutions for a wide range of problems
based on orthogonal planar objects. We prove this by describing time-optimal
algorithms for five nontrivial problems including the contour problem.

So far, all the problems studied were based on orthogonal objects. In general

for those objects much more efficient solutions can be obtained than for arbitra-
rily oriented objects (polygons). To bridge this gap in complexity we introduce
in the third part of the thesis the notion of c-oriented polygons, that is poly-

gons, whose edges are oriented in only a constant number of previously defined
directions. We obtain a solution of the contour problem for c-oriented polygons
which is of much higher complexity than the one for rectangles, but still better
than the solution for arbitrary polygons. For other problems, however, there exist
quite efficient solutions. We show this for the 'stabbing number' problem and the
polygonal intersection searching problem.
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1. INTRODUCTION.

This thesis is a case study of a specific problem in computational geometry, the
contour problem. Before stating the problem let us briefly look at computational
geometry in general. Following a definition by Shamos [Sh], computational geo-
metry is the study of the computational complexity of elementary geometric pro-

blems. The problems considered are, for instance:

- Given a set of points in 2-space, determine all points inside a specified
rectangle.

- Given a set of line segments in 2-space, find all intersecting pairs.

- Given a set of intersecting rectangles in the plane, compute the total

size of the 'covered' area of the plane.

There exist different motives for the study of this kind of problems. In our

opinion the most important among them are:

- From a theoretical point of view the problems are appealing since they
can be stated in a very simple but precise manner while efficient solutions
often require the most refined data structures and sophisticated algorithms.
Thus the study sheds light on the power of different algorithmic techniques

and contributes to 'a theory of algorithms and data structures'.

- Often real-world problems, which seem to have no connection to geometry
at all, can be formulated in an abstract manner as geometric problems.

We give a few examples:

(1) In databases information is frequently stored in the form of multi-

attribute records. The attribute values are often drawn from some



ordered domain, which can be interpreted as a one-dimensional space.
Hence a record corresponds to a point in multidimensional space. The
first geometric problem above can be interpreted as retrieving infor-

mation from a database fulfilling certain conditions.

(2) Certain problems in operating systems, namely safety and deadlock-
freeness of locked transaction systems can be related to geometric
problems based on sets of rectilinearly oriented rectangles. A locked
transaction system is safe iff the closure of the corresponding set
of rectangles consists of one connected region. The geometric solution
provides the most efficient algorithm known to solve the mentioned

problems [SoW].

(3) In speech recognition a word uttered by a speaker can be analyzed
by some input device and decomposed into a number of features. The
collection of features can again be interpreted as a point p in multi-
dimensional space. The vocabulary of the recognizer can be given as
a set of points S in k-space. Finding the word most likely spoken
then corresponds to finding the point in S closest to p ( the well-
known 'nearest-neighbour-problem'). This example is due to Bentley

[Be1].

Stating the problems in geometric terms strongly supports human intuition

and thus leads to efficient algorithms.

In many applications geometric problems play an important role in their
own right. For instance the nearest-neighbour problem in 2-space can also
be interpreted as searching for the nearest post-office for a given location.

Further examples of application areas are given below.



The contoun problem.

For a set of iso-oriented (=sides parallel to the coordinate axes) rectangles
the contour is the boundary between the 'free' and the 'covered' area of the
plane. The contour problem is to compute this boundary (a more precise problem

formulation is given in Section 3).

The contour problem is interesting for a number of reasons. First, there exist
numerous applications based on sets of iso-oriented rectangles. In VLSI-design
sets of rectangles are used to define chip layouts for complex integrated circuits
[MeC], [La1]. This has motivated in particular an extensive study of the problem
of finding all intersecting pairs in a set of rectangles. Sets of rectangles

play an important role in architectural databases [EalL] and in geography [BeS].

They also have applications in computer graphics.

Second, there was no optimal algorithm known when we began our work. Lipski and
Preparata [LiP] posed and first attacked the problem, coming up with an

O(n logn +p log(2n2/p)) time solution where n is the number of rectangles
and p the size of the contour. In this thesis we present time-optimal algo-

rithms, achieving a worst-case time of 0(n log n + p).

Third, the problem has some inherent difficulty which makes it a challenge for
the algorithm designer. Let us explain what we mean by this. The contour pro-
blem is in a certain sense non-decomposable. That is, we cannot afford to com-
pute the contour for some subset A of a given set of rectangles R and hope to
modify or complete the solution later by looking at the rectangles in R- A.
There might exist a rectangle r € (R-A) which encloses all rectangles in A,
making all the previous work superfluous. This is in contrast to the rectangle

intersection problem, for instance, where intersections found in a subset



remain 'valid' under all circumstances, whatever the complete set looks like.

However, the scope of this thesis is not limited to the contour problem. Rather,
we used it as a guide to direct our research. Studying the contour problem quite

a number of related problems came into view and some of them were solved.

Let us now briefly sketch the 'historic' development of our research. We started
by improving the line-sweep algorithm of Lipski and Preparata [LiP] for the con-
tour problem by means of a more sophisticated supporting data structure called a
contracted segment tree, resulting in a time-optimal algorithm. We then looked

at a generalization of the contour concept due to Wood [Wo] called i-contours.
The i-contour is the boundary between areas of the plane covered (i-1) and i
times, respectively. We devised a number of algorithms to compute i-contours and
i-measures (the i-measure is the size of the area covered i times). All this

was done by use of line-sweep algorithms.

The algorithmic paradigm of divide-and-conquer is an interesting alternative to
line-sweep. However it had typically not been used for problems in planar geo-
metry except for those based on point sets. It seemed that objects like line
segments, rectangles, polygons etc. could not efficiently be treated by divide-

and-conquer.

This impression proved wrong when we found a time-optimal divide-and-conquer
solution of the rectangle intersection problem. Since this problem is somewhat
easier we used it to gain some knowledge about planar divide-and-conquer before
attacking the contour problem. In this study the central idea of 'separational
representation' (see Section 4) emerged. - A second preparatory step was the
design of a divide-and-conquer algorithm to compute the measure (the size) of

the area covered by a set of rectangles. The measure problem is related to the



contour problem because both measure and contour are properties of the union of

a set of rectangles. In fact, the contour algorithm which was finally discovered
first constructs an abstract description of the union (which can also be used to
solve the measure problem) and then computes the contour from this description.

This algorithm is also time-optimal and simpler than the line-sweep contour

algorithm. However, its space-requirements are somewhat higher.

All the work done so far was restricted to orthogonal objects. An interesting
question is how much the complexity of the problem increases if the objects are
allowed to be oriented in for instance three (instead of two) possible directions.
This led to the definition of c-oriented objects, that is objects whose defining
line segments are oriented in at most a constant number of possible directions.
Unfortunately we did not discover a really nice algorithm to compute the contour
of a set of c-oriented polygons. The algorithm found is only slightly more
efficient than the known algorithm for arbitrary polygons. The increased effiency
is due to the fact that intersections can be found more easily among c-oriented

than among arbitrary line segments.

However, the notion of c-oriented objects proved useful because some other pro-
blems based on them could be solved efficiently. We found an optimal algorithm
for the stabbing number problem (Given a set of c-oriented polygons S and a

query point p, how many polygons in S contain p?). We also developed an efficient
solution of the c-oriented polygonal intersection searching problem. That is,
given a set of c-oriented polygons S and a c-oriented query polygon q, find

all polygons in S intersecting q.

The thesis is structured as follows: We start with a short preliminary section

containing some basic definitions and notations which we use freely throughout



the thesis (Section 2). Section 3 contains line-sweep algorithms, namely the
optimal contour algorithm (Section 3.1) and a collection of algorithms for
'higher' contour and measure problems (Section 3.2). - Section 4 1is devoted
to divide-and-conquer algorithms, that is the algorithm for finding all inter-
sections in a set of rectangles (Sections 4.1 - 4.3; the problem is solved by
combining the solutions of two subproblems) and the combined measure/contour
algorithm (Section 4.4). - Section 5 shows how to cope with (restricted) non-
orthogonality; apart from describing a not completely satisfying contour algo-
rithm for c-oriented polygons we give nicer algorithms for the stabbing number
problem in Section 5.1 and the polygonal intersection searching problem in
Section 5.2. - In Section 6 we try to evaluate the work done and identify the
questions arising from it. This includes a list of open problems encountered in

the various phases of the work.



2. DEFINITIONS AND NOTATIONS.

In this section we give a few basic definitions and notations which are used
throughout the thesis. The section may be used as a reference if unknown terms
occur in one of the following sections. More specific definitions, however, appear

in the text whenever they are needed and are not listed here.

1-space.

One-dimensional space, or the line, is given by the set of real numbers R . An

interval [xl, Xr] is a subset of 1-space.

Occasionally, especially in diagrams, we use the notation a-b for an interval

[a, b].

The measure of an interval i, measure(i), is X=X, for i = [x1, x2]. We also
denote measure(i) by |i|. Based on this, the measure of the union of a set of
intervals is defined in the usual way.

We say a set of intervals I is based on a set of points P if each interval end-
point is in P. On the other hand, a set of points P defines in a natural manner
a partition of the line into a set of 'atomic' intervals, called fragments:

partition(P):= {[x1, x2] ) Xys X5 € Pand vx €P: x < Xq or x > XZ}'

We say interval i, contains interval i,, iff i, < 1i,.



2-4pace.

Two-dimensional space, or the plane, is represented by the set R x R.

A line segment is a subset of R x R. If it is axis-parallel (i.e. horizontal or

vertical) it is represented either by a point and an interval, that is as a pair
(X, iy) or (ix, y), or simply by three coordinates (x, Yqs y2) or (x1, Xos y),
respectively. Obviously a pair (x, Iy), where x is an x-coordinate and Iy a set
of y-intervals, defines a set of line segments. For emphasis we sometimes

use the notation 1inesegments(x,1y) for this setiinstead of the simpler (x, Iy).

An arbitrary line segment is given by its endpoints as a pair (p1, pz), p; @

point in 2-space, or as a quadruple (x1, Yqis %55 y2).

A rectangle is also a subset of 2-space. It is given either by a quadruple

(Xl’ Xps Ypo yt) or alternatively by the product ix X iy of an x- and a y-inter-

val.
For a set of rectangles R, union(R):=\_ r.

rer

To be able to talk about the set of all rectangle coordinates (in x- or y-

direction) we define
x-set(R):= {x € R|3r in R: x = x;(r) or x = X, (1)}
and y-set(R) analogously.

We project rectangles onto the axes by defining

x=-proj(r):= [x;, x.J for r = (x;, X Yps ¥y)



(similarly y-proj(r)). For a set of rectangles R x-proj(R) and y-proj(R) yield

a set of x- and y-intervals, respectively.

The application of x-proj (or y-proj) to an arbitrary set of points P <R x R
yields a set of x- (or y-) coordinates. However, we will interpret e.g. x-proj(P)
as the set of disjoint x-intervals defined by the projection rather than as a set

of solitary points on the x-axis.

For a set of tuples T we denote the projection onto the i-th component by
proji(T). The result is the set of all values of the i-th component occurring

in tuples of T.

Thees.

The following notations for trees are used. Let p be a node of some tree T. Then
T(p) is the subtree of T rooted in p. Refering to T(p) we also speak of p's sub-

tree. Furthermore we use the notation Ap and pp for p's left and right son,

respectively.

Model of computation, O0-notation.

To be able to analyze algorithms we need some model of computation. For compu-
tational geometry the real RAM as described by Shamos [Sh] seems to be a suitable
and sufficiently realistic model. Essentially it is the RAM model of Aho, Hop-
croft and Ullman [AHU] with the additional assumption that a single storage

cell is able to store a real number with unlimited precision. In other words, on

the level of algorithm design described in this thesis we ignore the difficulties
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which might arise from the limited precision of the representation of real
numbers in computers. However, these effects have to be taken care of in imple-

mentations.

We always analyze algorithms and data structures in this thesis with regard to

the asymptotic worst-case time and space requirements. To denote bounds we use

the well-known 0-, ©- and ©-notation:

Let f: N >N, g: N > N. Then

(a) f(n) = 0(g(n)) iff there exists a positive real number c such that

f(n) < c-g(n) for all but finitely many n €N .

(b) f(n) = @(g(n)) iff g(n) = 0(f(n)).
0 (g(n)) iff f(n) = 0(g(n)) and g(n) = 0(f(n)).

—
(@]
~
—h
—
>
~
I

Often logarithms appear in these bounds which are in this thesis always to the

base 2.
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3. LINE-SWEEP ALGORITHMS.

This section contains a rather extensive study of line-sweep algorithms for the
contour problem and related problems. The line-sweep paradigm was apparently in-
troduced into computational geometry by Shamos and Hoey [ShH] and afterwards
widely used to solve problems based on a set of objects in 2-space. The idea is
to move a (say) vertical line from left to right through the set of objects. At
any position the sweepline may intersect some of the objects which are repre-
sented by their one-dimensional projection onto the sweepline. The problem is sol-
ved by observing the interaction between the projected objects. In this manner

a static problem in two dimensions is reduced to a dynamic problem in one dimen-
sion. - Of course the technique can be generalized to higher dimensions by sweep-
ing a (k-1)-dimensional hyperplane through k-space; a nice example for this is

[VLW ].

In Section 3.1 we give a more precise formulation of the contour problem and re-
consider an algorithm to solve it by Lipski and Preparata [LiP]. By replacing
the data structure supporting the line-sweep (a counting segment tree) by a more
sophisticated structure (called a contracted segment tree) we achieve time-optimal

performance.

The measure problem is to determine the total size of the area covered by a set

of rectangles. It is closely related to the contour problem since both measure

and contour are properties of the union of a set of rectangles. A time- and
space-optimal solution of the measure problem was given by Bentley [Be2]. In
Section 3.2 we study generalized contour and measure problems based on the notion
of an i-area. For a given set of rectangles the i-area (i € N) contains those
points of the plane which are covered by exactly i rectangles. This induces the

concepts of i-measure and i-contour. We develop efficient algorithms for a number
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of problems based on these concepts. In a final subsection (3.2.9) we prove
lower bounds for all the problems considered which enables us to show that some

of our algorithms are optimal.

Throughout Sections 3 and 4 we study only orthogonal objects. Hence speaking

of a set of rectangles we always mean iso-oriented (=axis-parallel) rectangles.

The results of Section 3.1 have been published previously in [Gu1].

3.1. Computing the contoun o4 a set of rectangles.

3.1.1. The contoun problem.

We start by stating the contour problem more precisely:

Let R :'{r1,...,rn} be a set of rectangles and let F = ry v rz‘u... ur,.
The contour of the union F is defined as follows. Let EDGES be the set

of horizontal and vertical line segments which separate the region F

from the 'free' area of the plane, F. Two elements of EDGES are connected,
if they contain a common point. The transitive closure of the connected-
ness relation partitions EDGES into a collection of '‘cycles'. Each of
these cycles is a sequence of alternating horizontal and vertical edges
(see Figure 3-1). This collection of cycles is called the contour. Now

define an optimal algorithm to compute the contour, if R contains n

rectangles and the contour consists of p edges.
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Figure 3-1

As mentioned before, this problem was recently attacked by Lipski and Preparata
[LiP]. Their algorithm finds the contour in 0(n log n + p log (2 n2/p)) time
and O(n + p) space. This performance is time-optimal for p = 0(n) and p = O(nz),
but not in general (p = o(n*) for 1 < U< 2, say). In the sequel we develop an

optimal O(n log n + p)-time algorithm.

We describe our solution of the contour problem in a top-down manner. The top
level (Section 3.1.2) consists of an algorithm A performing the line-sweep which

makes use of a supporting data structure SD. SD must have the following properties:

- It represents a set of intervals I.
- It allows two operations:

. insertion-query: asks for those subintervals of an interval i
which are free (that is, not covered by any interval in I)
and inserts i into SD.

. deletion-query: deletes an interval from SD and asks then for

the subintervals of i free with respect to I.
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Then we are already able to analyze the performance of algorithm A provided the

operations of SD can be performed within certain time bounds.

On a second level (Section 3.1.3) we introduce a new data structure called a
contracted segment tree to implement SD. Operations INSERTION-QUERY and DELETION-
QUERY are implemented by algorithms which use some more basic operations LEFTDOWN,
RIGHTDOWN, UP, LINK-OUT, LINK-IN and REPORT. Again we establish the required time
bounds for INSERTION-QUERY and DELETION-QUERY provided the basic operations can

be performed within certain time bounds.

AThe third and final level of description (Section 3.1.4) shows how to implement

the six basic operations and proves that the implementation yields the time bounds

required on the next higher level.
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3.1.2. The algorithm.

The algorithm for computing the contour consists of two phases. In the first phase
a vertical line is moved from left to right through the plane. During this process
all vertical edges of the contour are found. In a second phase horizontal edges
are created from the list of vertical edges and all edges are linked into the

cycles which form the contour.

In [LiP] it is shown, that after an initial sorting of all rectangle coordina-

tes the second phase of the algorithm takes O(p) time and space, where p is the

number of edges in the contour. Hence we will now concentrate on the first phase.

The Line-sweep.

Let R = {r .,rn} be the set of rectangles. We form the set of all vertical

12
rectangle edges, representing the left and right side of a rectangle

P = (Xl’ Xps Vi yt) by (xl, left, Y yt) and (Xr’ right, Yps yt), respect-
ively. All edges are then sorted in lexicographical order assuming left < right

(the reason for this is explained below).

Now the line-sweep is performed by scanning the ordered list of vertical rect- .
angle edges. Let L be the sweepline and F = union(R). At any position of L, each
of the sets LC =L NnF and Lf =L - LC contains a collection of disjoint
intervals.
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Let L be fixed at a certain position x = a. The present rectangles are those

fulfilling x; < a, X, > a. The intervals in L. are formed by the union of the

r
y-intervals [yb, yt] of all present rectangles (see Fig. 3-2).

LC and L. change only when a vertical side s of a rectangle is encountered. The

f
contribution of s to the contour is s N Lf, where Lf is taken:

- before encountering s, if s is a left side

- after encountering s, if s is a right side.
Hence the line-sweep algorithm works as follows:
- Encountering the left side of a rectangle, the vertical interval is

inserted into a supporting data structure SD, storing intervals, and

the free parts of the line which become covered are reported.
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- Encountering the right side of a rectangle, the vertical interval is
deleted from SD and the parts of the line which become free are

reported.

Now it becomes clear why we defined left < right. In this way we ensure that
whenever one rectangle is 'closed' and another one 'opened' at the same x-coordi-

nate, their intersection will not contribute to the contour (see Fig. 3-3).

Figure 3-3

We have seen that we need a data structure which enables us to efficiently perform

the two operations:

- insertion of an interval reporting intersected (up to now) free
parts of the line.
- deletion of an interval reporting intersected (from now on) free

parts of the line.

For this, Lipski and Preparata [LiP] use a variant of the segment tree which we

call a counting segment tree. We briefly describe this data structure, since it

provides a foundation and motivation for the contracted segment tree.
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Using counting segment trnees.

The segment tree was originally introduced by Bentley [Be2]. A detailed description

can be found in [BeW]. We describe the counting segment tree used in [LiP].

The (counting) segment tree represents a set of intervals. It is semidynamic in
the following sense: For a fixed set of intervals I the set of all endpoints of
intervals E(I) defines a partition of the line into 'atomic' intervals. The
segment tree S is a binary searchtree of minimal height representing the atomic
intervals in its leaves. In a natural way each internal node p has an associated
interval interval(p) which is the concatenation of the leaf intervals of its
subtree. The structure described so far we call an empty segment tree based on I.
It serves as a frame which allows easy insertion or deletion of an interval

from I. Any interval i in I defines a collection of nodes from S, CN(i), by

p € CN(i) <=> interval(p) < i and interval(f) ¢ i (where f is p's father).
To insert or delete intervals from I into S we augment each node by an additional
integer field cover(p). For the empty segment tree holds cover(p) = 0 for all
nodes. An interval i is inserted or deleted by increasing or decreasing, respective-

ly, the cover-fields of all nodes in CN(i).

It is evident that for any interval i €I the nodes in CN(i) are attached to some

'forked path' (see Fig. 3-4):

Figure 3-4
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Therefore, if I has cardinality n then there are at most 0(log n) nodes in

CN(i) and 0(log n) is also the time bound for an insertion or deletion.

Since for the contour problem the set of all y-intervals of rectangles is known

in advance the segment tree may be constructed before the line-sweep begins.

This data structure is used in the algorithm of Lipski and Preparata. Inserting
an interval i the nodes in CN(i) are located in 0(log n) time. For each such
node, the free parts of its subtree have to be reported. For this, an additional
field status(p) is maintained for each node p, indicating whether p's subtree

is full, empty or partially covered by intervals in this subtree. To report the
free parts of a subtree q €CN(i), it is traversed, but subtrees of it which are

full or empty are not entered.

A careful analysis of this algorithm shows that it uses O(n log n + p log(ZnZ/D))
time. The subtree traversal for the nodes in CN(i) causes some inefficiency.
Consider a node q €CN(i). If the B free parts in g's subtree were attached to

q as an interval list, then they could be reported in 0(R) time, yielding a
total time of O(n log n + p), provided the interval lists could also be main-
tained in 0(log n) time per insertion/deletion. This time is optimal (see

Section 3.2.9).

This observation leads to the development of the contracted segment tree. In-

stead of a list of free intervals, a tree is maintained for each node. This tree,
however, has only O0(B) nodes, if it contains B gaps (free intervals), hence it

can be traversed in 0(B) time.
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Using contracted segment trhees.

First, let us see what we can gain by employing contracted segment trees as a

supporting data structure in the line-sweep algorithm. In Section 3.1.3 we prove

the following properties of contracted segment trees.

Property 1:

Property 2:

In a contracted segment tree for n intervals insertion of an inter-
val i reporting the v free parts of the line which become covered as
well as deletion of an interval i together with reporting the ¥y
covered parts of the line which become free, can be done in

0(log n + y)time (Theorem 3.4).

A contracted segment tree for n intervals uses 0(n) space. The
empty tree can be constructed in 0(n) time from the ordered list of

interval-endpoints (Lemma 3.2).

This enables us to prove the main result:

Theorem 3.1:

Given a set of n rectilinearly oriented rectangles, we can deter-

mine the contour in O(n log n + p) time, using O(n + p) space, where p is

the number of edges in the contour.

Proof: The algorithm follows [LiP] except for the use of a contracted segment

tree as a supporting data structure.

Step 1:

Initially the x- and y-coordinates of all rectangles are sorted se-
parately. After this, rectangle coordinates are identified with their
rank in the x- and y-ordering, respectively. From now on all sorting
operations can be done by standard bucket sorting in 0(n) time.

This step takes 0(n log n) time.



Step 2:

Step 3:

Step 4:

Step 5:
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The empty contracted segment tree is built from the list of y-coordi-

nates. This takes O0(n) time, due to Property 2.

The vertical sides of all rectangles are ordered lexicographically

in 0(n) time.

Scan the list of vertical sides of rectangles. Insertion or deletion
of the y-interval ij of a rectangle side in the contracted segment
tree together with reporting pj free portions of the line takes

O(n log n + pj) time, due to Property 1. This yields a total time of

2n
O(nlogn+ & pj). Adjacent parts of the contour counted in Py and
j=1
may be merged into one part, hence in the worst case
2n

p= E pj - 2n. So the total time for step 4 is
j=1 |

O(n logn+p+2n) =0(n log n + p). The reported parts of the con-

Pi1

tour are stored in a list of vertical edges which uses 0(p) space.

The 1list of vertical edges is scanned and horizontal edges are linked

in (see [LiP]). This step uses O0(p) time and space.

All data structures including the contracted segment tree use 0(n) space,

except for the list of contour edges which uses 0(p) space. This estab-

lishes the 0(n + p) bound. The time bound follows from adding up the time

bounds in steps 1 through 5. <>
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3.1.3. The contracted segment trhee: structure and operations.

The sthuctune.

Recall that the inefficiency of the counting segment tree was caused by the

fact that to find the free subintervals of interval(p) for any node p in the

tree large portions of p's subtree had to be traversed. The idea crucial to our
solution is the following: We still traverse p's subtree to find free subintervals.
However, by pruning away covered branches and further contraction we make the
whole tree so small that any subtree contains only 0(B) nodes if it contains

R disjoint free subintervals. Then the subtree traversal with reporting the £ gaps

takes only 0(B) time.

Since we cannot afford to destroy the structure of the tree by pruning away sub-

trees, we keep two structures: the primary tree which is the segment tree, as

described before, and a copy of it which is cut into pieces which are further-
more 'contracted'. Each of these pieces is a tree and corresponds to some sub-

tree of the primary tree. The collection of pieces we call secondary structure.

Insertions and deletions are performed on the primary tree, updating the second-
ary structure, while traversing a subtree to report free subintervals is done on
the secondary structure. Primary and secondary structure together we call a

contracted segment tree.

In the sequel we describe how to obtain the secondary structure for a given

segment tree storing some intervals. This seems to be the easiest way to explain
the shape of the secondary structure. In practice, however, the secondary structure
is constructed dynamically by insertion and deletion algorithms which we describe

later.
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So given a counting segment tree T storing some intervals we first produce a
perfect copy of it which we call T' (to distinguish between a node p and its
copy we also call the copy p'). Next we augment each node of T by a field
second which contains a pointer. This field can be used to point to a part of
T'. At the moment we initialize all second-pointers to nil. Furthermore let

ROOT, point to T and ROOT2 to T'.

1

We need a few definitions concerning counting segment trees:

For any node p of a counting segment tree we say it is covered iff cover(p) > 0.

The total coverage of p is the sum of the cover-fields of all ancestors of p,

including p. For any leaf q in p's subtree representing the atomic interval

interval(q) we say interval(q) is free with respect to p if none of the nodes on

the path from p to g (excluding p, including q) is covered. This defintion ex-
tends in a natural way to subintervals of interval(p) obtained by concatenation
of some leaf intervals. In an analogous manner we define subintervals covered

with respect to p. We call p's subtree nontrivial if it contains free and covered

(with respect to p) subintervals.

To obtain the secondary structure, T' goes through two different contractions.
We use an example to illustrate them. Fig. 3-5 (a) shows a segment tree whose
nodes i, 1 and g are covered. Covering is indicated by horizontal bars. A rect-

angular box represents a leaf storing an interval (which is given below the box).
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n
1 3
1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

(a) (b)

Figure 3-5

The first contraction disconnects any covered subtree from its father and replaces

it by a leaf of a new type to represent the removed subtree. Note that this im-
plies that from a removed subtree again some subtrees may be cut off. The whole
process leaves us with a collection of fragments of T' each of which is a tree
with two different kinds of leaves. To distinguish them we call the leaves repre-

senting removed subtrees black leaves, the other ones white leaves. Consider any

such tree t with root node r. t represents a subinterval of the line, namely
interval(r). Obviously a white leaf of t represents a subinterval of interval(r)
which is free with respect to r. A black leaf represents a subinterval covered

with respect to r.

Of Course the disconnected fragment trees must be accessible in some way. For this
purpose we provided the second-fields in the primary tree. If node q' is the root

of a disconnected subtree, then we let second(q)_point to q'.

Note that now only the fragment of T' connected to ROOT2 may contain any absolute-

ly free intervals (they are given by the white leaves of this tree). Therefore
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we call this particular subtree of T' the free tree (if the root node of T is
covered then the first contraction has set ROOT2 to nil, corresponding to the
fact that there exist no free intervals). In Fig. 3-5 (b) only the free tree

is shown.

After the first contraction the resulting trees may still be too large. We want
to achieve that any fragment tree contains only O0(B) nodes if it has B free sub-
intervals. But for instance the completely empty tree (having no covered subtrees)

contains 0(n) white leaves though it represents only one single free interval!

The second contraction therefore compresses any empty subtree into a single white

leaf. It also removes 'superfluous' black or white leaves, as we will see. The
idea is to leave only nodes in the contracted tree which correspond to a bound-
ary between a free and a covered subinterval. The second contraction compresses
a tree 'bottom-to-top', starting from the leaves, according to the following

rules:

1. If both sons of a node p are white leaves, replace p by a single white

leaf (with the corresponding interval).

2. If both sons are black leaves, replace p by a black leaf.

3. If one son is a white and one a black leaf, create an ordinary leaf

(represented by E.‘or -:l) and replace p by it. An ordinary leaf
clearly represents a boundary between. a free and a covered subinterval.
The interval of the white leaf and the ordering black-white or white-

black is kept in some way (details follow).
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4. If one son of p is a black or white leaf, the other one an inner node
or an ordinary leaf, then remove the black or white leaf, respectively,

and collapse p with its remaining son (see Fig. 3-6).

Figure 3-6

Again some information is kept: p's name and the interval of the

pruned son of p (if it is a white leaf) is stored with the remaining

son (see below).

5. If p is a leaf or if each son is either an inner node or an ordinary

leaf, then do nothing.

For the example of Fig. 3-5 (b) we display the second contraction in two steps:

Figure 3-7
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In general, after completing the second contraction, each of the resulting trees
is either a white or a black leaf or a tree containing only inner nodes and
ordinary leaves. This follows from the fact that, according to rules 1. - 4.,

a black or white leaf does not 'survive' the second contraction iff it has a

brother.

To keep some information which would otherwise be lost during the second con-
traction we augment inner nodes and ordinary leaves by some fields names,

leftfree, rightfree and whichwhite (the last one for leaves only) with the

following meaning:

- names(p): a list of pairs (node name, type: black/white),

contains the names of all predecessors of p which have been collapsed with
p according to rule 4. For each name a boolean value tells us whether a

black or a white leaf was eliminated.

- leftfree(p): a list of intervals,

contains the intervals of all white leaves eliminated according to rule 4.
leftfree contains those intervals for leaves left of p (they were left sons

of some node q whose name is now in the list names(p)).

- rightfree(p): a list of intervals,

contains the corresponding intervals for eliminated white leaves which

were right sons.

Lists leftfree and rightfree contain the intervals in sorted order. Applying

rule 4, a new interval may be added at the left end of list leftfree or at the
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right end of list rightfree, respectively. Furthermore it is checked whether an
interval added is adjacent with its neighbour interval. In that case the two

intervals are replaced by a single one.

Applying rule 3 an ordinary leaf is created. The interval of the white leaf is
entered as the first item of the just created list leftfree or rightfree, re-
spectively. The respective other list is initially empty. To keep the information
whether the ordinary leaf represents two leaves in order black-white or white-

black ordinary leaves have an additional boolean field.

- whichwhite(p): left/right.

We must emphasize again that we used a dynamic description to define the (static)
structure of the contracted segment tree (consisting of a primary tree and the
secondary structure). In fact, there is no component of our algorithm which
takes a counting segment tree as input and constructs a secondary structure from
it. The secondary structure is instead constructed by insertion and deletion al-

gorithms which are described below.

We close this section by summarizing some properties of the structure thus

obtained.

Lemma 3.2: A contracted segment tree based on a set of n intervals I requires
0(n) space. The empty tree can be built in 0(n) time from the sorted list of

interval endpoints.

Proof: Both statements hold for ordinary segment trees. Since each node in the
primary tree appears at most once in the secondary structure, the total space

is still 0(n). The secondary structure of an empty contracted segment tree
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consists of just a single white leaf, which can be constructed in constant

time. <>

We are now able to prove the property which we wanted to achieve from the be-
ginning: the contracted copy of a subtree of the primary tree contains only

0(B) nodes if it represents B disjoint free subintervals. Let the contracted

copy be defined for any nontrivial subtree of the primary tree (that is a subtree
containing free and covered parts). Let p be the root of such a subtree. Then p
appears as a name in the name list of some node q' in the secondary structure.

The contracted copy of p's subtree T(p') consists essentially of the subtree

rooted in q'. However T(p') includes only the inner parts of the interval lists
leftfree(q) and rightfree(q), that is, those intervals which belong to names
following p in the name list (because the other intervals are not contained in
p's subtree). In Section 3.1.4 it is shown how to obtain the reduced interval

lists of T(p') before T(p') is traversed for reporting.

T(p') !

Figure 3-8
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Lemma 3.3: Given a contracted segment tree, let p be any node of the primary
tree with a nontrivial subtree and let B be the number of disjoint intervals
of T(p) which are free with respect to p. Then T(p') has 0(B) nodes and con-

tains O0(B) intervals in its interval lists.

Proof: Since p has a nontrivial subtree T(p), T(p') is a tree consisting of

inner nodes and ordinary leaves. Each ordinary leaf represents a boundary
between a free (with respect to p) and a covered interval. Since T(p) con-
tains B disjoint free subintervals it may contain at most (B+1) covered
subintervals. Between all (2B+1) disjoint intervals exist 2B boundaries
and therefore at most 2B ordinary leaves. Hence the total number of nodes

in T(p') is 0(B).

By construction of the interval lists, the intervals within any single list
are disjoint. However, the last interval of a list and the first interval of
the 'subsequent' list may be adjacent. In Fig. 3-9 some pairs of list entries

which represent possibly adjacent intervals are shown.

Figure 3-9
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So we cannot be sure that the first or last item in a list represents an in-
dependent free subinterval. However, since T(p') contains only 0(B) nodes
and interval lists, there may exist at most O(B) ‘'superfluous' list items.

Hence the total number of intervals in interval lists is O0(B). <>

Openations insention-queny and deletion-queny.

We now describe how to perform on this structure the two operations in which we
are interested, namely insertion-query and deletion-query. There exists a stand-
ard algorithm for insertion and deletion of an interval in a counting segment
tree (see for instance [VLW]). We apply this algorithm to the primary tree and
augment it by operations which are performed simultaneously on the secondary

structure.

Algorithm INSERTION-QUERY

Let i be the interval to be inserted and p a node of the primary tree. There
exists a current position in the secondary structure which is moved by the al-
gorithm. An INSERTION-QUERY is started by initializing this position to ROOT2
and then calling INSERT(1i, ROOT1). Let Ap and pp denote p's left and right

son, respectively.
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INSERT(i, p) = if interval(p) < i
Eﬂgg_cover(p) « cover(p) + 1
if cover(p) = 1 then LINK-OUT; REPORT fi
else if interval(ap) ni + 0
then LEFTDOWN
INSERT(i, Ap)
up

fi
EE interval(ep) Ni $ 0
then RIGHTDOWN
INSERT(i, ep)
UP

fi

end of algorithm INSERTION-QUERY.

Note that the algorithm is controlled by the fixed structure of the primary
tree. Apart from the operations LINK-OUT, REPORT, LEFTDOWN, RIGHTDOWN and UP
it is the normal insertion algorithm of the segment tree. Those operations

manipulate the secondary structure.
The deletion algorithm is obtained from the insertion algorithm by replacing

cover(p) < cover(p) + 1

if cover(p) = 1 then LINK-OUT; REPORT fi

by

cover(p) <« cover(p) - 1

if cover(p) = 0 then LINK-IN; REPORT fi

and every occurrence of 'INSERT' by 'DELETE'.
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The strategy of the traversal of the secondary structure is to expand it on the
way down along the search path, that is to make the second contraction locally
undone. This is done by LEFTDOWN and RIGHTDOWN. LINK-QUT cuts off a subtree.
More precisely, it replaces it by a black leaf and connects it to some second-
pointer of the primary structure. The deletion algorithm uses the inverse
operation LINK-IN. LINK-IN and LINK-OUT together perform the first contraction.
UP recontracts the structure on the way up according to rules 1. through 5.,
that is, it performs the second contraction. REPORT traverses the current sub-
tree to report all free subintervals provided this subtree is part of the free

tree (see above).

In Section 3.1.4 these operations are described and the following properties

are shown:

- Each of the operations LEFTDOWN, RIGHTDOWN, UP, LINK-IN and LINK-OUT
takes only constant time (Lemma 3.5).
- The operation REPORT takes O0(1 + B) time if it is applied to a

subtree with B disjoint (absolutely) free subintervals (Lemma 3.6).

Based on these properties we can prove:

Theorem 3.4: On a contracted segment tree based on a set of n intervals I
each of the operations insertion-query and deletion-query takes 0(log n + v)

time where vy is the number of subintervals which are to be reported.

Proof: As mentioned before, the insertion or deletion of an interval i in a
counting segment tree - as defined by the algorithm above - is restricted

to a forked path:
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Figure 3-10

The total number of nodes on this path is 0(log n). The algorithm visits
the nodes ay ... A, in this order. These nodes form together the set CN(i).
Apart from calls of REPORT the algorithm clearly takes time 0(log n), since
the operations LEFTDOWN, RIGHTDOWN, UP, LINK-IN and LINK-OUT take only con-

stant time per node.

For each of the 0(log n) calls of REPORT the work is O0(1 + Bi)’ for
m
i=1, ..., m So the total work for these calls is 0(logn + Z Bi).
=1
Note that, since adjacent gaps in the subtrees of a, and a; 4 are merged

and only once counted in vy, we have

m
y = £ B, - 0(log n).
It follows that the total work is

m
0(log n + z

Bi) = 0(logn+ v + logn) =0(logn+y). <>
i=1
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3.1.4. Thravensing and mandipulating the secondany stnucture.

The Aidea.

Before we describe the traversal of the secondary structure in detail, let's
try to gain an overall understanding of it. The algorithm works recursively on
the primary structure. Whenever it changes position there, it calls LEFTDOWN,
RIGHTDOWN or UP to perform the appropriate movement in the secondary structure.
(We assume there always exists one well defined current position in the second-

ary structure which is initially the root).

Since an inner node in the primary structure may be represented as a name or a
leaf in the secondary structure, it is not obvious, how to go down from it. Our
strategy is to expand names and leaves into inner nodes going down and to recon-

tract the structure on the way up. Let's look at two examples:
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Example 1: [Interval [3, 4] is inserted into the empty tree
(We show the changes of the secondary structure. The current position is indi-

cated by V ):

Primary Tree

Secondary Structure

R OT2
Va RIGHTDOWN
- =4
1-5
a a
, b c
LEFTDOWN b LINK-0UT
===J§> - c =D f g
:7 \vj 4-5
3.1 15 second(%)-- 3.4
v
. a ac
1-3 () (4-5)
f f
) "E 3-4

Figure 3-11
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Example 2: Interval [3, 5] is deleted from the tree:

ROOT

1
a

Primary Tree

Secondary Structure

ROOT,
a a
N |
(1-3) () RIGHTDOMWN E:j//”////&\\\\\‘jztzg
C ﬁ
. 1-3 CV
() (4-5) - -~ -0
£ ¢ () (4-5)
= =
3.4 3.1
v/
a o
i} up
Ll ) v — (1-3) (4-5)
1-3 () (4-5)
£ £
- -0 =
3-4 3-4
Figure 3-12

We omitted the calls of REPORT since they do not change the structure.

Observe once more the tasks of the different operations:
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LEFTDOWN, RIGHTDOWN move the current position from a node to its son, expanding
names and leaves into inner nodes. These operations remove the second con-

traction along the search path.

LINK-OUT cuts off a subtree, replaces it by a black leaf and connects the sub-
tree to the primary tree. In this way it performs the first contraction.

LINK-IN performs exactly the inverse operation, removing the first contraction.

UP returns to the root performing the second contraction according to rules

1. through 5.

In the sequel we describe these operations in a little more detail and make some

remarks concerning implementation.

Going down (LEFTDOWN, RIGHTDOWN).

Whenever one of these operations is called then the current position is one of

the following:

an inner node

an ordinary leaf

a white leaf

a black leaf

a name in a name list.

The current position is the address of a node in the secondary structure. If
this node has a name list we assume the current position to refer to the first

name in the list. Therefore if we say the current position is a name, we imply

that the name list contains more than one element. If it has only one element

then the current position is an inner node or an ordinary leaf.
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Going down consists of two steps:

1. Expanding the current position into an inner node, if necessary.

2. Moving the current position to the son.

Expanding.

The rules for expanding are obviously inverse to the contraction rules 1. through

5. of Section 3.1.3. Let the current position be a node or name p.

1. If p is a white leaf, replace it by an inner node with two white leaves as

sons (the intervals of those leaves can be seen from the primary tree).

2. If p is a black leaf, replace it by an inner node with two black leaves

as sons.
3. If p is an ordinary leaf, replace it by an inner node with a white leaf and
a black leaf as sons. Remove the interval of the white leaf from the inter-

val list of p.

Example:

(3-5)

Figure 3-13
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4. If p is a name in the name list of some node q (which implies that it is
the first name and not the only one) then expand p into an inner node. Let
one of the sons be a black or white leaf, according to the type stored in the
name list. Remove name p from the name list of q. If p was expanded with a
white leaf then remove also the interval of that leaf from the list leftfree
or rightfree, respectively. By construction it must be (part of) the first

item of leftfree or the last item of rightfree.

Example:

pabq
(1-4,7-8) (20-24)

Figure 3-14

5. If p is an inner node, do nothing.

Moving the cunnent position.

At this point we can be sure that the current position is an inner node. We

then move the position to the son. If the son is an inner node or ordinary leaf
then the new position refers to the first name in its name list. If the son is

a white leaf, no problem arises. If it is a black leaf then we change the posit-
ion by jumping to another part of the secondary structure, namely to second(Ap)

for LEFTDOWN or second(pep) for RIGHTDOWN, respectively.

To be able to return along the search path we apply the usual technique of
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storing the position we leave on a stack. Each stack element consists of two
components, however: the address and a boolean field free which tells us whether
the position stored belongs to the free tree (see Section 3.1.3). This enables
the operation REPORT to decide, whenever it is called, whether the subtree be-

longing to the current position may contain absolutely free subintervals or not.

Going up (UP).

There is not much to be said about going up because it is exactly the inverse

operation to going down. Clearly it consists of the steps:

1. Moving the current position to the father,

2. Contracting the father according to the contraction rules 1. - 5.

Moving the position to the father is no problem since we pushed the father's

address on the stack when going down. Contracting is then performed according

to rules 1. - 5. of Section 3.1.3.

Moving subtrnees (LINK-OUT, LINK-IN).

These two operations together perform and remove the first contraction (see

Section 3.1.3).

LINK-OUT: The subtree rooted in the current node is cut off from its father p.
That is, the father receives a black leaf as a son instead of the sub-
tree. Furthermore second(ap) or second(ep) is put on the current

position.
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Example:

Primary Tree Secondary Structure

N\, P p
Ap Pp ¥

P p
& /%
~~ - _ v
>

/\

Figure 3-15
LINK-IN: inverse to LINK-OUT.

Lemma 3.5: Each of the operations LEFTDOWN, RIGHTDOWN, UP, LINK-OUT and LINK-IN

takes only constant time.

Proof: This is easy to check from the description given in the corresponding
subsections. All actions performed are local, that is restricted to the

direct environment of the current position. <>
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Repornting free subintervals (REPORT).

Let g be the node of the current position at the moment REPORT is called.

REPORT first checks whether the current position belongs to the free tree and

may therefore contain any absolutely free intervals (from the top stack element
it can be seen whether the father belongs to the free tree etc.) If it does, RE-
PORT calls a recursive algorithm report-intervals(q) to report all intervals con-
tained in interval lists of q's subtree. The argument of report-intervals is a
node of the secondary structure. It can be shown that report-intervals is never

called for a black leaf.

REPORT = if 'q belongs to the free tree'
then report-intervals(q) fi

report-intervals(p) =

if 'p is a white leaf!
then 'output p's interval'
else if 'p is an ordinary leaf'
then output all intervals in leftfree(p)
output all intervals in rightfree(p)
else* p is an inner node™*
output all intervals in leftfree(p)
report-intervals (Ap)
report-intervals (pp)
output all intervals in rightfree(p)

In Section 3.1.3 (see Fig. 3-9) we have seen that different interval lists may
contain adjacent intervals. Therefore we merge these intervals during reporting

by always keeping the last previous interval and checking for adjacency.
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Lemma 3.6: The operation REPORT takes O(1 + B) time applied to a subtree with

B disjoint (absolutely) free subintervals.

Proof: Obviously REPORT works in constant time if the subtree does not belong

to the free tree (and therefore B = 0) or if it consists of a single white
leaf (B = 1). Otherwise report-intervals is called for an inner node or ordin-
ary leaf g. Let p be the first name in g's name list. It is crucial to note
that now the tree with root q is precisely the tree T(p') defined in Section
3.1.3 and refered to in Lemma 3.3. The removing of superfluous intervals
from q's interval lists (see Fig. 3-8) has been performed by LEFTDOWN and
RIGHTDOWN. The work of report-intervals consists of visiting all nodes and
scanning all interval lists. We may now apply Lemma 3.3 and conclude that
the total work for this is O0(B) if B disjoint free intervals are reported.
Note that the name lists are not scanned during reporting (which might spoil

the time bound). <>

Final nemarks.

With Lemma 3.6 we completed the proof of Theorem 3.4 which in turn completes
the proof of Theorem 3.1. This finishes our description of an algorithm which
computes the contour of a set of n iso-oriented rectangles in O(n log n + p)

time and 0(n + p) space where p is the number of contour-pieces.

In Section 3.2 we study some related contour and measure problems. The contracted
segment tree or variants of it will again prove useful. In Section 3.2.9 we

prove lower bounds for all the problems considered including the one of this
section. We show that (n log n + p) is also a lower bound for computing the

contour. Hence our algorithm is time-optimal. We do not know whether it is
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space-optimal (see the remarks in Section 3.2.9).

In Section 4.4 we give a divide-and-conquer algorithm to compute the contour

which achieves the same time bound, but has higher space -complexity.
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3.2. I-contoun and Li-measune problems.

3.2.1. Problem description.

We now study problems based on a generalization of the contour concept due to
Wood [Wol. Imagine each of the rectangles of a given set R to have a certain
small 'thickness'. Laying out the intersecting rectangles in the plane then re-
sults in something like a 'hill landscape'; areas where many rectangles inter-
sect are elevated. Obviously separate regions are formed on different elevation
levels which have their own contours and measures. - Problems based on these

concepts may have applications in VLSI-design, see the conclusions.

Throughout Section 3.2 we assume that all rectangles have distinct coordinates
(that is a set of n rectangles defines 2n distinct x- and y-coordinates, respect-
ively). This restriction allows us to present our algorithms free from unnecess-
ary detail. We do not expect the adaptation to the general case to be a problem;
in Section 4 we give some examples of how to modify an algorithm to obtain a

solution for the general case.
We now formalize the 'hill landscape' concept:
Given a set of rectangles R in 2-space,

i-area(R) :=1{p EIR2| there are exactly

i rectangles in R which contain p}.

This induces the notions of i-measures, i-contours and the height of a set of

rectangles:
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i-measure(R) := measure(i-area(R))

i-contour(R):= {p EIR2| p is on the boundary of (i-1)-area and of

i-areatl

where 'on the boundary' is defined as follows:

2

Let S, T be subsets of R™. p € IRzis in the closure of S iff any circle

around p with radius r > 0 contains points of S. p is on the boundary of

Sand T if it is in the closure of S and of T.

In this terminology the contour considered in the last section is called the
1-contour. Again any i-contour is a collection of contour-cycles each of which

is a sequence of alternating horizontal and vertical contour-pieces.

3-contour
1-area /
= - == /
i i
| 2-area | — = -
L | P/ —:
e ] /
L~ r———- |
~
- 1-area [ |
éﬁiiilﬂ_wﬁvﬂ_ﬂﬂ,ﬁﬁﬂ—»——“ﬁ | 2-area | 3-area [
2-contour L ! :
i i
l_,_?:?t?%__J
/// 1-area
1-contour

Figure 3-16



- 48 -

Finally we define

height(R) := max {1 € W0| there exists an i-area # @}.

height(R)
It is easy to see that now measure(R) = B i-measure(R).
i=1
In the following sections we consider algorithmic solutions for the following

problems:

Compute height(R).

Compute the height-measure and the height-contour (that is measure

and contour for the area of highest elevation).

Compute all i-measures and i-contours, respectively.

Compute the i-measure (or the i-contour) for a given value of i. We

will see that this is the most difficult task.

3.2.2. Computing the height of a set of nectangles.

We approach the task again with a line-sweep algorithm in mind. At any position
the intersection of the sweeping line with the set of rectangles is a set of
intervals. The set of intervals partitions the line into a set of fragments.

Now we can associate with each fragment an 'elevation level':

Figure 3-17
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During the line-sweep the set of intervals changes by insertions and deletions
and the set of fragments chahges accordingly. Clearly the height of the set of
rectangles is the maximum, taken over all sweepline positions, of the maximal

elevation level occurring in a particular set of fragments (for a fixed sweep-

line position).

We model the set of fragments in an abstract data structure called a weighted

partition defined as follows (we use some terms defined in Section 2):
Let I be a set of intervals based on a set of points P. Then

weighted partition (I, P):= {(iy, c)| iy € partition(P) and

there exist exactly ¢ intervals in I which contain iy}.

For this data structure two operations, namely insertion and deletion of an
interval, are defined. Let W be weighted partition (I, P), i an interval based
on P.

W.insert(i) T Cc+C+ 1.

In
-

f 11 (i, in W with i
or a (1y c) in W wi 1y

W.delete(i) tc+«c-1.

In
—

for all (i, ¢) in W with i

or (1y ) in Ww y

Furthermore a function maxc yields the maximal c-value occurring in W:
W.maxc = max(pron(W))

(proj2 yields the set of all c-values occurring in W, of which the maximum is

taken).
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Now it is easy to give an algorithm computing the height of a set of rectangles:

Algorithm HEIGHT

Input: A set of rectangles R.
Qutput: height(R), an integer value.

Step 1: Let VX be the set of all vertical rectangle edges, sorted by x. Let
y-set(R).

o
il

W « {(iy, 0) | iy € partition(P)}
h «0

Step 2: Scan VX. Encountering

a) a left edge (x, y,, yz)

W.insert(ly,sy,])
if W.maxc > h then h « W.maxc fi

b) a right edge (x, Yy Yp)

w.delete([y1,y2])
Step 3: HEIGHT < h.

end of algorithm HEIGHT.

Of course we have not really solved the problem without giving an implementation
of the abstract data structure weighted partition. However, this is not a diffi-
cult task: We use basically a counting segment tree (described in Section 3.1).
Each element (iy,c) of the weighted partition corresponds to a leaf p of the
counting segment tree with represented interval interval(p) = iy. The 'elevation
level' (or coverage value) c is given by the sum of the cover-fields of all

nodes on the path to p.
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Creating weighted partition (@, P) is implemented by building an empty counting
segment tree based on P. It is obvious that the normal insertion and deletion
procedures of counting segment trees maintain a weighted partition correctly
if c-values are computed as described above. We only have to add a mechanism

implementing the function maxc.

To achieve this we augment each node p by an integer field maxcover(p), con-
taining the highest coverage-value on any path below p.
cover(p) ~if p is a leaf

maxcover(p) =
cover(p) + max {maxcover(ip), maxcover(pp)} otherwise.

Maxcover-fields are initially 0. Since a node's maxcover-value depends only on
the maxcover-values of its sons (and its own cover-value) it is possible to up-
date after an insertion or deletion of an interval I the maxcover-fields of all
nodes on the forked search path, going up the tree, without increasing the
0(log n) update time. A function call W.maxc is implemented by an access to

maxcover(root).

Lemma 3.7: A weighted partition based on a set of n points can be stored in
0(n) space with an update time of 0(log n) and constant time for an evaluation
of function maxc. The empty weighted partition can be built (from a sorted

set of points) in 0(n) time.
This immediately determines the time and space complexity of algorithm HEIGHT:

Theorem 3.8: Given a set of n rectangles R, height(R) can be computed in

O(n log n) time and O0(n) space.
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3.2.3. Computing the height-measune.

This can be done by a simple modification of the previous algorithm. Given R,
we divide the plane into a set of disjoint vertical stripes defined by the set
of all sweepline positions. Let h = height(R). Each stripe Si defined by ad-

jacent sweepline positions (x ) may contain some part of the h-area which

i*%i41
we call h—areai. The size of h—areai is the product of the total length of frag-

- X.).

ments of the sweepline with coverage h and the x-extension of Si’ (xi+1 i

Hence we have to maintain during the line-sweep the total length of the parts of
the sweepline which are covered h times after each update. On the abstract level
we add to the weighted partition data structure a function maxlength defined as

follows:

W.maxlength = by |iy|

{(iy,c) eW | ¢ = W.maxc}

This is the modified algorithm:

Algorithm H-MEASURE

Input: A set of rectangles R.
Qutput: For h = height(R), h-measure(R), a real number.

Step 1:  h < HEIGHT(R)

Step 2: Let VX be the set of all vertical rectangle edges, sorted by x.
Let P = y-set(R).

W < {(iy,O) I iy € partition(P)?}
sum + 0
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Step 3: Scan VX

if_encountering'a left edge (X, Yy y2)

then W.insert(ly,,y,])

else *a right edge (x, Yy y2) is encountered*
W.delete([y,,y,])

fi

x' + the next sweepline position. If there is none, goto step 4.

if W.maxc = h

then sum <« sum + W.maxlength <« (x' - x)

fi

Step 4: H-MEASURE < sum

end of algorithm H-MEASURE.

We complete the description of the algorithm by giving an implementation of
function maxlength of a weighted partition. We proceed in the same manner as in
the implementation of function maxc. Each node of the counting segment tree is
augmented by a further field maxlength. Again after each insertion or deletion
the maxlength-fields of nodes on the search path are updated, going up the tree,
and a function call W.maxlength is implemented by an access to maxlength(root).
Maxlength-fields have the following meaning: For any node p in the tree, max-
length(p) contains the total length of subintervals of interval(p) which are

covered maximally with regard to p's subtree, namely maxcover(p) times.

It is easy to see that the correct value of the maxlength-field of a node p
can be computed from the fields of its sons ap and ep (which is crucial for

efficient updating) after insertions or deletions:
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maxlength(p) = if p is a leaf
then |interval(p) |
else *p is an inner node*
if maxcover(Xp) = maxcover( ep)
then maxlength(2p) + maxlength(ep)
else maxlength(up)
fi
fi

where pp is the son of p with higher coverage:

(up = if maxcover(Ap) > maxcover(pp)

then Ap
else pp
fi).

It is clear that the updating of maxlength-fields on the search path does not
increase the time bound for an insertion or deletion, which is still 0(log n).
Accessing maxlength(rdot) takes only constant time. Hence the time complexity
of steps 2 through 4 of algorithm H-MEASURE is the same as that of steps 1
through 3 of algorithm HEIGHT, namely O(n log n). Calling HEIGHT in step 1

takes additional time of 0(n log n). The space bound is unchanged. Hence it

follows:

Theorem 3.9: Given a set of n rectangles R of height h, h-measure(R) (the size
of the area of highest elevation) can be computed in 0(n log n) time and

0(n) space.

For simplicity we used two different scans to compute h = height(R) and after-
wards the h-measure. It is no problem, however, to compute both numbers in a

single scan by resetting sum to zero whenever a new maximal height-value is

found during the scan.
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3.2.4. Computing the height-contounr.

Our task is now to determine the contour of the area of highest elevation.
Recall how the 1-contour was found (Section 3.1): Whenever the sweepline en-
counters the left edge (x, Yqs y2) of a rectangle, the interval [y1,y2] is
inserted into a data structure storing the currently present rectangles repre-
sented by their y-intervals. Furthermore the intersection of [y1,y2] with
(previously) free parts of the sweepline is reported as a collection of con-
tour-pieces. In a similar manner contour-pieces are reported on deletion of an

interval.

For h = height(R) those parts of a left rectangle edge contribute to the h-con-
tour which intersect parts of the sweepline previously covered (h-1) times or
covered h times now, respectively. Similarly the intersection of a right rectangle
edge with the parts of the sweepline covered h times before encountering this

edge or (h-1) times afterwards has to be reported as a set of contour-pieces.

On an abstract level it is easy to come up with an algorithm exploiting these
facts. We add another function to our weighted partition data structure.

Given an integer h and an interval i, W.maxinterval(i) yields a set of disjoint
intervals containing the intersection of i with parts of the sweepline covered
maximally (assuming the sweepline is represented by a weighted partition W).

This can be described formally as follows:
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Let W = weighted partition (I, P) and i an interval based on P.
W.maxintervals(i) =

CPF =« {iy | there exists (iy, c) € W with iy ciand ¢ = W.maxc}
(CPF = Contour Piece Fragments)

h-intervals < union(CPF).

The first operation yields the y-intervals of all fragments in W which are
covered maximally. Since a single vertical contour-piece may extend over some

fragments, the union operation concatenates adjacent fragment intervals.

As we know from [LiP] it is sufficient to compute the set of vertical contour-
pieces, since from it the complete contour (as a collection of linked contour-
cycles) can be computed in 0(p) time and space, where p is the size of the

contour. We used this fact already in Section 3.1. Hence our contour algorithm

is complete:

Algorithm H-CONTOUR

Input: A set of rectangles R.
Qutput: For h = height(R), the set of vertical contour-pieces of the h-contour
of R.

Step 1:  h <« HEIGHT(R)

Step 2: Let VX be the set of all vertical rectangle edges, sorted by x.
Let P = y-set(R).

W < {(iy,O) | iy e partition(P)}
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Step 3: Scan VX. Encountering
a) a left edge (x, Yqs yz)

W.insert ([y,.y,1)
if W.maxc = h then C « W.maxintervals ([y,.y,]) else C« @ fi
output (line-segments(x, C))

b) a right edge (x, v, yz)

if W.maxc = h then C « W.maxintervals ([y1,y2]) else C« @ fi
W.delete ([y1,y2])
output (line-segments(x, C))

end of algorithm H-CONTOUR.

Of course the real difficulty is to implement the weighted partition W in a
way that allows efficient computation of function maxintervals(i). Fortunately
we do not have to develop a completely new data structure, but can use a modifi-

cation of the contracted segment tree, called an inverted contracted segment tree.

Recall that a contracted segment tree (CST) consists of a primary tree (which is
a counting segment tree) and a secondary structure which is a collection of trees.
Each of the secondary trees is the contracted copy of some subtree of the primary

tree. The tree attached to ROOT2 contains exactly the free intervals of the line.

An inverted contracted segment tree (ICST) consists again of a primary tree and
a secondary structure. The primary tree is a counting segment tree with additional
maxcover-fields, as used in Section 3.2.2. The secondary tree attached to ROOT2

now represents the parts of the line maximally covered.

To obtain this structure insertion and deletion procedures of the CST have to

be modified. Since the basic concepts are the same as before we will not des-
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cribe the modified version in as much detail as in Section 3.1. However, we

will try to clarify the main differences.

The basic idea of a CST is to 'link out' a subtree when its root node becomes
covered. It can be illustrated by the following figure (node q becomes covered

by insertion of an interval):

Primary Tree Secondary Structure

— e e e

Figure 3-18

In,an ICST, of two brother nodes the one with higher maximal coverage remains
in the contracted (secondary) structure, the other one is linked out. Both sons
are present if they have equal maximal coverage. Hence the result of covering

g in the example above is the following:
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Primary Tree Secondary Structure

= = =
— —

Figure 3-19

Recall that two kinds of contractions are performed to obtain secondary trees
of a CST (and as well an ICST). The easiest way to illustrate them is to show
how a (static) counting segment tree is transformed into its contracted copy
though the secondary structure is constructed dynamically by insertion and de-

letion procedures. The following example shows the two contractions for ICSTs.

Figure 3-20



- 60 -

Covering is indicated by horizontal bars. The first contraction removes subtrees

not maximally covered and replaces them by black leaves:

Figure 3-21

The second contraction merges adjacent intervals of the remaining tree to

fulfil the condition that a contracted tree contains only O0(R) nodes if it
represents B disjoint intervals. It also creates ordinary leaves at the boundary
of covered and free parts (that is from a white and a black leaf) etc. The rules
for the second contraction are given in Section 3.1.3. The result is shown in

Fig. 3-22:

(1-2) () () (4-5)

Figure 3-22

These contractions are performed dynamically by algorithms INSERT and DELETE. To

remain consistent with algorithm H-CONTOUR we now use a separate algorithm
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QUERY to implement the function maxintervals of a weighted partition.

In the sequel we give the modified algorithms INSERT, DELETE and QUERY to main-
tain and query an ICST. INSERT and DELETE use operations LEFTDOWN, RIGHTDOWN and
UP. LEFTDOWN and RIGHTDOWN are unchanged from Section 3.1.4. UP now combines the
tasks of the previous operations LINK-OUT, LINK-IN and UP, that is it performs

the first and the second contraction.

INSERT(i,p) (i an interval, p a node) =

if interval(p) i
then cover(p) « cover(p) + 1
maxcover(p) <« maxcover(p) + 1
else if interval (ap) Ni # 0
then LEFTDOWN
INSERT(i,Ap)
up
fi
if interval(ep) Ni # 0@
then RIGHTDOWN
INSERT(i,Pp)
up
fi |
maxcover(p) < cover(p) + max {maxcover(xp),maxcover(pp)

To obtain the algorithm DELETE(i,p) replace in INSERT '+1' by '-1' (in lines

2 and 3) and 'INSERT' by 'DELETE'.

Since LEFTDOWN and RIGHTDOWN are unchanged we only describe the operation UP.

It consists of three steps:
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1. Move the current position to the father.

2. Perform the first contraction, that is link in/out p's sons according

to the following rule:

T(p') = if maxcover(Ap) = maxcover(ep)
then (p',T(%p'),T(sp"))
else if maxcover(Ap) > maxcover(pp)
then (p',T(Ap'),black leaf)
else (p',black leaf,T(pep'))
fi
fi

(see Fig. 3-23).

-~ -~
-~ -
= —
=
~ ~
-~
~

Fo
\gxpl \~§pp|

3. Perform the second contraction by merging two white leaves into one

Figure 3-23

white leaf, a white and a black leaf into an ordinary leaf etc. as des-
cfibed in Sectidn 3.1;
In this way after an insertion or deletion the following holds:
For each node p of an ICST, T(p') represents the set of maximally covered
disjoint subintervals of interval(p), MI(p). If MI(p) has cardinality B

then T(p') has O0(R) nodes;
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For completeness we also give the algorithm QUERY of an ICST which implements

the function maxintervals of a weighted partition.

QUERY(i,p) (i an interval, p a node) =

if interval(p) £ i

then REPORT

else if interval(2p) Ni ¢ 0
then LEFTDOWN

QUERY (i, 2p)
SIMPLE-UP

fi
if interval(ep) Ni # 0
then RIGHTDOWN

QUERY (i, op)
SIMPLE-UP

REPORT traverses a subtree reporting intervals in interval lists as described in
Section 3.1.4. Now the reported intervals are the maximally covered ones.
SIMPLE-UP is operation UP without step 2, which is superfluous since the coverage

of subtrees has not changed.

With these modifications the basic properties of a CST hold again:

Lemma 3.10: In an inverted contracted segment tree based on n points an inter-
val can be inserted or deleted in 0(log n) time. The B disjoint maximally
covered subintervals of an interval can be reported in 0(log n + B) time.

Space is 0(n) and the empty ICST can be constructed in 0(n) time.

For proof, see the corresponding Lemmas and Theorems of Section 3.1.
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We now return to the abstract level to analyze algorithm H-CONTOUR. Implementing

the weighted partition by an ICST we obtain

Theorem 3.11: For a set of n rectangles of height h, the h-contour can be com-

puted in 0(n log n + ph) time and O(n + ph) space, where Py, is the size

of the h-contour.

Proof: We show this by analyzing the time and space requirements of algorithm

H-CONTOUR. As we know from Theorem 3.8 step 1 takes O0(n log n) time. Step 2
involves sorting (0(n log n) time) and building an empty ICST (0(n)time).
Step 3 is a loop executed 2n times for all vertical rectangle edges. For
every edge an insertion or deletion is performed, taking 0(log n) time and
possibly a call of function maxintervals.This call, implemented by algorithm
QUERY of the ICST, takes O0(log n) time plus O(pj) time for reporting pj
contour-pieces. Hence the whole scan takes O0(n log n) time plus the time for

reporting the h-contour which is O(ph).

Space is 0(n) for the ICST and O(ph) to store the contour-pieces which are
later by a sorting operation linked into contour-cycles in O(ph) time and
space. Summing all the time and space requirements yields the bounds of the

theorem. <>
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3.2.5. Computing afl measures.

So far we are able to compute i-measure and i-contour for the extremal values of
the i-scale, that is, i =1 and i = height(R). It is easy to show that all the
algorithms developed up to now are time-optimal (see Section 3.2.9). We now add-
ress the range of i-values between the extremes which is in general more diffi-
cult. In the next two sections we give algorithms which compute all measures or
all contours, respectively, in a single line-sweep. The all measures problem can
be solved by a simple extension of our previous methods, but the resulting algo-
rithm is probably not optimal. Surprisingly the all contours problem permits a
very simple optimal solution, reversing the normal situation where the contour
problem is much more difficult than the measure problem. In Sections 3.2.7 and
3.2.8. we finally address the problem of computing the i-measure and the i-con-

tour for any specific value of i which proves to be the hardest problem.

On the abstract level, the all measures problem can be solved by a trivial modi-
fication of algorithm H-MEASURE and the weighted partition data structure. We in-
troduce a new function length(i), giving the total length of the sweepline parts

which are covered i times, for i = 1,...,height(R):

W.length(i) = g2 i

The algorithm is then quite similar to algorithm H-MEASURE:
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Algorithm ALL MEASURES

Input: A set of rectangles R.
Output: For i =1,...,height(R), i-measure(R), a real number.

Step 1: h < HEIGHT(R)

Step 2: Let VX be the set of all vertical rectangle edges, sorted by x. Let
P = y-set(R).
W < {(iy,O) | iy € partition(P)}
For i = 1,...,h: areal[i] « 0

Step 3: Scan VX.

if encountering a left edge (x, Yqs y2)
Eﬂgg_w.insert([y1,y2])
else *a right edge (X, Yqs y2) is encountered*
W.delete(lyq,y,])
fi
x' + the next sweepline position. If there is none, goto step 4.
for all i e {1,...,W.maxc}: area[i] « area[i] + (x'-x)-W.length(i)

Step 4:  For i =1,...,h: output(area[i])

end of algorithm ALL MEASURES.

The obvious method to implement the weighted partition W with function length(i)
is to use a counting segment tree where each node cohtains an array length. For

a node p length[i]l(p), for i = 0,...,h, contains the total length of the subin-
tervals of interval(p) which are covered i times. When a node is covered, a shift
to the right is performed on its array length, also a shift to the left, when it
is uncovered. The values of length(p) can be reconstructed from the values of

length( xp) and length( pp):
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0 0 < i < cover(p)
length[i](p) =
length [ i-cover(p)]( rp) cover(p) <i <h

+ length [i-cover(p)] ( ep)

This makes it possible to update the length-arrays of the nodes on the search
path after an insertion or deletion. Of course now this isn't any more possible
in constant time, but takes 0(h) time per node. After updating, W.length(i) is

given by length[i] (root).

The time and space requirements of this algorithm are not difficult to analyze.
Steps 1 and 2 take together 0(n log n) time. In step 3, any insertion or deletion
takes 0(h log n) time and the updating of the array area takes 0(h) time. Hence
step 3 dominates the time complexity which is in total O(neh log n). Space is

O(h+n) since each node stores an array of length h.

This approach was straightforward and easy to analyze. However by a more careful
implementation we can gain some efficiency. We replace the array length belonging
to each node by a linked list lengthlist. Each list element is a pair (i, li)
(equivalent to length[i] = li)' However the list contains only nonempty ele-
ments, that is, 1, £ 0 for any list element (i, 1;).
Covering a node is now performed by scanning its list and increasing all i-fields
by one, uncovering by decreasing them, in 0(B) time for a list of length B. It
is again possible to construct lengthlist(p) from cover(p), lengthlist( rp) and
lengthlist( pp). This takes 0(1 + r) time where 1 and r denote the size of
lengthlist( Ap) and lengthlist( pp), respectively. To analyze time and space

requirements it is crucial to find some bound on the sizes of lists which appear

in the tree.
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There are two facts limiting the list size. First, no list can have more than
(h+1) items, for h = height(R). Second, if p is the root of a subtree with m lea-
ves, then there cannot exist more than m different coverage values in this sub-
tree and lengthlist(p) has at most m items. Clearly the size of lengthlist(p) is

the minimum of h and m, in the worst case.

The first restriction will usually apply to nodes close to the root of the tree
while the second applies to leaves and nodes on the lower levels. h has some va-

lue between 1 and n. Let us assume h = 2k.

(This simplification does not change
the asymptotic complexities which we compute in the sequel). Then the list sizes

on the different levels of the tree are in the worst case as follows:

height list size number of nodes on the level
log n. 2k 1
(logn - k)| (logn) -1 2k 2
levels
K+ 1 oK pllog )=k _ ok
3 K pk-1 n/2k1
k levels 3 22 -1 n/4
2 gl g n/2
0 _
L 1 2 =1 n
Figure 3-24

An insertion or deletion is restricted to a forked search path and the work done

for each node is proportional to the size of this node's lengthlist. Hence we ob-

tain the asymptotic update time by summing the list sizes on a search path. Let
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U(n,h) denote the worst-case update time.

0((log n - k)»2k + 2k - 1)

U(n,h)

k

0(h-(log (n/h) + 1)) (h = 2%, k = log h)

Since the update time dominates the time complexity of the algorithm we have a
total time complexity of O0(n-h (log (n/h) + 1)). For h>n or h - 1 this is
O(n2) or 0(n log n), respectively.

To compute the space-requirements we look again at the list sizes on the differ-
ent levels of the tree (Fig. 3-24) and sum the products of list sizes and numbers
of nodes on the level. Let S(n,h) denote the worst-case space-requirements.

K (Zlog n-k+ 1_1))

S(n,h) = O(ken + 2"

O(n-log h + 2.2k, 2109 (n/h))
0(n log h + h-(n/h))

O(n (1 + log h))

Again we consider the cases h-»n and h -+ 1:

h -+ n: S(n,h) - 0(n log n)
h+1: S(n,h) = 0(n)

We summarize these results in

Theorem 3.12: Let R be a set of n rectangles of height h. Then we can compute all

i-measures of R together, for i = 1,...,h, in 0(n-h (log (n/h) + 1)) time and
0(n-(1 + log h)) space. Since 1 < h < n, the time complexity lies between

0(n log n) and O(nz) and the space requirements between 0(n) and O0(n log n).



= 70 -

3.2.6. Computing all contouns.

Surprisingly the all contours problem has the most simple solution of all pro-
blems we consider in Section 3. This is due to the fact that any fragment of a
rectangle edge created by intersection with other rectangles is part of some
i-contour. Since we have to report all those contour-pieces we are allowed to
perform a constant amount of work for each occurring line segment intersection.
In other words, because so much work has to be done anyway, there is no possibi-
lity to save some of it by sophisticated methods and a simple method will do to

provide a time-optimal solution!

Recall that between any two sweepline positions the intersection of the sweepline
with the set of rectangles is a set of intervals. This set of intervals induces a
partition of the line into a set of fragment intervals, each of which has its own
elevation level (see Fig. 3-17). For the first time we can now afford to store
this collection of fragments basically as a simple linked list ordered by y-coord-
inate. Each list element is a pair (iy,c) like the elements of a weighted parti-
tion. There is a difference to a weighted partition, however, because this ab-
stract data structure is based on a set of points P which is static. That is,
during the whole line-sweep the fragment intervals of a weighted partition do not
change. This reflects the fixed structure of the segment tree which is normally

used for implementation.

In contrast to this the linked list we use now represents the dynamic set of frag-
ments induced by the intervals currently intersecting the sweepline. We might de-
fine a 'dynamic weighted partition' as an abstract representation, but in the pre-

sent case this seems not necessary.

The new line-sweep algorithm proceeds as follows: Encountering the left edge of a
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rectangle (x,y1,y2) the list element (iy,c) is located which contains point Yy

(y1 € iy). Obviously this list element has to be split into two parts with inter-
vals [bottom(iy), y1} and [y1, top(iy)]. Starting with the latter list element,
the linked list is scanned. For each encountered list element (i;, c') the cover-
age value c¢' is increased by 1 and the line segment (x,i&) is reported as a piece
of the c'-contour. The scan ends when the list element (i;,c“) with Yy, € i; is
found. This list element has again to be split in the same way as the first list
element. There exist some special cases (y1 and Yo may fall into the same frag-
ment interval or on the boundary between two fragments) but there is no difficulty
in treating these cases. - For a right rectangle edge (x,y1,y2), the same scan is
performed decreasing the coverage values and merging the list elements adjacent

to Yy and Yoo if necessary. Again contour-pieces are reported during this scan.

The only remaining problem is how to locate the first list element efficiently.
For this we superimpose a binary searchtree of which the list elements are the
leaves. Any balanced tree scheme (AVL-trees, 2-3 trees etc.) with additional con-
catenation of the leaves can be used to implement this structure. For an explicit
description of a leafsearch tree see for instance Comer [C] (B+—tree). This struc-
ture allows to search for a leaf as well as splitting or merging leaves together

with restructuring in 0(log n) time (n the number of leaves).

As for the previous contour algorithms we only describe how to report the contour-
pieces without linking them into contour-cycles. This can again be done in 0(p)
time and space by the method given in [LiP], where p is the number of contour-

pieces.

The time complexity of this algorithm is as follows: The preparatory sorting of
the rectangle edges takes 0(n log n) time. For each rectangle edge encountered

during the line-sweep 0(log n) work is done to locate the 'start' list element.
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Scanning the linked list takes O(R) time if B contour-pieces are reported. Split-
ting or merging leaves (list elements) with restructuring the tree can also be
done in 0(log n) time. Hence the whole line-sweep takes O(n log n) time without

the time for reporting, which is linear in the total size of all contours.
The leafsearch tree requires 0(n) space. Since the contour-pieces have to be sto-
red to link them into contour-cycles later, an additional O(p) space is used.

Thus we have:

Theorem 3.13: Given a set of n rectangles R, all i-contours of R can be computed

together in 0(n log n + p) time and O(p) space, where p is the total size of

all contours.

3.2.7. Computing the i-measune.

We must admit that we did not really have a new idea to solve this problem. There-
fore this section will be quite short. Essentially we use the all measures algo-
rithm to compute the i-measure. However we can save some work. Recall that all
measures are computed by maintaining a segment tree during the line-sweep which
stores the y-intervals of all rectangles currently intersecting the sweepline.
Each nodeAp of this tree has an associated interval interval(p) and contains
some information about the total length of the subintervals of interval(p) which
are covered i times, for i = 0,...,h. Let us for a moment return to the represen-

tation of this information by an array. From the definition

(’0 0 < i < cover(p)
length[i](p) =
}_length[i—cover(p)](

p) cover(p) < i < h
]

A
+ length[i-cover(p)]( pp)



- 73 -

it follows that length[i](p) depends only on fields length[j](q) of nodes g in
p's subtree with j < i. This implies that for the computation of the i-measure

all arrays length in the tree need only have the fields 0 to i.
The same holds for the representation using list lengthlist; the analysis of time
and space complexity remains the same if we replace h by i. Therefore the result

of Section 3.2.5 applies:

Theorem 3.14: For a set of n rectangles R the i-measure can be computed in

O(n<i (log (n/i) + 1)) time and O(n (1 + log i)) space.

3.2.8. Computing the i-contour.

To solve the i-measure problem it was possible to use the algorithm for the all
measures problem and to save some of the work done by it. Can we do the same for
the i-contour problem? This seems not possible. The time for scanning the linked
list can not be reduced, though we are interested only in the list elements with
one specific coverage value. To solve the problem more efficiently we have to

come up with a completely new algorithm.

We still intend to use a line-sweep algorithm which is even easy to describe on

the abstract level:

Maintain a data structure representing the parts of the sweepline covered

(i - 1) times. Call it D.

- Encountering a left rectangle edge v = (x, Yqs y2):
- Query D with interval [y1,y2] for subintervals covered (i-1) times.
The answer (together with x) defines the contour-pieces created by v.

- Insert [y1, y2] into D.



- 74 -

- Encountering a right edge v = (x, Yqs y2):
- Delete [y1, y2] from D.
- Query D with [y1, yz] for subintervals covered (i-1) times. Again

the answer determines the contour-pieces created by v.

The difficulty is again to design a data structure supporting insertion, deletion
and querying for subintervals covered (i-1) times. The first candidate for such a
data structure is again the contracted segment tree, and we shall indeed use some

variant of it called an i-fold contracted segment tree. Recall the structure of a

normal CST: It consists of primary and secondary structures. The primary struct-
ure is a counting segment tree. The secondary structure is a collection of trees
(contracted copies of subtrees of the primary tree) of which one is of special im-
portance, namely the tree attached to ROOTZ. This tree, called the free tree, con-
tains in its interval lists all the free intervals on the sweepline. The other
trees are disconnected from ROOT2 and attached to different nodes in the primary
tree. We may say they are 'scattered' over the primary tree. The intervals repre-

sented in the scattered trees are covered one or more times.

Now any node p of the primary tree may have its copy either in the free tree or
in one of the scattered trees. If p' belongs to the free tree, then the subtree
of p' contains all free subintervals of interval(p) in its leaves and interval
lists. Othefwise p has no free subintervals. Hence we may say that for each node
p in the primary tree the free subintervals (that is, the subintervals covered

0 times) are maintained in the secondary structure.

In an i-fold contracted segment tree for each node p the secondary structure main-
tains the i sets of subintervals of interval(p) which are covered j times, for
j =0,e..,(i-1). This is in analogy to the i-measure algorithm where for each no-

de p all j-measures, for j = 0,...,i, are maintained by means of the list length-
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list(p). In a similar way it is now necessary to maintain the sets of j-covered
subintervals for all j-values below i though we are only interested in the (i-1)-

covered subintervals.

An i-fold contracted segment tree has the same primary structure as a normal CST,
namely a counting segment tree. However, the secondary structure consists of i
different trees Ty, T4y .o. T(i-1) with roots ROO0Ty, ... , ROOT(1_1) which
take the role of the free tree. Tj contains exactly the j-covered intervals in

its interval lists. Furthermore the secondary structure of an i-fold CST contains
also a collection of scattered trees disconnected from any ROOTj (they are attach-
ed to primary nodes, as in a CST). The intervals represented in those trees are

covered i or more times.

How is an i-fold CST maintained during the line-sweep? We have to describe how to
insert and delete an interval and how to report for an interval the subintervals
covered (i-1) times. The formal description of these algorithms is nearly the sa-

me as for an inverted contracted segment tree (see Section 3.2.4).

The algorithms for insertion and deletion read now:
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INSERT(i,p) = DELETE(i,p) =
(only differences to INSERT are shown)
if interval(p) < i
then cover(p) « cover(p) + 1 cover(p) « cover(p) - 1
SHIFT-UP SHIFT-DOWN
else if interval(ap) Ni @
then LEFTDOWN
INSERT (i, »p) DELETE (i, »p)
up

fi

if interval( pp) Ni 4 @

then RIGHTDOWN
INSERT (i, ep) DELETE (i, pp)
upP

Algorithm QUERY(i,p) is only minimally changed:

if interval(p) ci
then call REPORT for the current position in tree T(i—1)
else ...

The remainder of the algorithm is unchanged.

The operations LEFTDOWN, RIGHTDOWN and UP now work in parallel on all trees

T . s T(i—1)' In each tree exists a current position which is manipulated by

9> -
these operations. For each single tree the operations work in the same way as for
normal CSTs. That is, LEFTDOWN and RIGHTDOWN perform the going-down in secondary
structures, expanding the tree, while UP moves the position upwards, recontract-
ing the tree. Only the meaning of white and black leaves is changed. Recall that

in a CST white leaves represent free subtrees of the primary tree, black leaves

covered subtrees. Now in tree Tj’ j=0,...,(i-1), a white leaf represents a sub-
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tree covered j times and a black leaf a subtree not containing any j-covered in-

tervals.

Example: The empty tree has the structure

Primary Tree

ROOT RQOT1 ROOT2 ROOT(1_1)

N NN \
| O O -

0

Secondary Structure

Figure 3-25

Contracting a tree (when going up after insertions or deletions) transforms white

leaves into ordinary leaves or elements of interval lists. Hence after contract-

ion the interval lists of tree Tj represent exactly the j-covered intervals in

the i-fold CST.

The algorithms INSERT and DELETE contain two new operations SHIFT-UP and SHIFT-

DOWN. They update the secondary structure when a node's coverage is increased or

decreased. Suppose node p of the primary tree becomes covered once more. Let us

call p's subtree in the primary tree T(p). There exist contracted copies of T(p)

in each tree TO,...,T(1_1), which we call Ty(p), Tq(p)s -.. T(i_1)(p). When

SHIFT-UP is called, the actual positions in all trees are the roots of the trees

To(p), csd } T(i_1)(p). SHIFT-UP then moves all subtrees one position to the

right. More precisely, To(p) is replaced by a black leaf, T1(p) by To(p), T2(p)

by T1(p) etc. Finally T(i_1)(p) is attached to second(p).



- 78 -

Note that SHIFT-UP maintains correctly the condition that tree Tj represents the
j-covered intervals: Before p received the additional covering T(j_1)(p) repre-
sented the (j-1)-covered subintervals of interval(p). Covering p, each of those
subintervals becomes covered j times. Moving the subtree T(j_1)(p) into tree Tj
makes sure that (the new) Tj(p) represents the j-covered subintervals of inter-

val(p). - Obviously TO(p) has to be replaced by a black leaf because the new To(p)

cannot contain any empty intervals after covering p.

SHIFT-DOWN performs the inverse operation of moving subtrees left, into 'lower'

trees, when uncovering a node.

We hope to clarify the issue by providing a rather detailed example. A 3-fold con-
tracted segment tree is shown and the effect of inserting an interval covering

just one node f.
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Initial state:

-+

1 2 3 4 5 6 7/ 8 9 10 11 12 13 14 15 16 17

() (4-5) () (6-7) ()(10-11)(11-12) ()

Figure 3-26
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After going down, expanding (VY indicates current position):

before SHIFT-UP after SHIFT-UP

bdh C

Figure 3-27
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Final state after going up, recontracting:

(1-2) ()(3-4) () O (10-11)(11-12)()

()(4-5)()(6-7)(9-10) () () (12-13)

Figure 3-28

Reporting is done in the same way as for CSTs or ICSTs on a single secondary tree,

namely T(i-1)'

Let us now determine the time and space complexity of this algorithm. As before,
the algorithms INSERT and DELETE produce 0(log n) calls of any of the operations
LEFTDOWN, RIGHTDOWN and UP. Those operations work in parallel on trees

T e T(i-1) and use constant time per tree. Since there are i trees, the to-

0> --
tal time for an insertion or deletion is 0(i log n). Reporting takes 0(log n + B)
time where B is the number of reported pieces of the i-contour. Per vertical rect-
angle edge the algorithm requires therefore 0(i log n + log n + B) =

0(i log n + B) time. This yields a total time for computing the i-contour of
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O(n-i log n + pi) where Py is the size of the i-contour.

The i-fold contracted segment tree consists of primary tree and secondary struct-
ure, that is, a counting segment tree, the trees TO""’T(i—1) and scattered trees.
The primary tree and the scattered trees require only 0(n) space (each scattered
tree is a copy of some part of the primary tree and the scattered trees are dis-
joint). For trees TO,...,T(1_1) the analysis is a little more difficult. Observe
that all trees together have at most as many leaves as there are fragment inter-
vals (represented by leaves) in the primary tree. So the number of leaves of tho-
se trees is 0(n). However, additional space is required for the name lists. How
many names are stored in all trees? To analyze this, observe that the primary

tree contains n paths from the root to a leaf and that each of those paths is sto-

red in exactly one of the trees TO,...,T(1_1).

(

log n 4

v e @

path 1 path 2 path n

Figure 3-29

If all paths were stored separately, then 0(n log n) space would be used. However,
they are merged into trees such that for any two paths we consider, the top nodes

may be stored only once.
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Figure 3-30

We do not know how the paths are distributed into trees. We look at two extreme

situations to determine the worst case.

AL

Figure 3-31

Fig. 3-31 represents the case that the paths are distributed equally over trees

T T._4. Each tree has 0(n/i) leaves, therefore uses 0(n/i) space.

0° 2l
The total space consumption is i-0(n/i) = 0(n).
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b |

path 1 path 2 path (i-1) paths i,...,n

Figure 3-32

In Fig. 3-32 there are as many disjoint paths as possible, the other paths are
merged into one tree. The total space required is

0((i-1)+log n) + O(n - i + 1) = 0(n + (i-1)-log n). It is easy to see that this
is indeed the worst case, because disjoint paths require more space than those

merged into a tree.

Hence the space requirements of the i-fold contracted segment tree are
O(n + (i-1)-log n). As usual we need additional space of O(pi) to store the
contour-pieces until they are linked into contour-cycles, and the same amount

of time to construct the cycles. We summarize the results of this section in:

Theorem 3.15: For a set of n rectangles R the i-contour of R can be computed

in 0O(n-i-log n + pi) time and O(n + (i-1)-log n + pi) space, where P; is

the size of the i-contour.

Observe that for i = 1 the algorithm reduces to the algorithm of Section 3.1
and we obtain the same time and space complexity. Hence it is really a generali-

zation of that algorithm.



- 85 -

3.2.9. Summary of hesults, Lower bounds.

In the following table we summarize the performances of the line-sweep algo-

rithms of Section 3.

Problem

Solution

Time complexity

Space requirements

Finding the contour of a set

of iso-oriented rectangles R

Determining height(R)

Computing the height-measure

Computing all measures

Computing the i-measure

Computing the height-contour

Computing all contours

Computing the i-contour

O(n log n + p1)

0(n log n)

0(n log n)

O(n-h (log n/h + 1))

O(n-i (log n/i + 1))

O(n log n + ph)

0(n log n + p)

O(n-i log n + pi)

Figure 3-33

0(n + p1)

0(n(1 + log h))

0(n(1 + log i))

O(n + ph)

O(n + (i-1) log n + pi)

In Fig. 3-33 n denotes the cardinality of R, h is the height of R, P; the

number of contour-pieces in the i-contour, for

number of contour-pieces in all contours (p =

i
h
r

i=1

= 1y wee

pi)-

, h, and p the total
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Lowern bounds.

At this point the obvious question is, whether the results presented in Fig. 3-33
are the best we can hope for or whether better algorithms might exist. Therefore

we are interested in lower bounds on the complexity of the problems.

Time complexity.

From a naive point of view it seems quite clear that @ (n log n) is a lower
bound on the complexity of all problems listed in Fig. 3-33. One might argue
that it is surely impossible to solve any of those problems without sorting the
set of objects. To avoid sorting implies immediately not to use a line-sweep

algorithm.

From a formal point of view we cannot be content with this kind of arguing. So
we face the task of proving lower bounds. This is in general a quite difficult
task for problems in computational geometry. Fortunately we are able to apply a

result by Fredman and Weide [FredW ]. They consider the e-closeness problem:

Given a set of n real numbers Xqs wee s Xpo determine whether any

two of them are within e of each other (that is, |xi - le <g).

Fredman and Weide show that under the usual decision tree model the complexity
of this problem is @ (n log n). In the sequel we will show for all of our
problems that they are at least of the same complexity because any algorithm
solving problem X (one of the problems in Fig. 3-33) can be used for solving

the e-closeness problem.
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Theorem 3-16: Given a set of iso-oriented rectangles R, for any of the problems

(1) Finding the contour

(2) Determining the height

(3) Computing the height-measure
(4) Computing all measures

(5) Computing the i-measure

(6) Computing the height-contour
(7) Computing all contours

(8) Computing the i-contour

Q (n log n) is a lower bound on the number of comparisons required.

Proof:

(1) Finding the contour.
Lipski and Preparata [LiP] have shown that the problem of sorting n
real numbers can be reduced in 0(n) time to computing the contour
for some set of rectangles. Since sorting is of complexity
o(n log n), the same lower bound applies to the contour problem.

(2) Determining the height.

Suppose there exists an algorithm A computing the height in T(n)

time. We use it to solve the e-closeness problem for X ='{x1, cun g X



- 88 -

1. Construct a set of rectangles R £{r1, wisis 3 rn} where

rj = (xj - €, xj, 0, 1) for 1 <j<n.

This can be done in 0(n) time.

2. Use A to compute height(R).
3. If height(R) = 1 then no two rectangles overlap and all points in
X are more than e apart. Otherwise (height(R) > 1) there exist two

points closer together than e.

In other words, A enables us to solve the e-closeness problem in

T(n) + 0(n) time. This implies T(n) = 2(n log n).

For the other problems we proceed in a similar way. We therefore just

sketch steps 1. - 3. in the sequel.
(3) Computing the height-measure.
1. Construct R as in (2).
2. Apply A to compute height-measure(R).
3. If the result is exactly n-e then no two points are within & of
each other, otherwise there exist two points closer together than e.

(4) Computing all measures.

This includes computing the height-measure, hence we are done.
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(5) Computing the i-measure.

1. Compute the minimal and maximal x-value occurring in X, X and x,
in 0(n) time. Construct R as in (2) and let R' be

R U'{r1', wee 5 T. ,'} where

i-1

rj' = (x-¢€,x,0,1) for j=1, ..., 1i-1.

This takes ©(i) = O(n) time.

2. Apply A to R'.
3. If the i-measure is exactly n-e then the answer for the e-closeness

problem is negative (no two points ...) otherwise positive.
(6) Computing the height-contour.

1. Construct R as in (2).

2. Apply A to compute the height-contour of R.

3. Determine in 0(n) ‘time whether the answer is a collection of n
contour-cycles of which each represents a rectangle with an x-inter-
val of length e. If this is the case then the answer for the

e-closeness problem is negative, otherwise positive.
(7) Computing all contours.

The solution includes those of problems (1) and (6) and is therefore

Q(n log n).
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(8) Computing the i-contour.

We combine the techniques of (5) and (6), that is
1. Construct R' as in (5).
2. Apply A to compute the i-contour of R'.

3. Check the solution as in (6).

This completes the proof. <>

It follows immediately that our algorithms for computing the height and the
height-measure are time-optimal. The algorithms for computing the contour
(Section 3.1), the height-contour and all contours are also time-optimal be-
cause Q(p1), Q(ph) and q(p), respectively, are independently lower bounds for

these problems.

Concerning the algorithms for computing all measures, the i-measure and the
i-contour we do not know whether they are time-optimal or not. However, we con-
jecture that it is not possible to find a better line-sweep algorithm for any

of them.

Space -complexity.

There is not much to be said about space-complexity. Obviously @(n) space is necessary
for the representation of the set of rectangles. Hence the algorithms for com-

puting the height and the height-measure, respectively, are space-optimal.

The following remark holds for all our contour algorithms: Since in the line-

sweep the vertical contour-pieces are stored to infer the horizontal contour-
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pieces afterwards, 0(p1) (or P> Ps Py respectively) space is required. We do

i
not know whether it is possible to report the contour-pieces in the order of

the contour-cycles by a different method, using only 0(n) space. Hence we don't
know whether those algorithms are space optimal. If, however, the task is only
to report all contour-pieces (in any order) then the respective algorithm may be
used twice, in a left-to-right and a bottom-to-top line-sweep, to report all
contour-pieces, not changing the asymptotic time bound. In that case the algo-

rithms for computing the contour, the height-contour and all contours, respect-

ively, require only 0(n) space and are space-optimal.

For the three remaining algorithms it is not clear whether they are space-

optimal or not.
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4. DIVIDE-AND-CONQUER ALGORITHMS.

In Section 3 we treated all the problems considered by means of line-sweep al-
gorithms. In this section we study the applicability of a completely different
algorithmic paradigm, divide-and-conquer, for problems in planar geometry. To
achieve our goal of finding a divide-and-conquer solution for the contour pro-
blem we first look at some more basic problems. One of the most elementary pro-
blems conceivable is to find all intersections among a set of horizontal and
vertical line segments. After solving it we study the point enclosure problem
(given a mixed set of points and rectangles, which rectangles enclose which
points?). The study of this problem is particularly interesting because its so-
lution can be combined with a solution of the line segment intersection problem
to solve the rectangle intersection problem (given a set of rectangles, report
all intersecting pairs). In fact, Sections 4.1 - 4.3 contain a time- and
space-optimal divide-and-conquer solution for this problem. Finally we describe
a divide-and-conquer solution of the contour problem (Section 4.4). The high-
level algorithm used for this is rather general and includes a solution of the

measure problem (determine the size of the union of a set of rectangles).

To apply divide-and-conquer to a set S of planar objects we obviously have to
find some partition of S (preferably into two parts of equal size). Of course
we may choose an arbitrary division (for a set of n objects put 'the first' n/2
objects into set A, the other objects into set B). However, it soon becomes
clear that algorithms based on arbitrary division cannot be very efficient

since the division does not exploit the geometric properties of the problem.

A more appropriate idea seems to be the following: Choose an arbitrary line 1,

for instance a vertical one, splitting S into the sets A of objects left of 1
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and B of objects right of 1. This idea works nicely for a set of points in
2-space. However, if the objects have some x-extension then 1 usually intersects
some objects introducing a third set C into the partition which contains the in-
tersected objects. Two problems arise: First, it is hardly possible to find an
equal-sized partition. Second, the objects of C interact with objects in A and

in B and it is difficult to treat this interaction without loss of efficiency.

Apparently up to now these obstacles prevented the use of divide—and—conquef al-
gorithms for planar objects other than points. Only recently Lee [Le] tried di-
vide-and-conquer to solve the rectangle intersection problem using the mentioned
3-partition. The time complexity of his algorithm (O(n log n log*n + k) for n
rectangles with k intersections) is quite good but a little less than optimal

(0(n log n + k)).

In the sequel we give time-optimal divide-and-conquer algorithms for all five
problems we study. The efficiency of our algorithms is based on a new idea which

is quite simple but important and which we call separational representation of

orthogonal planar objects. Each object is represented by 'its left and right end'.
For instance in case of rectangles this leaves us with a set of vertical line seg-
ments V. From now on each object in V is treated as an independent unit. The ob-
jects in V are characterized by a single x-coordinate, hence a dividing line
splits V into only two subsets LEFT and RIGHT which can be ‘'conquered' indepen-
dently. In the merge step the original objects (rectangles) are reconstructed

though only on a conceptual level.

Looking back to line-sweep algorithms we realize that in fact the same principle
is used there: objects are represented by their left and right ends. This seems
appropriate since in a line-sweep algorithm the x-axis (for instance) is trans-

formed into a time axis and the 'ends' of an object correspond to its 'appearing’
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and 'disappearing'. We will see, however, that separational representation proves
also quite useful for divide-and-conquer algorithms. In fact, a divide-and-conquer

algorithm may be perceived as a 'structured hierarchical line-sweep'.

A very interesting question arising from our results is how line-sweep and divide-
and-conquer using separational representation compare with regard to the complexity
of algorithms and data structures when applied to the same problem. Some first ob-

servations of this kind are discussed in the conclusions (Section 6).

The results of Section 4 have been published previously in [GiUW] and [Gu3].

4.1. Finding Line segment internsections.

The line segment intersection problem is:

Given n horizontal and vertical line segments, report all pairwise

intersections.

A line-sweep algorithm for this problem was found by Bentley and Ottmann [BeO].
In this section we first give an algorithm LINE SEGMENT INTERSECTION which makes
use of a second algorithm LINSECT, then explain it and finally analyze its time

and space requirements. LINSECT uses divide-and-conquer to accomplish its task.

For the sake of simplicity and clarity we initially assume all line segments to
have distinct x- and y-coordinates. At the end of Section 4.1 we drop this re-

striction.
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Algorithm LINE SEGMENT INTERSECTION

Input:
Qutput:

Step 1:

Step 2:

A set of horizontal line segments H and a set of vertical line segments V.
The set of all intersecting pairs (h,v) where h €H and v € V.

Let H be the set of endpoints defined by H. Let S be HU V sorted by
x-coordinate. *Observe that sorting is possible because all objects in
H uV are characterized by a single x-coordinate.*

LINSECT(S)

end of algorithm LINE SEGMENT INTERSECTION.

Algorithm LINSECT (S, LEFT, RIGHT, VERT)

An x-ordered set of objects S where each object is either a point (a left
or a right endpoint of a horizontal line segment) or a vertical line seg-

Three sets LEFT, RIGHT and VERT. LEFT and RIGHT contain the y-projections
of left and right endpoints in S, respectively, whose partner is not in
S. VERT is a set of intervals. It contains the y-projections of all ver-
tical line segments in S.

invariant: On exit LINSECT has reported all edge intersections within

S, that is all pairs (h,v) where h is a horizontal line segment in S
(represented by its left or right endpoint) and v is a vertical line

Input:
ment.
Qutput:
Recursive
segment in S.
Case 1:

S consists of one element p.

a) p = (px,py) is the left endpoint of a horizontal line segment:

LEFT « Pyt RIGHT « @, VERT « @ and return.

b) p = (px,py) is the right endpoint of a horizontal line segment:

LEFT <« @, RIGHT <« {py}, VERT « @ and return.
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) is a vertical line segment:

) p = (pysPyqsP

y1°Fy2

LEFT « @, RIGHT « @, VERT <« {[py1,p 1} and return.

y2

Case 2: S contains more than one element.

Divide: Choose an x-coordinate xU dividing S into two subsets S1 and 52 of
approximately equal size.

Conquer: LINSECT (81, LEFT1, RIGHT1, VERT1);
LINSECT (52, LEFTZ, RIGHT2, VERTZ)

Merge: (Let LR = LEFT1 N RIGHTZ)
output ((LEFT,-LR) # VERT,) (1)
output ((RIGHT,-LR) # VERT,) (2)

*the operator # is defined below*

LEFT « (LEFT1—LR) u LEFT2 (3)
RIGHT <« RIGHT1 u (RIGHTZ—LR) (4)
VERT +-VERT1 U VERT2 and return. (5)

end of algorithm LINSECT.

The merge step needs some explanation. First we have to define the symbol '#'.

Let P be a set of points on the line and I a set of intervals on the line. Then
P#1 := {(p,i) | p €P, i €I and i contains p1}.

In the merge step intersections between horizontal and vertical line segments are

reported. Since horizontal line segments are represented by their endpoints we

have to examine the interaction between points and vertical line segments.

Any set Si to which LINSECT is applied has an associated rectangular area A(Si)

which is defined by the minimal and maximal x- and y-coordinates of objects in
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Si' For a left or right endpoint p € Si let 1p be the horizontal line segment

from which it is taken. Then the partial segment PS(p) is defined by

Example:

Figure 4-1

We know from the recursive invariant that after execution of LINSECT (Si’ o
all intersections between partial segments and vertical line segments in Si have
been reported. Hence in the merge step of LINSECT (S, ...) we only have to find
intersections between partial segments in S1 and vertical line segments in 52 and
vice versa. In the merge step of LINSECT (S, ...) the following things can happen
to a partial segment PS(p) (let us assume p is a left endpoint; the other case is

symmetric):



- 08 -

a) p is in 52.

P, | e
i
PS(p) - !
: :
i
:
S
S S,
Figure 4-2

It remains as it is; no new intersections occur.

b) p is in S1 and its partner is in S,.

J

Figure 4-3

It is completed meeting its partner partial segment; no new intersections

occur; both partial segments (or the complete segment) are removed from S.

c): p is in S1 and its partner is not in SZ'

f

w
N
w

Figure 4-4
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It is extended across A(S,). The crucial point is that all vertical line seg-
ments in 52 which contain p's y-coordinate intersect lp regardless of their
x-coordinate. In other words 1p intersects a vertical line segment vj € 52 if
and only if p's y-projection (a point) is contained in vj's y-projection (an

interval).

Hence, since case c) describes the only way intersections can occur, we have re-
duced the two-dimensional line segment intersection problem to the one-dimensional
point enclosure problem. The task of finding all intersections between extended
partial segments from S1 and vertical line segments from 52 is exactly to compute
(LEFT1—LR) # VERTZ. Therefore the two output statements (1) and (2) report exactly
the intersections occurring by combining S1 and 52. Hence the recursive invariant
holds once more. Lines (3) - (5) construct the sets LEFT, RIGHT and VERT in the

obvious manner; subtraction of LR yields the removal of complete horizontal seg-

ments from S.

Time analysis.

LINE SEGMENT INTERSECTION:

Step 1:  Constructing H takes linear time, sorting O0(n log n) time, hence step f
takes 0(n log n) time.

Step 2: Let T(n) be the time complexity of applying LINSECT to a set S of card-

inality n.

LINSECT:
Case 1: n =1

All actions take constant time, establishing
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Case 2: n>1

Divide: The x-ordered set S can be given as an array-subrange. Then dividing

takes only constant time.

Conquer: The recursive calls yield two terms T(n/2).

Merge:  Finally we have to choose some representation of the sets LEFT, RIGHT
and VERT. Surprisingly, simple y-ordered linked lists are sufficient to ob-
tain an optimal solution. For VERT, each list item contains one interval
[yb, yt] and the list is ordered by the yb-coordinates. Now all operations
in the merge step can be realized by scanning some of the given lists in
parallel. For instance, a first scan may operate on the lists (representing)
LEFT and RIGHT, and construct lists LEFT and RIGHT. At the

RIGHT,, LEFT

1° 1° 2 2
same time the elements of the set LR are removed from lists LEFT1 and RIGHTZ.
(This can be done by removing elements occurring in both LEFT1 and RIGHT2

at the same y-coordinate, because we assumed the y-coordinates of all rect-
angles to be distinct. If we permit multiple y-coordinates then we have to
choose a different technique, see below). - A second scan operates on lists
VERT1 and VERT2 and the reduced lists representing LEFT1—LR and RIGHTZ—LR.
During this scan VERT is constructed and the sets (LEFT1—LR) # VERT2 and
(RIGHTZ—LR) # VERT1 are computed and reported.

The computation of P # I where P and I are given as linked lists LP and LI

is the only nontrivial (but not difficult) task. LP and LI are scanned in
parallel. For each interval i = [yb, yt] encountered in LI this scan (called
the main scan) pauses. From the current position in LP (which corresponds

to yb) a report scan is started which reports a pair (p, i) for each point

p = y' encountered in LP. The report scan terminates as soon as a y-coordinate

y' > Yt is encountered. Then the main scan is resumed.
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Since the size of all lists is 0(n) the total time for scanning them

(excluding report scans) is also 0(n). Hence the merge step contributes

an 0(n) term if we count the time for reporting separately.
Thus we have: T(n) = 0(1) + 2 T(n/2) + 0(n) (2)
It is well known that the recurrence equations (1) and (2) have the solution

T(n) = 0(n log n)

(see for instance [AHU] ). Obviously the report scans require time linear in the
number of reported pairs (which correspond to intersections). Hence, if k is the

number of pairwise intersections between H and V, the total worst-case time re-

quired by the algorithm is 0O(n log n + k).

Space.

The space required is 0(n) since each of the six lists used by the algorithm con-

tains at most n elements.

Mwltiple x- on y-coordinates.

We now drop the restriction that the x- and y-coordinates of all line segments
have to be pairwise distinct. The task of our algorithm is to find all intersections
between horizontal and vertical line segments. Finding intersections of type hori-
zontal/horizontal or vertical/vertical is no problem (it amounts, for example, to
sorting the horizontal line segments by y-coordinate and then for each subset with

equal y-coordinate to find the intersections among a set of intervals) and can be
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done in a separate step in 0(n log n) time (the line-sweep algorithm of Bentley
and Ottmann [BeO] reports only intersections of type horizontal/vertical and would

also require a separate step to report the other types).

To accomodate multiple x- or y-coordinates we modify the algorithm slightly. We
first deal with multiple x-coordinates. After the initial sorting of all objects
in H UV (points and vertical line segments) we are left with a set of groups
dqs ==+ 5 9, of objects for which each group 9; contains one or more objects

with the same x-coordinate.

Example:

-
s
ul
~
~
~
\o)
-
=
-
—-
—
O
—
O

Figure 4-5

For each group g; we construct the sets LEFT, RIGHT and VERT in advance and report
the point enclosures (intersections) LEFT # VERT and RIGHT # VERT. Since those are
one-dimensional problems the task only involves sorting the objects in the group
by y-coordinate and can be done in O0(s log s) time for a group with s elements.

The total time for this step is O(n log n).
We now apply divide-and-conquer in the following way:

Let S =H UV contain the elements x,, ... , x (m < 2n). We select the median

i - divide S into three subsets
object x|_ﬁn+1)/2_J' It belongs to some group 95 We divi

S Sm and 52 where

19
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i-1 r
S;=\Jg;, S;=95 S,= U g
1 J_—_'IJ m 1 2 j=1+1‘]

We recursively apply the same algorithm to sets 51 and 52, constructing sets LEFT,
RIGHT and VERT for each of them (remember that for Sm we constructed those sets

beforehand).
After this S

Sm and S, are merged. This can either be done simultaneously or

1° 2
sequentially by first merging 51 and Sm into Sleft’ then Sleftand 52 into S.

It is easy to see that this algorithm still has the same time complexity: By con-
struction, each of the sets S1 and 52 contains less than n/2 elements. Merging

S1, Sm and 52 takes 0(n) time. Hence the recurrence equations

T(1) = 0(1)

T(n) < 2 T(n/2) + 0(n)
with solution O0(n log n) hold again.

With multiple y-coordinates it becomes a problem to form the intersection of the

sets LEFT, and RIGHT,. We said previously that LEFT and RIGHT are represented by

1 2
y-ordered point lists. If a point list contains many elements with identical y-
coordinates then it becomes a problem to identify a pair of points in LEFT1 and

RIGHT, coming from the same horizontal line segment. However, there exists a simple

2
way around this difficulty. Note that any set S to which LINSECT is applied con-
tains all objects within a certain x-range. We pass this range as a parameter of
LINSECT. Furthermore we add to the representation of a left (right) endpoint the
x-coordinate of its right (left) partner endpoint. Merging for instance sets S1

and Sm with associated x-intervals (a, b) and [b, b],say, it is then possible to

decide for any point in LEFT1 and RIGHTm whether its partner endpoint is in the
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other set. Hence it is once more possible to perform the subtraction of set

LR (= LEFT1 n RIGHTm, in this case) in linear time.

In this way the time complexity of the algorithm is maintained for the general

case which permits multiple x- or y-coordinates.
We summarize the results of this section in
Theorem 4.1: For a set of n horizontal and vertical line segments in 2-space

with k intersections the line segment intersection problem can be solved by

divide-and-conquer in O(n log n + k) time and 0(n) space.
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4.2, Finding point enclosunres.

The point enclosure problem is:

Given n objects each of which is a point or a rectangle in the plane,

report for each rectangle all points that lie within it.

A first time-optimal solution of this problem was given by Bentley and Wood [BeW].
Independently Edelsbrunner [Ed2] and McCreight [Mc] found time- and space-optimal

solutions. All mentioned solutions use line-sweep algorithms.

Remember that the study of this problem is motivated by the fact that we can com-
bine its solution with the solution of the line segment intersection problem to
find all intersections among a set of rectangles. Again we use separational re-
presentation and divide-and-conquer and assume for simplicity at the moment that

all objects have pairwise distinct coordinates.

The Adea.

Separational representation applied to the given set reduces each rectangle to its
left and right vertical edge and leaves the points unchanged. Hence we obtain a
mixed set of points and vertical line segments which we sort by x-coordinate. To

the resulting ordered set S the divide-and-conquer algorithm PENC is applied.

PENC splits a given set S into two subsets S1 and 52 and recursively computes y-
ordered interval sets LEFTi (the y-projections of left rectangle edges), RIGHTi
(the y-projections of right edges) and a set of y-coordinates POINTSi (y-projections

of points) from S.

j- The merge step which computes LEFT, RIGHT and POINTS from LEFTi,
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RIGHTi and POINTSi (i = 1,2) is once more the crucial step. It makes use of the

following observation:

Vi |- e e e —— =

Figure 4-6

If a left vertical edge 1 in S1 of a rectangle R = (Xl’ Xps Vi yt) is not matched
by its partner edge in SZ’ then the bottom edge and the top edge of R extend through
all of 52. This means all points in the y-ordered set POINTSZin the range [yb, yt]
are enclosed by R. [yb,yt] is precisely the y-projection of 1 which is contained

in LEFTi.

To report all point enclosures within S = S1 U 52 we have to check whether or not
the partner of each interval in LEFT1 is 1in RIGHTZ. For each of the remaining
intervals all enclosed points in POINTS2 have to be reported (or rather the
corresponding point-rectangle enclosure. Obviously the same has to be done for
RIGHT2 and POINTS1. Using the notation P # I of Section 4.1 this is nothing
other than computing and reporting POINTS2 # (LEFT1—LR) and POINTS1 & (RIGHTZ-LR)

where LR = LEFT, n RIGHT

1 2°

Hence the algorithm is a simple adaptation of LINSECT:
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Algorithm POINT ENCLOSURE

Input:

Output:

Step 1:

Step 2:

A set of points P and a set of rectangles R.

The set of all pairs (p,r) where p e P and r €R and p lies inside r.

Construct the sets L and R of left and right edges of rectangles in R,
respectively. Sort L U R U P by x-coordinate, resulting in the ordered
set S.

PENC(S, LEFT, RIGHT, POINTS)

end of algorithm POINT ENCLOSURE.

Algorithm PENC (S, LEFT, RIGHT, POINTS)

Input:

Output:

Recursive

An x-ordered set of points and left and right vertical rectangle edges S.
Three sets LEFT, RIGHT and POINTS. LEFT and RIGHT contain the y-projections
of all left and right rectangle edges from S, whose partner is not in S.

POINTS contains the y-projection of S nP.

invariant: On exit, PENC(S, ...) has reported all point enclosures oc-

Case 1:

curring within S, that is all pairs (p,r), where p € (P nS) and r €R

and r is represented in S by its left or right vertical edge.

S contains only a single object x.

Depending on the type of x (line segment or point) let LEFT or RIGHT
contain a single y-interval or POINTS a y-coordinate, respectively,

and let the other sets be {.



Case 2: S

Divide:

Conquer:

Merge:
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contains more than one object.

Choose an x-coordinate dividing S into two subsets S1 and 52 of ap-

proximately equal size.

PENC(S,, LEFT,, RIGHT

1° 1° 1°
RIGHT

POINTS1);

D POINTSZ)

PENC(SZ, LEFT2,

(Let LR = LEFT1 n RIGHTZ)

output (POINTS2 # (LEFT1~LR))
output (POINTS1 # (RIGHTZ—LR))

LEFT « (LEFT, - LR) U LEFT

2
- LR)

1

RIGHT <« RIGHT1 U (RIGHT2

POINTS =« POINTS1 U POINTS2 and return.

end of algorithm PENC.

Time and space complexity.

We may choose the same linked-list representation for sets LEFT, RIGHT and POINTS

as for LINSECT. In the merge step of PENC the same operations occur as in the

merge step of LINSECT. Hence we know that they can be performed in linear time.

The analysis is the same as for LINSECT and the algorithm may be adapted to

multiple x-

Theorem 4.2:

and y-coordinates by the same techniques. Hence we obtain

For a mixed set of points and rectangles in 2-space with cardinality

n, the point enclosure problem can be solved by divide-and-conquer in

O(n log n + k) time and 0(n) space where k is the number of existing point

enclosures.
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4.3, Finding rnectangle intensections.

The rectangle intersection problem is:

Given a set of n iso-oriented rectangles, report all pairwise intersections.

The first time-optimal solution for the problem was given by Bentley and Wood [BeW],
that is O0(n log n + k) time where k is the number of intersecting pairs. Edels-
brunner [Ed2] and McCreight [Mc] independently found time- and space-optimal so-

lutions. Each of these algorithms is based on the line-sweep paradigm.

Algorithms solving the rectangle intersection problem have important applications
in VLSI-design (see Baird [Bal, Lauther [La1] or Mead and Conway [MeC]). They are
used to check a design of some VLSI-circuitry,specified in terms of rectangles,
for consistency with a given set of 'design rules' (for more details see e.g.
[BeW]). There exist other applications as well, for instance in architectural

data bases [Eal].

We include this section for completeness, to show how our algorithms of Sections
4.1 and 4.2. can be combined to solve the rectangle intersection problem by

divide-and-conquer. The idea to combine the solutions of the line segment inter-
secting problem and the point enclosure problem is due to Bentley and Wood [BeW].

Insofar this section does not contain new results.

Note that two rectangles intersect if either their edges intersect or one en-

closes the other one completely.
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Figure 4-7

In Fig. 4-7 the pairs of rectangles (A,B) and (B,C) intersect by edge intersection,
while (B,D) constitutes a rectangular enclosure. The two types of intersections
can be found efficiently by treating them separately. We follow [BeW] in this ap-
proach. The result is a 2-stage algorithm which finds all edge intersections in

the first step and all rectangular enclosures in the second.

In the first step we consider the set of all edges composing the rectangles, that
is 4n edges, and solve the line segment intersection problem for them. In the
second step we extend the set of rectangles to include an interior point for each
rectangle. We then solve the point enclosure problem for the resulting set. Letting
R be a rectangle and PR be the chosen interior point for R, then it is important
to realize that a report 'A encloses pB' holds not only when B is enclosed by A,
but may also hold when B is not enclosed by A. However, in this latter case B and

A have a point in common and hence intersect (see [BeW] for more details).

Of course, when using the algorithms LINE SEGMENT INTERSECTION and POINT ENCLOSURE
combined to solve the rectangle intersection problem, some simplifications may

be introduced. The preparatory steps in both algorithms can be replaced by a single
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scan through the set of rectangles, creating all input sets as needed. Instead of
line segment names and point names we store, of course, the names of the corres-
ponding rectangles (in an implementation the 'name' is usually the address of some

representation of the rectangle).

In an implementation some details have to be taken care of, such as avoiding
multiple reporting (two rectangles whose edges intersect, have at least two
different edge intersections) and not reporting the intersection of a rectangle
with itself (two adjacent edges intersect, of course). However, these details do
not affect the asymptotic complexity of the algorithm. They merely require care-

ful programming.

The time and space requirements of the algorithm follow immediately from those of

the component algorithms:

Let n be the number of rectangles, k the number of intersecting pairs of rect-
angles, k' the number of edge intersections and k" the number of point enclosures.
The algorithm LINE SEGMENT INTERSECTION requires O0(n log n + k') time. POINT
ENCLOSURE requires 0(n log n + k") time. Since k' = 0(k) and k" = 0(k) we have

a total time bound of O0(n log n + k). This time is known to be optimal, see [BeW].

Space is 0(n) for both component algorithms.

Theorem 4.3: For a set of n iso-oriented rectangles in 2-space the rectangle
intersection problem can be solved by divide-and-conquer in 0(n log n + k)

time and 0(n) space where k is the number of pairwise rectangle intersections.
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4.4, Computing measure and contoun forn a set of nectangles.

We are now ready to attack the most difficult of the problems considered in

Section 4 which is to compute the contour of a set of rectangles. The contour
problem has already been extensively discussed and solved by a line-sweep algorithm
in Section 3.1. The reader may be surprised that we include the measure problem in

this section. The measure problem is to compute the size (the two-dimensional

measure) of the union of a set of rectangles and we discussed already a generalized
version of it (i-measures) in Section 3.2. An optimal line-sweep solution for the

measure problem was given by Bentley [Be2].

The reason for including the measure problem here is that both the measure and the
contour are properties of the union of a set of rectangles. We will exploit this
fact by developing an abstract description D of this union which makes the solution

of both the measure and the contour problem quite easy.

The central part of this section is the description of a high-level divide-and-
conquer algorithm A to compute D. To solve one of the specific problems a con-
venient representation of D is chosen and the abstract operations of A are imple-

mented to compute this representation.

Hence our approach has two steps:

1.) Given a set of rectangles R, compute the description of their

union D according to problem X, using algorithm A.

2.) Given D, solve problem X.

Since step 2 is quite simple for both problems, it is essentially the one power-

ful algorithm A which solves both problems.
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This section is structured as follows: First we define the description D of the
union of a set of rectangles (Section 4.4.1). We then show how each of the two
problems can be solved once D is given (Section 4.4.2). In Section 4.4.3 we
describe a fairly abstract high-level algorithm A which computes D by divide-
and-conquer. Since it is not obvious how to represent D and implement the operations
of A Section 4.4.4 deals with these issues. In that section we also analyse

time and space requirements.

4.4.1. An abstract descrniption of the union of a set of nectangles.

Now let R be the given set of rectangles. The description we choose is a partition
of the plane into horizontal stripes. For technical reasons we want to exclude
infinite stripes, hence we first choose arbitrarily a rectangular 'frame' f
completely enclosing the given set of rectangles. The area of this frame is then
divided into horizontal rectangular stripes. This partition is imposed by the
horizontal edges of rectangles in R, that is, each edge coincides with a stripe's
boundary (for simplicity we assume at present the x-coordinates and y-coordinates

of all rectangles to be pairwise distinct):

Figure 4-8
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Note that the part of the union of the rectangles in R that falls into any par-

ticular stripe is completely defined by a set of disjoint x-intervals.

To describe this precisely we recall a few definitions from Section 2.
y-set(R) is the set of all y-coordinates of bottom or top edges in R. For a
set of points P in 1-space, partition(P) defines the set of 'atomic' intervals

into which the line is divided by P (for formal definitions see Section 2.).
We then define the set of stripes:

Let R be a set of rectangles and f = (x1, Xos ¥qo y2) a rectangle such that

y-set(R) «< (y1, y2) (the latter denoting an open interval). Let RY be

y-set(R) U {y,, y,}. Then

stripes(R,f) := {(ix, iy, x-union) | ix = [x1, xz], iy is in partition (RY)

and x-union = x-proj ((i_ x i) n union (R))}.

X b

So every stripe is a triple (ix, iy, X-union) where ix x iy defines the rectangular
area of the stripe and x-union is a set of disjoint intervals representing the

part of union(R) inside the stripe.

Note that the definition is still valid if the x-interval of frame f does not
contain the whole x-extension of R. Thus a frame 'cuts out' a vertical stripe

from the set of rectangles.
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Figure 4-9

This is essential for the divide-and-conquer algorithm which merges two adjacent

vertical stripes (frames) into a new one.

To provide some motivation we will now show that given a set of stripes the

measure problem and the contour problem can easily be solved.

4.4.2. Reducing the problLems.

The measure problLem.

Given a set of rectangles R our task is to compute measure(R). First we choose
a frame completely enclosing and not intersecting any of the rectangles in R. We

then compute S = stripes(R,f) by the divide-and-conquer algorithm given in the

next section.

Now each stripe s in S contains a set of disjoint intervals x-union(s). The only

property of x-union(s) relevant to the measure problem is the total length of the
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contained intervals, that is measure(x-union(s)). Then
measure(R) « = measure(x-union(s)) = i (s).

s €S y

The contoun problem.

Recall that for a set of iso-oriented rectangles R the contour is a collection
of contour-cycles. Each contour-cycle is a sequence of alternating horizontal
and vertical contour-pieces. Every contour-piece is a fragment of a rectangle

edge from R.

Lipski and Preparata [LiP] have shown that it is sufficient to know the contour-
pieces oriented in one direction (for instance the horizontal ones) to con-
struct the complete contour efficiently. Our algorithm therefore only computes

the horizontal contour-pieces.

Let HCP denote the set of horizontal contour-pieces and H the set of horizontal
rectangle edges defined by R. For an edge h € H let CP(h) denote the set of con-
tour-pieces generated by it. Given S = stripes(R,f) (for some frame f) we can
easily compute CP(h) for any h € H. By construction of S, h coincides with the

boundary between two stripes:

i/
)

Figure 4-10



- 117 -

The contour-pieces generated by h are given by the intersection of h with 'free'
area in an adjacent stripe. In one of the stripes there cannot exist any free
area intersecting h because it is covered by the rectangle to which h belongs.
Hence if h is a bottom edge the stripe below it has to be examined, if it is a

top edge, the stripe above it.
Now we compute CP(h) in the following way:

Let h = (x1, Xos ¥ side) where side is in {bottom, top}.

if side(h) = bottom

then select s €S with i (s)
else select s €S with iy(s)
fi;

1 = [x1, x2] - ([xi, x2] N x-union(s));
CP(h) « (I,y)

{l
<
.
<

1
<
<

After selecting the correct stripe s, I is assigned the set of free intervals
hit by h. Together with h's y-coordinate I defines a set of horizontal line

segments. These are exactly the horizontal contour-pieces generated by h.

Since HCP = \_J CP(h), we are done.
h €H
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4.4.3. Computing the set of stnipes.

We now describe how to compute the set of stripes S = stripes(R,f). We have seen
that, given S, the measure problem and the contour problem could be solved easily;

hence the power of the algorithm is certainly to be found in this step.

We now describe in a top-down manner the algorithm which uses subalgorithms yet
to be defined. We then explain the algorithm together with describing the sub-

algorithms.

The algorithm consists of two parts: a quite simple main algorithm RECTANGLE-DAC
which only provides an environment for the recursive divide-and-conquer algorithm

STRIPES.

Algorithm RECTANGLE-DAC

Input: A set of rectangles R.
Output: S = stripes(R,f), for some frame f.

Step 1: Let VR be the set of vertical rectangle edges defined by R. Let each
vertical line segment v in VR be given as a quadruple
v = (X, Yps Yy side) where side is in {left, right}. Let VRX be VR
sorted by x.

To construct a frame f determine the minimal and maximal x- and y-

coordinates in R, . TR and Yinax® Select some arbitrary
numbers x-, x+, y- and y+, such that x- < Xnin® Xmax < Xts Y- < ymin
and Vg & Y Let f = (Xx-, X+, y-, y+).

Step 2:  STRIPES (VRX, x-, X+, S, LEFT, RIGHT, POINTS)

end of algorithm RECTANGLE-DAC.

(The parameters LEFT, RIGHT and POINTS of algorithm STRIPES are explained below).
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Algorithm STRIPES (V, a, b, S, L, R, P)

Input:

OQutput:

Case 1:

V - a set of vertical rectangle edges.

a, b - x-values bounding the line segments in V, that is
a < x(v) < b for all v € V.

L - a set of y-intervals, containing the y-projections of all left
vertical edges in V whose partner (the corresponding right edge)
is not in V.

R - symmetric to L (for right edges).

P - an ordered set of y-coordinates containing the y-projections of
all endpoints of line segments in V plus the frame boundaries
Y-, Y+.

S - a set of stripes: Let RECT(V) be the subset of rectangles in R
which are represented in V by at least one vertical edge.

S = stripes (RECT(V), (a, b, y-, y+)).

V contains only one vertical line segment Vv = (X, Y92 Yoo s).

if s = left

then L « {lyy, y,I , R«

elsel <« 0 » R« iy yo13
fi;

P+ {y-, Yys Yoo y+}

S « PARTITION (P, a, b)
INITIALIZE (S,v)

and return.
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Case 2: V contains more than one vertical line segment.

Divide: Choose an x-coordinate XU dividing V into two approximately equal-
sized subsets V1and V2.

Conquer: STRIPES (V1, a, S
STRIPES (VZ’ xu, S

Merge: Let LR = L1 N R2

X Sgs Lys Rys Py
b, L P

2’ 2’ R2’ 2)

L # (L1 - LR) UL
R * R1 U (R
P <« P1 up

2
o - LR)

2

Sleft + PARTITION (P, a, XU

)
Sright < PARTITION (P, X0 b)
COPY (S1, Sleft); COPY (52, Sright)
BLACKEN (Sleft’ R2 - LR); BLACKEN (S
S « PARTITION (P, a, b)
COMBINE (Sleft’ S

and return.

L, - LR)

right® -1

right’ S)

end of algorithm STRIPES.

Let us now look at the algorithm STRIPES in detail and define the used subalgo-
rithms. Recall that the task of the algorithm is to compute for a set of rectangles
R, which is given by its vertical edges V, the set S=stripes(R,f). The additional

information only supports this.

The algorithm starts with the complete set of vertical rectangle edges V en-
closed by some frame f. A vertical line is chosen which splits f into two
smaller subframes and V into two subsets of equal size enclosed by the sub-
frames. Recursively this process is continued yielding smaller and smaller

frames (vertical stripes) until finally a frame contains only one vertical edge.

This is Case 1 of the algorithm which constructs L, R, P and S for this single
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edge. It is easy to check that after completion L, R and P fulfill the output
specification, though we didn't explain yet the purpose of these sets. To con-

struct S, two subalgorithms PARTITION and INITIALIZE are invoked.

PARTITION creates from a set of y-coordinates P and two x-coordinates a and b
a set of stripes whose x-union components are initialized with the empty set

(of x-intervals):

PARTITION (P,a,b) =

{([a,b],iy,w) | iy is in partition(P)} (A)

INITIALIZE is given a set of stripes S and a vertical edge v. S contains exactly

one stripe whose y-interval equals that of v. This stripe's x-union field is

then initialized.

INITIALIZE (S, v) =

comment v = (X, Yi» Yoo side);
select s €S with iy(s)=[y1,y2]
if side(v)=left

then x-union(s) <«{[x, b} (B)
else x-union(s) « {[a, x]} (C)
fi.

It is easy to verify that the algorithm computes S = stripes ({r}, (a, b, y-, y+))

where r is the rectangle from which v is taken. Hence in Case 1 the output

specification, which serves as a recursive invariant, holds.

The resulting set of stripes can be represented (for instance in case of a left

edge):
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y+
y 2

2 /’ 1]/

By %474

1

Yy 111,
y- *0

a X b
Figure 4-11

In Case 2, the algorithm starts with a set of vertical edges V located within

some frame f.

Figure 4-12

In the divide step this area is divided into two subareas f1 and fz, also

splitting V into V1 and V2.

Figure 4-13

In the conquer step for each of these subsets and subareas a set of stripes

is constructed:
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i
T /////// /f7////////

S S

Figure 4-14

In the merge step the set of stripes S representing V is constructed from S1 and
52. Note that any horizontal partition occurring in S1 or 52 must also be a
partition of S. Otherwise there would be horizontal edges within a stripe of S.
The algorithm therefore first constructs two copies Sleft and Sright of 51 and SZ’

respectively, which are based on the complete set of partition points P = P1 U PZ'

IO T ||
L A\

f nnumauah eI ] f

"Wl

i\ iaon

S

Sieft right

Figure 4-15

This is done by the statements

S « PARTITION(P,a,x ); S * PARTITION(P,Xu,b)

left 7270’ Tright
)

COPY (Sy5 Syapy)s COPY (Sys Spyony

where for two sets of stripes S, S!
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COPY (S, S') =

For all s' €S':

select s €S such that iy(s') & iy(s)

x-union(s') < x-union(s) (D)

Now consider an arbitrary edge v in V belonging to a rectangle r. Since V = V1 U V2,
v is either in V1 or in V2. Without loss of generality assume it is in V1 (the
other case is symmetric). Then r is in RECT(V1). Since S1 = stripes(RECT(V1), f1),

r is represented in 51 and also in Sleft' Therefore we might only have to update

S with regard to the intersection of r with f2. There are four cases:

right

a) v is a right edge.

——

T

Vs A
Sleft Sright
Figure 4-16

Then r does not intersect f2‘ S does not have to be updated.

right

b) v is a left edge with partner in V,-

S

Sleft right

Figure 4-17

Again r does not intersect f, and Sri remains unchanged.

2 ght
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c) v is a left edge with partner in V2.

i\ SR

Sleft Spight

Figure 4-18

Then the intersection of r with f2 is already represented in S

the right edge participated in the construction of S s S

right® “ri

have to be updated.

right’
does not

ght

d) v is a left edge and the right edge of r is neither in V1 nor in V2.

because

- |

7] = 7]
7 777 1 b/

777/

/// ////
i
777

Wi
L7/

| |
: 1 | ]
! ! )

|

left Sright Sleft

Figure 4-19

In this case Sright

V2, rectangle r covers the whole x-extension of area fz. This is the crucial

S

right

has to be updated. Since the right edge of r is not in

point on which the whole efficiency of the algorithm depends! No updating is

necessary within a stripe. Instead, any stripe in Sright

changed or becomes completely covered by r.

In this way the updating of S and S

left right

matched left edge in V1 and right edge in V2, respectively. This is done by the

Statements

BLACKEN(S R, - LR); BLACKEN(S L, - LR).

left> 2 right® 1

has to be performed for any un-

either remains un-
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The set L1 - LR contains exactly the y-projections of unmatched left edges in

V1 corresponding to Case d). Any stripe in S whose y-interval is contained

right
in at least one interval in L1 - LR is completely covered by a rectangle and has

therefore to be 'blackened':

BLACKEN (S, I) =

(for a set of stripes S and a set of y-intervals I. Let [a, b] be the
x-extension of S)

For all s in S:
if there exists i in I such that i (s) ci
then x-union(s) « {[a, b]} (E)
fi.

After this the stripes of S are obtained by simply concatenating the corresponding

stripes of Sleft and Sright:

S « PARTITION(P, a, b)

COMBINE(S S S)

left®> “right’

where COMBINE (S,, S,, S) =

12 722

For all s in S:
select S from 51 such that iy(s1) =
select S5 from 52 such that iy(sz) —
x-union(s) <« x—union(s1) & x—union(sz) (F)

| |
— —
—_
w wn
~— ~—

The operation I & I' denotes the concatenation of two sets of intervals (basically

the union, but two adjacent intervals at the boundary are merged into one).
We omit a formal definition. - It follows from the discussion, that now S = stripes

(RECT(V), (a, b, y-, y+)). The construction of the sets L, R and P in the merge

step is quite obvious. Hence the output specification is true again.
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4.4.4., Implementation.

In Sections 4.4.2 and 4.4.3 we have shown how to solve the measure and the con-
tour problem. Data and operations on them were described set-theoretically for
precision and clarity. However, it is not obvious how to represent the data and

implement the abstract operations. This we will describe now.

We have already seen in Section 4.4.2. that the set of stripes is represented in
different ways for the measure and the contour problem. We first describe these
representations. Later we look at the implementation of the whole algorithm and

determine its time and space requirements.

The measune problem.

The question is for both the measure and the contour problem how to represent
x-union(s). Recall that to solve the measure problem only measure(x-union(s)) is

needed. Hence we simply represent x-union(s) by a real number x-measure(s).

In Section 4.4.3. all lines describing operations on x-union(s) are marked by ca-

pital letters. To solve the'measure problem we simply replace these lines by the

following:
(A) PARTITION(P,a,b) = {([a, b1, 1y, 0) | 1y € partition(P)}
(B) x-measure(s) <« (b-x)
(C) x-measure(s) <« (x-a)
(D) x-measure(s') < x-measure(s)
(E) x-measure(s) « (b-a)
(F) x—measure(s) < X- measure(s1) + x—measure(sz)

It is easy to check that these operations maintain the x-measure of a stripe in
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the proper way.

The contoun problLem.

As we have seen in Section 4.4.2 the representation of x-union(s) must support

a range query:

Given an interval [x1, x2] and a set of disjoint x-intervals I, report
the 'free' intervals hit by [x1, x2] (more formal: report [x1, x2] -

(1 0 [xg, x,0)).

The representation we choose is a binary searchtree storing the endpoints of the
intervals in x-union(s) in its leaves. Hence each stripe contains a field

contour-tree(s). The structure of the tree is defined as follows:

A if it is the empty tree

(x, side, Tl’ T.) otherwise,

r

where x is an x-coordinate,

ru (undefined) if T is not a leaf
left if T is a leaf storing the left end of an
side = interval
right if T is a leaf storing the right end of
_ an interval,

and T1 and Tr denote the left and right subtree, respectively.
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Again we describe operations (A) - (F):

A) PARTITION(P,a,b) {( [a, b], iy, r) | iy e partition(P)}
B) contour-tree(s) <« (x, left, », 1)
(e contour-tree(s) + (x, right, », A )
D) contour-tree(s') <« contour-tree(s)
(this is to be understood as a pointer operation)

(E) contour-tree(s) <+
(F) contour-tree(s) < (XU’ u, contour—tree(s1), contour—tree(sz));
(Now for abbreviation let contour-tree(s) =T = (xu, u, Tl’ Tr))

if T1
?f T1
r %f T1
if T1

—+H— 1l
I
— =~ -

> o> > >

r
r
r
r

— = — >
|

t

(The second step prevents the construction of trees with
empty subtrees).

From the point of view of implementation it is important to note that the field
contour-tree of a stripe and also the fields T1 and Tr contain pointers. Especially
the operations (E) and (F) do not copy trees but manipulate pointers. This has the
effect that two trees belonging to different stripes may have common subtrees and
in total a quite complicated interlinked str&cture is constructed. On the concept-
ual level,'however, this doesn't matter and we can still maintain the view that
each stripe has its own separate tree. - A similar construction of interlinked

trees is made in [GiW] and is there explained in more detail.

Since contour-tree(s) is a searchtree, it is certainly possible to answer a range
query with interval [x1, x2] by visiting all nodes in the tree with x-values
between X4 and Xoe The additional information left/right in a leaf makes it pos-

sible to report a 'free' interval [a, b] hit by [x1, x2] for every pair of
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subsequent leaves (a, right, », ») and (b, left, » , A ) found between X4

and Xpe This takes O(h + p) time where h is the height of the tree and p the

number of reported 'free' intervals.

The whole algonithm and its complexity.

The initial set V can be represented by an array; subsets then correspond to
array-subranges. All the sets S, L, R and P are implemented by linked lists or-

dered by y-coordinate. In case of the sets L and R, which contain intervals, each

interval is represented by its bottom and top point (so L and R are represented
by point lists). Associated with each point is a number +1, if it is a bottom
point, and -1, if it is a top point. Scanning the list representing L, for in-
stance, by summing the encountered numbers it is easy to determine whether the
current position is covered by any interval in L or is free. This is needed for
the BLACKEN operation. Matching points in both lists which represent L and R are

omitted to perform the subtraction of the intersection set LR.

Time.

Let us now look at the time complexity of the algorithm STRIPES. Let T(n) denote
the worst-case time STRIPES requires, applied to a set of cardinality n. Obvious-

ly all operations in Case 1 take only constant time, hence
T(1) = 0(1) (1)

In Case 2, dividing can be done in constant time and the conquer step yields two

terms T(n/2). All operations in the merge step can be performed by scanning linked

lists in parallel. We leave it to the reader to check that the operations per-

formed during those scans take only constant time per list element. Hence the
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operations of the merge step require linear time in total. Therefore

T(n) = 0(1) + 2 T(n/2) + 0(n) (2)

We encountered the same recurrence equations already in Section 4.1, with solution

T(n) = 0(n log n).

Space.

Clearly the array representing S and the linked lists representing L, R and P
require 0(n) space. The space requirements of the data structure representing the

set of stripes S are different for the measure and the contour problem.

In case of the measure problem the representation of each stripe takes only con-

stant space, hence the whole set is stored in 0(n) space.

In case of the contour problem we have to look at the way a set of stripes is
constructed. Let SP(n) denote the worst-case space requirements of a set of stri-
pes constructed by algorithm STRIPES when applied to a set V of cardinality n.

Case 1 of the algorithm constructs a set S using constant space, hence

SP(1) = 0(1) (1)

In Case 2 of the algorithm the set of stripes is constructed in the merge step.
Observe that a new linked list is created with O(n) elements (each element repre-
senting a stripe) and that for each list element at most a new root node and two

pointers are created. The tree structures belonging to stripes of S1 and 52 are
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retained. Hence

SP(n) = 2 SP(n/2) + 0(n). (2)

These are the same recurrence equations as above with solution

SP(n) = 0(n log n).

We have to add a few words on the complexity of obtaining the actual solution for

each problem from the data structure representing S. How to obtain this solution

is described in Section 4.4.2. For the measure problem the linked list represent-

ing S is scanned, summing the 2-dimensional measure of each stripe. Clearly 0(n)

time is sufficient. For the contour problem the horizontal rectangle edges are

sorted by y-coordinate into a list HRE. This list is then scanned in parallel with
the linked list of stripes. For each horizontal edge a range query is performed

on the corresponding stripé's contour-tree. Since the height of this tree is

0(log n), each range query takes O(log n + k) time (k the number of reported con-
tour-pieces) yielding a total time of O(n log n + p) where p is the total size of
the contour (the number of contour-pieces). Using the method of [LiP] the con-
tour can then be constructed as a set of linked contour-cycles in O(p) time and

space.

So far we discussed the problems under the restriction that the x- and y-coord-
inates of all rectangles are distinct. The methods for modifying the algorithm
for the general case are given in Section 4.1 and are not repeated here (in

[GU3] those methods are described for algorithm STRIPES).
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We summarize the results of this section in:

Theorem 4.4: For a set of n rectangles the measure problem and the contour pro-
blem can be solved by divide-and-conquer. This takes O(n log n) time and 0(n)
space in case of the measure problem and O(n log n + p) time and space for the

contour problem, where p is the size of the contour.
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5. NON-ORTHOGONAL PROBLEMS: EFFICIENT ALGORITHMS FOR C-ORTENTED POLYGONS.

Up to now we restricted our attention to problems involving orthogonal objects

in 2-space, that is points, horizontal and vertical line segments and axis-
parallel rectangles. We thereby reflect a trend in computational geometry to
study this kind of problems first. In fact, most of the research in computational
geometry has so far been done for orthogonal objects. The reason for this is,

of course, that the orthogonal case is much easier to treat algorithmically.

That means solutions are easier to devise and the resulting algorithms tend to

be much more efficient than those for the general case.

In the general case the objects naturally considered are points, (arbitrarily

oriented) line segments and polygons. If we reformulate for instance the pro-

blems involving rectangles in terms of polygons, then very often solutions are
not yet known. If they are known they are usually of higher time or space com-
plexity. The gap in complexity can already be seen from one of the most basic

problems: Finding all k intersections in a set of n line segments can be done

in 0(n log n + k) time ([Be0] or by divide-and-conquer, see Section 4.1) for
axis-parallel line segments while it takes O(n log n + k log n) time for

arbitrarily oriented line segments [BeO].

A natural extension of our work on contour problems would be to develop an algo-
rithm which computes the contour of (the union of) a set of polygons. Such an
algorithm exists already as a special case of a more general algorithm for
boolean mask operations due to Ottmann, Widmayer and Wood [OWW]. For a set of

n polygons with k edge intersections it requires O(n log n + k log n) time.
Note that the bound depends on the number of edge intersections k rather than on

the actual size of the contour p as it does in the orthogonal case
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(0(n log n + p) time). Since p may be much smaller than k the algorithm also
illustrates the gap in complexity between the orthogonal and the non-orthogonal
case. Still it seeems to be the best we can hope for since in the general case
apparently one cannot avoid to compute all edge intersections which immediately

brings about the time bound.

In this situation the question arises whether it is possible to bridge the com-
plexity gap in some way by considering objects more general than rectangles but
still so restricted that efficient solutions are possible. This is the topic of
Section 5. We define so-called c-oriented objects whose edges are oriented in

only a constant number of previously defined directions. We show the usefulness

of this notion by giving algorithms and data structures achieving bounds distinct-

ly better than those for the general case and sometimes optimal.

It turns out that the resulting contour algorithm for c-oriented polygons is

not very exciting since its time bound still depends on the total number of

edge intersections instead of the size of the contour. However, the algorithm
saves a factor of log n compared to the general one because the edge inter-
sections can be found more efficiently. We postpone the description of the con-
tour algorithm to Section 5.3 because it makes use of some elementary techniques

developed in the preceding sections.

In Section 5.1 we consider two versions of the stabbing number problem. This
is to determine how many (c-oriented) polygons from a given set contain a query
point. We devise time-optimal solutions for both considered problems. In fact,

they are of the same complexity as those for the orthogonal case.

In Section 5.2 we consider another searching problem called polygonal inter-
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section searching. Given a set of polygons S and a query polygon p we ask for

all polygons from S which intersect p. The problem has been studied extensively
for orthogonal objects where it can be solved in optimal 0(log n + k) time (for
references see Section 5.2). Surprisingly the same time bound has been achieved
for the general case. However, this latter solution uses prohibitive amounts of
space. For the restricted case of c-oriented polygons we are able to achieve an

O(logzn + k) time bound within still reasonable space (0(n logzn).

The results of Section 5.1 have been published previously in [GuZ2].

5.1. The stabbing number probfem.

In computational geometry the stabbing problem has been examined in various con-
texts. In one dimension stabbing involves a set of intervals and a query point q.

We either want to determine the set of intervals containing g (the Stabbing Set

Problem) or just the number of 'covering' intervals (the Stabbing Number Problem).

The stabbing set problem was solved independently by Edelsbrunner [Ed1] and
McCreight [Mc] in 0(log n + k) time and 0(n) space for a set of n intervals

of which k contain gq. Recently Gonnet, Munro and Wood [GoMW] solved the problem
of finding the stabbing number in 0(log n) time and 0(n) space. For this pro-
blem also a simpler solution achieving the same time and space bounds is sketched
in Edelsbrunner and Overmars [EdO] as a special case of rectangle intersection
counting. The mentioned results support dynamic sets of intervals while both pro-
blems had been solved earlier with the same time bound by means of a segment tree

for a static set of intervals (see [BeW]).

In two dimensions the problem may be formulated as follows: Given a set of n

polygons in 2-space and a query point q, determine all polygons enclosing g
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(the set problem) or the number of enclosing polygons (the number problem).
The only solution for this general case is by Edelsbrunner, Kirkpatrick and
Maurer [EdKM]. It uses O0(log n + k) time for the stabbing set problem and
0(log n) time for the stabbing number problem, which is optimal. Unfortunately

space and preprocessing costs are very high (all costs are at least Q(nz)).

Restricting to orthogonal objects, that is iso-oriented rectangles, more space-
efficient solutions are known. Given a set of n rectangles we can determine the
subset enclosing a query point g, with cardinality k, in O(logzn + k) and
determine the stabbing number in O(logzn) time by means of a segment-segment
tree, see [SiW], [EdM]. This query time has been improved to 0(log n + k) and

0(log n), respectively [Val.

In two dimensions it also makes sense to consider the batched problem: Given a
set of n objects where each object is a rectangle or a point, compute for each
point the set of enclosing rectangles or the stabbing number. This can be done in
0(n log n + k) and 0(n log n) time, respectiVely, reducing it to the one-dimen-

sional problem by means of a line-sweep algorithm [BeW].

In the sequel we discuss the problem for c-oriented polygons and try to extend
the efficiency of the orthogonal case to this more general class of objects.

For them we solve the batched stabbing number problem in 0(n log n) time and
0(n) space (Section 5.1.1) and the stabbing number query problem in 0(log n)
time and 0O(n log n) space (Section 5.1.2). The methods used in this section

do not solve the stabbing set problem.. This is due to the collection of operat-
ions that can be performed for answering this problem. Subtractioh is allowed
for the number problem, while too time-costly for the set problem. In fact, our
methods extend easily to stabbing problems which require the sum of the stabbing

objects, where the terms leading to the sum are in some commutative group. -
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In Section 5.2, however, we will show how to solve the stabbing set problem by

2

different methods though with a higher query time of 0(log” n + k) and

0(n log2 n + k) space-requirements.

5.1.1. The batched problem.

Let C be a finite set of lines in 2-space. C must be of rather small cardinality
to make our solutions efficient. A polygon is C-oriented if for each of its edges

there is a parallel line in C. We also speak of a set of c-oriented polygons, if

there exists a set C of cardinality c such that all polygons are C-oriented.

Consider the batched stabbing number problem:

Given C, and a set of C-oriented polygons and of points where the total
number of edges and points is n (the size of any single polygon is not
restricted), determine for each point the number of polygons enclosing

it.

VAN

Figure 5-1: A mixed set of c-oriented triangles and points.

To determine the stabbing number we will use the following observation: Without
loss of generality assume there is no vertical line in C (we can always rotate

the coordinate axes to achieve this). Then every polygon edge can be classified
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as a top edge (having the polygon below) or a bottom edge. For a given polygon P
and a point q let TP and BP be the number of top edges and bottom edges below P,
respectively. Then P contains q iff BP - TP = 1. Otherwise q is outside P

- T, = 0).

(Bp - Tp

Figure 5-2: Add numbers below g to compute BP - TP.

Extending this to a set of polygons, let T and B be the total number of top and

bottom edges below q, respectively. Then q's stabbing number is exactly B - T.

To solve the batched problem we use this observation in a line-sweep algorithm.
At each position, the sweepline intersects the set of all polygon edges in some
points YgoeoesYpe These are stored in a binary search tree where each node is aug-

mented by an integer field below(p). For a leaf p

+1 if p represents a bottom edge

below(p) =
-1 if p represents a top edge.

For an inner node p, below(p) is the sum of the below-fields of its sons. When-
ever the sweepline encounters a point q = (xo, yo), the tree is searched with ar-
gument Yo- On the way down the tree the below-fields of all nodes which are left

sons of nodes on the search path are summed. In this way the total difference of
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bottom edges and top edges below g, namely B - T is computed. This is q's stab-

bing number.

However, there is one drawback of this approach: unlike the orthogonal case the
points on the sweepline are not fixed when the sweepline is moved, but also move
relatively to the sweepline and to each other, possibly changing their order. But
to maintain the search tree it is necessary to maintain the total order of the
line segments intersecting the sweepline. More specifically it means that we have
to update the structure at each pairwise intersection of line segments. From [Be0]
we know that this immediately increases the complexity of the algorithm to

O(n log n + k log n) where k is the number of intersections. Observe that k can
be o (n2).
At this point our restriction to c-oriented polygons becomes crucial. It enables
us to split the set of all polygon edges into ¢ subsets, one for each direction
in C. For each subset we maintain a separate searchtree. Within each tree points
still move relatively to the sweepline, but not relatively to each other. Now,
of course, each node stores a function y(x) rather than a fixed y-value. But for

a given query point q it is no problem to evaluate these functions when searching

the tree in order to decide whether to go left or right.
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We summarize this discussion by giving a description of:

Algorithm STAB

Input:

Output:

Step 1:

Step 2:

A mixed set of c-oriented polygons and points.

A sequence of pairs (pi, n.

1) where Py is a point and n, its stabbing

number.

Represent all polygon edges by their left and right endpoint. Sort the-
se endpoints and the original points in the set by x-coordinate into a
list X-LIST.

Scan X-LIST. Encountering

a) a left endpoint of an edge
insert the edge into the searchtree corresponding to its direction,
updating below-fields.

b) a right endpoint of an edge

delete the edge from the corresponding tree, updating below-fields.

c) a point q

search all trees with argument q and sum the results from each
tree. Report the sum as gq's stabbing number.

end of algorithm STAB.

Step 1 takes 0(n log n) time. Each of the operations in step 2 takes only 0(log n)

time, using any balanced tree scheme. In case c) this is true because there is

only a constant number of trees searched. Therefore the total time for step 2 as

well as the time for the whole algorithm is O(n log n). As a result we obtain:

Theorem 5.1: Let S be a set of c-oriented polygons and points where the total

number of polygon edges and points is n. Then there exists an algorithm which

solves the batched stabbing number problem for S in O(n log n) time and 0(n)

space.
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5.1.2. The query problem.

Now we consider the related problem:

Given a set of c-oriented polygons, devise a data structure such that
stabbing number queries (i.e. 'Given a query point q, how many polygons

enclose it?') can be answered efficiently.

Often we can convert a solution for the batched problem which uses a line-sweep
into a solution for the query problem. In principle, for a query point q = (xo,yo)
we only have to look at the data structure employed in the line-sweep algorithm
as it was at position Xq- We trivially keep a copy of this data structure after
each update and answer a query by searching for the right structure and then
using it for answering the query. Unfortunately this structure uses in most cases

a prohibitive amount of storage, in our case O(n2).

In this situation the segment tree, a data structure introduced by Bentley [Be2]
which we used already in Section 3, essentially helps to reduce storage costs.
The idea is to recover the situation at time X0 by combining the answers for a
collection of data structures, of which some can be used for many different
points in time. Which data structures we have to choose is controlled by the

segment tree.

Recall that in a segment tree any interval i represented defines a collection

of nodes CN(i) (the 'covered nodes') which are 'marked' in some way to represent
i (for a definition of CN(i) see Section 3.1.2). In Section 3 we described
counting segment trees for which the marking is done by increasing a counter
associated to each node. In a segment tree, the marking is done by entering

the interval's name into a name list associated to each node.
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Figure 5-3: A segment tree, storing intervals a, b and c.

Furthermore a set of horizontal line segments in 2-space can be represented by

a segment-range tree, see [SiW], [EdM]. The first level of this structure is

a segment tree, where each node has an associated point set. A horizontal line
segment (IX, yo) is stored by entering point Yo into the point sets of all nodes
in the set CN(IX). Now for a given node p its point set is stored as a binary
search tree (called range tree). We may represent this structure as shown in

Fig. 5-4.
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Figure 5-4: A segment-range tree, storing line segments a, b, ¢ and d.

Now we introduce slanted segment-range trees observing that it does not cause any

problems to store slanted line segments instead of horizontal ones, as long as
they are parallel (and not vertical). The line segment pieces within a single

node of the segment tree can be represented as shown in Fig. 5-5.

© [\

Figure 5-5: Line segment pieces stored in a node of
a) a segment-range tree

b) a slanted segment-range tree.
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0f course we have to store the line segment pieces belonging to a segment tree
node as a y(x)-function instead of a simple y-value. For this we use exactly the
data structure employed in the line-sweep algorithm in Section 5.1.1. This
justifies our remarks that the segment tree is here just used to control a

number of these structures.

The solution for the query problem is now straightforward. From the set of all
polygon edges we build a collection of slanted segment-range trees, one for each
direction in C. Every polygon edge is stored in the tree corresponding to its
direction. Since the structure is very similar to normal segment-range trees

it is known that the total preprocessing time is 0(n log n) and that O(n log n)

space is sufficient, [SiW].

A query with point q = (xo, yo) is answered by performing a search on each of
the ¢ slanted segment-range trees. In each tree the segment tree level is searched
with argument X0» determining 0(log n) nodes in 0(log n) time. For every node
the associated tree (the structure described in Section 5.1.1) is searched and
the balance B - T of the line segments below computed in 0(log n) time. These
bal ance-values are added for all the 0(log n) level-2 trees and then for all
directions. The result is q's stabbing number. Its determination takes O(log2 n)
time for each slanted segment-range tree. This also determines the total query

time since there are only a constant number for these trees.

There exist similar techniques for segment-segment trees [Val, segment-range trees
[vaW] and range-range trees [Wi1] to interlink the leaves of the level-2 trees. In
all these cases the query time is improved from O(log2 n) to 0(log n). It can

be shown that these techniques can be adapted for the stabbing number problem
(instead of of the stabbing problem) and for slanted segment-range trees yielding

0(log n) search time. Preprocessing and space costs remain the same. It follows:



- 146 -
Theorem 5.2: Stabbing number queries can be answered in 0(log n) time for a

set of c-oriented polygons with n edges, using O0(n log n) space and pre-

processing time.

5.2. Polygonal intensection searching.

The polygonal intersection searching problem, as defined by Edelsbrunner, Kirk-

patrick and Maurer [EdKM], is:

Given a set of polygons P and a query polygon g, determine all polygons

in P which intersect q.

This general case has so far been studied only in [EdKM]. In contrast, the spe-
cial case of iso-oriented rectangles has been examined in quite a number of
papers. For a summary see [EdM].From the study of the orthogonal case it is

known that the problem can be solved by reducing it to three subproblems.

5.2.1. The subproblems.

There are three possible ways how a polygon p € P may intersect the query

polygon q:

(1) q encloses p entirely.
(2) q is enclosed by p.

(3) q and p have an edge intersection.

Clearly those cases are not disjoint. However, if any p €P intersects q at all,

then one of the criteria (1) - (3) is true. A polygonal intersection query may
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hence be answered in three steps:

1. Represent P by a set of points: for each polygon p in P choose an
arbitrary point rp which is inside p. Let Rp be the resulting point

set. Find all points of Rp inside g. We call this a polygonal range

query.

2. Represent q by an internal point rq. Find all polygons in P enclosing

rq. Let us call this a polygonal point enclosure query (identical to

the stabbing set problem of the last section; for rectangles also

called inverse range searching).

3. Represent P by the set of all edges of polygons in P, Ep. Form the set

Eq of all edges composing q. For each edge e in Eq perform a line

segment intersection query on Ep.

The mentioned problems are all very basic for the study of non-orthogonal ob-
jects. Efficient solutions would have many applications in such areas as computer

graphics, querying databases, especially geographical or architectural databases.

Let us review the solutions obtained so far in the general and the orthogonal
case. Edelsbrunner, Kirkpatrick and Maurer [EdKM] solve all three subproblems
by means of geometric transforms. Let P contain n simple polygons of which t
intersect q. The polygons are assumed to be simple and bounded in size (the
number of edges) by some constant. Then [EdKM] solve the polygonal intersection
searching problem in optimal O0(log n + t) time. However, the data structures
employed require extreme amounts of space, namely O(n5) (see [Ed4, Section 4.3]

for the space bound).
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In contrast, restricting to rectangles, the intersection searching problem can

2 n) space. This result is obtained

be solved in 0(log n + t) time and O(n log
by combining the solutions of the corresponding subproblems (references are given

in the following three sections).

Observe again the complexity gap between the orthogonal and the general case
which is manifested this time in the space-requirements. We now study the poly-
gonal intersection searching problem for c-oriented polygons. To our knowledge
so far only Edelsbrunner [Ed4, Section 4.1.2] considered similar problems. He
reduces intersection searching for c-oriented polygons (which have to be convex
and bounded in size by 2-c in contrast to our definition) to the corresponding
problems for c-dimensional (hyper-)rectangles. This allows to solve the inter-

(c-1) n+ t) time and 0(n log® n) space

section searching problem in 0(log
(see [EdM]). In the sequel we describe a much more efficient solution and
thereby solve an open problem of Edelbrunner's thesis [Ed4, Section 4.4,

problem (2) 1.

In Sections 5.2.2 through 5.2.4 we give solutions for the c-oriented versions

of the three subproblems. Combining them we obtain:

Theorem 5.3: Given C, a set of n C-oriented polygons P (each of which must be
simple and bounded in size by some constant) and a C-oriented query polygon
q, the polygonal intersection searching problem can be solved in

2

0(log® n + t) time, using O(n log2 n) space and preprocessing, where t

is the number of answers.

Proof: In the following three sections we prove that each of the subproblems
can be solved within the time and space bounds of the theorem (see Theorems

5.4 - 5.6). There remains the problem of multiple reporting since pairs of
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intersecting polygons found via point enclosure may also have edge inter-
sections and for any two intersecting polygons several edge intersections may
occur. However, since the polygons are bounded in the number of edges, each
intersecting pair may be found only a constant number of times. In [Ed4,
Section 4.3] it is described how to report each intersecting pair only once

without increasing query time or space bound by means of a bit vector. <>

5.2.2. Line segment intensection seanrching.

The (c-oriented) line segment intersection searching problem is:

Given C, a set of C-oriented line segments L and a C-oriented query
line segment lq, find all line segments in L which intersect lq.
For arbitrarily oriented line segments it is possible to answer this query in
0(log n + t) time and O(n5) space, where n is the cardinality of L and t the
number of answers [EdKM]1. For orthogonal, that is horizontal and vertical,

line segments a query can be answered in O(log2 n+ t) time and 0(n log n)
space by means of a segment-range tree (see [EdM]). This result was improved

by Vaishnavi and Wood [VaW] to a query time of 0(log n + t) without increasing

the space bound.

In Section 5.1.2 we used already slanted segment-range trees to solve the
stabbing number query problem. The range trees used were augmented by below-
fields. Now the (c—oriented) line segment intersection problem can be solved
in a rather trivial manner using a collection of segment-range trees. In this
case the range trees are normal binary search trees where for convenience the

leaves are arranged as a linked list.
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Preprocess L in the following way: For each pair of directions a, b €C,

a ¥ b, construct a slanted segment-range tree storing all a-directed line seg-
ments to be searched with a b-directed line segment. This means that the coordi-
nate axis of the segment tree level is the direction perpendicular to b which

we call b. In the (b, b)-coordinate system a b-directed line segment is given by
a tripel (Bb, b1, b2) corresponding to the description (XO’ Yqs yz) of a vertical
line segment in the (x, y)-system. An a-directed line segment is represented by

a b-interval f51, Bé] and a function b(b). Fig. 5-6 shows a node of a (b, b)-

segment-range tree storing a-directed line segment pieces and a b-directed query

line segment 1q = (bO, b1, b2).
b A
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by |- _ _ _ ] —
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Figure 5-6

Now it is obvious how an a-directed line segment (BH, Bé, b(b)) is stored in

a (b, b)-segment-range tree for direction a: The interval [5&, Bé] uniquely
identifies 0(log n) nodes of the segment tree level, namely the nodes in
CN([B&,Bé]). Each of those nodes has an associated range tree storing the function
b(b) in one of its leaves (this is possible since the range tree contains only

line segments with the same slope).

For |C| = ¢, the complete collection consists of c-(c - 1) trees. Each line
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segment appears in (c-1) different trees and takes 0(log n) space per tree.
Hence the total space required is 0(c-n log n).

A query with a b-directed line segment 1q = (bo, b1, b2) is answered as follows:
In each of the (c-1) (b, b)-segment-range trees the 'stabbing coordinate' Bb
identifies 0(log n) nodes with their respective range trees. In each range tree
in 0(log n) time a leaf is found representing the first line segment piece above
point (BO, b1). The linked list of leaves is then scanned, reporting all en-

countered line segments as intersecting 1q’ until the 'top point' (Bb, bZ) is

reached. Clearly the whole process takes O0(c log2 n + t) time in the worst case.

The technique of Vaishnavi and Wood [VaW] to improve the query time of segment-
range trees can here be applied as well. The modified structure also requires

0(n log n) space and can be built in 0(n log n) time. Hence we obtain:

Theorem 5.4: For a set of n C-oriented line segments and a C-oriented query
line segment the line segment intersection searching problem can be solved

in 0(log n + t) time, using O(n log n) space and preprocessing.
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5.2.3. Polygonal nrange searching.

The (c-oriented) polygonal range searching problem is:

Given C, a set of points in 2-space P and a C-oriented query polygon

q, find all points of P inside q.

There exist two solutions for the general problem (with an arbitrarily oriented
query polygon). The query can either be answered in optimal 0(log n + t) time,
using O(n5) space ( [EdKM1, [Ed4]) or in O(nO'77 + t) time and 0(n) space. The
latter solution is due to Willard [Wi2] who studies the problem in the context
of information retrieval in databases, pointing out that certain types of

queries may be interpreted as regions of 2-space bounded by straight lines.

The two mentioned solutions demonstrate quite well that the problem is indeed
hard. Only when restricting to the orthogonal case efficient solutions are
known. For a query rectangle it is possible to report the enclosed points in

0(log n + t) time, using O0(n log n) space, see Willard [Wi1].

Let us again see what kind of solution we obtain for the 'in between' case of
c-oriented polygons. Our task is to find all points from P inside q. q is a
simple polygon with at most k edges. First we decompose g into some standard

form of regions which happen to be trapeziums:
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Figure 5-7

The 'paper-and-pencil' method to set up the subdivision is the following: From
each vertex p of q draw the vertical lines which project p onto the edges
immediately above and below p iff the respective projection line is inside q.
Some of the resulting trapeziums may be triangles, that is, trapeziums with a

vertical edge of length zero.

It can be shown that for a polygon with k edges the resulting subdivision con-
sists of at most (k-1) trapeziums (of precisely (k-1) trapeziums if no two
vertices have identical x-coordinates). The subdivision can be set up in

0(k log k) time and 0(k) space in the worst case. If no custom-tailored algo-
rithm for trapeziums can be found (which should not be too difficult) use the
algorithm of Garey, Johnson, Preparata and Tarjan [GaJPT] to triangulate
the‘polygon and then split each resulting triangle into two (pseudo-) trapeziums.
So for our purposes the subdivision can be set up in constant time and comprises

only a constant number of regions.

The remaining task is to report all points from a given set inside a query
trapezium tq. tq has two vertical edges, an a-directed bottom edge and a b-

directed top edge, for some directions a, b €C. If we introduce again coordinate
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axes a and b perpendicular to a and b, respectively, then t_ can be represented

q
by a quadrupel ttq = (x1, Xos A5 bO) (see Fig. 5-8).

|

\\\\g;:éction b

direction a

\

Figure 5-8: A query trapezium tq in the (x, a, b)-coordinate system.

Let us for a moment think about the representation of a point in 2-space.
Usually it is given as a pair (xO, yo) based on the (x, y)-coordinate system.
Clearly, once the origin is given, we may define a new coordinate system by
giving a collection of, say, d different arbitrarily chosen directions and des-

cribe a point by the d-tuple of projections onto the new coordinate axes.

Figure 5-9
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Hence any point p € P may be represented with respect to the (x, a, b)-coordi-

nate system by a triple (x', a', b'). Then

3 s _ I = Py | N *
p inside tq<_> Xy < x' <Xy, Aag<alAb' <by (*)
if we make the convention that the a and b coordinate axes point upwards from the

origin (that is e.g. a-values increase with increasing y-coordinate).

Now we are able to retrieve all points from P fulfilling condition (*) efficient-
ly if P is organised as a three-dimensional range tree (due to Bentley [Be3],
see also Lueker [Lul) whose three dimension levels are sorted by x-, a- and b-
coordinate, respectively. Recall the structure of this tree: The top level is a
binary searchtree representing the x-coordinates of all points in P. For each
node g of this tree let SUB(q) denote the set of all points from P whose x-coor-
dinate lies in q's subtree. Now g contains an additional pointer AUX(q) to a
two-dimensional range tree ordered by a- and b-coordinate representing SUB(q).
The top level of this tree is again a binary searchtree ordered by a-coordinate
with an additional field AUX(r) representing SUB(r) for each node r as a one-
dimensional structure sorted by b-coordinate. In our case it is sufficient to
use two-way linked lists for the b-level. Each list element contains a point

from P.
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x-level

a-level

b-level

Figure 5-10: A slanted three-dimensional range tree.

2 n)

A three-dimensional range tree for a set of n points requires 0(n log
space and preprocessing time (see [Be3]). A range query with a 3-range

(x1, Xos Yqs Yos Zgs 22) can be answered in O(log3 n+ t) time in the worst

case where t is the number of answers. In our special situation we can do better,
because querying with tq = (x1, Xos Eb, Bb) we do not search with intervals

on the a- and b-level but rather with half-spaces.
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The query with t_ is answered in the following way: On the x-level we find the

q
0(log n) roots of trees covered by [x1, x2] (the nodes in CN([x1, x2]) in ana-
logy to segment trees, see Section 3.1.2) in O0(log n) time. For each node p in
CN([x1, x2]) we search the tree AUX(p) with argument Eb and determine the

0(log n) nodes in CN([EO, @ 1) in the same time. So far we have found the col-
lection éf all lists of the b-level which may contain answers to the query, in
O(log2 n) time. Now we scan each list from the left end, reporting all encountered
points as answers to the query, until value Bb is reached. The time for this is
linear in the number of reported points, t. Hence answering a trapezium-query

takes O(log2 n+ t) time in the worst case.

Note that the same tree may be used to answer queries with trapeziums having
an a-directed top and a b-directed bottom edge (scanning lists from the right

end etc.)
We summarize our solution of the c-oriented polygonal range searching problem in:

Theorem 5.5: Given C,a set of npointsP.in 2-space and a simple C-oriented
polygon q with at most k edges. Then the t points from P inside q can be

reported in O(log2 n+t) time, with 0(n log2 n) space and preprocessing.

Proof: For |C| = c, preprocess P into the ¢ three-dimensional range trees
corresponding to all pairs of directions a, b € C. Given q, divide it in
constant time into trapeziums. With each trapezium query the appropriate

tree within the time bound of the theorem. <>
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5.2.4. Polygonal point enclosure searching.

The (c-oriented) polygonal point enclosure searching problem is:

Given C, a set of C-oriented polygons P and a query point rq, find all
polygons from P which enclose rq.

The [EdKM]-solution of the general problem allows to find the answer in
O(log n + t) time, but requires O(n3) space. In contrast, the rectangular
version of this problem can be solved in 0(n 1og2 n) space retaining the opti-

mal time bound [Va].

The point enclosure searching problem is dual to the range searching problem
of the last section. Only the roles of query object and queried set are exchanged.
This observation leads to the idea of 'turning around' the solution of the last

section which we describe now.

Given the set of C-oriented polygons P we first split each polygon into the set
of composing trapeziums (see Section 5.2.3) and consider from now on the set of
all trapeziums T. Each trapezium in T is characterized by the two directions of
its bottom and top edge. This induces a partition of T into c2 (Far £ = [C|)
disjoint subsets, one subset for each pair of directions in C. Of course some

subsets may be empty. Let Ta b denote the subset corresponding to directions a,b.

The representation (x1, Xo s Eb, Bb) of a trapezium may be interpreted as a 3-
range ([x1, x2],[Eb, w], [~ , Bb]) in the (x, a, b)-coordinate system. In fact
we used this interpretation when querying the three-dimensional slanted range

tree. For the present problem we therefore have to look for a data structure
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able to accomodate 3-ranges and to retrieve them by stabbing (or point enclosure)
queries. Such a data structure is the three-dimensional segment tree (described
for instance in [Ed3]). It allows to store n 3-ranges in 0(n log3 n) space

and to answer a stabbing query in O(log3 n + t) time where t is the number of
answers. For all pairs a, b € C we now represent Ta,b by a slanted three-dimensio-
nal segment tree. Again we are able to gain some efficiency due to the fact that
two of the intervals composing a 3-range are halfspaces in our case. This makes

it possible to replace the bottom level of the tree, which is normally a segment

tree, by a simple linked list.

A slanted three-dimensional segment tree for directions a, b then looks as
follows: The top level is a segment tree (see Fig. 5-3) for x-intervals. Each

of its nodes contains a pointer to a segment tree storing a-intervals. Each node
of this (second level) segment tree again contains a pointer to some data
structure of the third level which represents b-intervals. Since any b-interval
occurring is either a left halfspace [- =, Bb] or a right halfspace [50, ® ],
it is sufficient to maintain two b-ordered linked lists L and R. A list item

of L, for instance, is a pair (b', P') where P' is a list of polygon names

(any polygon in P' contains a trapezium with b-interval [- «, b']). Fig. 5-11

illustrates the structure.
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Figure 5-11: A slanted three-dimensional segment tree.

A trapezium t = (x1, Xos Eb, Bb) coming from a polygon p is represented in this
structure as follows: On level 1, the interval [x1, x2] determines a collection
of 0(log n) nodes, the nodes in CN([x1, xz]). In each associated level-2 segment
tree the interval EEO, =] again selects 0(log n) nodes.For each of those nodes
there is an entry (Bb, PO) in its L-list and P0 contains the name p. Clearly

the representation of a single trapezium requires O(log2 n) space in the worst
case. Since there are n polygons and each of them consists of a constant number

of trapeziums, the total space required is O0(n log2 n). Choosing a suitable
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method for preprocessing (along the lines of Six and Wood [SiW, Section V)
the structure can be built in 0(n 1og2 n) time. The crucial idea is to first

sort all trapeziums by b-coordinate and then to build the segment tree structure.

So far we argued as if all trapeziums were stored in one single three-dimensio-
nal segment tree. In fact we use (at most) c2 different trees. It is easy to see,
however, that splitting into different structures does not increase the space or
preprocessing time bound but on the contrary, improves it to

0(c? (n/c?) log (n/c?)).

How do we answer a point enclosure query with rq = (xO, yO)? We have to query
each of the c2 structures. For each tree rq has to be transformed into the appro-
priate triple of coordinates‘(xo, Eb, Bb). On each tree Xq then stabs the inter-
vals of 0(log n) nodes of level 1. In each associated level-2 tree Eb again
stabs 0(log n) nodes. For each of them the L-list and R-list are scanned from
the right and left end, respectively. For each encountered list item the names

of its polygon list are reported as answers to the query. Finding the lists has

taken O(log2 n) time, scanning the lists 0(t) time for t reported polygons.

Thus we obtain:

Theorem 5.6: For a set of n C-oriented simple polygons P (bounded in size by
some constant) the polygonal point enclosure searching problem can be solved

2

in 0(log® n + t) time and O0(n log2 n) space and preprocessing, where t is

the number of answers.

This completes the proof of Theorem 5.3.
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5.3. Computing the contoun of a set of c-ordiented polygons.

In this final section we return to the problem studied primarily in this thesis,
the contour problem. One of the motives in studying c-oriented polygons was to
find a more efficient contour algorithm for this restricted case than seems
possible for arbitrary polygons. As we will see, such an algorithm does exist;

however, we do not achieve the efficiency possible for rectangles.

A solution of the general problem, that is computing the contour of a set of
arbitrarily oriented polygdns, was given by Ottmann, Widmayer and Wood [OWW .

In fact, their algorithm computes the set of contour-pieces; from it in a trivial
sorting step the contour can be computed as a collection of contour-cycles

(as in Sections 3 and 4) in O0(p log p) time and O0(p) space, where p is the
number of edges in the contour. In this section we also understand by 'computing

the contour' just to report the set of contour-pieces.

The contour algorithm of [OWW] is a modification of the line-sweep algorithm

of Bentley and Ottmann [BeO] which finds all intersections among a set of
arbitrarily oriented line segments. Essentially in the contour algorithm the
sweepline stops at each edge intersection point to update some structure repre-
senting the order of the line segments intersecting the sweepline as well as the
'coverage' of the regions between them. Stopping at each intersection point
immediately implies a time bound of 0(n log n + k log n) (the time bound of
[Be0]) for the contour algorithm (for n polygons of bounded size with k edge

intersections).

It is important to realize that this time bound is indeed much worse than the
one for rectangles (0(n log n + p) time) which does not depend on the number

of intersections, but on the actual size p of the contour. An extreme example
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may illustrate this. Imagine a 'complicated' set of polygons with G(nz) inter-
sections enclosed by a single large polygon. Obviously the contour of the com-
bined set is identical to the enclosing polygon. To compute this contour the
polygonal contour algorithm requires O(n2 log n) operations. The algorithm for

the analogous rectangular case uses only @(n log n) time.

How difficult is the problem for c-oriented polygons? First, observe that the
time bound for computing all edge intersections can trivially be reduced by a
factor of log n in this case. Namely, divide the set of line segments into c
subsets, one for each direction in C. Then compute intersections between all
pairs of subsets using the (slightly modified) algorithm of Bentley and Ottmann
[BeO] for horizontal and vertical line segments. The time bound is

0(n log n + k).

The reduced complexity of finding intersections permits us also to reduce the
time bound for computing the contour. We now give an alternative description
of the edge intersection algorithm which is later modified to obtain a contour

algorithm.

Let L be a set of n c-oriented line segments. Divide L into subsets of equal

direction L , LC with associated directions d1, cee dc' For each set

1> =e
Li’ compute a coordinate transformation on all sets Lj’ j =15 o= 5 Cs such that
in the new coordinate system the line segments of Li are vertical. Then perform

a line-sweep in (the new) horizontal direction. Maintain a binary searchtree

Tj for each direction dj’ j # i. For convenience we use leafsearch trees, that

is the leaves are linked into a linear list. The line-sweep then works as follows:

Encountering
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- the left endpoint of a line segment 1 of direction dj, j # i: insert
1 into Tj' 1 is represented by its y(x) function, see Section 5.1.1.

- the right endpoint of a line segment 1 of direction dj’ j # i: delete
1 from Tj'

- a vertical line segment lq = (xo, Yqs yz) (that is a line segment of
direction di): query all trees Tj’ j # i with the interval [y1, y2] and
report the line segments with yq < y(xo)_g Yo as intersecting 1q (in each

tree those line segments are represented by a sequence of adjacent leaves).

To analyze this algorithm, observe that the.line-sweep stops at O(n) positions. At
each position either an insertion or deletion is performed in 0(log n) time or
all trees are queried in 0(log n + t) time where t is the number of reported
intersections. Hence the whole algorithm requires 0(n log n + k) time.

0(n) space is sufficient.

To obtain a contour algorithm our strategy is to compute for each polygon edge
those fragments of it which intersect free area. To this end we modify the edge
intersection algorithm such that whenever a vertical polygon edge 1q is en-
countered we compute the parts of it intersecting free area. Let us ignore for
a moment that 1q belongs itself to some polygon and consider the problem of

determining for an 'independent' vertical line segment which parts of it inter-

sect free area.

When the sweepline is moved through a set of polygons, at each position it is
divided by the polygon edges into a sequence of fragment intervals. Each of those

fragments is covered by polygons a certain number of times.
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Figure 5-12

If we maintain this sequence of fragment intervals during the line-sweep as

a binary searchtree (each leaf representing a fragment interval) then we are
able to compute for a given vertical line segment 1q = (xO, Yqs y2) the 'free'
parts: We search for the fragment containing Yy in 0(log n) time. Then the
leaves of the tree are scanned (suppose we use a leafsearch tree). Whenever the
coverage of a fragment is zero, the corresponding part of 1q is reported as
being 'free'. - Unfortunately to maintain the sequence of fragment intervals

it is necessary to stop the line-sweep at each edge intersection point which is

just what we want to avoid in order to improve the efficiency.

However, it is possible to use the same idea if we modify the edge intersection
algorithm slightly: We replace the binary searchtrees employed by the trees
augmented by below-fields of Section 5.1.1. This enables us to perform stabbing
number queries during the line-sweep. The contour algorithm then works as fol-
lows: After forming the set of all polygon edges we apply the edge intersection
algorithm as described above, except for the case when a vertical edge

1 = (xO, Yqs yz) is encountered. In that case we search all trees with lq's

q
. _ . oo . .
bottom point lq = (xO, y1). The result is twofold: First, lq s stabbing number
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is computed and assigned to a variable s. Second, in each tree's linked list of
leaves the position of lq is determined. We then scan those lists in parallel,
computing the correct order of the edges intersecting 1q and by this, in fact,
the sequence of fragment intervals, until we reach 1q= (xo, y2). For each encoun-
tered edge we update s which represents the coverage of the current fragment. If
a fragment [y', y"] with coverage zero is found then the contour-piece

(xO, y's y") is reported.

Up to now we ignored the fact that 1q itself belongs to some polygon Py Obvious-
ly we have to avoid to count py as covering lq. This can be done by choosing the
correct order of the three operations of inserting/deleting the neighbouring
edges of P below and above lq and querying with lq. Those operations occur

at the same position of the line-sweep and we did not yet specify their order.
The time complexity of this algorithm is clearly the same as that of the edge
intersection algorithm: Computing the stabbing number takes no (asymptotic)

extra time since each tree had to be searched for the scan's start position
anyway. Also scanning the lists of leaves in parallel instead of separately

adds only a constant factor of time. Since the space requirements are unchanged,

we obtain:

Theorem 5.7: For a set of n c-oriented polygons, each of them simple and
bounded in size by some constant, the contour can be computed in
O(n log n + k) time and 0(n) space where k is the number of polygonal edge

intersections.
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6. CONCLUSTONS.

In this final section we try to evaluate the work done, discuss its significance

and point out applications. We also identify directions of further research as

well as interesting open problems.

First, let us summarize what we consider to be the main contributions of this

thesis:

(1)

The first time-optimal solutions of the contour problem are given.
Furthermore variants of the contour problem are studied in considerable
depth and efficient solutions are presented.

We introduce the idea of separational representation to support divide-
and-conquer. This permits efficient divide-and-conquer solutions for a
wide range of problems concerning orthogonal planar objects for which
previously only line-sweep seemed to be a suitable method. We prove this
by describing time-optimal divide-and-conquer algorithms for five non-
trivial problems.

We introduce the notion of c-oriented objects to bridge the complexity
gap between problems concerning orthogonal and those for arbitrarily
oriented objects. We show that this is possible by giving efficient so-
lutions for a number of problems based on c-oriented objects. In certain
application areas (see below) problems involving only a small number of
directions occur. Here c-oriented objects might prove to be a quite

useful alternative between the orthogonal and the general case.

Let us now review the results obtained in more detail.
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Contour problems.

Computing the contour of a set of rectangles is a quite basic problem in planar
computational geometry. Its study is also motivated by applications in VLSI-
design, geometric data bases etc. Lipski and Preparata [LiP] attacked the
problem first, but did not find an optimal solution. They left it as an open
problem whether an optimal 0(n log n + p) time solution does exist (for n
rectangles with a contour of size p). We answer this question affirmatively,
describing two different algorithms achieving the time bound. Our line-sweep
algorithm requires O0(n + p) space, provided the task is, to report the contour
in the form of ‘'contour-cycles' (as does the algorithm of [LiP]). If only con-
tour-pieces have to be reported then 0(n) space is sufficient. It is an open

problem whether also the first task can be performed in optimal 0(n) space.

The efficiency of the line-sweep algorithm is due to a rather sophisticated
data structure, the contracted segment tree (CST), which is a modification of
the well-known segment tree. The CST provides a solution for the following one-

dimensional searching problem:

Represent a (semi-) dynamic (see below) set of n intervals I such that
insertion and deletion of an interval is possible in 0(log n) time
and queries with an interval i for the intersection with the comple-
ment of I (the 'free' parts of the line) in 0(log n + B) time, where

B is the number of disjoint intervals in the answer.

We mention the searching problem because it might have applications in its-own
right. - The set I is semidynamic because only intervals whose endpoints are in
a prespecified set of points are allowed for insertion, deletion and querying.

An interesting open problem is whether a fully dynamic solution can be given.
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Such a solution might improve the actual execution time of our algorithm though

not the asymptotic time bound.

The more general problem behind the mentioned one is to dynamize the segment tree.
While for the segment tree with nodes augmented by node lists no very efficient
solution seems to exist (see Edelsbrunner [Ed3]), the counting segment tree
might permit 0(log n) update and query time. For two special applications of the
counting segment tree (measure and stabbing number queries) Gonnet, Munro and
Wood [GoMW] provide dynamic solutions by means of alternative tree structures.
However, dynamizing the counting segment tree itself could make it possible to
adapt easily to the fully dynamic case many applications of the counting segment

tree already found.

There exist two interesting open problems arising from our work on contours

which are strongly interrelated. The first is to give an algorithm computing the
tree-dimensional contour of a set of orthogonal bricks in 3-space. The second

is to maintain dynamically the two-dimensional contour on insertion and deletion
of rectangles. Obviously when using a plane-sweep algorithm the first problem
reduces to the second. First studies of the author indicate that it is impossible
to maintain the isolated 1-contour in efficient worst-case update time, if de-
letions are permitted. This is due to the fact that after deleting a rectangle

a complex contour of enclosed rectangles may become visible. Hence it is necessary
to maintain all i-contours. - Apart from theoretical interest the mentioned
problems might have applications in computer graphics and interactive design

algorithms.

Another generalization of the contour problem is studied in depth in this
thesis, namely the class of problems based on the notions of i-areas, i-measures

and i-contours. Many efficient algorithms are described, some of them optimal.



- 170 -

The study illustrates the usefulness of the counting segment tree and shows

that also the contracted segment tree is not a single-purpose structure but can

be modified in different nontrivial ways to obtain efficient solutions for other
interval searching problems. The results of Sections 3.2 show that it is possible
to compute the height of a set of rectangles efficiently as well as measure and
contour for the top and bottom end of the i-scale. For arbitrary intermediate

values of i the computation becomes less efficient.

Again each of the problems discussed is solved by means of a line-sweep algo-
rithm using a data structure which efficiently solves a semidynamic one-dimensio-
nal interval searching problem. For all of those problems fully dynamic solutions
are not yet known and should be investigated. They would improve the respective

line-sweep algorithms.

Since in the last few years many efficient data structures for searching for or
with intervals have been developed it would be a quite useful enterprise to
survey and classify them. This work would certainly exhibit interesting directions

of further research.

Though the study of i-contour and i-measure problems is primarily of theoreti-

cal interest, there might exist applications, especially in VLSI-design. Recently
problems have been investigated ([La2], [OWW]) which are based on the realistic
assumption that not a single set of planar objects is given, but rather a col-
lection of sets corresponding to the different layers of a VLSI cirquit layout.
One particular problem motivated from practice is to compute 'boolean mask
operations' between those layers. Consider the special case of computing 'A AND B'
for two sets of rectangles A and B (that is to compute the contour of the area
defined by union(A) N union(B)). If each layer is given by a set of non-inter-
secting rectangles then simple application of algorithm HEIGHT-CONTOUR yields

the desired result. Otherwise a possible (though not very efficient) way to
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compute A AND B is to compute the contours of union(A) and union(B) separately,
to retransform the result into a set of disjoint rectangles and then to proceed
as before. However, a more promising approach is to devise a custom-tailored
adaptation of the contracted segment tree for the boolean mask operation problem.

The divide-and-conquer methods of Section 4 might also be tried.

Divide-and-conguen.

Five problems concerning orthogonal planar objects are solved by divide-and-

conquer:

(1) The line segment intersection problem.

(2) The point enclosure problem.

(3) The rectangle intersection problem, by combining (1) and (2).
(4) The measure problem.

(5) The contour problem.

All solutions are time-optimal. With exception of the contour algorithm they are
also space-optimal. All problems had been solved by use of line-sweep algorithms
before (problem (5) in this thesis). These are the first optimal divide-and-
conquer solutions. While up to now line-sweep seemed to be the only possible
method to solve this kind of problems efficiently, the divide-and-conquer so-
lutions have become possible through the simple, yet powerful idea of separatio-

nal representation of planar objects.

Since these results concern the methodology of the design of algorithms, they are
of wider interest than the particular problems considered. Many natural questions
arise from this work, like the following: Which of the two paradigms is more

powerful for which kind of problems? Are there problems that can be solved
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definitely only by line-sweep or only by divide-and-conquer in optimal time or
space? Are the two paradigms interchangeable for problems involving orthogonal

objects in 2-space, as we conjecture?

Some insights can already be gained from the comparison of the respective line-
sweep and divide-and-conquer algorithms for the problems we studied. We observe
that in all cases a certain trade-off seems to take place: With divide-and-con-
quer, more complexity is put into the structure of the algorithm. As a result
the data structures become more simple and easier to maintain. With line-sweep,
the structure of the algorithm is more simple which has to be paid for by an in-

creased complexity of the supporting data structures.

The crucial step in devising a line-sweep algorithm is to solve a dynamic one-
dimensional searching problem. The crucial step in the design of a divide-and-
conquer algorithm is to merge two sets of objects, extracting or maintaining
the information relevant to the problem. Therefore we may characterize line-
sweep as an asymmetric and divide-and-conquer as a symmetric technique: the
former compares a single object (the query object) to a set of objects while

the latter deals with two approximately equal-sized sets.

More specifically, if we wish to obtain solutions working in 0(n log n) time
for a set of n objects (as is the case for all problems we solve in this thesis)
then it is necessary for the line-sweep approach to solve the searching problem
in 0(log n) update and query time. With divide-and-conquer, it is necessary to
perform the merging of the two sets in linear time, that is, a constant amount

of time may be consumed for each object.

It would beinteresting to know which of those two tasks is in general the more

difficult one if such a general statement makes sense at all. Looking at the
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problems solved so far, it seems that the segment tree used to solve for instance
the measure problem was quite an invention while the divide-and-conquer counter-
part, a linked list of numbers, is a very simple data structure. Also considerable
effort was necessary to develop the contracted segment tree which is certainly a
complicated structure. The divide-and-conquer counterpart, a linked list of
stripes containing interconnected trees, is somewhat more complex, too, but still
seems relatively simple compared to the CST. On the other hand for the line-sweep
solution 0O(n + p) space is sufficient while divide-and-conquer requires

0(n log n + p) space. It is an open problem whether the space bound for divide-

and-conquer can be reduced.

To summarize the comparison: divide-and-conquer seems to be a quite suitable
alternative to line-sweep for problems based on orthogonal objects in 2-space.
In some cases it leads to simpler solutions. As a consequence, the designer of

algorithms should try both paradigms when dealing with new problems of this kind.

Concerning further research, a systematic comparison of both paradigms should be

undertaken. The following questions are particularly interesting:

- Characterize the properties of a problem which permit or prevent a
solution with either technique.

- Let LS and DAC denote the problem classes which are 'solvable' by line-
sweep and divide-and-conquer, respectively. Here different definitions
of 'solvable' may be considered, like solvable at all or with certain
time/space bounds. Then define LS N DAC. That is, given one solution
it is possible to describe the dual one. Develop a method to obtain the
other solution.

- Study the relation between the corresponding data structures for problems

in LS N DAC (for the measure problem they are the segment tree and a
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linked list of numbers). Is it possible to define transforms between them?
- Characterize LS - DAC and DAC - LS.
- In case of problems for which both paradigms achieve the same asymptotic
time and space bounds, compare the solutions by implementation to gain

some knowledge about the constants hidden in the 0O-notation.
Other open problems concern extensions of the divide-and-conquer technique:

- Generalize the method for higher dimensions (d > 3).

- Line-sweep algorithms have been used successfully to solve problems
involving non-orthogonal objects (for instance the algorithm finding all
intersections among a set of arbitrarily oriented line segments, see
[BeO]). Can the applicability of divide-and-conquer be extended to this

kind of problems?

Last not least, divide-and-conquer should be tried on problems for which time-

optimal liné—sweep algorithms could not yet be found.

C-ondented objects.

We introduce the notion of c-oriented objects which can be viewed either as a
generalization of '2-oriented objects' (that is, orthogonal objects like rect-
angles) or as a restriction of the general case of arbitrary polygons. The goal
is to extend the efficiency obtainable for the orthogonal case to this more
general class of objects. For a number of problems we show that this is indeed
possible: For two versions of the stabbing number problem time-optimal algorithms
are presented. The restricted case of the polygonal intersection searching pro-
blem is solved with a time bound of O(log2 n+t)and O0(n log2 n) space and

preprocessing (for n polygons and an answer of size t). In contrast, the solution
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of the general case permits a query time of 0(log n + t), but requires O(n5)
space and preprocessing. Finally for c-oriented polygons the complexity of the
contour problem is studied. A solution is given whose time bound is a little
better than that of the general case but much worse than the one we obtain for

rectangles.

The general approach to solve problems for c-oriented objects is to provide a
separate data structure for each occurring direction (or pair of directions).
The remaining problems are then how to decompose the given objects (polygons)
according to those directions and how to reconstruct the information lost by
this (apart from some representational issues). Sections 5.1 and 5.3 give two
examples of how to deal with the second problem while in Section 5.2 the first

problem is in the foreground.

Algorithms and data structures for c-oriented objects may have applications
whenever a real-life problem involves only a small number of possible directions.

We mention a few examples:

(1) In VLSI-design, besides orthogonal layouts sometimes '45° artwork'
is used. Since only very few directions occur, algorithms designed
for c-oriented polygons may be used with advantage instead of those
for arbitrary polygons.

(2) It seems that for instance in architectural design very often only
few directions occur. There might be similar design areas.

(3) A graphics editor might allow to compose pictures (e.g. figures) by
combining certain basic symbols, which consist of line segments with

only a few different orientations.
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Concerning further work, it seems important to examine possible application

areas and to identify the basic geometrical problems occurring. For computer
graphics a c-oriented hidden line elimination algorithm might be useful. Further-
more the possibility of approximating arbitrary curves by c-oriented line seg-

ments seems worth being investigated. This idea is discussed in [Freel].
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