
BerlinMOD: A Benchmark for Moving Object Databases
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Abstract

This document presents a method to design scalable and representative moving object data
(MOD) and two sets of queries for benchmarking spatio-temporal DBMS. Instead of programming
a dedicated generator software, we use the existing Secondo DBMS to create benchmark data.
The benchmark is based on a simulation scenario, where the positions of a sample of vehicles are
observed for an arbitrary period of time within the street network of Berlin. We demonstrate the
data generator’s extensibility by showing how to achieve more natural movement generation patterns,
and how to disturb the vehicles’ positions to create noisy data. As an application and for reference,
we also present first benchmarking results for the Secondo DBMS.

Such a benchmark is useful in several ways: It provides well-defined data sets and queries for
experimental evaluations; it simplifies experimental repeatability; it emphasizes the development of
complete systems; it points out weaknesses in existing systems motivating further research. Moreover,
the BerlinMOD benchmark allows one to compare different representations of the same moving
objects.

1 Introduction

Current database systems are able to store large sets of data. Besides standard data, also special kinds
of data, e.g. multimedia, spatial, and spatio-temporal data can be stored. Whereas the handling and the
access of standard data is well known, storing and efficient processing of non-standard data is a current
challenge. To be able to compare different DBMS and their storage and access methods, benchmarks
can be used.

In general, a benchmark consists of a well defined (scalable) data set and a set of problems. In the
context of database systems these are mostly formulated as a set of SQL-queries. Benchmarks have been
proven to be a proper tool to check the performance of DBMSs. Though data structures, index structures
and different operator implementations can be compared separately from other components, their impact
on database performance becomes clearer when they are tested all together within in a real system. Also,
benchmark evaluations make results from different researchers comparable in a straightforward way.

Benchmarks simplify the setup and description of experiments, because one can easily refer to a
well-defined data set whose properties are described elsewhere in detail. Using predefined data sets and
queries also reduces the risk of introducing bias in experiments.

In this paper, we present a benchmark for the field of moving objects databases. Such databases
come in two flavors: (i) representing current movements, e.g. of a fleet of trucks, in real time, supporting
questions about current and expected near future positions, and (ii) representing complete histories of
movements, allowing for complex analyses of movements in the past. Our benchmark addresses databases
of the second kind, sometimes called trajectory databases.

There has been a lot of research on moving object databases in the last ten years. Much of this
research has focused on providing specialized index structures or efficient algorithms to support specific
types of queries. However, a field is mature only when complete systems are around that can handle a
significant range of interesting queries. Up to now, very few such systems exist. A benchmark defining
such a set of queries may help the community to focus more on integration, i.e. building complete
systems.
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A benchmark covering an interesting range of queries may show not only the strengths, but also the
weaknesses of existing solutions, indicating where more work is needed. It may also show that gains in
efficiency in specialized components are relatively irrelevant because the bottlenecks in a system context
arise elsewhere.

Because database systems are used in practice, the best data set would be real data. But providing
real data for moving objects will lead to some problems. The first one is the effort for capturing the
data; e.g. to observe 1000 or more vehicles at the same time, each vehicle must be equipped with a GPS
receiver and the data must be collected. Another problem is that real data are not scalable, e.g. it is
impossible to extend the sample in retrospect. Data generators are a good method to cope with these
problems. Their output can be varied in size just by changing some parameters. Some data generators
create data “observing” objects within a simulated scenario; if the scenario is realistic, this approach
promises to yield representative data.

Our proposed benchmark BerlinMOD addresses the handling of moving point data. Besides two sets
of queries, we also provide a tool generating the moving point data. To generate the data set, we simulate
a number of cars driving on the road network of Berlin for a given period of time (e.g. a month) and
capture their positions at least every two seconds.

Instead of implementing a stand-alone dedicated generator tool, we use the infrastructure of Sec-

ondo, a prototypical extensible DBMS. Benchmark data are created by sequences of executable com-
mands collected in a script. To our knowledge, this is the first time, a DBMS is used in this way. While
this is quite unusual, it demonstrates the capabilities of a modern database system, whose modular
extensions and algebraic approach allows for synergetic effects and surprising applications. Also, this
arrangement provides the user with the possibility to directly compare her own system with another one.

As far as we know, we also present the first data generator creating scalable representative network-
based moving point data simulating long-term observation of objects. Long-term observation yields
huge histories for moving objects, which is interesting for benchmarking indexes and spatio-temporal
operators.

To model the impreciseness of real-world position tracking systems, we can optionally disturb resulting
moving point data.

The benchmark is evaluated within the Secondo system. Both the evaluation of the queries and the
script for creating the benchmark data demonstrate the capabilities of a state-of-the-art moving object
database system.

The Secondo system as well as all tools needed to create the benchmark data and run the benchmark
in Secondo are freely available on the Web [40, 4]. Hence anyone can repeat the experiments reported
here. Customized map data can be imported and the generated benchmark data can be exported to
various file formats for later conversion to the input formats of other systems.

2 Related Work

In this section, we present results related to our contribution. After starting with some notes on general
MOD traits we present some works on data generators and existing benchmarks. Last, we give an
overview on interesting query types proposed.

2.1 Moving Object Databases

Moving objects are time dependent geometries, i.e. geometries described as a function of time. In
contrast to earlier work on spatio-temporal databases, which in fact described temporal databases for
spatial objects containing “snapshots” of the spatial data at certain time stamps, geometries may change
continuously.

Two views on moving object data have been established in the past years. The first one focuses
on answering questions on the current positions of moving objects, and on their predicted temporal
evolution in the (near) future. This approach is sometimes called tracking. To model moving object data
in a way suitable to these classes of queries, the Moving Objects Spatio-Temporal (MOST) model and
the Future Temporal Logic (FTL) language have been proposed [42, 57, 59, 58].

A second approach represents complete histories of moving objects, for moving point objects also
called trajectory databases. This approach was pursued, for example, in [13, 19, 15]. In this work the
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complete evolution of a moving object can be represented as a single attribute within an object-relational
or other data model.

In this article we focus on the second, the history-based approach.
As access methods are essential to efficient query processing, index structures for both flavors of

moving object databases have been proposed – for an overview see [31]. To compare and evaluate
indexes on trajectories, our benchmark can be used.

Whereas free movement is the general case for moving object data, also constrained moving objects
have been investigated [55, 12, 21], especially with regard to real world applications. As an example, in
[8] the authors describe transportation networks as an abstraction of constrained movement and present
a specialized index structure for them. We will propose to generate data for moving objects constrained
by a transportation network.

Note that the data model implemented in the Secondo system that is used below for executing the
benchmark is the one from [19] based on free movement in the 2D plane. Because the benchmark data
set provides network constrained data, it is suitable to be also represented in an implementation of the
model of [21]. This implementation is underway in Secondo.

2.2 Data Generators

One of the first generators for moving object data, GSTD [52], creates unconstrained moving point or
rectangle data. A refinement [36] allows for more realistic trajectories by covering more agile, clustered,
and obstructed movement. The refined algorithm has been used within other data generators, e.g. to
create cellular network positioning data [16]. Since in the real world objects often follow a predefined
network (cars, trains, etc.) and access methods are strongly influenced by this fact, such data are
inappropriate to measure the performance of systems dealing with moving objects in networks.

G-TERD (generator of time-evolving regional data) [53] is a framework for the generation of large
sets of continuously changing 2D region object data. Regions have a location, shape, size, and color as
changing attributes. Parameters as for maximum speed, rotation-angle, object interactions, the initial
position and movement of the scene-observer, and the statistical distributions used can be defined by
the user. Output format are multicolored raster images. This generator produces well-suited data for
tasks as tracking objects. However, as the motion of objects is unconstrained and fully stochastically, it
is improper for the simulation of vehicles on a road network.

Another generator for spatio-temporal data, called Oporto [39], simulates a fishing scenario to create
scalable and representative moving object data. Shoals of fish follow fluctuating spots of plancton.
Fishing boats travel to and from harbours to find fish swarms and try to evade changing storm areas.
Oporto is capable of creating unrestricted moving point data and moving region data (with fixed center
but moving shape and size, and fully moving ones, with changing location, shape and size). Observation
of ships and shoals is possible for long periods of time. Since the movement of objects is (almost)
unrestricted, we cannot get appropriate data for moving objects in networks.

Many simulators have been proposed to generate traffic data. While macroscopic simulations deal
with the traffic flow as such, microscopic simulations deal with single vehicles. The SMARTEST project
(Simulation Modelling Applied to Road Transport European Scheme Tests) [44, 43] has provided a broad
overview on existing microscopic traffic simulations and developed a best practice manual of modelling
micro-simulation tools. The survey covers different tools modelled with regard to different aspects of
traffic, like urban, freeway, mixed, or automated highway systems; some are even more specialized, fo-
cussing on aspects like car parking or toll collection. The final project report subsumes [43]: “Most of the
micro-simulation models studied have been developed to quantify the benefits of Intelligent Transporta-
tion Systems, primarily Advanced Traffic Management Systems and Advanced Traveller Information
Systems. The scale of application ranges from a small number of vehicles and intersections to a large
number, about 200 nodes and many thousands of vehicles. Huge networks (300+ nodes and 1 million+
vehicles) can be considered by models that run on parallel architectures. The models are usually used to
estimate traffic efficiency in terms of speed and travel time, sometimes also considering congestion and
queue length. They mainly concentrate on simulating traffic signal control, route guidance and traffic
condition estimation. Each model uses its own control strategies and algorithms. Motorcycles, bicycles,
pedestrians, public transport, weather conditions and on-street parking receive little attention. [. . . ] A
few models have a GUI to input the road network topology and other data. Most models have only been
partially validated and calibrated.”
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All these generators primarily aim at traffic planning applications, and though observing individual
vehicles, they do so to create data on the general traffic flow. They do not consider directions of travel,
like generating starting locations and destinations for trips, or long time observations of single moving
objects. Also, many of these systems are non-free, requiring the payment of licence fees, and prohibiting
researchers from reading or changing the implementation to their needs.

An open-source generator and visual interface for objects moving in networks is proposed by Brinkhoff
in [6]. During the generation process, new objects appear and disappear when their destination is reached.
Speed and route of a moving object depend on the load of network edges (current number of cars using it)
and so-called external objects. Networks can be created from shape files, tiger line files and other sources.
The raw behaviour of the generator is controlled by a set of parameters. More sophisticated changes
require changes within the source code. The generator aims at the generation of single representative
trips, not at the generation of longterm movement histories for single objects. Because objects are created
at random (following a creation rate function) and terminate as soon as they reach their destination,
long-term observations of objects are not realizable without major changes to the generator mechanisms.
In contrast, our approach allows both, the trip based representation (like Brinkhoff’s generator) and the
object based representation where an object is observed during a given time interval. Our approach does
not consider the edge load within the street graph. Instead, we insert stops and decelerations depending
on the shape of the street section represented by the edge. Additionally, we insert also stops at transitions
between road sections. The region based approach for the selection of the start and the end of a trip
described in [6] is not implemented in Brinkhoff’s generator. The generator described here supports this
kind of selection. Furthermore, we are able to simulate measuring errors of the position detecting device.

Another more recent example for a microscopic traffic simulator implementation is SUMO (Simulation
of Urban MObility) [28], an open-source project performing a time-discrete, space-continuous simulation
of traffic, capturing private and public transport. The simulator performs collision free vehicle movement
with a step duration of 1s, multi-lane streets, junction-based right-of-way rules, and lane-to-lane con-
nections. The generated data can be logged in a XML raw-format with each entry providing a vehicle’s
name, position and speed at a given time step; alternatively, the readings of induction loop type sensors
located on arbitrary network positions can be generated by the simulator.

As with other microscopic traffic simulators, using SUMO creates large amounts of accurate moving
object data, but this still requires the user to carefully specify trip data (starting and ending locations)
or complete route data for a large amount of vehicles. As the vehicles’ behaviour relies on their proper
interaction, they will only behave representatively, if the whole traffic is shaped in an appropriate (i.e.
realistic) way. Though SUMO provides several tools to ease this task (like loop detector based vehicle
emission and trips), we consider this task too demanding for the sake of benchmark data generation.

Traffic simulators aim at generating traffic data for sets of vehicles on a network, where the vehicles
starting instants/positions, and destinations are given. While these parameter sets are usually generated
using some statistic distributions, the framework ST-ACTS presented in [17] tries to provide representa-
tive sequences of activities for a collection of individuals (called simpersons there). Commercial datasets
on danish demographic data, daily movements, business and consumer survey data are combined into
a model to generate home locations, working places/schools, but also a “personality” and “interests”
profile of such simpersons. Activities covered are working/learning, staying at home, visiting cultural
and leisure facilities (attending concerts, visiting museums), shopping, etc. Activities are performed at
according facilities. Several sets of constraints determine which facilities are frequented and the duration
of the activity. The route between the locations is not considered, only the estimated time it takes to
reach a location is taken into account. Instead, the authors suggest to couple their framework with a
traffic simulator to achieve more realistic travel durations or itineraries. The simulator is implemented
using the proprietary MATLAB software.

2.3 Benchmarks

For spatial DBMS (SDBMS), the most prominent benchmark is the Sequoia 2000 storage benchmark [49].
It comprises real spatial data and a set of queries for testing a SDBMS’s performance. Both are claimed
to be representative for geoscience tasks. The test database consists of various scales, granularities, and
sizes of real geographic data. Covered types include raster, point, polygon, and directed graph data.
The system is rated by the total response time generating the test data and processing queries involving
spatial joins, recursive searches, point and range queries. Although some of the queries include selection
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and sorting by timestamps, Sequoia does not handle “real” spatio-temporal, i.e. moving object data.
In an attempt to generalize the Sequoia Benchmark, Werstein [56] introduces time as a third dimen-

sion. He proposes 36 queries based upon the original Sequoia queries, e.g. using “matrix data” as a 3D
analogue of the original Sequoia raster data. Effectively, he saves data snapshots with time stamps and
uses them in spatial, temporal and spatio-temporal point and range queries. He also considers tempo-
ral updates, extending the data histories (Queries 28-32), and performs “walks through time” (Queries
33-36). Nonetheless, several important aspects of spatio-temporal data processing are missing, such
as spatio-temporal relations (predicates), computations based on spatio-temporal data, and computa-
tions creating spatio-temporal data. These features remain out of the benchmark’s scope. For example,
Query 5 (“Select 3D matrix data for a given time and 3D region and calculate an arithmetic function
for each cell in the matrix.”) is only intended to perform a local weighted average operation on raster
data. As a summary, the proposed benchmark is suitable for a temporal SDBMS, but not for a “real”
spatio-temporal database system in the narrower sense.

In [51], Theodoridis proposes a database schema and a set of ten benchmark database queries (plus
two operations for loading and updating data) regarding the support of location-based services (LBS). No
benchmark data or data generator is proposed, so that the comparability of different benchmark results
cannot be ensured. The benchmark includes point and range selection queries on stationary and moving
reference objects; distance-, k-NN-, and similarity-based queries; join queries, and unary operations on
trajectories of moving objects. The scenario involves people trying to meet their interests by visiting
shops, which have certain offers at specific time intervals. The author stresses, that by the vast range
of applications for spatio-temporal DBMS, their support by commercial DBMS becomes impractical.
Therefore, instead of covering the “full umbrella” of possible query types, he argues to focus on specific
applications with similar modeling and functionality. As a consequence, the author does not handle future
queries (restricting himself to past and current queries), argueing they would not meet the scenario. We
subscribe to this point of view and restrict our concerns to historic trajectory databases, leaving current
queries and future queries out of the scope of our benchmark.

Also DynaMark [34] is a benchmark designed to provide performance metrics for LBS. Performance
metrics are defined to quantify the cost of location updates, spatial queries, and spatial index creation
and maintenance. The benchmark consists of synthetic datasets and a set of spatial queries. The data is
generated using City Simulator, which is no longer available from the mentioned IBM developer Web site.
City Simulator is said to generate three-dimensional spatio-temporal datasets modelling the movement
of people (the authors propose 10,000 to 1 million indiviuals) in a virtual city consisting of multi-lane
streets and multi-floor buildings with elevators, also considering traffic jams and other non-stochastic
interaction between moving objects. Besides the update benchmark (updating the spatial index to all
objects’ current positions) and the index benchmark (creating and rebuilding the spatial index from
City Simulator’s trace data), DynaMark uses four types of queries in its query benchmarks (updating
and querying): proximity queries (= range queries) with rectangular and radial ranges, k-NN queries,
and sorted distance queries. It does not incorporate predictive queries, spatial data mining, or spatio-
temporal queries on historical data, focussing on current queries und updates.

In [54], the authors define a benchmark to perform a comparison of access methods for different time-
evolving regional raster image data. The benchmark uses several scenarios of moving region data sets
created with G-TERD [53], a generator designed for time-evolving regional data. Several parameters, as
storage requirements, index construction costs, and page reads required to perform queries are observed.
Only two types of queries are used: snapshot queries retrieving all region data alive at a given timestamp,
and time-interval window queries. While this is a valuable framework for the evaluation of indexes, it
does not use representative moving point data, and covers only a restricted number of query types.

The same holds for the COST benchmark [25]. It aims at the evaluation and comparison of spatio-
temporal indexes. Three types of queries are be distinguished: timeslice queries (objects within a spatial
window at a given time instant), window queries (objects within a spatial window during a defined time
interval), and moving window queries (objects within a spatial window, that changes linearly during the
defined time interval); future queries are included. The benchmark has many parameters regarding data
generation (like number of objects, space dimensions, maximum speed, average number of destinations
between which objects are moving), queries (maximum spatial/temporal extent, weighting of query types,
maximum duration of time that queries may reach into the future), and the workload mix (number of
update/query events, update/query frequency, weighting of updates/queries). Queries and updates are
intermixed by the workload generator. Object movement can be either random or network-based (i.e.
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random walks on a random network). Eight experiments (i.e. parameter settings) are defined with
different objectives regarding aspects of index performance. These experiments are applied to TPR-,
TPR∗-, and Bx-trees.

2.4 Query Types for Spatio-temporal DBMS

Many different kinds of queries have been proposed for spatio-temporal databases. Beside temporal,
spatial and spatio-temporal point and range queries, the following types have some impact:

k-nearest neighbour based (k-NN) queries [38] have been proposed for static high dimensional data
[29], and for moving query points [45]. More recently, reversed nearest neighbour (r-NN) queries for
(non-moving) spatial [27] and high-dimensional data [41, 50], for moving query and moving data points
[3] have been addressed. For two sets of points P , Q , aggregate nearest neighbour based (a-NN) queries
ask for those objects in P , that have minimum aggregated distance to all query points from Q . The
aggregated distance depends on an aggregation (e.g. sum, max , min) of individual distances. For spatial
data (point sets) P and Q, and sum as aggregation function, the problem has been investigated in [35].
[33] gives a solution to the continuous a-NN problem for a static point set P , a set of moving query
objects Q , and arbitrary aggregation functions. [32] handles different continuous NN query types for
static points P and moving points Q over sliding windows for position updates. The use of all these
nearest neighbour queries naturally emanates from real-world applications like location based services,
but most work on NN-queries deals with static spatial data or operates within the tracking context,
dealing with current, predictive or continuous queries.

For tracking systems (dealing with current and predictive queries) continuous (ongoing) variants of all
these query types have been proposed, e.g. continuous k-NN queries [23, 5], or continuous r-NN queries
[46]. Other authors investigated density-based queries on such systems [22, 24]. Instead of presenting
continuous (ongoing) query types, we present analogue queries considering the complete history of moving
objects, as we focus on (historic) trajectory databases.

As the notion of similarity for spatio-temporal data is highly application dependent, we leave similarity-
based queries [14] out of our scope.

Aggregation queries for spatio-temporal data have been examined in [26], but we will only use simple
forms of value-based spatial, temporal and spatio-temporal aggregation in our benchmark queries, leaving
out aggregations relying on structure-based strategies.

2.5 Overview

In the remainder of the paper we first describe the data model used throughout this work in Section 3,
before describing the scenario simulated during data generation in Section 4. In Section 5 we describe
the database model with two different representations for the generated data. After identifying groups of
queries we propose two sets of interesting queries (BerlinMOD/R and BerlinMOD/NN) for benchmarking
(Section 6). After this, we explain how to use the data generator (Section 7). As a proof of concept, we
create the benchmark to evaluate the Secondo DBMS with the BerlinMOD/R query set in Section 8.
Finally, we conclude the paper in Section 9.

3 Data Model

In this section, we present the data model for (spatio-) temporal data types used throughout this work.
The model has also been implemented within the Secondo DBMS, that will be used to generate the
benchmark data. Whereas Secondo provides more complex data types like arrays or graphs (which are
also used by the generator), we focus on the (spatio-) temporal sub system, which is used to implement
the data generator and formulate the benchmark queries.

An abstract data model for representing moving objects has been proposed in [19]. The model
introduces a type constructor moving , that creates a type for moving object data when applied to a
spatial data type (there are also other type constructors, like range to create interval types from a base
type). While the representation of moving point data is a major contribution of this article, also other
kinds of data are covered, e.g. the types moving(bool ), moving(int), and moving(real ) are defined, which
are capable of storing temporal evolutions of the particular base types. Based on this model, a discrete
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Figure 1: Sliced Representations of a Moving Real and a Moving Point
The mreal shown in the left figure consists of 8 ureal units (time slices). The total definition time is shaded

in gray. For instants outside the shaded area, the mreal is undefined. Each unit can be described by a simple

function. The right figure depicts an mpoint consisting of 4 upoint units. Here, the lines between the 5 shown

points represent the time slices, for which linear interpolation is used to approximate the object’s trajectory.

BASE = {int , real , string, bool}
SPATIAL = {point , points , line, region}
TEMPORAL = instant
RANGE = {rint , rreal , rbool , periods†}
UNIT = {uint , ureal , ubool , upoint , uregion}
MOVING = {mint , mreal , mbool , mpoint , mregion}
INTIME = {iint , ireal , ibool , ipoint , iregion}

Table 1: Type System
†: periods is just an alias for what would be named rinstant .

data model has been presented in [15], using a “sliced representation” to represent the development of a
moving object.

In the sliced representation, the development of a moving object is expressed by a set of units (as
illustrated by Figure 1). Each unit describes the behaviour of a moving object o for a certain (short)
time interval (ti, tj), ti ≤ tj . A “simple” function is used to approximate the concrete value at each
instant of time contained in the unit’s definition time interval. For an int or bool unit for example, a
constant function is applied, for a real unit a quadratic polynomial function or its square root is used,
and for a moving point , the function is represented by the static values (i.e. point values) taken at the
unit’s starting instant ti and ending instant tj and linearly interpolating between these values for any
instant t, ti ≤ t ≤ tj . Obviously, for a moving object, the definition time intervals of all units belonging
to the history of that object, are required to be disjoint.

Secondo has implemented a subset of the type system proposed in [15], as shown in Table 1.
We have seven classes of types: BASE types, which represent static simple data (like int , real);

SPATIAL types, representing 2-dimensional spatial objects (point , points (=multipoint), line, and
region); TEMPORAL, with type instant to represent single instants of time; RANGE types, providing
a collection of disjoint intervals defined on a base type or temporal type — they correspond to the types
created using the range type constructor from [19]; UNIT types, which represent time slices of the
temporal development of base types, as described in [15]; MOVING types, which describe the complete
history of a moving object by a collection of temporally disjoint units and correspond to the types
created by the moving type constructor in [19]; INTIME types, representing a concrete value at a
certain temporal instant (an (instant, value) pair).

All these types can be used for attributes within relations. Large objects (like the history of units of an
mpoint , or the segments of a line object) are not stored completely within the tuples’ disk representation,
but in a separate file, from which they are only read, when explicitly accessed.

From the type system, we only need the subset given in Table 2. Besides these types, Secondo

provides a large set of operations on the presented data types. Such a large set of operators allows for
interesting and complex queries, but using them within the benchmark queries would exclude any DBMS
failing to provide them. Hence, we restrict the set of operators to the most important ones. Table 3
shows the operators used to generate the data and formulate the benchmark queries.
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Type description

bool usual boolean data type
instant a point in time
int integer numbers
ipoint a pair of an instant and a point

value
line data type describing a complex line

as a set of segments
mbool a time dependent boolean value
mpoint moving point, i.e. a mapping from

time into space
mreal a time dependent real number
periods a set of disjoint and non-connected

time intervals
point a geometric 2D position (x ,y)
real a real number
region data type for spatial 2D regions

Table 2: Data Types Used by the Data Generator

4 The BerlinMOD Scenario

BerlinMOD uses moving object (vehicle) positions, which are generated using the following design:
We assume that a graph representation of the street network exists. Nodes represent street crossings

and dead ends, while edges represent parts of streets between these nodes. For each edge, a simple (non-
branching and connected) line object describes its 2D-geometry. Edges are labeled with a cost value
being the time needed to travel it at maximum allowed speed (a real value), and with a street identifier.
Nodes are labeled with a node identifier and its spatial 2D-position (a point value).

4.1 Home Node, Work Node, and Neighbourhood

We wish to model a person’s trips to and from work during the week as well as some additional trips at
evenings or weekends.

Hence each object (vehicle) has a HomeNode, representing its holder’s residence. It is can be chosen
by one of two alternative methods, as described by Brinkhoff [6]. The first one, called “network-based
approach” always chooses nodes from the complete set of nodes, using a uniform distribution. The
second one, the “region based approach” partitions the set of all nodes according to predefined spatial
regions, and uses a probabilistic function (depending on weights for the different regions) to chose one
of the node partitions. From this partition, a node is selected using a uniform distribution.

Also, each object has a WorkNode representing the owner’s working place. Again, this node is chosen
randomly among all nodes of Berlin (network based approach) or using a spatial distribution function
(region based approach; with weights different from those for selecting HomeNodes).

Additionally, a set of nodes called Neighbourhood is defined by all nodes within a 3 km line of sight
distance around the HomeNode. Nodes in this area will be used more frequently for the additional trips
than all other nodes.

4.2 Temporal Layout of Trips

The goal of the following design is to model a person’s behaviour in a natural way. At the same time it
should be possible to create trips independently, with only a minimal risk of temporal overlapping.

We assume that a person works Monday to Friday and commutes between her home node and her
work node: On each such working day, she leaves her HomeNode in the morning (at 8 am + T1), drives
to her WorkNode, stays there until 4 pm + T2 in the afternoon, and then returns to her HomeNode
(T1, T2 are bounded Gaussian distributed durations1 within an interval of -2 to 2 hours). We call these

1Note that, although data are generated in a probabilistic way using various distributions, the underlying pseudorandom
number generators use seed values and therefore produce deterministic results. Hence the data set provided by the
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Name Signature / Description Name Signature / Description

val: ipoint → point atinstant: mpoint × instant → ipoint

Extracts the point from the (instant ,
point) pair.

Extract the current position of mpoint at
the given instant .

create instant: string → instant circle: point × real × int → region

Creates an instant from its textual rep-
resentation.

Constructs a regular n-gon around the
given position and diameter, n is given
by the third argument.†

present: mpoint × instant → bool passes: mpoint × point → bool

mpoint × region → bool

Checks whether the given instant is
within the mpoint ’s definition time.

Tests, whether the mpoint ever passes the
second argument.

trajectory: mpoint → line distance: line × line → real

mpoint × mpoint → mreal

Projects the complete mpoint into the 2D
space.

Computes the minimum distance be-
tween the arguments.

inst: ipoint → instant initial: mpoint → ipoint

Extract the instant (timestamp) from the
(instant , point) pair.

Computes the initial position of the ar-
gument.

intersection: mpoint × mpoint → mpoint at: mbool × bool → mbool

mpoint × point → mpoint

mpoint × region → mpoint

Computes the spatio-temporal intersec-
tion of its arguments. The result is the
mpoint with the common history of both
arguments.

Restricts the first argument to the tem-
poral intervals, where its projection is in-
cluded by/equal to the second argument.

length: mpoint → real atperiods: mpoint × periods → mpoint

Computes the driving distance of the
moving point.

Restricts mpoint ’s history to the given
time intervals.

deftime: mpoint → periods inside: point × region → bool

Returns the set of all time intervals where
the mpoint is defined (i.e. the time cov-
ered by it’s history).

Tests, whether the point is inside the
region .

sometimes: mbool → bool isempty: X → bool

Returns ‘TRUE’, if the mbool (a temporal
boolean function) ever becomes ‘TRUE’.

Returns ‘TRUE’, if the argument is un-
defined or empty (for a moving type or
periods value X ).

<= : mreal × real → mbool concat: mpoint × mpoint → mpoint

Returns a temporal boolean function
with the same definition time as the first
argument, yielding ‘TRUE’ for periods,
where the first argument is less than or
equal to the second, and ‘FALSE’ where
it is greater.

Concatenates the histories of two moving
points to a common one. Both arguments
must have distinct definition times.

Table 3: Operator Descriptions

The operators listed correspond to those described in [19]. As [19] provides an algebraic approach to MOD,

the set of operators was designed to be somewhat “complete”, and to enable interesting query types. However,

the following extensions make the model more comfortable to the user: Operators circle, create instant and

concat have been added to ease the data generation process. Operators sometimes and length have been

added for the sake of simplicity, as e.g. sometimes(X) could also be expressed as (not(isempty(deftime(X at

TRUE)))).
†: As genuine circular regions are not covered by the used data model, this operator is intended to create polygonal

regions approximating circles by using large numbers for n, and therefore was named “circle”.

benchmark will always be the same, except possibly for very small numeric differences on different platforms and operating
systems.
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Figure 2: Typical Distribution of Single Trip Durations

the labour trips. Because a trip on the street network of Berlin will take less than two hours (we have
never observed a trip longer than 1:30 h; also see Figure 2 for a typical distribution of trip durations),
we can be almost sure that the person has arrived at home before 8 pm.

At home, the person stays until 8 pm, then a 4h block of spare time begins.
On the weekend, the person will just have two 5h blocks of spare time per day, the first starting at 9

am and the second one at 7 pm.
For each block of spare time, there is a probability of 0.4, that the person will do an additional trip

which may have 1 to 3 intermediate stops and ends at home.
If the last trip for a day ends at 6:00 am or later on the following day, there is a risk of temporally

overlapping trips. Therefore, we invalidate all trips of that day. The probability for this to happen is
below 0.000138 per vehicle and day. There are various natural explanations for such “days off”, as illness
or vacations.

4.3 Trip Creation Algorithm

For the generation of a trip we have the following assumptions:
A trip is parameterized by a triple (Start, Destination, Time), where Start and Destination are

nodes, and T ime is the instant, when the trip starts. The trip is created following the shortest path from
Start to Destination through the street graph. Sample points of the movement are created tracing the
object’s movement along the segments of the line geometry corresponding to the path.

All streets are classified into one category of {freeway (70), main road (50), side road (30), closed
road}. Closed roads are removed from the graph. For all other roads, the maximum allowed velocity
vmax is given in km/h. Drivers always respect speed limits.

Drivers will always try to travel at the maximum allowed velocity. They will slow down only (or even
stop), if they are required to do so, e.g. by red traffic lights, narrow curves, playing children, respecting
other drivers’ way of right, etc.

We use three kinds of “event” to characterize this behaviour:

Acceleration event — When the vehicle’s current velocity vc is below the allowed maximum speed vmax,
it will automatically accelerate at a constant rate of 12 m/s2.
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Transition p(Stop) Transition p(Stop) Transition p(Stop) Transition p(Stop)

S → S 0.33 M → S 0.33 S → M 0.66 M → M 0.50
S → F 1.00 M → F 0.66 F → F 0.05 F → M 0.33
F → S 0.10

Table 4: Stop Probability by Street Type Transition. F = freeway, M = main street, S = side street.

Algorithm 1 CreateTrip

INPUT: Start - the start node, Dest the destination node, Time the starting time
OUTPUT: a trip from Start to Dest

let P be the shortest path from Start to Dest ;
for each edge e = (pi, pi+1) ∈ P do

Access vmax and segs , the geodata for e;
for each seg = (s , t) ∈ segs do

pos := s ;
while pos 6= t do

if distance(pos ,t) > 50 m then
if current speed < vmax then

Apply an acceleration event to the trip;
else

Randomly choose either evt := deceleration event (p=90%) or evt := stop event (p=10%);
With a probability proportional to 1/vmax: Apply evt ;

end if
else

Reduce velocity to α/180◦ · vmax where α is the angle between seg and the next segment in
P ;

end if
Move pos 5m towards t (or to t if it is closer than 5m);

end while
With a propability p(Stop) depending on the street type of the current egde and the street type
of the next edge in P and according to Table 4, apply a stop event ;

end for
end for

Deceleration event — The vehicle’s current velocity vc is reduced to vc ·X/20, where X ∼ B(20, 0.5) is
a binomially distributed random variable.2 Hence the expected new speed is half the current one.

Stop event — When a car must stop (e.g. at traffic lights), it will stay immobile (vc := 0.0) for a
duration of tw ∼ Exp(15/86400) milliseconds.3 The choosen mean results in an expected waiting
time of 15 seconds.

Acceleration events occur automatically; events of other kinds may occur with a certain probability
pevent every 5 travelled metres, where pevent depends on the current maximum allowed speed, pevent =

1

vmax

(vmax in units of km/h). Curves are defined by sequential line segments on the vehicle’s trajectory,
that enclose an angle φ < 180◦. They will reduce the effective vmax depending on their enclosed angle,
vmax := vmax ·

φ
180.0◦

. Crossings are all points, where at least two streets meet. When passing a crossing,
a stop event is created with a probalibity depending on the type of transition in road types (Table 4).

Trips are created using the described behaviour, which is implemented by Algorithm 1.
Whereas work trips the can be created easily using Algorithm 1 passing HomeNode, WorkNode ,

and a starting instant, additional trips are more complicated. They are created using Algorithm 2 that
determines random destinations and delay times and employs Algorithm 1 to create its sub trips.

2
B(n, p) means the Binomial distribution with parameters n – the number of experiments, and p – the probability for

a “positive” outcome for each single experiment.
3Exp(µ) denotes the exponential distribution with mean µ.
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Algorithm 2 AdditionalTrip

INPUT: Home: node, BlockStart : instant (the begin of the spare time block),
nbh: setofnodes (neighboorhood of the vehicle’s home node)

OUTPUT: a trip: mpoint with up to 3 destinations
Select a number N of destinations: 1 (p=50%), 2 (p=25%), or 3 (p=25%);
Let Start := Home; i := 0; Trip := empty;
Select Time uniformly distributed within two hours after BlockStart ;
for i ∈ {0, 1, 2, 3} do

if i < N then
Select destination node Dest within nbh (p=80%) or from the complete graph (p=20%);

else
Dest := Home;

end if
Trip := Trip + createTrip(Start , Dest , Time);
if i < N then

Determine a delay time dt ∈ [0, 120] min using a bounded Gaussian distribution;
Append a break of length dt to Trip;
Start := Dest ;
Time := endtime(Trip);

end if
end for
return Trip

5 Database Model

In BerlinMOD, we use two “kinds” of MOD: object-based and trip-based data. In the object-based
approach (OBA), the complete history is kept together. In the trip-based approach (TBA), the motion
of objects is recorded and stored as a sequence of single trips, which are kept separately in an additional
relation. A vehicle’s licence plate number is used as a reference from the base relation to the relation
containing the trips and vice versa.

In the trip-based design, each period of waiting time is represented as a separate stationary trip, i.e.
a trip, where the vehicle doesn’t move, but keeps its position all the time. Since we do not explicitly
differentiate between single trips in the OBA, between each pair of subsequent trips, a vehicle will simply
keep immobile at its position, which is the final position of the earlier and the initial position of the latter
trip.

The amount of spatio-temporal data generated is determined by parameter SCALEFACTOR. It scales
the amount of simulated vehicles (SCALEFCARS) and the number of days (SCALEFDAYS) they are ob-
served. With SCALEFACTOR = 1.0, 2,000 vehicles are observed for 28 days, starting on a Monday. With
any other scaling factor, these default values are scaled by the square root of the choosen SCALEFACTOR.

In addition to the represented vehicle movements, we also define six relations containing random
spatial and temporal data to build query points and ranges within the benchmark queries. The size of
these samples is determined by the P SAMPLESIZE parameter. We use a value of 100 for the benchmark.

Rather than using simple spatial ranges, like MBR-like rectangles, we use more complex polygon-
shaped regions, because they are more similar to real geometries used in real applications. This implies,
that simple index-selections won’t suffice for selections in most cases. Instead, candidates selected by an
index must additionally qualify by passing a more complex spatial selection predicate.

In our database, we distinguish between objects used in both approaches (the object-based and the
trip-based), and those used in only one of them.
Common Database Objects:

Nodes: relation{NodeId : int , Pos : point} — relation of all nodes.

QueryPoints: relation{Id : int , Pos : point} — relation of P SAMPLESIZE query points, randomly
chosen from Nodes.Pos. Id is a generated key for this relation.

QueryRegions: relation{Id : int , Region : region} — relation of P SAMPLESIZE query regions,
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where Id is a key. The regions are regular n-gones with center point p and height h, with
n ∼ F (1, 100, 100)4, p is a uniformly randomly chosen Pos from Nodes, and h ∼ F (3, 1000, 998).

QueryInstants: relation{Id : int , Instant : instant} — relation of P SAMPLESIZE query instants,
where Id is a key. The instants are uniformly distributed within the observation period.

QueryPeriods: relation{Id : int , Period : periods} — relation of P SAMPLESIZE query periods, where
Id is a key. The starting instants are sampled uniformly from the complete observation period.
The periods’ durations d are calculated to be d = abs(x) days, were x is sampled from a Gaussian
distribution (x ∼ N(0, 1)).5

QueryLicences: relation{Id : int , Licence: string} — relation of P SAMPLESIZE query licence plate
numbers, where Id is a key. Licence plate numbers are uniformly sampled from all vehicles’ licence
plate numbers.

Object-Based Approach (OBA) only:

dataScar: relation{Licence: string, Model : string, Type: string , Trip: mpoint} — relation of vehicle
descriptions (car type, car model and licence plate number), including the complete position history
as a single mpoint value per vehicle, where Licence is a key.

Trip-Based Approach (TBA) only:

dataMcar: relation{Licence: string, Model : string, Type: string} — relation of all vehicle descriptions
(without position history).

dataMtrip: relation{Licence: string, Trip: mpoint} — relation containing all vehicles’ movements
and pauses as single trips (mpoint values).

Here, {Licence} is a key/foreign key for dataMcar and {Licence, Trip} is a key for dataMtrip.

6 Benchmark Queries

In this section, we present two sets of queries for the BerlinMOD benchmark, working on the data set
described before: BerlinMOD/R and BerlinMOD/NN. While BerlinMOD/R contains range type queries,
BerlinMOD/NN provides nearest neighbour (NN) queries for historical moving object databases.

Partitioning the benchmark into different query sets makes sense, as for NN queries there is no
accepted way to formulate queries in SQL and most of the needed algorithms still seem to be open
problems for the history based MOD approach.

Two subsections handle the two benchmark query sets, both having a common layout: First, we will
determine, which kinds of queries may arise. To do so, we define query types. Then we examine the
types, for whether they contain interesting benchmark queries, and finally formulate concrete queries.

6.1 BerlinMOD/R

This part of the benchmark defines query types and benchmark queries for range and point queries.

6.1.1 Query Types for BerlinMOD/R

To get an overview on possible query types, we distinguish five aspects of query properties:

1. Object Identity (known / unknown)
Here we distinguish between queries starting with a known object “Does object X . . . ” and queries
where we do not know any concerned object in advance “Which objects do . . . ”, respectively.

4F (a, b, m) denotes the discrete uniform distribution of the m integer events from the interval [a, b].
5N(µ, σ2) is the normal (Gaussian) distribution with mean µ and variance σ2.
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2. Dimension (standard / temporal / spatial / spatio-temporal)
This criterion refers to the dimension(s) used in the query. “standard” means, that no temporal,
spatial, or spatio-temporal attribute or condition is of concern for this query. This type of queries is
important because some storage models for spatio-temporal data require copying of standard types
or introduction of synthetic key attributes which again require additional joins within queries. For
example, in the object-based approach (OBA), the licence plate number licence is a key attribute.
When switching to the trip based representation (TBA), this is no longer a key (a car with a given
licence plate number will make several trips), or it is a key outside the relation containing the trips.
In this case, the licence plate number must be connected with the trips using a join operation.

3. Query Interval (point / range / unbounded)
This property determines the presence/size of the query interval.

4. Condition Type (single object / object relations)
If relations between objects are subject of the query, joins are part of the query plan and we call
this “object relation”.

5. Aggregation (aggregation / no aggregation)
This attribute indicates whether the result is computed by some kind of aggregation. Sometimes,
this property will depend on whether the object based or trip based approach is used (no aggregation
is needed in the first case, but it is required in the latter one). Such cases will be noted by “(no)
aggregation”.

By combining each possible value of the different properties, we can identify 96 query types. We
have listed all combinations in Table 5. Not all types of queries are realizable. For example, if the
object identity is known within a temporal point query on a single object, this will exclude any kind of
aggregation.

6.1.2 Selection of Queries for BerlinMOD/R

Though we have 96 query types, not all of them are interesting for a collection of benchmark queries.
Nine of the combinations are unfeasible and marked with “n/a” in the last column of Table 5.
As in the benchmark data all objects are observed for the complete time, the twelve query types

with dimensions “temporal” and “relation” (marked with “n/m”) provide no meaningful queries and are
omitted.

A large bunch of query types (21), which are marked with “s1” in the table is rather uninteresting for
benchmarking a spatio-temporal DBMS, since only standard data is relevant to these queries. However,
we select two of these query types as representatives for the complete class of queries on standard data.
This is to test, whether the spatio-temporal DBMS can also handle the standard part of the data well.

Fourteen query types (marked with “s2”) are quite “simple”, because they only contain temporal or
spatio-temporal point queries. These “degenerated” spatio-temporal queries can be processed quite fast
and easily and are hence represented by three queries only.

Of the feasible 24 purely “spatial” query types (marked “s3”), we only cover four with benchmark
queries. Though all 24 types may be interesting, similar queries are covered by existing spatial bench-
marks, like SEQUOIA.

Fourteen query types with temporal/spatio-temporal dimension and unbounded query interval (marked
“slow”) must be expected to have very long running times on a large database. Therefore, we only select
one of these types to be covered by a benchmark query.

Table 5 indicates, that query type (unknown, spatio-temporal, range, single) is covered by three
queries. This is due to the fact, that the notion of “spatio-temporal range” subsumes real 3D-ranges,
spatial ranges at fixed temporal instants, and fixed points at temporal ranges, and we want to provide
the possibility to compare access methods for these cases.

There are only a few meaningful simple aggregations on moving point data. Obviously, one can
calculate statistics on lengths of trajectories. More interesting calculations involving aggregation (e.g.
calculating the routes used during a given time as a line value, or calculating the traffic density on
the network) require additional operators not covered by the benchmark’s minimum requirements (see
Table 3). Therefore, we decided to cover query types with aggregations by only only two queries, one on
standard data, the other on trajectories of mpoints.
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At this point, two query types remain uncovered: (known, spatio-temporal, range, single, no aggre-
gation) (1) and (unknown, temporal, range, single, no aggregation) (2). As for (1), the type contains
queries testing a single known object (vehicle) on some spatio-temporal range condition. Query type
(2) selects single objects by checking a temporal range predicate. For both Types, more complex query
types are covered by the benchmark: For (1) we have a similar type with Condition Type = “relation”,
for (2) we have the corresponding combination with an additional aggregation.

The queries themselves correspond to and are motivated by the scenario used: long-term observation
of vehicles on a transportation network. We therefore predominantly query for vehicles whose movement
fulfils certain conditions, or compute derived values from these movements, using the operators introduced
in Table 3. While some of the proposed queries seem to have no meaning in the given context at first
glance, there may be good reasons to pose them in a different application scenario with objects moving
similarly. Hence, we keep them within the benchmark.

6.1.3 Queries for BerlinMOD/R

We present a set of 17 interesting queries of different types. First, we formulate the query in common
English and then in a more formal, SQL-like notation. Table 2 provides an overview of the data types
used. In Table 3 the signatures and a short description of the operators used in the queries are given.
Operators and data types are formally specified in [19].

As the performance of most of the queries strongly depends on the point/range values and the objects’
identity, we do not run these queries for just a single combination of parameters (parameters involved
are query points, regions, instants, periods and vehicle identities/licences), but usually choose a set of
100 parameter combinations, wherever this is applicable.

To this end, we have sampled the universe of our database for query parameters and saved them to re-
lations QueryPoints, QueryRegions, QueryInstants, QueryPeriods, and QueryLicences, as described
in Section 5. For the sake of simplicity during formulation of queries, we save the first ten tuples of each
such relation to a relation with the same name and a suffix “1”, the second ten tuples to a relation with
that name, but with suffix “2”.

From these sample relations, we usually create 100 combinations of query parameters, either by using
the full sample relation (if there is only one parameter), or by combining the smaller “1” relations of
distinct types, or the “1” and “2”-relation, where two parameters have the same type. For three queries,
we only use one instance (the query does not depend on any parameter), for one query 10 instances
(regarding to the total runtime), and for another one 1000 (depends on three parameters) instances. As
an information, we list the query type of each query together with the number of query instances in a
header above each query.

Due to the two representations (object or trip based), some queries must be formulated differently.
If only the query for the object based representation is given below, then the query for the trip based
representation can be derived by just changing the names of the used relations properly.

As usual, index structures should be created to allow for performant data access. The choice of index
types and index keys is left to the database administrator. As indexes have strong influence on the
benchmark results, we will explain which indexes could help with the different queries.

known - standard - point - single - no aggr (100)

Query 1 What are the models of the vehicles with licence plate numbers from QueryLicences?

SELECT DISTINCT LL . Licence AS Licence , C. Model AS Model
FROM dataScar C, QueryLicences LL
WHERE C. Licence = LL . Licence ;

This query will test the performance on standard types and indexes. An index on Licence might be
useful. Some DBMS might partially access Trip data, while this is not needed, resulting in performance
losses. This can be avoided in the TBA.

unknown - standard - point - single - aggr (1)
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Object Identity Dimension Query Interval Condition Type Aggregation Queries Comment

known standard point single yes n/a
known standard point single no 1 s1
known standard point relation yes s1
known standard point relation no s1
known standard range single yes n/a
known standard range single no s1
known standard range relation yes s1
known standard range relation no s1
known standard unbounded single yes n/a
known standard unbounded single no s1
known standard unbounded relation yes s1
known standard unbounded relation no s1

known temporal point single yes n/a
known temporal point single no 3 s2
known temporal point relation yes s2, n/m
known temporal point relation no s2, n/m

known temporal range single yes n/a
known temporal range single (no) 8
known temporal range relation yes n/m
known temporal range relation (no) n/m

known temporal unbounded single yes n/a
known temporal unbounded single (no) slow
known temporal unbounded relation yes slow, n/m
known temporal unbounded relation (no) slow, n/m

known spatial point single yes s3
known spatial point single (no) s3
known spatial point relation yes s3
known spatial point relation (no) s3
known spatial range single yes s3
known spatial range single (no) s3
known spatial range relation yes s3
known spatial range relation (no) s3
known spatial unbounded single yes s3
known spatial unbounded single (no) s3
known spatial unbounded relation yes s3
known spatial unbounded relation (no) 5 s3

known spatio-temporal point single yes n/a
known spatio-temporal point single no s2
known spatio-temporal point relation yes s2
known spatio-temporal point relation no s2
known spatio-temporal range single yes n/a
known spatio-temporal range single (no)
known spatio-temporal range relation yes
known spatio-temporal range relation (no) 10

known spatio-temporal unbounded single yes n/a
known spatio-temporal unbounded single (no) slow
known spatio-temporal unbounded relation yes slow
known spatio-temporal unbounded relation (no) slow

unknown standard point single yes 2 s1
unknown standard point single no s1
unknown standard point relation yes s1
unknown standard point relation no s1
unknown standard range single yes s1
unknown standard range single no s1
unknown standard range relation yes s1
unknown standard range relation no s1
unknown standard unbounded single yes s1
unknown standard unbounded single no s1
unknown standard unbounded relation yes s1
unknown standard unbounded relation no s1

unknown temporal point single yes s2
unknown temporal point single no s2
unknown temporal point relation yes s2, n/m
unknown temporal point relation no s2, n/m

unknown temporal range single yes 9
unknown temporal range single (no)
unknown temporal range relation yes n/m
unknown temporal range relation (no) n/m

unknown temporal unbounded single yes slow
unknown temporal unbounded single (no) slow
unknown temporal unbounded relation yes slow, n/m
unknown temporal unbounded relation (no) slow, n/m

unknown spatial point single yes s3
unknown spatial point single (no) 4 s3
unknown spatial point relation yes s3
unknown spatial point relation (no) s3
unknown spatial range single yes s3
unknown spatial range single (no) s3
unknown spatial range relation yes s3
unknown spatial range relation (no) s3
unknown spatial unbounded single yes s3
unknown spatial unbounded single (no) s3
unknown spatial unbounded relation yes s3
unknown spatial unbounded relation no 7 s3

unknown spatio-temporal point single yes s2
unknown spatio-temporal point single no 11 s2
unknown spatio-temporal point relation yes s2
unknown spatio-temporal point relation no 12 s2
unknown spatio-temporal range single yes
unknown spatio-temporal range single (no) 13, 14, 15
unknown spatio-temporal range relation yes
unknown spatio-temporal range relation (no) 16

unknown spatio-temporal unbounded single yes slow
unknown spatio-temporal unbounded single (no) slow
unknown spatio-temporal unbounded relation yes slow
unknown spatio-temporal unbounded relation (no) 6 slow

Table 5: Query Type Selection for BerlinMOD/R

n/a: Query type not applicable. n/m: Query type contains no meaningful query.

s1: Simple (only standard data involved). s2: Simple (temporal or spatio-temporal point query).

s3: Simple (spatial data only).

slow: Query with temporal/ spatio-temporal dimension and unbounded query interval may require very long run times.
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Query 2 How many vehicles exist that are “passenger” cars?

SELECT COUNT ( Licence )
FROM dataScar
WHERE Type = ”passenger ” ;

Also testing standard type queries, but having a more selective predicate and using a final aggregation
(count).

known - temporal - point - single - no aggr (100)

Query 3 Where have the vehicles with licences from QueryLicences1 been at each of the instants from
QueryInstants1?

SELECT LL . Licence AS Licence , I I . In s tan t AS Instant ,
val (C. Trip a t i n s t an t I I . In s tan t ) AS Pos

FROM dataScar C, QueryLicences1 LL , QueryInstants1 I I
WHERE C. Licence = LL . Licence AND C. Trip pre sen t I I . In s tan t ;

This query restricts histories to single instants. A temporal index on Trip might be useful only in
the TBA. Both representations will benefit from indexes on Licence.

unknown - spatial - point - single - no aggr (100)

Query 4 Which licence plate numbers belong to vehicles that have passed the points from QueryPoints?

SELECT PP. Pos AS Pos , C. Licence AS Licence
FROM dataScar C, QueryPoints PP
WHERE C. Trip passe s PP. Pos ;

In the TBA, Licence is no longer a key attribute in the relation used. Therefore we need to use
SELECT DISTINCT. A spatial index on Trips is advantageous to lookup all motions passing PP .

known - spatial - unbounded - relation - (no) aggr (100)

Query 5 What is the minimum distance between places, where a vehicle with a licence from QueryLicences1

and a vehicle with a licence from QueryLicences2 have been?

SELECT LL1 . Licence AS Licence1 , LL2 . Licence AS Licence2 ,
d i s t an c e ( t r a j e c t o r y (V1 . Trip ) , t r a j e c t o r y (V2 . Trip ) )
AS Dist

FROM dataScar V1 , dataScar V2 , QueryLicences1 LL1 ,
QueryLicences2 LL2

WHERE V1 . Licence = LL1 . Licence AND V2 . Licence = LL2 . Licence
AND V1 . Licence <> V2. Licence ;

For the OBA, no aggregation is needed for this query, as the global distance is calculated using a
combination of trajectory and distance.

For the TBA, we need an explicit aggregation:

SELECT LL1 . Licence AS Licence1 , LL2 . Licence AS Licence2 ,
MIN ( d i s t an c e ( t r a j e c t o r y (T1 . Trip ) , t r a j e c t o r y (T2 . Trip ) ) )
AS Dist ,

FROM dataMtrip T1 , dataMtrip T2 , QueryLicences1 LL1 ,
QueryLicences2 LL2

WHERE T1 . Licence = LL1 . Licence AND T2 . Licence = LL2 . Licence
AND T1 . Licence <> T2 . Licence

GROUP BY LL1 . Licence , LL2 . Licence ;
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Here, indexes on Licence seem to be most helpful. Differences between applying the spatial distance
and the projection (trajectory) to small (TBA) and large (OBA) data will be of significance and show
up differences in the DBMS’s performance. Though the query may seem to have no meaning in the given
context, it starts making sense when the moving objects represent entities, that should be kept apart
(e.g. animals placing odor marks on their paths).

unknown - spatio-temporal - unbounded - relation - no aggr (1)

Query 6 What are the pairs of licence plate numbers of “trucks”, that have ever been as close as 10m
or less to each other?

SELECT V1 . Licence AS Licence1 , V2 . Licence AS Licence2
FROM dataScar V1 , dataScar V2
WHERE V1 . Licence < V2 . Licence AND V1 . Type = ” truck ”

AND V2 . Type = ” truck ”
AND sometimes ( d i s t an c e (V1 . Trip ,V2 . Trip ) <= 1 0 . 0 ) ;

In the TBA:

SELECT DISTINCT T1 . Licence AS Licence1 , T2 . Licence AS Licence2
FROM dataMtrip T1 , dataMcar C1 , dataMtrip T2 , dataMcar C2
WHERE T1 . Licence < T2 . Licence AND T1 . Licence = C1 . Licence

AND T2 . Licence = C2 . Licence AND C1 . Type = ” truck”
AND C2 . Type = ” truck ”
AND sometimes ( d i s t an c e (T1 . Trip , T2 . Trip ) <= 10 . 0 ) ;

A spatial (or spatio-temporal) index join on Trip can be used to select candidates from all vehicles.
This query could be used to compare the performance of different index structures, e.g. indexes with
different granularities for the indexed keys, as proposed in [9].

unknown - spatial - unbounded - relation - no aggr (100)

Query 7 What are the licence plate numbers of the “passenger” cars that have reached the points from
QueryPoints first of all “passenger“ cars during the complete observation period?

SELECT PP. Pos AS Pos , V1 . Licence AS Licence
FROM dataScar V1 , QueryPoints PP
WHERE V1 . Trip passe s PP. Pos AND V1 . Type = ” passenger ”

AND i n s t ( i n i t i a l (V1 . Trip at PP. Pos ) ) <= ALL

( SELECT i n s t ( i n i t i a l (V2 . Trip at PP2 . Pos ) ) AS FirstTime
FROM dataScar V2
WHERE V2 . Trip passe s PP. Pos AND V2 . Type = ”passenger ”

) ;

For the TBA:

SELECT DISTINCT V1 . Licence AS Licence , PP. Pos AS Pos
FROM dataMtrip T1 , dataMcar C1 , QueryPoints1 PP
WHERE T1 . Trip passe s PP. Pos

AND C1 . Type = ” passenger ” AND C1 . Licence = T1 . Licence
AND i n s t ( i n i t i a l (T1 . Trip at PP. Pos ) ) <= ALL

( SELECT i n s t ( i n i t i a l (T2 . Trip at PP. Pos ) ) AS FirstTime
FROM dataMtrip T2 , dataMcar C2
WHERE V2 . Trip passe s PP. Pos

AND T2 . Licence = C2 . Licence
AND C2 . Type = ” passenger ”

) ;

This query is a classical example for using a spatial index.

known - temporal - range - single - (no) aggr (100)
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Query 8 What are the overall travelled distances of the vehicles with licence plate numbers from
QueryLicences1 during the periods from QueryPeriods1?

SELECT V1 . Licence AS Licence , PP. Period AS Period
l ength (V1 . Trip a tp e r i od s PP. Period ) AS Dist

FROM dataScar V1 , QueryPeriods1 PP, QueryLicences1 LL
WHERE V1 . Licence = LL . Licence AND V1 . Trip pre sen t PP. Period ;

Within the TBA, we need an aggregation to sum up the travelled distances.

SELECT V1 . Licence AS Licence , PP. Period AS Period ,
SUM ( l ength (V1 . Trip a tp e r i od s PP. Period ) ) AS Dist

FROM dataMtrip V1 , QueryPeriods1 PP, QueryLicences1 LL
WHERE V1 . Licence = LL . Licence AND V1 . Trip pre sen t PP. Period
GROUP BY V1 . Licence , PP. Period ;

A temporal index on Trip is helpful in the TBA, while in the OBA, it will be useless unless some
sophisticated approach like double indexing [9] is used.

unknown - temporal - range - single - aggr (100)

Query 9 What is the longest distance that was travelled by a vehicle during each of the periods from
QueryPeriods?

SELECT PP. Period AS Period ,
MAX ( l ength (V1 . Trip a tp e r i od s PP) ) AS Dist

FROM dataScar V1 , QueryPeriods PP
WHERE V1 . Trip pre sen t PP. Period
GROUP BY PP. Period ;

Again, in the TBA we need to sum up the lengths of all restricted trips. Therefore, we create a view
first:

CREATE VIEW Distances AS

SELECT SUM ( l ength (V1 . Trip a tp e r i od s PP) ) AS Length ,
PP. Period AS Period , V1 . Licence AS Licence

FROM dataMtrip V1 , QueryPeriods PP
WHERE V1 . Trip pre sen t PP. Period
GROUP BY PP. Period , V1 . Licence ;

SELECT Period , MAX ( Length ) AS Dist
FROM Distances
GROUP BY Period ;

A temporal index on Trip can be of use in the TBA to select candidates for the aggregation.

known - spatio-temporal - range - relation - no aggr (10)

Query 10 When and where did the vehicles with licence plate numbers from QueryLicences1 meet
other vehicles (distance < 3m) and what are the latters’ licences?

SELECT V1 . Licence AS QueryLicence , V2 . Licence AS OtherLicence ,
(V1 . Trip a tp e r i od s ( deft ime ( ( d i s t an c e (V1 . Trip , V2 . Trip )
<= 3 .0 ) at TRUE ) ) ) AS Pos

FROM dataScar V1 , dataScar V2 , QueryLicences1 LL
WHERE V1 . Licence = LL . Licence AND V2 . Licence <> V1 . Licence

AND sometimes ( d i s t an c e (V1 . Trip , V2 . Trip ) <= 3 . 0 ) ;

Since this will be a rather complex query (the temporal distances to all other vehicles need to be
calculated), we restrict our parameter set to 10 licences.

In the TBA, we need to group by Licence and aggregate (using concat) the intermediate results to
one single mpoint value per QueryLicence:
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SELECT V1 . Licence AS Licence , V2 . Licence AS OtherLicence ,
AGGR ( concat , V1 . Trip a tp e r i od s ( deft ime ( ( d i s t an c e (

V1 . Trip , V2 . Trip ) <= 3 .0 ) at TRUE ) ) , emptympoint)
AS Pos

FROM dataMtrip V1 , dataMtrip V2 , QueryLicences1 LL
WHERE V1 . Licence = LL . Licence AND V2 . Licence <> V1 . Licence

AND sometimes ( d i s t an c e (V1 . Trip , V2 . Trip ) <= 3 .0 )
GROUP BY V1 . Licence , V2 . Licence ;

The construct AGGR(aggr op, val, defaultval ) is a notation for a universal aggregation operator that
applies an operator aggr op: X × X → X to aggregate over all instantiations of val . If no val is
provided, i.e. the input relation/stream is empty, defaultval (which must also be of type X) is returned.
emptympoint is an mpoint with an empty history (i.e. the mpoint is defined, but has no recorded position
ever).

This query features an expensive nonequal condition. Smart optimizers may translate the last con-
dition into a range query using a spatial or spatio-temporal index on Trip.

unknown - spatio-temporal - point - single - no aggr (100)

Query 11 Which vehicles passed a point from QueryPoints1 at one of the instants from QueryInstants1?

SELECT C. Licence AS Licence , PP. Pos AS Pos ,
I I . In s tan t AS In s tan t

FROM dataScar C, QueryPoints1 PP, QueryInstants1 I I
WHERE val (C. Trip a t i n s t an t I I . In s tan t ) = PP. Pos ;

Though the condition seems to be a spatial range rather than a point condition, the spatio-temporal
semantics require that for attribute Trip the position is a function of time, and hence this condition
actually is a spatio-temporal point condition. In the TBA, this query performs best with a spatio-
temporal index, but also a temporal or spatial index may help here. For the OBA, the spatio-temporal
index might be inferior to the spatial index, and the temporal index will be of no worth.

unknown - spatio-temporal - point - relation - no aggr (100)

Query 12 Which vehicles met at a point from QueryPoints1 at an instant from QueryInstants1?

SELECT PP. Pos AS Pos , I I . In s tan t AS Instant ,
C1 . Licence AS Licence1 , C2 . Licence AS Licence2

FROM dataScar C1 , dataScar C2 ,
QueryPoints1 PP, QueryInstants1 I I

WHERE val (C1 . Trip a t i n s t an t I I . In s tan t ) = PP. Pos
AND val (C2 . Trip a t i n s t an t I I . In s tan t ) = PP. Pos ;

Just as for the last query, but as a join is required, the impact of indexes on Trip will be stronger.
In the TBA, we might need to use SELECT DISTINCT instead of a simple SELECT.

unknown - spatio-temporal - range - single - no aggr (100)

Query 13 Which vehicles travelled within one of the regions from QueryRegions1 during the periods
from QueryPeriods1?

SELECT RR. Region AS Region , PP. Period AS Period ,
C. Licence AS Licence

FROM dataScar C, QueryRegions1 RR, QueryPeriods1 PP
WHERE NOT ( isempty ( ( (C. Trip a tp e r i od s PP. Period )

at RR. Region ) ) ) ;

For the TBA we need to use SELECT DISTINCT This is a spatio-temporal range query with 3D volumes
(cuboid) as query windows. Again, this tests the performance of spatio-temporal access methods, for a
range query in this case.
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Query 14 Which vehicles travelled within one of the regions from QueryRegions1 at one of the instants
from QueryInstants1?

SELECT RR. Region AS Region , I I . In s tan t AS Instant ,
C. Licence AS Licence

FROM dataScar C, QueryRegions1 RR, QueryInstants1 I I
WHERE val (C. Trip a t i n s t an t I I . In s tan t ) i n s i d e RR. Region ;

Once more, we use SELECT DISTINCT for the TBA query. This is a spatio-temporal range query, with
query windows degenerated into 2D spatial rectangles. Together with Queries 13 and 15, this query will
help to assess the performance of spatio-temporal indexes.

Query 15 Which vehicles passed a point from QueryPoints1 during a period from QueryPeriods1?

SELECT PO. Pos AS Pos , PR. Period AS Period ,
C. Licence AS Licence

FROM dataScar C, QueryPoints1 PO, QueryPeriods1 PR
WHERE NOT ( isempty ( ( (C. Trip a tp e r i od s PR. Period ) at PO. Pos ) ) ) ;

As before, we SELECT DISTINCT for the TBA query. Being another spatio-temporal range query, the
query windows are degenerated to 1D volumes (temporal intervals) here.

unknown - spatio-temporal - range - relation - no aggr (1000)

Query 16 List the pairs of licences for vehicles, the first from QueryLicences1, the second from
QueryLicences2, where the corresponding vehicles are both present within a region from Query-

Regions1 during a period from QueryPeriod1, but do not meet each other there and then.

SELECT PP. Period AS Period , RR. Region AS Region ,
C1 . Licence AS Licence1 , C2 . Licence AS Licence2

FROM dataScar C1 , dataScar C2 , QueryRegions1 RR,
QueryPeriods1 PP, QueryLicences1 LL1 , QueryLicences2 LL2

WHERE C1 . Licence = LL1 . Licence AND C2 . Licence = LL2 . Licence
AND LL1 . Licence < LL2 . Licence
AND (C1 . Trip at PP. Period ) pas se s RR. Region
AND (C2 . Trip at PP. Period ) pas se s RR. Region
AND isempty ( ( i n t e r s e c t i o n (C1 . Trip , C2 . Trip )

a tp e r i od s PP. Period ) at RR. Region ) ;

For the TBA, we formulate:

( SELECT RR. Region AS Region , PP. Period AS Period ,
C1 . Licence AS Licence1 , C2 . Licence AS Licence2

FROM dataMtrip C1 , dataMtrip C2 , QueryRegions1 RR,
QueryPeriods1 PP, QueryLicences1 LL1 , QueryLicences2 LL2

WHERE C1 . Licence < C2 . Licence
AND C1 . Licence = LL1 . Licence
AND (C1 . Trip at PP. Period ) pas se s RR. Region
AND C2 . Licence = LL2 . Licence
AND (C2 . Trip at PP. Period ) pas se s RR. Region

GROUP BY RR. Region , PP. Period , C1 . Licence , C2 . Licence )
EXCEPT

( SELECT RR. Region AS Region , PP. Period AS Period ,
C1 . Licence AS Licence1 , C2 . Licence AS Licence2

FROM dataMtrip C1 , dataMtrip C2 , QueryRegions1 RR,
QueryPeriods1 PP, QueryLicences1 LL1 , QueryLicences2 LL2

WHERE C1 . Licence < C2 . Licence
AND C1 . Licence = LL1 . Licence
AND (C1 . Trip at PP. Period ) pas se s RR. Region
AND C2 . Licence = LL2 . Licence
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AND (C2 . Trip at PP. Period ) pas se s RR. Region
AND NOT ( isempty ( deft ime ( ( i n t e r s e c t i o n (C1 . Trip , C2 . Trip )

a tp e r i od s PP. Period ) at RR. Region ) ) )
GROUP BY RR. Region , PP. Period , C1 . Licence , C2 . Licence )

Since the parameters QueryLicences1 and QueryLicences2 are just used to reduce the search space,
we only count 100, but not 10,000 combinations.

This query tests the performance of the spatio-temporal operators. In the TBA, spatial, temporal or
spatio-temporal indexes might raise the performance when used with additional present and/or passes
conditions for both Trip attributes. Otherwise, we don’t expect indexes to accelerate this query.

unknown - spatial - unbounded - relation - aggr (1)

Query 17 Which points from QueryPoints have been visited by a maximum number of different vehi-
cles?

CREATE VIEW PosCount AS

SELECT PP. Pos AS Pos , COUNT (C. Licence ) AS Hits
FROM QueryPoints PP, dataScar C
WHERE C. Trip passe s PP. Pos
GROUP BY PP. Pos ;

SELECT Pos
FROM PosCount AS N
WHERE N. Hits = ( SELECT MAX ( Hits ) FROM PosCount ) ;

For the TBA we have:

CREATE VIEW PosCount AS

SELECT PP. Pos AS Pos , COUNT DISTINCT (C. Licence ) AS Hits
FROM QueryPoints PP, dataMtrip C
WHERE C. Trip passe s PP. Pos
GROUP BY PP. Pos ;

SELECT Pos
FROM PosCount AS N
WHERE N. Hits = ( SELECT MAX ( Hits ) FROM PosCount ) ;

6.2 BerlinMOD/NN

This part of the benchmark defines query types and benchmark queries for nearest neighbour (NN)
queries on historical moving object databases. This is motivated by the fact that nearest neighbour
queries constitute — besides range queries — the most fundamental query type in spatial and spatio-
temporal databases and there exists a lot of research especially on algorithms for various such query types,
as discussed in Section 2.4. There are some obstacles to including them in the benchmark, however:

1. Nearest neighbour queries on histories of moving objects to our knowledge have not yet been
addressed in the literature. Existing research considers queries for tracking databases dealing with
current and predicted linear movement as well as the online maintenance of nearest neighbours
(continuous queries). For this reason, established definitions of the semantics of such queries on
historical databases are not available.

2. Whereas for the queries in Section 6.1 a precise language framework exists based on embedding
operations in a standard way into SQL, this is not the case for nearest neighbour queries. The main
problem is that such queries cannot be formulated in terms of conditions in the where-clause or
expressions in the select-clause. Instead, global extensions of the SQL language are needed at the
level of, say, a group by construct. To our knowledge, no satisfactory solutions are available even
for static nearest neighbour queries. A proposal [2] formulates nearest neighbour conditions in the
where-clause, but this solution suffers from the fact that conditions are not commutative anymore.
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Also, only a single constant parameter can be used (i.e. it is not possible to find nearest neighbours
for many objects). Oracle Spatial offers some formulations for nearest neighbour queries that are
awkward at best and suffer from similar problems.6

Much less are adequate formulations available for the dynamic spatio-temporal versions or for other
query types such as reverse or aggregate nearest neighbours.

3. No algorithms have been published for nearest neighbour queries on histories of moving objects
nor are systems available that can execute them.

Nevertheless, nearest neighbour analyses on histories of moving objects appear interesting and rele-
vant and we include some queries in the benchmark, as a challenge for the research community. We define
semantics for such queries in the sequel. However, it is not possible to offer query formulations in SQL.
Also, Secondo is not capable of executing such queries; hence they are not part of the experimental
evaluation of Section 8.2.

6.2.1 Semantics of Nearest Neighbour Queries on Historical Moving Objects Databases

Our definition of semantics for nearest neighbour queries on moving object histories is based on the
following principle: The result of a time dependent operation must be consistent with the result of the
corresponding static operation for each instant of time. This agrees with the definition of lifting for
operations in [19].

We use the following notations: Let d(p, q) denote the distance between two points p and q. For a
point p and a point set Q, let d(p, Q, aggr) denote the aggregate distance using an aggregation operator
aggr from the set {min, max, sum}. Let mp(i) denote the position of moving point mp at instant i.

A static k-nearest neighbour query can be formulated as follows: Given a query point q and a relation
R with a point attribute loc, return the k tuples of R with the smallest values of d(q, loc).

Definition 6.1 (k-NN Query) A spatiotemporal k-nearest neighbour query is defined as follows: Given
a query mpoint mq and a relation R with an attribute mloc of type mpoint, return a subset R′ of R where
each tuple has an additional attribute mloc′, such that the following conditions hold:

1. For each tuple t ∈ R′, there exists an instant of time i such that d(t.mloc(i), mq(i)) is among the
k smallest distances from the set {d(u.mloc(i), mq(i)) | u ∈ R}.

2. mloc′ is defined only at the times condition (1) holds.

3. mloc′(i) = mloc(i) whenever it is defined. �

A static reverse nearest neighbour query is: Given a query point q and a relation R with a point
attribute loc, return {t ∈ R | ∀u ∈ R, d(t.loc, q) ≤ d(t.loc, u.loc)}.

Definition 6.2 (r-NN Query) A spatiotemporal reverse-nearest-neighbour query is defined as follows:
Given a query mpoint mq and a relation R with an attribute mloc of type mpoint, return a subset R′ of
R where each tuple has an additional attribute mloc′, such that the following conditions hold:

1. For each tuple t ∈ R′, there exists an instant of time i such that

∀u ∈ R, d(t.loc(i), mq(i)) ≤ d(t.loc(i), u.loc(i)).

2. mloc′ is defined only at the times when condition (1) holds.

3. mloc′(i) = mloc(i) whenever it is defined. �

A static aggregate nearest neighbour query is: Given a relation Q with point attribute pos and a rela-
tion R with point attribute loc, return the tuples in R for which the aggregate distance d(loc, Q.pos, aggr)
is minimal.

6These remarks refer to Release 2 of Oracle 10g (see e.g. [7]).
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Definition 6.3 (a-NN Query) A spatiotemporal aggregate nearest neighbour query is defined as fol-
lows: Given a query relation Q with mpoint attribute mpos and a relation R with mpoint attribute
mloc, return a subset R′ of R where each tuple has an additional attribute mloc′, such that the following
conditions hold:

1. For each tuple t ∈ R′, there exists an instant of time i such that

∀u ∈ R, d(t.loc(i), Q.mpos(i), aggr)) ≤ d(u.loc(i), Q.mpos(i), aggr)).

2. mloc′ is defined only at the times when condition (1) holds.

3. mloc′(i) = mloc(i) whenever it is defined. �

All definitions are given for time dependent data and query objects, i.e., for the most general case.
Restrictions to static query or data objects are straightforward. Note that for static data points, the
result relation will have moving points.

6.2.2 Query Types for BerlinMOD/NN

For NN queries, we distinguish the following properties:

1. Condition Type (k-NN/ r-NN / a-NN)
This property determines which characteristic is used to perform the NN query: k nearest neigh-
bours (k-NN), reversed nearest neighbour (r-NN), or aggregated nearest neighbour (a-NN).

2. Query Object Type (static / moving)
This property determines whether the query object (point/region) is a static or a moving object.

3. Candidate Type (static / moving)
This property determines whether the candidate objects (points/regions) are static or moving
objects.

Therefore, we have a total of 12 different NN query types.
Formally, the result of a spatio-temporal NN query is a temporal function, which can be represented

as a spatio-temporal object or using a collection of spatio-temporal objects.

6.2.3 Selection of Queries for BerlinMOD/NN

From the 12 NN query types, we select all four k-NN types, as this seems to be be best-researched field
(though most works cover current/predictive queries only and do not handle historic MOD). Hence, we
also include (k-NN, static, static), which is in fact the spatial k-NN problem and therefore the most simple
NN problem to cover. We also select all non-static r-NN types (omitting the most simple, purely spatial
variant), and from the a-NN problems, we select the hardest (a-NN, moving, moving) and the most
interesting spatio-temporal variant (a-NN, moving, static), which seems to support the more interesting
applications.

6.2.4 Queries for BerlinMOD/NN

As explained for the BerlinMOD/R queries (Section 6.1.3), we usually use 100 query instances to reduce
bias and get more significant results.

k-NN - static - static (100)

Query 18 For each vehicle with a licence plate number from QueryLicences1 and each instant from
QueryInstants1: Which are the 10 vehicles that have been closest to that vehicle at the given
instant?
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This query is a rather simple spatial k nearest neighbours (k-NN) query, as though it uses a moving
reference object and moving candidate objects, the temporal dimension is fixed to an instant, therefore
reducing all moving objects to points.

k-NN - moving - static (100)

Query 19 For each vehicle with a licence from QueryLicences1 and each period from QueryPeriods1:
Which points from QueryPoints have when been the 3 closest to that vehicle during that period?

This k-NN query is typical for location based service applications. It involves only one vehicle at a
time, whereas the nearest three points (of interest) are asked for during a given temporal range.

k-NN - static - moving (100)

Query 20 For each region from QueryRegions1 and period from QueryPeriods1: What are the licences
of the 10 vehicles that are closest to that region during the given observation period?

This k-NN query is not trivial, as a static region object is used as the static reference for moving
candidate objects. (Strictly speaking, this type of query is not covered by the formal definition of Section
6.2.1, but a generalization to regions is straightforward.)

k-NN - moving - moving (100)

Query 21 For each vehicle with a licence plate number from QueryLicences1 and each period from
QueryPeriods1: Which are the 10 vehicles that are closest to that vehicle at all times during that
period?

This query is the most complex k-NN query within this benchmark, using a moving query object and
moving candidate objects.

r-NN - moving - static (100)

Query 22 For each vehicle with a licence from QueryLicences: Report the points from QueryPoints,
whose nearest neighbour the vehicle has been, together with the according time intervals.

This is a reversed nearest neighbour (r-NN) query using a moving query object.

r-NN - static - moving (100)

Query 23 For each point from QueryPoints1 and period from QueryPeriods1: Report the licences of
the vehicles, having that point as the nearest network node, and the temporal intervals, for that
these relations hold during the given period.

This r-NN query has a static query object, but moving candidate objects.

r-NN - moving - moving (100)

Query 24 For each vehicle with a licence plate number from QueryLicences1 and each period from
QueryPeriods1: Report the licences of vehicles, having the given vehicle as the nearest vehicle and
the according time intervals during the given period.

This is the most complex r-NN query of this benchmark. It provides a moving query object and
several moving candidate objects.

a-NN - moving - static (100)
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Query 25 For each group of ten vehicles having ten disjoint consecutive licences from QueryLicences

and each period from QueryPeriods1: Report the point(s) from QueryPoints, having the minimum
aggregated distance from the given group of ten vehicles during the given period.

This is the “simple” case of an a-NN query with static candidate objects and moving query objects.
We restrict the search space to the given periods.

a-NN - moving - moving (1000)

Query 26 Create the ten groups of vehicles having ten disjoint consecutive licences from QueryLicences.
For each pair of such groups and each period from QueryPeriods1: Report the licence(s) of the
vehicle(s) within the given first group of ten vehicles, having the minimum aggregated distance
from the given other group of ten vehicles during the given period.

This is a challenging a-NN query, using ten moving query objects and ten moving candidate objects.

7 Using the Data Generator

In this section, we describe how the data generator for BerlinMOD is used. Also, the principles of the
data generation are explained.

7.1 The Data Generator Script

We create the benchmark data using the extensible database system Secondo [10, 20, 40]. Secondo is
a research prototype DBMS that can be extended by algebra modules, defining new types and operations
on them using the second order signature mechanism [18].

For the generation of moving objects, a new algebra module, the “SimulationAlgebra” has been
implemented. Other algebra modules providing types and operations for relations, graphs, spatial, and
temporal data already exist in the system and are also used.

To create the moving object data, we use a database script containing a sequence of Secondo

commands. Each command is formulated at the so-called executable level. At this level, each expression
is written as a set of operators, constant objects, and existing database objects. The script is a simple
text file and can be changed using any text editor.

We have set up a web site where the Secondo system and documentation, the benchmark generator
script and data objects, and also the scripts with executable benchmark queries for Secondo (the ones
we used in Section 8.2) are available for download [4].

7.2 Data Import

The benchmark data is created using map data for the German capital Berlin. We use converted street
data from the bicycle routing program bbbike [37], and statistical data on the Berlin districts provided
by the Berlin Statistical Office [47, 48]. The data is provided in form of three text files containing data
in Secondo’s nested list format:

File “streets.data” provides the relation streets: relation{Vmax : real , geoData: line} — relation of
all streets with the maximum allowed speed in km/h Vmax , and the street geometry geoData.

File “homeRegions.data” provides a relation homeRegions: relation{Priority : int , Weight : real ,
geoData: region} — relation describing the distribution of HomeNodes, where geoData is a re-
gion defining an area, that will provide HomeNodes according to its Weight in relation to the total
of all Weight values. Priority defines the priority of each region for the case of overlapping areas.

File “workRegions.data” provides a relation workRegions: relation{Priority : int , Weight : real ,
geoData: region} — relation describing the distribution of WorkNodes, attribute definitions are as
for relation homeRegions.
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We recommend to use the original data objects provided with the benchmark script in order to achieve
comparable benchmark results. However, any other geo data can be used as input to the data generation
process without changing the generator parts of the script.

The only requirement is that data must be available in Secondo nested list format or as Shapefiles
and have the stated names and relation schemas, so that they can be imported directly. There also exist
several converter tools provided with Secondo, that will for example convert Shapefiles, or TIGER
LINE files to the Secondo nested list format.

7.3 Setting the Parameters

All parameters are set up in the initial section of the generator script. Any of the parameters can be
modified by editing the script within a text editor. Table 6 provides an overview on all parameters and
their default settings.

To keep scaling the benchmark data simple, we make use of a global scale factor called SCALEFACTOR.
Changes to this parameter determine the amount of data generated — the data grows linearly with
SCALEFACTOR. This is achieved by distributing changes to the secondary parameters SCALEFCARS and
SCALEFDAYS, which internally set the tertiary parameters P NUMCARS and P NUMDAYS. Direct changes to
the secondary or tertiary scaling parameters are possible. We decided to use a single scaling factor in
order to distribute scale changes to both parameters — amount of observed objects, and observation
periods — avoiding to favour one of them. We do not scale the spatial size, since this does neither match
the scenario, nor related real world applications.

Parameter P SAMPLESIZE determines the cardinality of the relations providing query objects used
within the benchmark queries. P TRIP MODE allows to choose between “Network Based” and “Re-
gion Based” node selection. Two different models for distance computations are available. By setting
P TRIP DISTANCE to the according value, “Fastest Path” or “Shortest Path” can be selected for use
within the routing algorithm.

If disturbed (GPS-like) data shall be generated, P DISTURB DATA needs to be set to TRUE. Then,
the secondary parameters P GPS TOTALMAXERR (maximum deviation in meters) and P GPS STEPMAXERR

(maximum deviation per interval in meters) are observed.
P STARTDAY simply determines the date of the first observation day. The default setting starts obser-

vation on a monday. P NEIGHBOURHOOD RADIUS sets the maximum distance around a node defining it’s
neighbourhood.

While P GPSINTERVAL MS determines the intervals between consecutive sampling instants (default:
2 seconds), two parameters are used to separate vehicle movements into shorter trips for the TBA:
P MINPAUSE MS determines which period of immobility will be interpreted as a separating pause between
consecutive trips; P MINVELOCITY is the maximum velocity (meters per hour), at which vehicles will be
interpreted as “immobile” — this is particularly important when the disturbed data generation is used.

Two parameters (P HOMERANDSEED, P TRIPRANDSEED) allow to specify the seeds of the pseudorandom
number generators used during data generation.

Though all parameters explained in the context of Algorithm 1 (acceleration rate, several stochastic
parameters regarding event generation, maximum subsegment length etc.) can be modified by changing
the according definitions in the generator script, we recommend using the default settings.

At last, parameter P EXPORT TYPE determines the kind of export format for the generated data. While
data is always stored in the Secondo binary format, you can choose to export all generated data to
Shapefile (“Shape”) format, to a comma-separated text file (“CSV”), or to Secondo nested list text
file (“Secondo Nested List”). More on data export, like data formats, and export file names, will be
explained in Section 7.7.

7.4 Running the Script

After having installed and compiled Secondo in directory $SECONDO BUILD DIR, change to subdirectory
$SECONDO BUILD DIR/bin. Copy the generator script file BerlinMOD DataGenerator.SEC, and the data
files streets.data, homeRegions.data and workRegions.data to this directory. You can now modify
the parameter settings at the script’s head section. We strongly recommend to deactivate logging during
the data creation process by changing the file “SecondoConfig.ini”: Just remove the leading “#” from
line “#RTFlags += SMI:NoTransactions”. Start Secondo by typing SecondoTTYBDB. At the Secondo
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Parameter Name Possible Settings Default Setting Meaning

SCALEFACTOR r ≥ 0.025 1.0 Global scale factor

SCALEFCARS r > 0.0
√
SCALEFACTOR Scaling the number of observed vehicles

SCALEFDAYS r > 0.0
√
SCALEFACTOR Scaling the number of observation days

P NUMCARS n ≥ 1 SCALEFCARS · 2000 Number of observed vehicles

P NUMDAYS n ≥ 1 SCALEFCARS · 28 Number of observation days

P SAMPLESIZE n ≥ 1 100 Cardinality for relations with query objects

P TRIP MODE "Network Based" "Network Based" Apply network based nodes selection
"Region Based" Apply region based nodes selection

P TRIP DISTANCE "Fastest Path" "Fastest Path" Apply fastest way distance metric
"Shortest Path" Apply shortest way distance metric

P DISTURB DATA FALSE FALSE Generate precise positioning data
TRUE Generate disturbed positioning data

P GPS TOTALMAXERR 0.0 ≤ r 100.0 Maximum total deviation of positioning data

P GPS STEPMAXERR 0.0 ≤ r 1.0 Maximum total deviation per interval

P STARTDAY MININT ≤ n ≤ MAXINT 2702 Date of the first day of observation.
Represents a n days setoff to
the NULLDAY (01/03/2000)

P NEIGHBOURHOOD RADIUS r > 0.0 3000.0 The radius defining a node’s neighbourhood.

P GPSINTERVAL MS n ≥ 1 2000 The maximum interval between consecutive
position samplings in milliseconds

P MINPAUSE MS n ≥ 1 300000 Minimum pause between consecutive trips [ms]

P MINVELOCITY r ≥ 0.0 0.041667 Minimum speed for non-static vehicles [m/h]

P HOMERANDSEED MININT ≤ n ≤ MAXINT 0 Random seed for node selection

P TRIPRANDSEED MININT ≤ n ≤ MAXINT 4277 Random seed for trip creation

P EXPORT TYPE "None" "None" No data export
"Secondo Nested List" Export as Secondo Nested List textfiles
"Shape" Export as Shapefiles/dBase files
"CSV" Export as CSV text files

Table 6: Data Generator Parameters
n stands for an integer, r for a real (the decimal point is essential)

prompt, type @BerlinMOD DataGenerator.SEC to run the generator script. The script will produce lots
of output on your screen. When the script has finished, type quit; to leave Secondo and quit to the
shell.

7.5 What happens during the execution of the script?

The following paragraphs explain how the generator script works. We have inserted reference num-
bers enclosed by parentheses into the generator script and the following explanations, so that you can
investigate it easily.

7.5.1 Creating the Street Graph

First, map data is imported from the three map data files (Section 1). Then, the parameters are set
(Section 2). The main part of the data generator (Section 3) starts initializing Secondo’s Simulation-
Algebra according to the parameter settings (3.0). After this, the mere street graph generation process
(3.1) is started by removing impassable streets from the map (3.1.1). A street is impassable, if its speed
limit Vmax is below P MINVELOCITY. Then, all crossings and end points are extracted from the streets’
geoData attributes, creating the nodes for the street graph (3.1.2.1, 3.1.2.3-4). Each node comprises a
NodeId and a position Pos . The streets are decomposed into sections, i.e. line fragments between cross-
ings and/or end points (3.1.2.2). The edges of the street graph are created by annotating each street
section with the according speed limit Vmax , and the incident nodes’ NodeIds (3.1.2.5–8). From the
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Figure 3: Regions Defined for Selecting Home and Work Nodes

nodes and edges, two graph data structures are generated. The first graph uses edges labeled with the
lengths of the corresponding sections’ geoData (3.1.3.1), the second graph’s edges are labeled with the
minimum time required to travel the according edges at the maximum allowed velocity Vmax (3.1.3.2).
Thus, we can use two different distance measures ("Shortest Path", and "Fastest Path"). As the last
step during graph creation, we restrict each graph to its largest connected component (3.1.3.3). For the
provided standard geo data, the created network graph has 4,468 nodes and 13,384 edges.

7.5.2 Creating Labour Paths

For each vehicle, a HomeNode and a WorkNode are selected using the policy selected by P TRIP MODE

(3.2). When "Network Based" was selected, both nodes are chosen randomly using a uniform distribu-
tion over all nodes of the network. Thus, the density of the nodes in the network corresponds to the
density of such nodes. Figure 4 a) shows a distribution of the selection of 1000 nodes within the network
using this approach.

If the parameter is set to "Region Based", the region based approach as described in [6] is used
(3.2.2-7). Then, the script uses the data provided by the files homeRegions and workRegions, which
define location dependent distributions across the graph nodes.

Our standard data uses the regions shown in Figure 3.
The graph nodes are partitioned according to the specifications provided by the data files. If a node

occurs in more than one region, it is assigned to the one with the lowest priority.
Within the default data, we use 12 regions according to the districts of Berlin [48] (with priority

numbers equal to the Berlin Statistical Offices’ standard reference system), plus one “fall back” region
“Brandenburg” with priority 13, as shown by Figure 3. For the Home Node weights, we use the population
statistics on the districts [47]; for the Work Node weights, we use aggregated statistics on employed
persons per district:
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a) Network Based

b) Region Based (WorkNodes) c) Region Based (HomeNodes)

Figure 4: Node Selection Strategies
The maps show the default network with 1000 nodes selected using both selection strategies. For the Figure b)

(Figure c)) we used the default regional WorkNode (HomeNode) distribution with the regions as illustrated in

Figure 3.
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Priority Population Jobs District
1 320800 20287 Mitte
2 258500 13082 Friedrichshain-Kreuzberg
3 350500 8868 Pankow
4 314700 8325 Charlottenburg-Wilmersdorf
5 225700 21580 Spandau
6 288500 8882 Steglitz-Zehlendorf
7 334400 20546 Tempelhof-Schöneberg
8 305700 15966 Neukölln
9 234700 11239 Treptow-Köpenick
10 251400 7438 Marzahn-Hellersdorf
11 257500 7042 Lichtenberg
12 245500 17050 Reinickendorf
13 10000 1000 Brandenburg

Between the nodes within a single partition a uniform distribution is used to select one of the nodes.
The result of this approach applied to the work nodes is shown in Figure 4 b).

Using one of these node selection methods, for each vehicle a HomeNode and a WorkNode is selected.
Note, that the HomeNode may be equal to the WorkNode (home workers). For each HomeNode, its
neighbourhood is computed, and Dijkstra’s algorithm [11] is applied to find the fastest (shortest) way
between HomeNode and WorkNode.

7.5.3 Creating the Moving Points

To create the moving point data (which we will call “moving points” furtheron for the sake of simplicity),
we use a set of user defined functions (3.3). The most important one (Path2MPoint ) (3.3.8) produces a
single trip along a path through the graph starting at a given time instant. Basically, the function builds
a stream of edges from the path and connects each edge with the underlying geometry and the allowed
maximum speed for this section using the loopjoin operator. This produces a stream of tuples with all
attributes required for the sim create trip operator as described in Algorithm 1. For the simulation
of a GPS device, we use the samplempoint operator. This operator traces the original position and
changes the interval length between two consecutive sample points lying on colinear segments of the
street network to P GPSINTERVAL MS milliseconds. At any change of direction, a sample point is created
(even if the P GPSINTERVAL MS is not elapsed). This corresponds to the simulation of exact GPS measures
combined with a mapping to the street network.

Trips within the spare time are created by the function CreateAdditionalTrip , which is based on the
function SelectDestNode (3.3.9), selecting a destination node applying Algorithm 2.

The observation of a vehicle for a complete day is performed by the function CreateDay (3.3.14).
It distinguishes between working days and weekend days to produce two kinds of different behaviour.

The “main” function of the script is CreateVehicles (3.3.18). For each vehicle, P NUMDAYS days are
created using the function CreateDay . Then we aggregate over all movements for each car. Possible gaps
in the definition time are closed using the sim fill up operator. Additionally, for each vehicle its licence
plate number, type and model are created.

The actual creation of the moving points (3.4.1) is started calling the CreateVehicles function. If
disturbed data shall be created, CreateVehiclesDisturbed (3.3.19) is called instead. Now, the additional
vehicle data (licence plate number, type, model) are joined (3.4.2).

7.5.4 Deriving the Trip Based Representation

Our simulation yields long time observations of the given number of vehicles. Thus, all created moving
points have the same definition time. For this reason, a temporal index will either return all cars or
nothing for any given instant or interval. To avoid this, we can use the trip based representation. In
this representation, the complete movement of a car is split into its different trips. We define a trip as a
connected movement without a break longer than specified by parameter P MINPAUSE. Because there is
a special operator for splitting moving points at such major breaks (sim trips), the creation of the trip
based representation is very simple (3.4.3-4).
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7.5.5 Creating Query Relations

For the execution of the benchmark queries, some relations containing values used to instantiate query
parameters are needed. We create these data by sampling the data used during the creation of the
moving point data. The cardinality of these relations is determined by parameter P SAMPLESIZE.

7.6 Simulating Measuring Errors (Optional)

As by now all created vehicles never leave the street network, a projection of their according moving
points into the plane will get a part of the network. This kind of data is generated, when parameter
P DISTURB DATA is set to FALSE.

In a real application, using GPS devices to capture the vehicles’ routes, this exact graph matching
is improbable due to measurement errors. Besides the impresice nature of collected real application
data, also from the query processing side of view, such “imprecise” position data is an interesting task,
as dealing with inexact data must be reflected by adapting spatial and spatio-temporal queries. As an
example, please recall Query 4:

Query 4: Which licence plate numbers belong to vehicles that have passed the points from QueryPoints?

SELECT PP. Pos AS Pos , C. Licence AS Licence
FROM dataScar C, QueryPoints PP
WHERE C. Trip passe s PP. Pos ;

When handling inexact data, we cannot apply the passes operator directly to the point values
PP .Pos anymore. We are required to modify the query: Instead of using each point value itself, we
rather construct a circular region around it and apply the passes operator to that region. To do so, we
need to replace PP.Pos by circle(PP.Pos, 10, 50) within the above query. This will also hold for all other
spatial/ spatio-temporal queries and some other kinds of WHERE conditions (e.g. regarding distances).

To allow for experiments with imprecise data, the BerlinMOD data generator includes an option to
model measurement errors. When changing parameter P DISTURB DATA to TRUE, the following simple
procedure is used to disturb the correct position data:

We assume that a GPS device has a maximum total error depending on some factors (kind of de-
vice, weather etc.), defined by parameter P GPS TOTALMAXERR. Between each two consecutive measure-
ments of the GPS device, its error changes only slightly, up to a maximum determined by parameter
P GPS STEPMAXERR. Both parameters are used with a special operator disturb, which changes a given
moving point randomly depending on the maximum error and the error difference between two measures.
The default settings will generate errors of up to 1.0 metre between each pair of successive measurements,
but the total absolute error is limited to 100.0 metres.

Though this approach is very simplistic, and does not model GPS measuring errors in a convenient
way, it does provide deviated, imprecise position data helpful for testing and benchmarking spatio-
temporal DBMS.

7.7 Data Export

The generator allows for exporting the benchmark data to a variety of simple database exchange formats.
To choose between export formats, parameter P EXPORT TYPE should be set to the according value (see
Section 7.3).

7.7.1 No Export

If the parameter P EXPORT TYPE is set to "None", data are only available within the Secondo-system.
No export files are created.

7.7.2 Secondo Nested List Export

Secondo‘s proprietary data exchange format are nested lists. Such a list may be atomic (bool, int, real,
symbol, string, text) or a list with elements which can be either atomic or a list for itself. Nested lists
are written to files in plain ASCII text format. If the parameter P EXPORT TYPE has the value "Secondo
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Nested List", eight files containing such lists are created within the directory $SECONDO BUILD DIR/bin.
The files are datamcar.obj, datamtrip.obj, queryinstants.obj, querylicences.obj, queryperiods.obj,
querypoints.obj, queryregions.obj, and streets.obj. Their content corresponds to the same-named
relations created by the data generator script. A description of the format for spatial and spatio-temporal
data types can be found in [30].

7.7.3 Shapefile/DBase-Export

Shapefiles [1] are a well known format for geometries. Basically, a relation consisting of a spatial attribute
and other atomic types is represented by a file containing the spatial attribute (the actual shapefile) and
a DBASE-III file containing the relation’s standard attributes. If P EXPORT TYPE="Shape" holds, the
relations QueryPoints, QueryRegions, and streets are exported in this format. Other relations are
written to DBase-III-files. The relation dataMcar and the relation QueryLicences are exported without
any changes to a file named cars.dbf and querylicences.dbf respectively. Unfortunately, within a
dbf-file, we cannot store an instant directly because of the absence of an appropriate type in DBase-
III. So, we export an instant as a string value when exporting the QueryInstants relation. For each
QueryPeriod , we store the starting and the ending instant as strings within the queryperiods.dbf file.
For the moving point data, we create a file trips.dbf, containing a relation with scheme:
trips: relation{Moid : int , Tripid : int , TStart : instant , Tend : instant ,

Xstart : real , Ystart : real , Xend : real , Yend : real}
Each row describes a linear movement of the car with id Moid during the trip Tripid within the temporal
interval described by instants Tstart and Tend , starting at position (X , Y ) = (Xstart , Ystart), and
ending at position (Xend , Yend).

7.7.4 CSV-Export

Setting the parameter P EXPORT TYPE to "CSV" forces the export of the created data as comma separated
values. The export of the relations dataMcar, QueryInstants, QueryLicenes, QueryPeriods, and
QueryPoints is staightforward and not described in detail here.

For the relation QueryRegions, we create a file containing an id and a point . Collecting all points
related to the same id and computing the convex hull of these points will create the corresponding region.

Relation streets is exported by separating the segments of a line. The csv file has attributes id ,
Vmax , X1 , Y1 , X2 , and Y2 . The union of all segments ((X1 , Y1 ), (X2 , Y2 )) related to the same
id -value is the street section corresponding to this id.

The moving point data are exported very similar to the export in a way used for DBase files. For
this reason, we omit a detailed description.

8 Creating and Using BerlinMOD

We have created BerlinMOD on a standard PC with the configuration shown in Table 7. We generated
the benchmark data for three different scale factors using the network based approach, and for one
scale factor using the region based approach, and tested Secondo with each of the data sets and the
BerlinMOD/R queries. Since Secondo does not provide the functionality to efficiently support NN
queries, we omit the BerlinMOD/NN queries.

CPU: Intel Core 2 DUO 2.4 Ghz
Memory: 2 GB
HDD: 2 x 500 GB, RAID 0
OS: Open SuSe 10.2 (Kernel 2.6.18.2-34-default)

Table 7: Configuration of the used Standard PC
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Network Based Region Based
Scalefactor 0.05 0.2 1.0 0.2

Observed Vehicles 447 894 2,000 894
Observation Period 6 days 13 days 28 days 13 days
Time to Build (excl. indexes) 12:16 min 74:34 min 573:17 min 110:23 min
Time to Build (incl. indexes) 25:27 min 155:04 min 890:35 min 226:38 min
On-Disk Size (excl. indexes) 1.91 GB 4.97 GB 19.45 GB 5.18 GB
Average Number of Units per Vehicle 6,138.857 13,040.283 26,963.197 13,535.700
Minimum Number of Units per Vehicle 1,038 2,498 3,247 1,053
Maximum Number of Units per Vehicle 22,016 44,517 94,021 37,620
Total Number of Trips 15,049 62,893 292,693 62,956
Average Number of Trips per Vehicle 33.667 70.353 146.347 70.4205
Minimum Number of Trips per Vehicle 21 45 103 45
Maximum Number of Trips per Vehicle 53 101 199 101
Average Driven Distance per Vehicle 170.645 km 361.661 km 748.496 km 391.095 km
Average Trip Length 5,068 m 5,141 m 5,114 m 5,554 m

Table 8: Statistics on Created Data for Different Scalefactors

8.1 Data Generator: Performance and Statistics

The creation of the full-scaled database (SCALEFACTOR = 1.0, 2,000 cars, 28 days) takes about 9:33:17
hours on the mentioned system. In total, the creation of the full-scaled database together with several
non-spatial, spatial, temporal and spatio-temporal indexes for both representations needs 14:50:35 hours.
For SCALEFACTOR = 0.2, this requires only 2:35:04 h (2:46:38 h with the region based approach), and
only 25:27 min for SCALEFACTOR = 0.05.

The creation time of about 10, respectively 15, hours for the full-scaled database is long, but we
feel it is acceptable for a 20 GB database based on a fairly sophisticated simulation scenario. The
resulting database has about 53 million temporal units. Note that in fact many more units are created
temporarily based on “observations” but disappear again due to data reduction. GPS receivers would
produce 1,209,600 timestamps per car within 28 days, leading to an overall figure of about 2.4 billion
observations, but our representation removes subsequent sampling points having identical motion vectors,
thus compressing the data, e.g. for an immobile car.

If only one of the representations is needed (object/trip based), the creation time can be reduced
considerably.

Some more statistical information is given in Table 8.

8.2 Applying BerlinMOD to Secondo

We have used the benchmark data and the BerlinMOD/R query set to test the Secondo DBMS with
its spatio-temporal extension algebras. The benchmark was carried out with hand-translated executable
queries on the same PC that was used to generate the benchmark data before (see Table 7 for specifica-
tion). Due to limitations of space, we cannot show and explain the translation of the queries here, but
all queries are available as annotated scripts at the Secondo project website.

The results are presented in two tables. Table 9 shows the total response times for all queries. Table
10 shows the average response time per single query instance (calculated by dividing the total response
times by the number of query parameter combinations applied). A query instance is a single combination
of applicable query parameters.

As expected, the non spatio-temporal Queries 1 and 2 are executed very fast. There are significant
differences between both representations. The OBA is significantly faster for queries 6, and 9, while the
TBA makes the race in queries 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, and 17. The OBA seems to have
an advantage, if the objects’ complete histories — or larger parts of them — are accessed (6, 9). The
TBA can take advantage of (spatio-) temporal indices in bounded spatio-temporal queries (10, 11, 12,
13, 14, 15, 16).
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Network Based @0.05 Network Based @0.2 Network Based @1.0 Region Based @0.2
Query Response Time Response Time Response Time Response Time

OBA TBA OBA TBA OBA TBA OBA TBA

Q1 0.406 0.335 0.476 0.451 0.460 0.407 0.362 0.341
Q2 0.099 0.055 0.050 0.140 0.113 0.099 0.028 0.021
Q3 2.290 0.616 6.303 0.993 12.080 1.092 7.407 0.963
Q4 76.664 49.516 625.431 273.426 6232.560 966.393 640.642 284.292
Q5 16.737 20.059 45.535 34.710 121.885 61.015 38.160 26.666
Q6 71.396 189.435 333.341 1942.071 7032.000 53910.502 193.308 430.185
Q7 92.666 35.654 2325.340 241.182 23324.700 135.724 564.038 194.097
Q8 1.209 1.214 5.854 3.521 13.989 4.308 2.110 1.403
Q9 392.336 784.329 1102.580 3241.180 4791.730 21730.800 1078.710 2020.960
Q10 681.937 221.276 3170.480 1189.130 23951.800 16410.200 3011.840 627.194
Q11 0.956 0.580 1.862 0.849 11.602 1.411 0.820 0.669
Q12 2.188 0.553 144.466 0.510 964.456 0.625 97.807 0.564
Q13 50.376 45.189 426.079 128.682 2015.680 261.572 139.375 90.711
Q14 2.129 2.020 6.444 3.083 138.305 13.075 4.909 2.873
Q15 3.662 4.530 121.011 30.562 322.635 36.343 51.973 40.674
Q16 144.565 58.967 102.139 49.206 132.165 74.842 118.154 51.944
Q17 5.129 27.393 467.125 242.219 5374.080 1097.145 69.109 194.322

Total [s] 1544.745 1441.721 8884.516 7381.915 74440.240 94705.553 6018.751 3967.521
[h : m : s] 0:25:45 0:24:02 2:28:05 2:01:01 20:40:40 26:18:26 1:40:19 1:06:07

Table 9: Benchmarking the Secondo DBMS using BerlinMOD/R: Total Response Time.

Listed are the total response times over all query instances (all combinations of query parameters) in seconds.

Network Based @0.05 Network Based @0.2 Network Based @1.0 Region Based @0.2
Query Response Time Response Time Response Time Response Time

OBA TBA OBA TBA OBA TBA OBA TBA

Q1 0.004 0.003 0.005 0.005 0.005 0.004 0.004 0.003
Q2 0.099 0.055 0.050 0.140 0.113 0.099 0.028 0.021
Q3 0.023 0.006 0.063 0.010 0.121 0.011 0.074 0.010
Q4 0.767 0.495 6.254 2.734 62.326 9.664 6.406 2.843
Q5 0.167 0.201 0.455 0.347 1.219 0.610 0.382 0.267
Q6 71.396 189.435 333.341 1942.071 7032.000 53910.502 193.308 430.185
Q7 0.927 0.357 23.253 2.412 233.247 1.357 5.640 1.941
Q8 0.012 0.012 0.059 0.035 0.140 0.043 0.021 0.014
Q9 3.923 7.843 11.026 32.412 47.917 217.308 10.787 20.210
Q10 68.194 22.128 317.048 118.913 2395.180 1641.020 301.184 62.719
Q11 0.010 0.006 0.019 0.008 0.116 0.014 0.008 0.007
Q12 0.022 0.006 1.445 0.005 9.645 0.006 0.978 0.006
Q13 0.504 0.452 4.261 1.287 20.157 2.616 1.394 0.907
Q14 0.021 0.020 0.064 0.031 1.383 0.131 0.049 0.029
Q15 0.037 0.045 1.210 0.306 3.226 0.363 0.520 0.407
Q16 0.014 0.006 0.010 0.005 0.013 0.007 0.118 0.052
Q17 5.129 27.393 467.125 242.219 5374.080 1097.145 69.109 194.322

Total [s] 151.248 248.462 1165.688 2342.939 15180.887 56880.901 590.010 713.940
[h : m : s] 0:02:31 0:04:08 0:19:26 0:39:03 4:13:01 15:48:01 0:09:50 0:11:54

Table 10: Benchmarking the Secondo DBMS using BerlinMOD/R: Response Time per Query Instance

Listed are the response times for single query instances (single combination of query parameters) in seconds.

Looking at the individual response times shown in Table 10, we observe that all but eight queries
have acceptable runtimes (that is, seconds or at most a minute at scale factor 1.0). The outliers are
Queries 6, 10, and 17 in both representations; Query 7 in the OBA, and Query 9 in the TBA only. Let
us investigate the reason for this behaviour.

The runtime for Query 6 strongly depends on the number of observed vehicles N and the observation
time. We need to select all “trucks” and perform a selfjoin on these, selecting Ntruck · (Ntruck/2 − 1)
combinations. For these, we need a parallel scan of the joined vehicles’ MOD histories to check whether
their distance ever is 10 metres or below. The cost for this increases linearly with the observation time.
All in all, this is very expensive. For the TBA, we additionally have to join the dataMcar and dataMtrip

relations and to remove duplicates from the result.
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In Query 10, for each car with a appropriate licence plate number, we select it from the relation.
Then we join them with all cars that ever have a distance of less then 3 metres. In the TBA, we apply a
range query on the spatio-temporal index to find all appropriate candidate trips and filter them; in the
OBA we just scan the relation dataScar completely and filter directly, because neither the spatial, nor
the spatio-temporal index showed to perform better in preceding experiments. In both representations,
the number of combinations (candidates) to filter increases quadratically with the number of observed
vehicles. Each computation of the spatio-temporal distance between two vehicles needs a parallel linear
scan through both MOD histories.

For Query 17, each QueryPoint P is looked up in the spatial index, to find all candidate tuples with
trips passing it. The candidates are filtered for those tuples whose trip really passes P . The remaining
tuples are projected to P and the according vehicle’s licence plate number L. The results are grouped by
{P}. In each group, duplicate licences are removed and the count of the remainder is added. The result
is sorted by descending counters. Last, we select all tuples having the same count as the first tuple. The
required time increases with the number of observed vehicles and the observation period. In Secondo,
a linear scan through the MOD histories is needed to check whether an mpoint passes a point .

In the OBA version of Query 7, the spatial index is used to find candidates for a subsequent filtering
step. The filter selects only tuples, whose trip passes QueryPoint P . As mentioned before, this requires
Secondo to perform a linear search in each MOD history. Whereas a longer observation time increases
the MOD histories in the OBA, this is not the case for the TBA (basically, there will be more trips of
similar length in the TBA). This is the reason for the long response time in the OBA at scale factor 1.0.

For Query 9 we observe, that the OBA has an advantage over the TBA version. Why does the TBA’s
relative disadvantage become even larger with increasing scale factor? In the OBA, we can just restrict
all vehicles to the temporal ranges from the parameter PP indicating the temporal range and calculate
the travelled distance on the restricted mpoint values. Then we just need to group by the PP to find the
maximum travelled distance. In the TBA, we use the temporal index to retrieve all trips present at PP ,
restrict them to the according temporal range and compute the travelled distance for each trip found.
Then, we are first required to group by Licence to aggregate the distances of all trips belonging to each
vehicle, before we can finally group by PP to select the maximum travelled distance. So, in the TBA,
we have to group twice, which with increasing scale factor becomes more expensive.

Comparing the results for the network based (NB) and the region based (RB) datasets, we can observe
the aforementioned differences between the OBA and TBA not only for the NB, but also for the RB
data. The only significant difference is Query 17. The reason may be the different distribution of points,
that is essential for that particular query.

A pairwise comparison of the NB and RB results shows, that several queries seem to be more sensitive
to changes of the data used than others. Significant differences can be observed for Queries 6, 7, 13, 15
and 17 (OBA), and 6, 9 and 10 (TBA). As response times are generally smaller for the region based
data, the reason seems to be within the movements themselves. While the number of units per vehicles
is greater for the RB (see Table 8), there are major differences regarding the distribution of home and
work nodes (see Figure 4). While for the NB data, the spatial distribution of home and work nodes looks
like a 2-variate gaussian distribution centered on the centre of the network, the spatial distribution of
home and work nodes for the RB data clearly shows different clusters and smaller variance. This may
have resulted in significantly changed work trips and therefore different query response times.

Since we expect similar results for scale factors 0.05 and 1.0, we did not repeat the benchmark with
the region based dataset at these scale factors.

9 Summary and Future Work

We have presented a method to generate a data set representing cars driving in Berlin. Because the
only source is a simple map of Berlin, the scenario can also be applied to any place in the world where
a map is available, for example as a shape file. The number of observed cars as well as the number of
observation days can be changed easily. But also more complex changes can be made by simple changes
to the used script, as demonstrated for the region based approach.

First results have been established for the BerlinMOD/R queries and the Secondo DBMS, which
can be used as a reference for benchmarking other spatio-temporal database systems.

For the future, we would like to use the proposed BerlinMOD benchmark with other spatio-temporal
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DBMSs and compare their performances. Also, we plan to extend Secondo’s capabilities to perform
a subset of the BerlinMOD/NN queries, and compare the performance of different representations of
moving object data within the Secondo system using the benchmark.
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[28] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner. SUMO (Simulation of Urban MObility);
An open-source traffic simulation. In Proceedings of the 4th Middle East Symposium on Simulation
and Modelling (MESM2002), pages 183–187. SCS European Publishing House, 2002.

[29] C. Lang and A. Singh. A framework for accelerating high-dimensional NN-queries, 2001.

[30] J. A. C. Lema and T. Behr. External representation of spatial and spatio-temporal values. http:

//dna.fernuni-hagen.de/Secondo.html/files/SpatialListFormat.pdf, 2004.

[31] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access methods. IEEE Data Eng.
Bull., 26(2):40–49, 2003.

[32] K. Mouratidis and D. Papadias. Continuous nearest neighbor queries over sliding windows. IEEE
Transactions on Knowledge and Data Engineering, 19(6):789–803, 2007.

38



[33] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning: an efficient method
for continuous nearest neighbor monitoring. In SIGMOD ’05: Proceedings of the 2005 ACM SIG-
MOD international conference on Management of data, pages 634–645, New York, NY, USA, 2005.
ACM.

[34] J. Myllymaki and J. Kaufman. Dynamark: A benchmark for dynamic spatial indexing. In MDM
’03: Proceedings of the 4th International Conference on Mobile Data Management, pages 92–105,
London, UK, 2003. Springer-Verlag.

[35] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate nearest neighbor queries in spatial
databases. ACM Trans. Database Syst., 30(2):529–576, 2005.

[36] D. Pfoser and Y. Theodoridis. Generating semantics-based trajectories of moving objects. Comput-
ers, Environment and Urban Systems, 27(3):243–263, 2003.
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