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ABSTRACT

Computational problems can usually be divided into a
number of (sub)tasks. The data dependencies between
these tasks can be described by a so called task graph.
Since the task graph scheduling problem is known to be
NP-hard, researchers devised an innumerable number of
heuristic algorithms to solve this problem best. Up to now,
these heuristics were analyzed by using a set of task graph
problems, which were rarely revealed to the public. A com-
parison of different scheduling algorithms presupposes th
availability of their implementations. Our contributioare

sists of a test bench with 36000 task graph problems and
their optimal solutions with respect to homogeneous target
architectures. These test cases are structured accoading t
several task graph properties and target architecturass si
and enable researchers to analyze the overall quality of
their heuristics’ results, to detect strengths and weaages

of their algorithms and to compare them with those of other
researchers. We used the current intermediary version of
this test bench to compare some well known scheduling al-
gorithms, namely DLS [1], ETF [2], HLFET [3] and MCP
[4]. Surprisingly, the heuristics show a very similar behav
ior regarding the quality of the obtained results, exhilgjti

the same strengths and weaknesses, differing only by few
percent.
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1 Introduction
If a computational problem can be divided into a number
of subtasks, the data dependencies between these subtasks
are usually described by means of a directed acyclic graph
(DAG) also calledask graph. In order to model the execu-
tion of a task graph on a homogeneous computing system,
the task graph is attributed by weights at the nodes and the
edges. While the node weights denote the computational
effort of a subtasks, the edge weights correspond to the
time for transferring intermediate results via the network
between two computers. This time is only incurred, if the
connected tasks are scheduled to different computers. Else
the edge weight is considered to be zero.

The problem of scheduling task graphs to a parallel

computer architecture has received a large amount of at-
tention in the last decade [5, 6, 7]. Most often, the objec-
tive of scheduling is to minimize the overall computation
time (also calledschedule length). In order to achieve this
objective, a scheduling algorithm has to map the tasks to
the available computers and to determine the correspond-
ing starting times. The scheduling problem in its general
form has been proven to be NP-complete [8]. This has
stimulated researchers to devise an innumerable number of
heuristic algorithms based on quite different assumptions
and basic ideas. Although its developers claim that their
algorithms are efficient it is very difficult or even impossi-
ble to compare these algorithms to each other.

This shortcoming could only be tackled by means of
a comprehensive collection of task graph problems which
cover a broad spectrum of meaningful graph properties
along with the corresponding optimal schedules. Because
of the NP-completeness, the optimal schedules for such
a test bench suite can only be computed by mearis-of
formed search algorithms [9, 10] and the size of the task
graphs must be limited in such a way that the optimal
schedules can be computed in a reasonable period of time.

In this paper, we introduce a test bench that com-
prises 36000 task scheduling problems with task graphs
ranging from 7 to 24 nodes and target architectures rang-
ing from 2 to 32 parallel computers. While the computa-
tion of the optimal schedules is not yet finished (in progress
since November 2003 on a 16 Pentium-4 cluster computer)
we will present intermediary results regarding the already
computed 31756 optimal schedules (September 2004). By
means of this test bench, we evaluated the performance
of four well known heuristic algorithms. Surprisingly, we
found out that — even though a comprehensive and di-
verse test bench was used — the heuristic algorithms behave
very similarly. This finding approves the necessity of test
benches like the one proposed in this paper. Thus, in the
near future we will publish our test bench on the web and
hope that it will be used thoroughly as a benchmark in fu-
ture research on task graph scheduling.

To our knowledge there exists no comparable test
bench for the evaluation of heuristic scheduling algorghm
Although in [11] a test bench for task graphs with up to
5000 tasks is provided these task graphs do not take com-
munication overhead into account. Also, it is not guaran-



teed that the minimum schedule length is given for every
task graph problem, because of the NP-completeness the
run time of the search algorithm was limited to 10 minutes.
In [12] a performance study of 15 heuristic scheduling al-
gorithms is presented. In contrast to our work, the number
of task graphs is much lower/(350) and for most of the
investigated task graphs (250) the optimal schedules @re no
known.

The rest of this paper is organized as follows. In sec-
tion 2 the details of the test bench and its creation will
be described. Then, we sketch how the optimal sched-
ules were computed and how reliability has been ensured.
Section 4 discusses the impact of the task graph proper-
ties on the computational effort while computing the opti-
mal schedules. It also provides a comparison of four well
known heuristic algorithms based on the test bench’s task
graph problems. Section 5 concludes the paper.

2 Creation of the Test bench

2.1 TheTask Graph Generator

Most authors who publish a new heuristic do rarely reveal
the task graphs they used for its evaluation. Sometimes,
even the task graphs’ properties are not explained. An ex-
ception to this is [12], where the used test set is available a
the author’s web-page. Although these task graphs can be
used to evaluate and compare heuristics, the size of this tes
bench is too small 350 task graphs) for a comprehensive
evaluation.

Up to now, there exists no suitable test bench for a
thorough examination of scheduling heuristics and the ef-
fects, which task graph properties have on the quality of
the heuristics’ results. For this reason, we created a new
test bench, consisting of randomly generated task graphs
and structured concerning the following parameters:

e Task Graph Size: The size of a task graph is defined
by the number of its nodes.

e Meshing degree: The meshing degree of a task graph
defines the extent to which the nodes are connected
with each other.

e Edgelength: The length of an edge indicates the dis-
tance between the connected nodes.

e Node- and Edge-weight: These parameters describe
the time, required for a task’s computation or the
transfer of data. In literature, both parameters are
usually merged to the Computation to Communica-
tion Ratio (CCR). Although this merging facilitates a
close examination of the relation between both param-
eters, a separate analysis of each parameter becomes
impossible.

In order to obtain a large set of test cases, structured
with respect to the parameters described above, we had to

develop a task graph generator. Besides the number of the
task graphs to generate, the task graph generator’s input
contains a common prefix of the task graphs file names

and a detailed information about the task graphs’ proper-

ties (see subsection 2.2 for more details).

To emphasize a certain graph property (e.g. short
ranging edges), the random numbers generator has to be
focused to a dedicated range of values. This could either
be achieved by a uniform distribution with limited range of
values or by Gaussian distribution. In contrast to the first
alternative, the second one does not limit the diversity of
task graphs, since it allows a blending of the properties up
to a certain degree (e.g. few short edges in a graph with
predominantly long edges). For this reason, the task graph
generator determines the random numbers by means of an
equal or Gaussian distribution.

In order to describe a given task graph problem within
one file, the task graph generator merges the task graph
and the target architecture’s description. Because of the
assumed homogeneity, the architecture’s description can
be limited to a single integer, representing the number of
processing elements. Every generated task graph problem
is stored by using a file format, which is very similar to
the formats proposed by [11]. Referring to this similarity,
we call it Standard-Task-Graph-Format (STG) as well. The
first row of every task graph file consists of two integer val-
ues, representing the task graph’s size and the size of the
target system for which the schedule should be computed.
Then, the task descriptions follow. Every task is firstly de-
scribed by a single row with three integers, representiag th
task’s index, the required computation time and the num-
ber of its direct predecessors. Secondly, for every edge to
a direct predecessor follows a separate line, including two
integers, the parent’s task index and the edge weight.

2.2 Thetask graph parameters

The task graph problems were generated for one target ar-
chitecture’s size and cloned to the other sizes afterwards b
changing the files’ indicator for the number of processors.
To keep the computation time of the optimal schedules in
reasonable boundaries, the upper bound of the task graphs’
size is set to 24. The graphs are grouped into three cat-
egories in order to provide a structured set of task graphs
that can even be processed by slow optimal scheduling al-
gorithms. Within these groups, whose sizes range from 7
to 12, 13 to 18 and 19 to 24 tasks, the task graph’s sizes are
equally distributed.

Considering the meshing degree, the task graphs are
subdivided into four categories. When a task graph is
weakly meshed, the Number of Sons (NoS) is low — there-
fore this category is called 'NaSow’ (see figure 1). In
this group, every node is connected to 25% (expectation
value) of all nodes with a higher task index. In case of
a medium meshing, the expectation value is set to 50%
('NoS_Avg’) and in case of strong meshing it is setto 75 %
(NoS_High’). The deviation is 25% in all cases. In or-



der to provide task graphs which are unbiased with re-
spect to meshing, the test bench includes a category of task
graphs with random meshing degree ('NB&nd’). Here,

the meshing is computed using uniform distribution with a
lower bound of 1% and an upper bound of 100%.

The 'edge length’-Parameter (EL) is organized in a
similar way. For task graphs with short edges ((Ehort’),
the expectation value is set to 25%. For average long
edges (ELAvQ) it is set to 50% and in case of long edges
(EL _Long) its value is 75%. The deviation is always 25%.
In order to provide task graphs with random edge length
(EL _Rand’), a group of graphs with uniformly distributed
edge lengths was generated as well. Here, the lower bound
is 1%, the upper 100%.

In literature, node and edge weights are usu-
ally merged to a parameter called 'Computation-to-
Communication-Ratio’ (CCR). But deciding on a fixed
proportion would reduce the diversity of generated task
graphs. For this reason, we distinguish both graph-
properties as separate parameters. Possible weightiags ar
heavy, light and random. The first two characteristics are
Gaussian distributed, the last one uniform. In case of heavy
nodes/edges, the expectation value is 15 (time units) with
a deviation of 3. Light nodes/edges use the same devia-
tion but an expectation value of only 5. The uniformly dis-
tributed random weights are bounded by the values 1 and
20.

2.3 Structureof the Test bench

The generated test bench has to be large enough to avoid,
that single outliers distort the analysis’ results. Nevert
less, it has to be compact enough to be transmittable across
standard Internet connections. Therefore, the number of
test cases, belonging to every combination of characteris-
tics, was limited to 25. Only the test classes with equally
distributed Node- and Edge-Weights (RNodeREdge) were
extended to 50 test cases, to provide a broader range of
task graphs not affected by the weightings. Since test cases
with random weightings were just included as a reference,
combinations of random and weighted properties, e.g. RN-
odeHEdge, were not generated.

7200 task graphs (see figure 1) were generated this
way. These task graphs were cloned to different target sys-
tem sizes (2, 4, 8, 16 and 32 TPEs) by modifying the ap-
propriate parameter in the first line of every STG-File. In
this way, we get 36000 in total.

The test bench is organized as a flat-file database
facilitating a free and easy access by the means of any op-
erating system and its shell. In addition, the database be-
comes independent of special database management sys-
tems, which should be beneficial for the test bench’s
spreading.

1A flat-file database renounces an explicit database manageyeent
tem and stores the data in text files which are organizedrictacally by
the directory tree of the operating system'’s filesystem.

For every task graph an optimal schedule has to be
computed and stored in the directory of the respective task
graph category. The task graph’s and schedule’s file names
differ only by their extension.

The directory tree, representing the test bench’s struc-
ture is shown in figure 1. On the right side, one can see the
total number of task graphs which are available within ev-
ery partial subtree at the corresponding level.
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Figure 1. The test bench’s structure.

3 Computation of the Schedules

3.1 Managing the computation of a huge
number of test cases

The computation of the optimal schedules is carried out by
a pruned Depth-first-Search-algorithm (DFS), a serial en-
hancement of the Branch-and-Bound algorithm described
in [9]. Although the current version of this algorithm is
much faster than its predecessor, the necessary computatio
time for computing an optimal schedule varies between a
few milliseconds and several days. A prediction of the re-
quired computation time is almost impossible. Therefore,
handling the test cases in a sequential way would lead to a
delayed availability of useful intermediate results, hesea
the algorithm can get stuck at the more difficult test cases
for some time.

In order to achieve an early access to a large set of op-
timal schedules, we parallelized the computation process
by using the time-slice-method known from multitasking
operating systems: Every computation is interrupted after
a predefined period of time. The current intermediate re-
sult and all information required to restart the scheduling
process are accumulated to a checkpoint which is stored in
a file. Every time the scheduling algorithm is started, it
firstly checks the availability of a checkpoint to the given
task graph and uses it as starting point in case of existence.

The scheduling algorithm is started by a shell-script
that receives the file names of the task graph scheduling
jobs in a work pool file. These file names are forwarded to
the scheduling algorithm in a queue, always waiting for the
end of the predecessor’'s computation. When every test case
got its time slot, the script removes all task graphs from the



input file whose schedule’s computation is finished. The
remaining file is used as input for the next turn of the com-
putation. This procedure is repeated until the input file is
empty.

The schedules are stored in the so called Standard-
Schedule-Format, using 'ssf’ as file name extension. This
file format stores the number of tasks and the target archi-
tecture’s size in the first row. Then, every task is described
in a separate row, showing the task’s index, the processor it
is started on, its starting time and its finishing time.

3.2 Quality assurance by a second optimal
algorithm

The claim of computing optimal schedules leads to high
demands on the accurateness of the algorithm’s planning
and implementation. A hand-crafted quality check is infea-
sible, because of the problem’s complexity. A comparison
of the algorithm’s and some heuristics’ results is not mean-
ingful, because heuristics do not find optimal solutions in
general.

As a result of these procedures’ incapability, we de-
cided to realize a second optimal algorithm, whose results
can be compared to those of the pruned DFS algorithm. A
detailed description of this alternative implementatitdwat
bases upon the well known IDAalgorithm, can be found
in [10].

This comparison comprised 3600 test cases. Al-
though the optimal schedules themselves differed very of-
ten, their optimal schedule lengths were always equal. For
this reason, we rate the reliability of our algorithm to be
very high. In the meantime, new versions of the pruned
DFS-algorithm are evaluated by comparing their results
with those of the preceding version. This extended test set
obviously still includes the results of the initial comsamn
with the IDA*-algorithm.

4 Resaults

4.1 Observations while computing the opti-
mal results

The computation of the optimal schedules is performed on
a PC-Cluster with 16 Computers (Pentium-4 2,6 GHz Pro-
cessors). Using this system, from November 2003 until
beginning of September 2004, 31756 of 36000 schedules
were computed. It became obvious, that the required com-
putation time does not only depend on the task graph'’s size,
but also on its meshing degree and its edge lengths.

The higher the meshing degree or the shorter the
edges, the faster the computation can be finished. The ex-
planation of these observations is quite simple: Every ad-
ditional edge reduces the search space’s size, because it de
fines an order between the connected nodes. The alterna-
tive task order (and its sub-search-space) is of no relevanc
any more. Short edges reduce the search space as well,

because a task has to be scheduled shortly after the last
predecessor.

Considering the 4244 optimal schedules which still
have to be computed, 53 belong to the medium category of
size (13 to 18 tasks) and 4191 to the large one (19 to 24
tasks). All schedules of the small task graph category are
computed — the completion of the medium category will
take place soon. According to the discussion of the pre-
ceding paragraph, the majority of the task graphs whose
optimal schedules are still not computed have either a low
meshing degree (1787 test cases) or long edges (2592 test
cases).

4.2 Comparison of scheduling heuristics

Using the interim version of the test bench, we compared
the DLS- [1], ETF- [2], HLFET- [3] and MCP-heuristic
[4]. This examination considers the quota of the overall
found optimal solutions as well as a close investigation of
the algorithms’ strengths and weaknesses.

To our surprise, the heuristics show a very similar be-
havior regarding the quality of the obtained results. They
exhibit nearly the same strengths and weaknesses, differ-
ing only by few percent. Figure 2 gives an overview of
the heuristics’ results with respect to the optimal sohsio
Here, the most successful algorithm is the DLS-heuristic,
followed by MCP, HLFET and ETF. The difference be-
tween the best and the worst algorithm is quite small (945
test cases: 2,98 %).
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DLS ETF HLFET MCP

Figure 2. Comparison considering the number of found

optimal solutions.

The investigated heuristics find optimal solutions
more frequently, if the target architecture’s size does not
limit the parallelism of the schedule. Considering large ar
chitectures, the heuristics find more often the optimal-solu
tion as when a small system is used. Again, DLS performs
best followed by MCP, HLFET and ETF. The success rate
of MCP and HLFET differs by only 0,43 % for target sys-
tems with at least 8 processors. See figure 3 for more de-
tails.

All algorithms show an interesting behavior regarding
the edge length: If the target system is small, the algosthm
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Figure 3. Influence of the target architecture’s size.

find only half as much optimal solutions if the task graph
has predominantly long edges, as for task graphs with a ma-
jority of short edges. For large target systems, the refatio
is almost balanced.

Figures 4 and 5 show the meshing degree’s effect on
the quality of the heuristics’ results regarding a large tar
get system. In this case, it seems to be more difficult to
find an optimal solution, when task graphs are strongly
meshed. In contrast to that, when the target system is small,
a strong meshing seems to ease the heuristic’'s task. For
both meshing degrees, DLS performs better than HLFET
which again finds more optimal solutions than ETF. Con-
sidering the weakly meshed task graphs, MCP finds (0,61
%) more optimal schedules than DLS, but for the strongly
meshed graphs MCP is just slightly (0,06 %) better than
ETF.
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Figure 4. Effect of a low meshing degree (25%) on the
quality of the heuristics’ results.

Another conformity of the analyzed scheduling
heuristics can be observed when the size of the task graphs
is scaled. The percentage of found optimal solutions de-
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Figure 5. Effect of a high meshing degree (75%) on the
quality of the heuristics’ results.

creases, when the task graphs’ size increases. See figure 6
for more details.
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Figure 6. Impact of the task graphs’ size.

The weights of nodes and edges effect the success rate
of the compared scheduling heuristics as well. While all
heuristics achieve good results regarding task graphs with
heavy nodes or light edges, the quality drops down, when
the test cases have light nodes or heavy edges predomi-
nantly. Table 1 shows the results for a target system'’s size
of 32 processing elements.

Table 1: The influence of node- and edge weights on the
percentage of optimal solutions found by the investigated

heuristics.
DLS | ETF | HLFET | MCP
Heavy Nodes| 60,57 | 53,14 | 59,56 | 57,29
Heavy Edges| 35,31 | 33,41 | 32,45 | 33,55
Light Nodes | 34,33 | 34,52| 31,66 | 34,86
Light Edges | 59,63 | 54,30 | 58,80 | 58,66




5 Conclusion

In this paper, we presented a comprehensive test bench for
the evaluation of task graph scheduling heuristics. It con-
sists of 36000 task graph scheduling problems and their
optimal solutions. By using this test bench, researchers
are not only enabled to analyze the overall quality of their
heuristics’ results, they can also detect strengths ané-wea
nesses of their algorithms. In addition, the heuristics’ re
sults can be compared more objectively to each other, fa-
cilitating an unbiased comparison of multiple scheduling
algorithms.

Using the current interim version of the test bench, we
compared the well known DLS-, ETF-, HLFET- and MCP-
heuristics. Surprisingly, the heuristics show a very samil
behavior regarding the quality of the obtained resultsyThe
exhibit the same strengths and weaknesses, differing only
by few percent. We guess that these results will also hold
for other heuristics not yet investigated by our benchmark
suite.

As soon as all optimal schedules will be computed,
we will publish our test bench on the web and hope that it
will be used thoroughly as a benchmark in future research
on task graph scheduling.

Acknowledgments: The authors would like to thank
Mr.  Markus Bank for implementing the investigated
heuristics.
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