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Abstract. For elements x, y in a non-degenerate non-unital Jordan algebra
over a commutative ring, the relation x ◦ y = 0 is shown to imply that the

U -operators of x and y commute: UxUy = UyUx. The proof rests on the
Zel′manov-McCrimmon classification [15] of strongly prime quadratic Jordan

algebras.

1. Introduction.

In the present paper, we will be concerned with a problem that derives a con-
siderable amount of its significance from the connection between Moufang sets and
(quadratic) Jordan division rings established a few years ago by De Medts and
Weiss [2]. More specifically, we will focus on a question, raised by K. Tent and
communicated to the last-named author by Y. Segev, that may be phrased as fol-
lows: given a Jordan division ring with unit 1, U -operator Ux and circle product
x ◦ y = Ux,y1 (see 2.1, 2.4 below for precise definitions),

does the relation x ◦ y = 0 imply that the linear maps Ux and Uy commute? (1)

Everyone expecting a short elementary answer to this simple-minded question is
in for an unpleasant surprise: the answer we are going to provide in Theorem 4.8
below, though short, and an affirmative one at that, is by no means trivial, relying
as it does on a substantial portion of the Zel′manov-McCrimmon classification [15]
of arbitrary Jordan division rings. This is all the more regrettable since, from
various points of view, it would be desirable to give a proof based exclusively on
the manipulation of identities valid in arbitrary Jordan algebras. The hope would
then be, for example, that these manipulations could somehow be mimicked in the
setting of Moufang sets with abelian root groups, paving the way for new insights
into this fascinating topic. On the other hand, they would also show that question
(1) has an affirmative answer not just for division but, in fact, for arbitrary Jordan
algebras.

Unfortunately, we have not been able to exhibit a proof of the desired kind.
Instead, we must rely on the full arsenal of the Ze′lmanov-McCrimmon structure
theory [15] combined with results of Thedy [20] in order to ensure (1) an affirmative
answer for arbitrary non-degenerate, possibly non-unital, Jordan algebras without
finiteness conditions (Theorem 9.5). The proof rests on the observation that the
answer to (1) is trivially yes for special Jordan algebras (see 4.1), combined with
the fact that the same conclusion holds for Albert algebras over arbitrary fields
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(Theorem 8.1); establishing the latter result turns out to be surprisingly delicate.
We also obtain affirmative answers for classes of possibly degenerate Jordan alge-
bras, e.g., in the presence of certain algebraicity conditions on the elements involved
(Propositions 6.2−6.4), or for Jordan algebras of pointed quadratic forms without
2-torsion over commutative rings (Theorem 7.4).

For the convenience of the reader, we have worked hard to keep prerequisites from
the theory of Jordan algebras at a minimum; in particular, the standard vocabulary
of the theory will be recalled as we go along. Throughout we let k be an arbitrary
commutative associative ring of scalars; occasionally it will be replaced by a field
which we denote by F .

A (non-associative) k-algebra A is said to be unital if it contains an identity
element 1 = 1A, in which case subalgebras of A are said to be unital if they contain
the identity 1A. For a quadratic map Q : M → N between k-modules, its bilinear
polarization will be indicated by Q(x, y) = Q(x+ y)−Q(x)−Q(y).

2. Jordan algebras: generalities.

In this section, we recall some basic facts about arbitrary Jordan algebras that
will be used frequently later on. Our main references are Jacobson [6, 7] and
McCrimmon-Zel′manov [15].

2.1. The concept of a Jordan algebra. By a (unital) (quadratic) Jordan algebra
over k we mean a k-module J together with a distinguished element 1 := 1J ∈ J
(the unit) and a quadratic map U : J → Endk(J), x 7→ Ux, (the U -operator) such
that, setting

{xyz} := Vx,yz := Ux,zy := (Ux+z − Ux − Uz)y

(the Jordan triple product, which is obviously trilinear and symmetric in the outer
variables), the following identities hold under all scalar extensions.

U1 = IdJ ,

UxVy,x = Vx,yUx,

UUxy = UxUyUx.

By a Jordan ring we mean a Jordan algebra over Z, the ring of rational integers.
In the remainder of this section, we fix a Jordan algebra J over k. A (Jordan)

subalgebra of J is a k-submodule containing 1 and stable under the operation Uxy.
We define the squaring and its bilinearization in J by

x2 = Ux1, x ◦ y := (x+ y)2 − x2 − y2. (1)

Using this, we obtain linear maps Vx : J → J given by

Vxy := x ◦ y

and recall the relations

x ◦ y = Vx,y1 = Vx,1y = V1,xy = Ux,1y = Ux,y1.
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2.2. Linear Jordan algebras. If 2 ∈ k is a unit, with inverse 1
2 ∈ k, we introduce

the (bilinear) Jordan product

xy := x · y :=
1

2
x ◦ y,

making J a linear Jordan algebra in the sense that it is a unital commutative
non-associative k-algebra with unit 1 = 1J satisfying the Jordan identity

x(x2y) = x2(xy).

The U -operator of J can be recovered from the Jordan product via the formula
Uxy = 2x(xy) − x2y. Using this, one has no difficulty in setting up a categor-
ical isomorphism between Jordan algebras and linear Jordan algebras over rings
containing 1

2 .

2.3. Powers. Returning to the setting of an arbitrary base ring, powers of an
element x ∈ J with integer exponents ≥ 0 are defined inductively by

x0 := 1, x1 := x, xn+2 = Uxx
n.

The submodule of J spanned by the powers of x will be written as

k[x] :=
∑
n≥0

kxn.

It comes equipped with the surjective linear evaluation map

k[t] −→ k[x], f 7−→ f(x),

where t is a variable. However, even though powers in Jordan algebras are quite well
behaved, e.g., by satisfying the relations Uxmxn = x2m+n, {xmxnxp} = 2xm+n+p,
hence forcing k[x] ⊆ J to be a Jordan subalgebra, this subalgebra will in general
not be a linear associative k-algebra in its own right making the evaluation map an
algebra homomorphism [6, 1.31-32]. On the other hand, by [6, 1.26, QJ37], we do
have the formula U(fg)(x) = Uf(x)Ug(x) for all f, g ∈ k[t], which implies that

the linear operators Ua, Ub commute for all a, b ∈ k[x]. (1)

Things become much simpler when dealing with linear Jordan algebras J (over
rings containing 1

2 ), because they are power associative, so k[x] ⊆ J is always a
unital commutative associative subalgebra.

2.4. Inverses and Jordan division algebras. An element x ∈ J is said to be
invertible (in J) if there exists an element y ∈ J , necessarily unique, such that
Uxy = x and Uxy

2 = 1. We call x−1 := y the inverse of x (in J) and know from
[7, Prop. 1.6.2] that x is invertible iff the linear map Ux : J → J is bijective iff 1
belongs to the range of Ux, in which case x−1 = U−1

x x. We call J a Jordan division
algebra if J 6= {0} and all its non-zero elements are invertible.

2.5. Special versus exceptional Jordan algebras. Let A be a unital associative
algebra over k. Then the k-module A together with the unit 1 := 1A and the U -
operator

Uxy := xyx (x, y ∈ A) (1)
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is a Jordan algebra, said to be associated with A and denoted by A+. Its Jordan
triple product and its circle product are respectively given by

{xyz} = xyz + zyx, x ◦ y = xy + yx (x, y, z ∈ A). (2)

Powers in A and A+ coincide, as do inverses, so A+ is a Jordan division algebra iff
A is an associative one. A Jordan algebra is said to be special if it is isomorphic
to a subalgebra of A+, for some unital associative algebra A. Typical examples of
special Jordan algebras have the form

Her(A, τ) := {x ∈ A | τ(x) = x},
A being as above and τ being an involution of A, i.e., an anti-automorphism of
period 2. Jordan algebras which are not special are called exceptional. The most
important examples of exceptional Jordan algebras are Albert algebras. They will
be discussed in more detail in Section 4 below.

2.6. Identities in Jordan algebras. Jordan algebras satisfy a host of useful iden-
tities, some of them compiled in [6, 7]. In the present paper, the following ones will
be needed.

(i) VaUb = Ua◦b,b − UbVa,
(ii) 2Ua = V 2

a − Va2 ,
(iii) a2 ◦ b2 = {a, a ◦ b, b} − a ◦ Uba,
(iv) a ◦ Uba = b ◦ Uab,
(v) Uab

2 = −(a ◦ b)2 + Uba
2 + {a, b, a ◦ b},

(vi) UaUb + UbUa − Ua◦b = UUab,b − VaUbVa,
(vii) Va2,b = Va,a◦b − VUab, Vb,a2 = Vb◦a,a − VUab,

(viii) VaVb,a = VUab + VbUa,
(ix) VaUa = UaVa,
(x) Va2Ua = UaVa2 .

Rather than pointing out a specific reference for the above identities (some of them
are even part of the very definition of a Jordan algebra), we invoke Macdonald’s
Principle [9, p. 686] and simply note that they hold in special Jordan algebras,
hence are valid in general since they either involve less than three variables or
exactly three but are linear in one of them.

3. Motivation: the connection with Moufang sets.

In this section, we give a brief survey of how question (1.1) enters into the
connection between Moufang sets and Jordan division rings. Referring to De Medts-
Segev [1] and De Medts-Weiss [2] for more details, we recall that a Moufang set is
a pair M = (X,S) consisting of a set X with more than two elements and a family
S = (Sx)x∈X of subgroups of Sym(X), the full permutation group of X, such that,
writing G = GM for the subgroup of Sym(X) generated by the Sx’s (“the little
projective group of M”), the following conditions hold: (i) The Sx’s make up a full
conjugacy class of subgroups of G, (ii) for each x ∈ X, Sx is a normal subgroup of
Gx (the stabilizer of x in G) and is simply transitive on X \ {x}.

For a Moufang set M = (X,S) as above, the Sx’s are called the root groups of
M.

Now suppose J is a Jordan division ring and, with a new symbol ∞, put X :=
J ∪{∞}. We partially extend the algebraic operations of J to all of X via a+∞ =
∞ = ∞ + a (a ∈ J), −∞ = ∞, ∞−1 = 0, 0−1 = ∞ and use this to define
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permutations of X by means of αa : X → X, x 7→ a + x (a ∈ J), τ : X → X,
x 7→ −x−1. It then follows that M(J) := (X,S), S = (Sx)x∈X with

S∞ := {αa | a ∈ J}, S0 = τS∞τ
−1, Sa := αaS0α

−1
a (a ∈ J×)

is a Moufang set with root groups all isomorphic to the additive group of J ; in
particular, they are abelian.

An important question in the theory of Moufang sets is the converse: does every
Moufang set with abelian root groups come from a Jordan division ring? Since
this question in its general form looks rather intractable at the moment, Segev has
suggested to consider special cases, like the one defined by the Zassenhaus condition:
a Moufang set M = (X,S) is said to satisfy the Zassenhaus condition if G := GM
is not sharply 2-transitive on X and the pointwise stabilizer in G of three distinct
points of X is trivial.

This concept gives rise to the following natural question: which Jordan division
rings have the property that their associated Moufang sets satisfy the Zassenhaus
condition? The following answer, due to Segev and Tent (unpublished), highlights
the significance of question (1.1) in the present context: If J is a Jordan division
ring of characteristic not 2 such that M(J) satisfies the Zassenhaus condition, and
(1.1) can be answered affirmatively for J , then J is a commutative field: more
precisely, there exists a field F such that J = F+.

4. The original question.

In this section we will address question (1.1) in its original set-up of a Jordan
division ring. We begin by disposing of a trivial but crucial side issue.

4.1. The case of a special Jordan algebra. Let J be a special Jordan algebra
over k, so there is a unital associative k-algebra A such that J is a subalgebra
of A+. Hence the U -operator and the circle product of J are given by (2.5.1)
and the second equation of (2.5.2) in terms of the associative product of A. Now
suppose x, y ∈ J satisfy the relation x ◦ y = 0. Then xy = −yx and the expression
UxUyz = xyzyx is symmetric in x and y. Thus question (1.1) has an affirmative
answer for special Jordan algebras.

In order to proceed, we require a comparatively short digression into Albert
algebras, which we will treat here in a slightly unusual way, by focussing exclusively
on the objectives of the present paper. For simplicity, we therefore replace our
commutative base ring k by an arbitrary field F . Free use will then be made of the
differential calculus for polynomial maps as explained in Jacobson [5, Chap. VI],
with a few notational adjustments taken from McCrimmon [10].

4.2. Cubic norm structures. Combining the conceptual framework of McCrim-
mon [10] with the terminology of Petersson-Racine [18], we define a cubic norm
structure over F as a quadruple X = (X, 1, N, ]) consisting of a vector space X
over F , a distinguished element 1 ∈ X (the base point), a cubic form N : X → F
(the norm) and a quadratic map X → X, x 7→ x] (the adjoint) such that N(1) = 1,
1] = 1 and the following identities hold under all scalar extensions.

1× x = T (x)1− x, (1)

T (x], y) = (∂yN)(x),

x]] = N(x)x. (2)
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Here x× y = (x+ y)] − x] − y] is the bilinearized adjoint, T : X ×X → F defined
by

T (x, y) = (∂xN)(1)(∂yN)(1)− (∂x∂yN)(1) (3)

is the bilinear trace of X, and T (x) = T (x, 1). We also put S(x) := T (x]) and call
the map T : X → k (resp. S : X → k) the linear (resp. the quadratic) trace of X,
the latter being a quadratic form whose polarization satisfies the relation

S(x, y) = T (x)T (y)− T (x, y). (4)

The k-module X carries canonically a Jordan algebra structure J = J(X) whose
unit agrees with the base point of X and whose U -operator is given by

Uxy = T (x, y)x− x] × y. (5)

J is a cubic Jordan algebra over F in the sense that the relation

x3 − T (x)x2 + S(x)x−N(x)1 = 0 (6)

holds in all scalar extensions. Moreover, we have

x] = x2 − T (x)x+ T (x])1, (7)

x× y = x ◦ y − T (x)y − T (y)x+
(
T (x)T (y)− T (x, y)

)
1. (8)

From (3) and (5) we deduce that any automorphism of X, i.e., any linear bijection
X → X preserving unit, norm and adjoint, is an automorphism of J .

4.3. Alternative algebras of degree 3. Let A be a unital algebra over F which is
alternative in the sense that the associator [x, y, z] := (xy)z − x(yz) is alternating,
equivalently, that any subalgebra on two generators is associative. Then the F -
vector space A together with the unit 1 = 1A and the U -operator Uxy := (xy)x =
x(yx) =: xyx is a Jordan algebra, actually a special one, said to be associated with
A and denoted by A+.

Now suppose A is a finite-dimensional alternative F -algebra of degree 3 in the
sense of [5, p. 223] and write N := NA for its (generic) norm. By [5, Theo-
rems VI.1,VI.3] (see also Faulkner [4, Lemma]), the relations

N(1) = 1, N(xy) = N(x)N(y),

hold in all scalar extensions. Defining

T (x, y) = (∂xN)(1)(∂yN)(1)− (∂x∂yN)(1),

T (x) = T (x, 1),

x] = x2 − T (x)x+ (∂1N)(x)1,

as in 4.2, one checks that X := X(A) := (A, 1, N, ]) is a cubic norm structure
over F with bilinear trace T (x, y) = T (xy) and associated cubic Jordan algebra
J(X) = A+. Moreover, T is also the generic trace of A and for u, v ∈ A, we have
the additional relation

(uv)] = v]u], (1)
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which (repeatedly) linearizes to

(u1v)× (u2v) = v](u1 × u2), (2)

(uv1)× (uv2) = (v1 × v2)u], (3)

(u1v1)× (u2v2) + (u1v2)× (u2v1) = (v1 × v2)(u1 × u2). (4)

Most alternative algebras of degree 3 we encounter in the sequel will be separable
in the sense that they stay semi-simple under all base field extensions, equivalently,
that their bilinear trace is a non-degenerate symmetric bilinear form.

4.4. The first Tits construction. Let A be a finite-dimensional alternative F -
algebra of degree 3, with generic norm N , generic trace T as in 4.3, and µ ∈
F . Following McCrimmon [10, Theorem 6] if A is associative and Faulkner [4] or
Petersson-Racine [18] in the general case, the direct sum of three copies of A as an
F -vector space, written as

X := A⊕Aj1 ⊕Aj2,
becomes a cubic norm structure X(A,µ) over F whose base point, norm, (bilin-
earized) adjoint, trace are extended from X(A) by means of the formulas

1 = 1 + 0j1 + 0j2,

N(x) = N(x0) + µN(x1) + µ2N(x2)− µT (x0x1x2),

x] = (x]0 − µx1x2) + (µx]2 − x0x1)j1 + (x]1 − x2x0)j2, (1)

x× y = (x0 × y0 − µx1y2 − µy1x2) + (µx2 × y2 − x0y1 − y0x1)j1+ (2)

(x1 × y1 − x2y0 − y2x0)j2,

T (x, y) = T (x0, y0) + µT (x1, y2) + µT (x2, y1), (3)

T (x) = T (x0) (4)

for

x = x0 + x1j1 + x2j2, y = y0 + y1j1 + y2j2 (xi, yi ∈ A, i = 0, 1, 2).

The cubic Jordan algebra corresponding to X(A,µ) will be denoted by J(A,µ).
Both are said to arise from A,µ by means of the first Tits construction; there is
also a second construction but we won’t need it here. Note that A+ = J(X(A))
embeds into J(A,µ) as a subalgebra through the initial summand.

4.5. The concept of an Albert algebra. The algebra Mat3(F ) of ordinary 3×3-
matrices over F is central simple associative of degree 3, with generic norm (resp.
generic trace) given by the ordinary determinant (resp. trace) of matrices, while
their usual adjoint agrees with the adjoint of the corresponding cubic norm struc-
ture.

This being so, we call Jspl := J(Mat3(F ), 1), i.e., the cubic Jordan algebra arising
from A = Mat3(F ) and µ = 1 by means of the first Tits construction, the split Albert
algebra over F . By an Albert algebra over F , we mean a Jordan F -algebra which is
an F -form of Jspl, i.e., which becomes isomorphic to Jspl after extending scalars to
the separable closure of F . Albert algebras are central simple exceptional Jordan
algebras of dimension 27 over F . By Galois descent, they inherit unit, norm,
adjoint and trace from Jspl. Typical examples of Albert algebras are first Tits
constructions J(A,µ), where A is any central simple associative algebra of degree 3
and µ ∈ F is a non-zero scalar. Conversely, suppose J is an Albert algebra, and A
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is a central simple associative algebra of degree 3. By [11, Theorem 8] and its proof,
any embedding A+ ↪→ J of Jordan algebras can be extended to an isomorphism
J(A,µ)

∼→ J , for some non-zero scalar µ ∈ F .

4.6. Albert division algebras. Albert division algebras, i.e., Albert algebras that
are Jordan division algebras in the sense of 2.4, exist and are easy to construct. For
example, given an associative F -algebra A of degree 3 and a non-zero scalar µ ∈ F ,
the first Tits construction J(A,µ) is an Albert division algebra iff µ is not a generic
norm of A, in which case A will be an associative division algebra. Moreover,
an Albert algebra is division iff its norm is anisotropic. Hence , by the theorem
of Chevalley-Warning [8, Exercise IV.7], there are no Albert division algebras over
finite fields and, by a theorem of Springer [19, Lemma 4.2.11], the property of being
an Albert division algebra is preserved under quadratic field extensions.

4.7. Subalgebras on two generators. It is a standard fact that subalgebras on
two generators of an Albert division algebra exist only in dimensions 1, 3, 9. Since
we are not aware of a convenient reference in arbitrary characteristic, we briefly
sketch an ad-hoc proof. Let J be an Albert division algebra over F , with unit 1,
norm N , adjoint ], trace T , and J ′ ⊆ J a subalgebra on two generators, which we
may assume to have dimension > 1. Then F is infinite (4.6), and for char(F ) 6= 2,
the Shirshov-Cohn theorem [5, Theorem I.10] ensures that J ′ is special which, when
combined with [21, p. 148] and the exceptional character of Albert algebras (4.5),
yields the assertion. For the remainder of the proof, we may therefore assume
char(F ) = 2 (in fact, assuming char(F ) 6= 3 will do). Then the validity of the
Shirshov-Cohn theorem is no longer guaranteed but, by a Zariski density argument,
we find two generators a, b of J ′ such that a generates a separable cubic subfield
E ⊆ J ′. If b ∈ E, then J ′ = E has dimension 3, and if b /∈ E, then J ′ has dimension
9 [21, (30.17)].

We are now in a position to provide an affirmative answer to question (1.1) in its
original form.

4.8. Theorem. Suppose we are given elements x, y in a Jordan division ring sat-
isfying x ◦ y = 0. Then the U -operators Ux and Uy commute: UxUy = UyUx.

Proof. Write J for the Jordan division ring in question. By the McCrimmon-
Zel′manov structure theorem [15, 15.7], J is either special or an Albert division
algebra over some field F . The former case having been settled in 4.1, we may
assume the latter. Since J has degree 3 over F , it follows from [17, Cor. 3] that
non-zero elements x, y ∈ J having x ◦ y = 0 do not exist unless F has characteristic
2. Thus, in view of (2.3.1), the proof of Theorem 4.8 will be complete once we have
shown the following proposition.

4.9. Proposition. Let J be an Albert division algebra over a field F of character-
istic 2 and suppose x, y ∈ J satisfy x ◦ y = 0. Then x ∈ F1 or y ∈ F [x].

Proof. Assume the contrary, so x /∈ F1 and y /∈ F [x]. Then J ′, the subalgebra
of J generated by x, y, has dimension 9 (4.7). Hence, by [21, p. 148], J ′ is either
(i) a purely inseparable field extension of characteristic 3 and exponent at most
1 over F , (ii) of the form D+ for some central associative division algebra D of
degree 3 over F , or (iii) of the form Her(D, τ), the Jordan algebra of τ -symmetric
elements in a central associative division algebra (D, τ) of degree 3 with involution
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of the second kind over F . Here (i) is impossible since F has characteristic 2, and
(iii) will be converted into (ii) after extending scalars to an appropriate separable
quadratic field extension. We may therefore assume J ′ = D+ as in (ii). Since F
has characteristic 2, the relation x ◦ y = 0 implies that x and y commute in D. But
k[x], being a separable cubic subfield of D, agrees with its own centralizer, which
implies y ∈ k[x], a contradiction. �

Remark. Roughly speaking, the reasons for the validity of Theorem 4.8 are (i)
the result is trivial for special Jordan algebras, (ii) elements x, y in Albert division
algebras satisfying x ◦ y = 0 are extremely rare. The ubiquity of such elements
in Jordan algebras that fail to be division is well documented in the special cases
below and seems to be responsible for the intractability of the problem in its most
general form.

5. A first approach to the general case.

In this section, we fix an arbitrary Jordan algebra J over k and derive a number
of consequences of the relation x ◦ y = 0 that turn out to be useful in studying
question (1.1) in its most general form.

5.1. Proposition. Assume that x, y ∈ J satisfy x ◦ y = 0. Then:

(i) xn ◦ y = 0 for all odd integers n > 0,
(ii) VxUy = −UyVx,
(iii) x2 ◦ y = −2Uxy,
(iv) Uyx

2 = Uxy
2,

(v) x2 ◦ y2 = −x ◦ Uyx = 2Uyx
2,

(vi) UxUy − UyUx = UUxy,y + UyVx2 = −UUxy,y − Vx2Uy,
(vii) Vx2,y = −VUxy = Vy,x2 .

The identities obtained from (i)−(vii) by interchanging x and y also hold. For
further reference we will indicate them with an asterisk as a superscript.

Proof. (i) We proceed by induction on n. The assertion is true for n = 1. Given
any odd integer n ≥ 3, let us assume that xn−2 ◦y = 0. Then y ◦xn = VyUxx

n−2 =
Uy◦x,xx

n−2−Ux(y ◦xn−2) (by 2.6(i)) = 0 by assumption and the induction hypoth-
esis.

(ii) Apply 2.6(i) with a = x and b = y.
(iii) Apply 2.6(ii) with a = x acting on y.
(iv) Apply 2.6(v) with a = x and b = y.
(v) Apply 2.6(iii) with a = x and b = y to obtain the first equality, and, for the

second one, use (ii).
(vi) UxUy + UyUx = UUxy,y − VxUyVx (by 2.6(vi)) = UUxy,y + UyV

2
x (by (ii))

= UUxy,y + 2UyUx + UyVx2 (by 2.6(ii)), which readily implies the first equality.
Again UxUy + UyUx = UUxy,y − VxUyVx (by 2.6(vi)) = UUxy,y + V 2

x Uy (by (ii)) =
UUxy,y+2UxUy+Vx2Uy (by 2.6(ii)), which implies UxUy−UyUx = −UUxy,y−Vx2Uy.

(vii) Apply 2.6(vii) with a = x and b = y.
The final assertion is obvious. �

5.2. Proposition. Assume that x, y ∈ J satisfy x ◦ y = Uxy = 0. Then:

(i) xn ◦ y = 0 for all positive integers n,
(ii) x2 ◦ y2 = 2Uxy

2 = 2Uyx
2 = x ◦ Uyx = 0,

(iii) Vx2,y = Vy,x2 = 0,
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(iv) 2Vx2Uy = 2UyVx2 = 0,
(v) 2UxUy = 2UyUx.

Proof. (i) We have x2 ◦ y = 0 as a consequence of 5.1(iii). Now, for any n ≥ 3,
xn = Uxx

n−2 and we can prove the assertion by induction on n as in 5.1(i).
(ii) follows directly from 5.1(v) and 5.1(v)∗.
(iii) follows directly from 5.1(vii).
(iv) Using (iii),

0 = 2VyVx2,y = 2VUyx2 + 2Vx2Uy (by 2.6(viii) with a = y and b = x2) =

V2Uyx2 + 2Vx2Uy = 2Vx2Uy

by (ii). Now 2UyVx2 = −2Vx2Uy = 0 by 5.1(ii) applied to x2 and y since x2 ◦ y = 0
by (i).
(v) Just notice that 2(UxUy − UyUx) = 0 by using (iv) and 5.1(vi). �

5.3. Proposition. Assume that x, y ∈ J satisfy x ◦ y = 0. If x is invertible then
x−1 ◦ y = 0.

Proof. Ux(x−1◦y) = UxVy(x−1) = −VyUx(x−1) (by 5.1(ii)∗) = −Vyx = −y◦x = 0,
hence x−1 ◦ y = 0 since Ux is invertible. �

6. Algebraic elements of low degree in linear Jordan algebras.

In this section, we fix elements x, y in a linear Jordan algebra J over a field F
of characteristic not 2 (cf. 2.2). Our aim is to answer question (1.1) affirmatively
in the presence of certain algebraicity conditions. Referring to [5, VI.3] for details,
let us begin by recalling some basic concepts.

6.1. Algebraic elements. x is said to be algebraic if the unital commutative
associative subalgebra F [x] of J is finite-dimensional over F . In this case, the
minimal polynomial of x in a variable t, denoted by µx(t) ∈ F [t], can be formed
with respect to this subalgebra and has the usual properties. For example, x is
invertible in J iff it is so in F [x] iff µx(0) 6= 0, in which case x−1 ∈ F [x]. At the
other extreme, x is nilpotent iff it is algebraic with µx(t) = tn for some positive
integer n. The degree of an algebraic element in J is defined as the degree of its
minimal polynomial.

6.2. Proposition. If x is algebraic of degree at most 2 and x◦y = 0, then UxUy =
UyUx.

Proof. If x is algebraic of degree 1, then it is a scalar multiple of 1, and UxUy =
UyUx, for any y ∈ J . Hence we may assume that x is algebraic of degree 2, forcing
µx(t) = t2 + αt + β for some α, β ∈ F and, in particular, x2 + αx + β1 = 0. If
β 6= 0, then x is invertible by 6.1 with inverse x−1 = −β−1(x+ α1). Thus, by 5.3,

0 = x−1 ◦ y = −β−1(x+ α1) ◦ y = −2β−1αy,

so either y = 0, which obviously implies the assertion, or α = 0. In the latter case,
x2 = −β1, Vx2 = −2βIdJ , thus

Vx2Uy = UyVx2 , (1)
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and

2UxUy =(V 2
x − Vx2)Uy (by 2.6(ii)) =

Uy(V 2
x − Vx2) (by 5.1(ii) and (1)) = 2UyUx.

If β = 0, then x2 = −αx and x2 ◦ y = −αx ◦ y = 0. Hence 2Uxy = 0 by 5.1(iii),
which yields Uxy = 0 since the characteristic is not two. Thus 2UxUy = 2UyUx by
5.2(v), and UxUy = UyUx, again using that the characteristic is not two. �

6.3. Proposition. If x is algebraic of degree 3 and x, y are both invertible, then
x ◦ y 6= 0.

Proof. Arguing indirectly, let us assume x ◦ y = 0. By 6.1 we have µx(t) =
t3 + αt2 + βt + γ for some α, β, γ ∈ F , γ 6= 0. Thus x−1 = −γ−1(x2 + αx + β1),
which implies that x2 is a linear combination of x−1, x, and 1. Therefore, using
5.3, x2 ◦ y is a scalar multiple of y and the same holds true for Uxy by 5.1(iii). Let
us say

Uxy = δy (1)

for some δ ∈ F . We have

Uxy
2 =

1

2
UxVyy = −1

2
VyUxy (by 5.1(ii)∗) = −1

2
y ◦ (δy) (by (1)) = −δy2. (2)

Thus

Uyx
2 = Uxy

2 (by 5.1(iv)) = −δy2 (by (2)) = Uy(−δ1),

i.e., Uy(x2 + δ1) = 0. But y is invertible by hypothesis, forcing x2 + δ1 = 0, so x is
algebraic of degree at most two, a contradiction. �

Remark. The preceding result generalizes [17, Cor. 3], which says that in cubic
Jordan division algebras of characteristic not 2 non-zero elements x, y with x◦y = 0
do not exist.

6.4. Proposition. If x is algebraic of degree 3 and neither invertible nor nilpotent,
then x ◦ y = 0 implies UxUy = UyUx.

Proof. This time 6.1 yields µx(t) = t3 +αt2 + βt for some α, β ∈ F not both zero.
If α 6= 0, then x2 is a linear combination of x3 and x, hence x2 ◦ y = 0 by 5.1(i),
Uxy = 0 by 5.1(iii), and UxUy = UyUx by 5.2(v).

Hence we may assume α = 0, forcing x3 = −βx, β 6= 0. After extending scalars
to the algebraic closure of F , we may replace x by (−β)−

1
2x in order to ensure

x3 = x.
Now U3

x = Ux3 = Ux implies that the minimal polynomial of the endomorphism
Ux : J −→ J divides X3 −X = (X − 1)(X + 1)X. Hence Ux is diagonalizable and
J = J0 ⊕ J1 ⊕ J−1, where Jε = {z ∈ J | Uxz = εz}, ε ∈ {0, 1,−1}. The fact that
Ux and Vx commute by 2.6(ix) implies

Vx(Jε) ⊆ Jε, (1)

ε ∈ {0, 1,−1} (if z ∈ Jε, UxVxz = VxUxz = Vx(εz) = εVxz). Similarly, using 2.6(x),
we obtain

Vx2(Jε) ⊆ Jε. (2)
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We can write y = y0 +y1 +y−1, with yε ∈ Jε, ε ∈ {0, 1,−1}, and Vx(y) = 0 together
with (1), yields

Vx(yε) = x ◦ yε = 0, (3)

ε ∈ {0, 1,−1}. On the other hand, e := x2 is an idempotent (e2 = x4 = 1
2x

3 ◦ x =
1
2x◦x = x2 = e), and e◦y1 = x2 ◦y1 = −2Uxy1 (by (3) and 5.1(iii)) = −2y1, which
implies

y1 = 0, y = y0 + y−1

since the only possible eigenvalues of Ve are 0, 1, 2 [14, II.8.1.4] because e is an
idempotent.

Let J = J0(e) ⊕ J1(e) ⊕ J2(e) be the Peirce decomposition of J with respect
to e [14, II.8.1.2(1)]. In what follows, free use will be made of the rules governing
multiplication of the Peirce components [14, II, 8.2.1].

Since UeJ0 = Ux2J0 = U2
xJ0 = 0, we have J0 ⊆ J0(e) ⊕ J1(e), while for any

z ∈ Ji, i = ±1, Uez = Ux2z = U2
xz = i2z = z, which implies J1 ⊕ J−1 ⊆ J2(e).

Thus, we have

J0 = J0(e)⊕ J1(e), J1 ⊕ J−1 = J2(e). (4)

For y0 we can be more precise since e ◦ y0 = x2 ◦ y0 = −2Uxy0 (by 5.1(iii) using
(3)) = 0, so that

y0 ∈ J0(e). (5)

We recall a fact that will be needed later,

UxUy0 = Uy0Ux, (6)

which follows directly from (3), the fact that Uxy0 = 0, and 5.2(v).
Now we show UxUy = UyUx by checking that both sides coincide when restricted

to J0 and J2(e).
(I) If z ∈ J0, then

Uyz = Uy0+y−1z = Uy0z + Uy−1z + {y0zy−1} = Uy0z + {y0zy−1}

since Uy−1
z ∈ UJ2(e)(J0(e) + J1(e)) (by (4)) = 0. Thus

UxUyz = UxUy0z + Ux{y0zy−1} = UxUy0z

since {y0, z, y−1} ∈ {J0(e), J0(e) +J1(e), J2(e)} (by (4) and (5)) ⊆ J1(e) ⊆ J0. But
by (6), UxUy0z = Uy0Uxz = 0, and we have shown UxUyz = 0 = UyUxz.
(II) If z ∈ J2(e), then

Uyz = Uy0+y−1
z = Uy0z + Uy−1

z + {y0zy−1} = Uy−1
z (7)

since Uy0z ∈ UJ0(e)J2(e) (by (5)) = 0, and {y0zy−1} ⊆ {J0(e)J2(e)J} (by (5))

= 0. Now Uxz ∈ J2(e) since x = x3 = Uxx ∈ J1 ⊆ J2(e) by (4), hence (7)
implies UyUxz = Uy−1

Uxz, so that UxUyz = UyUxz reduces to UxUy−1
z = Uy−1

Uxz
which holds by Prop. 6.2: x, z, y−1 ∈ J2(e) by (4), J2(e) is a Jordan subalgebra
of J , x ◦ y−1 = 0 by (3), and x is algebraic of degree two or less in J2(e) since
0 = x2 − e = x2 − 1J2(e). �
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7. Pointed quadratic forms.

Since question (1.1) in its general form has an affirmative answer for special
Jordan algebras (see 4.1), we have to focus attention on exceptional ones. While
Jordan algebras of pointed quadratic forms are special under mild regularity con-
ditions (see [7, Theorem 2.2.14] for a more precise statement), they are not so in
general [7, p. 2.6]. Hence it makes sense to discuss them in the present context.

7.1. Trace and conjugation of a pointed quadratic form. In what follows
we fix a pointed quadratic form (M, q, 1) over k, so M is a k-module, 1 ∈ M is
a distinguished element (the base point) and q : M → k is a quadratic form (the
norm) satisfying q(1) = 1 ∈ k. We call t : M → k, x 7→ q(1, x), the trace and
ι : M → M, x 7→ x̄ := t(x)1 − x, the conjugation of (M, q, 1). By definition we
have

q(1) = 1, t(1) = 2, (1)

which implies that the conjugation of (M, q, 1) is a linear map of period 2 preserving
base point, norm and trace:

1̄ = 1, q(x̄) = q(x), t(x̄) = t(x).

We also have

q(x̄, y) = q(x, ȳ) = t(x)t(y)− q(x, y). (2)

7.2. The Jordan algebra of a pointed quadratic form. We now consider
the Jordan algebra J = J(M, q, 1) associated with (M, q, 1) [7, 2.1]. Recall, in
particular, that J = M as k-modules, 1J = 1 ∈ M is the unit of J , and its
U -operator acts on J via

Uxy = q(x, ȳ)x− q(x)ȳ.

Linearizing gives x ◦ y = t(x)y + t(y)x − q(x, y)1. In particular, the condition
x ◦ y = 0 is equivalent to

t(x)y + t(y)x = q(x, y)1. (1)

Our aim is to derive a formula for UxUyz (in terms of the norm and its polarization)
that is symmetric in x and y. We will be able to do so but, unfortunately, only in
the absence of 2-torsion. We begin by applying (7.1.2) to obtain

q(x)q(ȳ, z)ȳ = q(x)
(
t(y)t(z)− q(y, z)

)(
t(y)1− y

)
= q(x)t(y)2t(z)1− q(x)t(y)t(z)y − q(x)t(y)q(y, z)1 + q(x)q(y, z)y,

after which a straightforward verification yields

UxUyz = q(x)q(y)z − q(x)q(y, z)y − q(y)q(x, z)x+ (2)

q(x, ȳ)q(ȳ, z)x− q(x)t(y)2t(z)1 + q(x)t(y)q(y, z)1 + q(x)t(y)t(z)y.

Since the first three terms on the right-hand side of (2) form an expression that is
symmetric in x and y, it will be enough to show that the remaining ones all belong
to the 2-torsion part of J provided x ◦ y = 0. This will be accomplished by the
following lemma.
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7.3. Lemma. If x, y ∈ J satisfy the relation x ◦ y = 0, then

2q(x)t(y) = 0 = 2t(x)q(y), (1)

2q(x, y) = 2t(x)t(y), (2)

2q(x, ȳ) = 0. (3)

Proof. Given z ∈ J , we invoke (7.2.1) and obtain q(x, y)t(z) = q(q(x, y)1, z) =
q
(
t(x)y + t(y)x, z

)
, hence

q(x, y)t(z) = t(x)q(y, z) + t(y)q(x, z). (4)

Setting z = x in (4) yields q(x, y)t(x) = t(x)q(x, y) + 2q(x)t(y), hence the first
relation of (1), which by symmetry implies the second. Setting z = 1 in (4) and
applying (7.1.1) yields (2), which combines with (7.1.2) to yield (3). �

7.4. Theorem. If x, y ∈ J satisfy x ◦ y = 0, then 2UxUy = 2UyUx; in particular,
if there is no 2-torsion, the operators Ux and Uy commute.

Proof. Combining Lemma 7.3 with (7.2.2), we conclude that

2UxUyz = 2
(
q(x)q(y)z − q(x)q(y, z)y − q(y)q(x, z)x

)
(1)

is symmetric in x and y, whence the assertion follows.

Remark. In the absence of 2-torsion, (7.4.1) yields the formula

UxUyz = q(x)q(y)z − q(x)q(y, z)y − q(y)q(x, z)x, (2)

which continues to be symmetric in x and y. We do not know whether a similar
formula holds in general.

8. Albert algebras.

In view of the results derived so far, particularly (7.4.2), one is tempted to
conjecture that, given elements x, y, z satisfying x◦y = 0 in a cubic Jordan algebra,
there exists a formula, in terms of norm, trace and adjoint, for the expression UxUyz
that is symmetric in x and y. Unfortunately, we have not been able to confirm
this, even if the base ring is a field and low (positive) characteristics are excluded.
Instead, we have to settle with the following theorem, giving an affirmative answer
to question (1.1) for arbitrary Albert algebras.

8.1. Theorem. Let J be an Albert algebra over a field F . If x, y ∈ J satisfy the
relation x ◦ y = 0, then the operators Ux and Uy commute.

The proof of this theorem requires a few preparations that will be developed as we
go along.

8.2. Initiating the proof of Theorem 8.1. Changing scalars to the algebraic
closure of F , we may assume that J is split. By the Jacobson embedding theorem [5,
Theorem IX.11], which is valid in all characteristics [16], x is contained in a (unital)
subalgebra of J isomorphic to A+, A := Mat3(F ). We may therefore realize J as a
first Tits construction via

J = J(A, 1) = A⊕Aj1 ⊕Aj2 (1)
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as in 4.4 with µ = 1 such that

x = x0, y = y0 + y1j1 + y2j2 (x0, y0, y1, y2 ∈ A). (2)

We wish to study the implication

x ◦ y = 0 =⇒ ∀z ∈ J : UxUyz = UyUxz, (3)

and we will do so not only for A = Mat3(F ) as above. Instead, we will assume from
now on that A be any separable alternative algebra of degree 3 over F , with generic
norm N , generic trace T and adjoint x 7→ x]. The reason for working in this more
general context will become apparent in Corollary 8.12 below.

By linearity and (1), we may assume z = z0 ∈ A or z = ziji, zi ∈ A, i = 1, 2
in (3). If τ : A → A is an anti-automorphism (e.g., z 7→ zt in the special case
A = Mat3(F ) considered before), it is readily checked that the linear bijection

J
∼−→ J, z0 + z1j1 + z2j2 7−→ τ(z0) + τ(z2)j1 + τ(z1)j2,

preserves base points, norms and adjoints, hence is an isomorphism. For the purpose
of proving Theorem 8.1 it will therefore be enough to consider the cases z = z0 and
z = z1j1, zi ∈ A, i = 0, 1 in (3).

8.3. Lemma. The following conditions are equivalent.

(i) x ◦ y = 0.
(ii) x ◦ y0 = x ◦ (y1j1) = x ◦ (y2j2) = 0.

(iii) x0 ◦ y0 = 0, x0y1 = T (x0)y1, y2x0 = T (x0)y2.

Proof. From (4.4.2),(8.2.2) we conclude x× y = x0× y0− (x0y1)j1− (y2x0)j2, and
(4.2.8), (4.4.3), (4.4.4) imply

x ◦ y = x0 × y0 − (x0y1)j1 − (y2x0)j2 + T (x0)y0 + T (x0)(y1j1)+

T (x0)(y2j2) + T (y0)x0 −
(
T (x0)T (y0)− T (x0, y0)

)
1

= x0 ◦ y0 +
(
T (x0)y1 − x0y1

)
j1 +

(
T (x0)y2 − y2x0

)
j2.

Hence x◦ y0 = x0 ◦ y0 ∈ A, x◦ (yiji) ∈ Aji for i = 1, 2, and the assertion follows. �

8.4. Iterated U-operators. Applying (4.2.5), (4.4.3), (4.4.1), (4.4.2), a straight-
forward computation shows, for all z0, z1, z2 ∈ A,

Uxz0 = Ux0
z0 = x0z0x0, (1)

Ux(z1j1) = (x]0z1)j1, (2)

Ux(z2j2) = (z2x
]
0)j2, (3)

Uyz0 =
(
Uy0z0 + (y1y2)× z0

)
+
(
T (y0z0)y1 + z0y

]
2 (4)

− z0(y0y1)
)
j1 +

(
T (y0z0)y2 + y]1z0 − (y2y0)z0

)
j2,

Uy(z1j1) =
(
T (y2z1)y0 + z1y

]
1 − z1(y2y0)

)
+
(
T (y2z1)y1 + y]0z1 (5)

− (y1y2)z1

)
j1 +

(
Uy2z1 + (y0y1)× z1

)
j2,
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Making repeated use of (1)−(5), we now obtain

UxUyz0 =
(
Ux0

Uy0z0 + x0

(
(y1y2)× z0

)
x0

)
+(

T (y0z0)x]0y1 + x]0(z0y
]
2)− x]0

(
z0(y0y1)

))
j1+ (6)(

T (y0z0)y2x
]
0 + (y]1z0)x]0 −

(
(y2y0)z0

)
x]0

)
j2,

UyUxz0 =
(
Uy0Ux0

z0 + (y1y2)× (x0z0x0)
)

+(
T
(
(x0y0x0)z0

)
y1 + (x0z0x0)y]2 − (x0z0x0)(y0y1)

)
j1+ (7)(

T
(
(x0y0x0)z0

)
y2 + y]1(x0z0x0)− (y2y0)(x0z0x0)

)
j2,

UxUy(z1j1) =
(
T (y2z1)x0y0x0 + x0(z1y

]
1)x0 − x0

(
z1(y2y0)

)
x0

)
+(

T (y2z1)x]0y1 + x]0(y]0z1)− x]0
(
(y1y2)z1

))
j1+ (8)(

(y2z1y2)x]0 +
(
(y0y1)× z1

)
x]0

)
j2,

UyUx(z1j1) =
(
T (y2x

]
0z1)y0 + (x]0z1)y]1 − (x]0z1)(y2y0)

)
+(

T (y2x
]
0z1)y1 + y]0(x]0z1)− (y1y2)(x]0z1)

)
j1+ (9)(

y2(x]0z1)y2 + (y0y1)× (x]0z1)
)
j2.

8.5. Lemma. The following conditions are equivalent.

(i) Whenever x ∈ A ⊆ J and y ∈ J satisfy x ◦ y = 0, then the linear operators
UxUy and UyUx agree on A⊕Aj1.

(ii) Whenever x0, y0, y1, y2 ∈ A satisfy the relations

x0 ◦ y0 = 0, x0y1 = T (x0)y1, y2x0 = T (x0)y2, (1)

then

x0

(
(y1y2)× z

)
x0 = (y1y2)× (x0zx0), (2)

T (y0z)x
]
0y1 − x]0

(
z(y0y1)

)
= T

(
(x0y0x0)z

)
y1 − (x0zx0)(y0y1), (3)

x]0(zy]2) = (x0zx0)y]2, (4)

T (y0z)y2x
]
0 −

(
(y2y0)z

)
x]0 = T

(
(x0y0x0)z

)
y2 − (y2y0)(x0zx0), (5)

(y]1z)x
]
0 = y]1(x0zx0), (6)

T (y2z)x0y0x0 − x0

(
z(y2y0)

)
x0 = T (y2x

]
0z)y0 − (x]0z)(y2y0), (7)

x0(zy]1)x0 = (x]0z)y
]
1, (8)

T (y2z)x
]
0y1 − x]0

(
(y1y2)z

)
= T (y2x

]
0z)y1 − (y1y2)(x]0z), (9)

x]0(y]0z) = y]0(x]0z), (10)

(y2zy2)x]0 = y2(x]0z)y2, (11)(
(y0y1)× z

)
x]0 = (y0y1)× (x]0z) (12)

for all z ∈ A.
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Proof. By Lemma 8.3, elements x0, y0, y1, y2 ∈ A satisfy (1) if and only if x =
x0 ∈ A ⊆ J and y = y0 + y1j1 + y2j2 ∈ J satisfy x ◦ y = 0. In this case, since
A+ is special, 4.1 implies Ux0

Uy0 = Uy0Ux0
on A. Hence the assertion follows from

inspecting the equations (8.4.6)−(8.4.9). �

8.6. Continuing the proof of Theorem 8.1. Until the end of the proof we
assume that A is associative. Combining the reductions carried out in 8.2 with
Lemma 8.5, the implication (8.2.3) will follow once we have shown that (8.5.1) im-
plies (8.5.2)−(8.5.12), so let us suppose from now on that (8.5.1) holds. By passing
to Aop if necessary, (8.5.5) (resp. (8.5.4)) follows from (8.5.3) (resp. (8.5.6)). We
are thus reduced to showing

(8.5.2),(8.5.3),(8.5.6)−(8.5.12). (1)

Proof of (8.5.2). Applying (4.2.1),(8.5.1) and (4.3.4) first for v2 = 1, then for
u2 = 1, we obtain

x0

(
(y1y2)× z

)
x0 = T (x0)

(
(y1y2)× z

)
x0 − (x0 × 1)

(
(y1y2)× z

)
x0

= T (x0)
(
(y1y2)× z

)
x0 −

(
(y1y2x0)× z

)
x0 −

(
(y1y2)× (zx0)

)
x0

= −
(
(y1y2)× (zx0)

)
x0

= − T (x0)
(
(y1y2)× (zx0)

)
+
(
(y1y2)× (zx0)

)
(x0 × 1)

= − T (x0)
(
(y1y2)× (zx0)

)
+ (x0y1y2)× (zx0)

+ (x0zx0)× (y1y2)

= (y1y2)× (x0zx0).

Proof of (8.5.3). This time we combine (4.2.1) with (4.3.2) and conclude

T (y0z)x
]
0y1 − x]0zy0y1 = x]0

(
T (zy0)1− zy0

)
y1 = x]0

(
(zy0)× 1

)
y1

=
(
(zy0x0)× x0

)
y1,

so by (4.2.8) and (8.5.1) we have

T (y0z)x
]
0y1 − x]0zy0y1 = zy0x

2
0y1 + x0zy0x0y1 − T (zy0x0)x0y1−

T (x0)zy0x0y1 + T (zy0x0)T (x0)y1 − T (zy0x
2
0)y1

= T (x0)2zy0y1 − x0zx0y0y1 − T (x0)T (zy0x0)y1−
T (x0)2zy0y1 + T (zy0x0)T (x0)y1 + T (x0y0x0z)y1

= T (x0y0x0z)y1 − x0zx0y0y1.

Proof of (8.5.10). Using (4.3.1) and (8.5.1), we obtain x]0y
]
0z = (y0x0)]z =

(−x0y0)]z = (x0y0)]z = y]0x
]
0z, hence (8.5.10).

In view of (1), it remains to verify

(8.5.6)−(8.5.9), (8.5.11),(8.5.12). (2)

In order to do so, we require a few further preparations.
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8.7. Lemma. Suppose u, v ∈ A satisfy uv = 0. Then

u]v = T (u])v, uv] = T (v])u. (1)

Moreover, u] = 0 or v] = 0.

Proof. By (4.2.7), u]v = u2v−T (u)uv+T (u])1v = T (u])v, giving the first equation
of (1). The second follows from the first by passing to Aop. Now suppose v] 6=
0. Then u cannot be invertible, forcing N(u) = 0. Taking adjoints in the first
equation of (1) and applying (4.2.2),(4.3.1), we therefore obtain 0 = N(u)v]u =
v]u]] = (u]v)] = T (u])2v], hence T (u]) = 0. For any a ∈ A we have auv = 0,
so the preceding considerations apply to au in place of u and yield T (u]a]) = 0.
Linearizing and applying (4.2.1), we conclude 0 = T (u](1 × a)) = T (u])T (a) −
T (u]a) = −T (u]a), hence u] = 0 since A was assumed to be separable (cf. 4.3,
8.2). �

8.8. Lemma. With the notations and assumptions of 8.6 we have

x]0y1 = T (x]0)y1, y2x
]
0 = T (x]0)y2, (1)

y]1x0 = −T (x0)y]1, x0y
]
2 = −T (x0)y]2. (2)

If y]1 6= 0 or y]2 6= 0, then

x]0 = −T (x0)x0. (3)

Proof. By passing to Aop if necessary, it suffices to establish the first equations of

(1),(2) and to derive (3) under the assumption y]1 6= 0.

Combining (4.2.7) with (8.5.1), we obtain x]0y1 = x2
0y1−T (x0)x0y1 +T (x]0)1y1 =

T (x0)2y1−T (x0)2y1+T (x]0)y1, hence the first equation of (1). Moreover, combining
(4.2.1) with (4.3.2) yields

y]1x0 = T (x0)y]1 − y
]
1(x0 × 1) = T (x0)y]1 − (x0y1)× y1

= T (x0)y]1 − T (x0)y1 × y1 = T (x0)y]1 − 2T (x0)y]1,

and this is the first equation of (2). It remains to prove (3) under the assumption

y]1 6= 0. Setting x̄0 := T (x0)1−x0, we deduce x̄0y1 = 0 from (8.5.1), and Lemma 8.7

implies 0 = x̄]0 = (T (x0)1 − x0)] = T (x0)21 − T (x0)(1 × x0) + x]0 = T (x0)21 −
T (x0)21 + T (x0)x0 + x]0, and (3) follows. �

Remark. The referee has noted that (3) does not follow if y]1 = y]2 = 0: with the
usual matrix units eij ∈ A := Mat3(F ), put x0 = y1 = y2 = e11, y0 = e22.

8.9. Returning to the proof of Theorem 8.1. We now proceed to establish the
equations of (8.6.2).

Proof of (8.5.6). The equation is obvious for y]1 = 0, allowing us to assume y]1 6= 0.

Then (8.8.3) holds, and if T (x0) 6= 0, we conclude y]1x0zx0 = −T (x0)−1y]1x
]
0zx0 =

−T (x0)−1(x0y1)]zx0 = −T (x0)−1T (x0)2y]1zx0 = y]1zx
]
0. Thus we are reduced to

the case T (x0) = 0, which implies x]0 = 0 by (8.8.3), hence y]1zx
]
0 = 0, and

(4.2.5),(8.8.2) yield y]1x0zx0 = y]1(Ux0
z) = y]1T (x0z)x0 = −T (x0)T (x0z)y

]
1 = 0.
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Proof of (8.5.7). Consulting (4.2.1),(4.3.2),(8.5.1) and (4.2.8), we obtain

x]0zy2 = T (zy2)x]0 − x
]
0

(
(zy2)× 1

)
= T (zy2)x]0 − (zy2x0)× x0

= T (zy2)x]0 − T (x0)(zy2)× x0

= T (zy2)x]0 − T (x0)zy2x0 − T (x0)x0zy2 + T (x0)T (zy2)x0+

T (x0)2zy2 − T (x0)2T (zy2)1 + T (x0)T (zy2x0)1

= T (zy2)x]0 − T (x0)2zy2 − T (x0)x0zy2 + T (x0)T (zy2)x0+

T (x0)2zy2 − T (x0)2T (zy2)1 + T (x0)2T (zy2)1

= T (zy2)
(
x]0 + T (x0)x0

)
− T (x0)x0zy2.

Combining this with (4.2.7) we deduce

x]0zy2 = T (zy2)x2
0 + T (x]0)T (zy2)1− T (x0)x0zy2,

and (8.8.1) yields

T (y2x
]
0z)y0 − x]0zy2y0 = T (x]0)T (y2z)y0 − T (zy2)x2

0y0−

T (x]0)T (zy2)y0 + T (x0)x0zy2y0

= T (zy2)x0y0x0 + x0zy2x0y0

= T (y2z)x0y0x0 − x0zy2y0x0,

as claimed.

Proof of (8.5.8). Again we may assume y]1 6= 0, so (8.8.3) holds. Hence, by (8.8.2),

x0zy
]
1x0 = −T (x0)x0zy

]
1 = x]0zy

]
1.

Proof of (8.5.9),(8.5.11). We begin by applying (8.8.1) and obtain

T (y2z)x
]
0y1 − x]0y1y2z = T (x]0)T (y2z)y1 − T (x]0)y1y2z = T (y2x

]
0z)y1 − y1y2x

]
0z,

giving (8.5.9). Similarly, y2zy2x
]
0 = T (x]0)y2zy2 = y2x

]
0zy2, giving (8.5.11).

We have thus verified all equations of (8.6.2) with the exception of (8.5.12), which
turns out to be the most difficult. We begin with yet another technical result.

8.10. Lemma. Let c ∈ A be an element satisfying T (c) = 1 and c] = 0.

(a) c is an idempotent of A with the Peirce decomposition

A = A11 ⊕A12 ⊕A21 ⊕A22, A11 = Fc, (1)

where Aij = ciAcj for i, j = 1, 2, c1 := c, c2 := 1− c.
(b) A+

22 is the Jordan algebra of a pointed quadratic form. More precisely,

A+
22 = J

(
A22, z22 7→ T (z]22), d

)
, d := 1− c, (2)

and the trace of A restricts to the trace of A+
22. Furthermore

z22 7−→ z̄22 = T (z22)d− z22 = c× z22 (3)

is the conjugation of A+
22 and an algebra involution of the associative algebra

A22.
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(c) The relations

c× z12 = c× z21 = z]12 = z]21 = 0, (4)

z]22 = T (z]22)c, (5)

T (z12) = T (z21) = 0, (6)

z12 × z22 = − z12z̄22, (7)

z21 × z22 = − z̄22z21, (8)

z12 × z21 = − z21z12 (9)

hold for all zij ∈ Aij, i, j = 1, 2, (i, j) 6= (1, 1).

Proof. (a) By (4.2.7), c ∈ A is an idempotent, and if x ∈ A satisfies cx = x = xc,
then (4.2.5) yields x = cxc = Ucx = T (cx)c, proving (1).

(b) The first part is basically just Faulkner’s lemma [3, Lemma 1.5]. Since A22 is
an associative F -algebra of degree 2 in the sense of McCrimmon [13], its conjugation
is an algebra involution by (4.2.4) and [13, Theorem 1.1].

(c) These relations follow from a number of easy computations, using (2), (4.2.7),
(4.2.8), (4.3.3), (4.3.2), (4.3.1): c × z22 = cz22 + z22c − T (c)z22 − T (z22)c +
(T (c)T (z22) − T (cz22))1 = −z22 − T (z22)c + T (z22)1 = T (z22)d − z22 = z̄22,
giving (3); c × z12 = c × cz12 = (1 × z12)c] = 0, c × z21 = c × (z21c) =

c](1 × z21) = 0, z]12 = (cz12)] = z]12c
] = 0, z]21 = (z21c)

] = c]z]21 = 0, giving

(4); z]22 = z2
22 − T (z22)z22 + T (z]22)1 = −T (z]22)d + T (z]22)1 = T (z]22)c, giving (5);

T (z12) = T (cz12) = T (z12c) = 0, T (z21) = T (z21c) = T (cz21) = 0, giving (6);
z12× z22 = z12z22 + z22z12−T (z12)z22−T (z22)z12 + (T (z12)T (z22)−T (z12z22))1 =
z12z22−T (z22)z12d = −z12z̄22, giving (7); z21× z22 = z21z22 + z22z21−T (z21)z22−
T (z22)z21 + (T (z21)T (z22) − T (z21z22))1 = z22z21 − T (z22)dz21 = −z̄22z21, giving
(8); and finally, by (1),

z12 × z21 = z12z21 + z21z12 − T (z12)z21 − T (z21)z12+(
T (z12)T (z21)− T (z12z21)

)
1

= T (z12z21)c+ z21z12 − T (z12z21)1

= z21z12 − T (z21z12)d = −z21z12,

giving (9). �

8.11. Finishing the proof of Theorem 8.1. We are now prepared to prove
(8.5.12). To this end, we proceed in several steps.

10. We reduce to the case y]1 = 0. Indeed, if y]1 6= 0, then (8.8.3) holds and (4.3.3)
yields (

(y0y1)× z
)
x]0 = (x0y0y1)× (x0z) = −(y0x0y1)× (x0z)

= − (y0y1)×
(
T (x0)x0z

)
= (y0y1)× (x]0z),

as claimed.

20. Being allowed to assume y]1 = 0 by 10, we next reduce to the case T (y1) = 1,
forcing y1 ∈ A to be an idempotent as in Lemma 8.10. To see this, we assume

(8.5.1) implies (8.5.12) if y]1 = 0 and T (y1) = 1. Then suppose y1 with (8.5.1) and
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y]1 = 0 is arbitrary, consider the subspace

I := {v ∈ A | (v × z)x]0 = v × (x]0z) for all z ∈ A}
of A and let v ∈ I, w ∈ A. Then (4.3.4) gives, for all z ∈ A,(

(vw)× z
)
x]0 +

(
v × (zw)

)
x]0 = (w × 1)(v × z)x]0 = (w × 1)

(
(v × (x]0z)

)
= (vw)× (x]0z) +

(
v × (x]0zw)

)
= (vw)× (x]0z) +

(
v × (zw)

)
x]0

hence vw ∈ I, so I ⊆ A is a right ideal. Now, by non-degeneracy of T , some w ∈ A
has T (c) = 1 with c := y1w. Since, in addition, c] = w]y]1 = 0,

cy1 = y1wy1 = T (c)y1 − y]1 × w = y1, x0c = x0y1w = T (x0)y1w = T (x0)c,

we conclude y0c ∈ I (by the special case whose validity we have assumed), forcing
y0y1 = y0cy1 ∈ I since I ⊆ A is a right ideal. Hence (8.5.12) holds.

30. For the rest of the proof, we may and always will assume that the element
y1 = c ∈ A satisfies T (c) = 1, c] = 0, allowing us to adopt the notation of
Lemma 8.10. Since x0c = T (x0)c by (8.5.1), we have, by (8.10.1),(8.10.6),

x0 = T (x0)c+ x12 + x22, x12 ∈ A12, x22 ∈ A22, T (x22) = 0. (1)

This and (8.10.2),(8.10.3) yield

x2
22 = −T (x]22)d, x̄22 = −x22. (2)

Write

y0 = βc+ y12 + y21 + y22, β ∈ F, yij ∈ Aij (i, j = 1, 2, (i, j) 6= (1, 1)). (3)

Comparing the Peirce components of x0y0 = −y0x0 (cf. (8.5.1)), we conclude

T (x12y21) = − 2βT (x0), (4)

T (x0)y12 + y12x22 = − βx12 − x12y22, (5)

x22y21 = − T (x0)y21, (6)

x22y22 + y22x22 = − y21x12. (7)

Next we observe

y0y1 = y0c = βc+ y21 ∈ A11 +A21. (8)

by (3). Finally, we compute the Peirce components of x]0 with the aid of (1), (2),
(8.10.4), (8.10.5), (8.10.3), (8.10.7) to obtain

x]0 = T (x]22)c+ x12x22 − T (x0)x22. (9)

In order to verify (8.5.12), we are reduced by linearity in z to the following cases,
the first one adopting a simplification due to the referee.

40. z ∈ A11 +A21. Since

(A11 +A21)] = A]11 +A11 ×A21 +A]21 = {0} (10)

by (8.10.4), we deduce (y0y1)× z = 0 from (8). On the other hand, by (9),

x]0z ∈
(
T (x]22)c+ x12x22 − T (x0)x22

)
(A11 +A21) ⊆ A11 +A21,

so (10) and again (8.10.4) yield (y0y1)× (x]0z) = 0 as well, and the proof of (8.5.12)
is complete in this case.
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50. z = z12 ∈ A12. Then by (8) and (8.10.4),(8.10.9), (y0y1)×z = (βc+y21)×z12 =
−y21z12, forcing(

(y0y1)× z
)
x]0 = −y21z12

(
T (x]22)c+ x12x22 − T (x0)x22

)
= T (x0)y21z12x22. (11)

On the other hand, x]0z = (T (x]22)c + x12x22 − T (x0)x22)z12 = T (x]22)z12, which
implies

(y0y1)× (x]0z) = T (x]22)(βc+ y21)× z12 = −T (x]22)y21z12. (12)

Taking conjugates in (11),(12) and invoking (2), we therefore have to show

T (x0)x22y21 = T (x]22)y21. (13)

But from (2),(6) we conclude that T (x0)x22y21 = −x2
22y21 = T (x]22)dy21 =

T (x]22)y21, and (13) holds.

60. z = z22 ∈ A22. Then by (8) and (8.10.3),(8.10.8),

(y0y1)× z = (βc+ y21)× z22 = −z̄22y21 + βz̄22,

which implies, using (9),(
(y0y1)× z

)
x]0 =

(
− z̄22y21 + βz̄22

)(
T (x]22)c+ x12x22 − T (x0)x22

)
,

hence (
(y0y1)× z

)
x]0 = −T (x]22)z̄22y21 − z̄22y21x12x22 − βT (x0)z̄22x22. (14)

On the other hand, again by (9),

x]0z =
(
T (x]22)c+ x12x22 − T (x0)x22

)
z22 = x12x22z22 − T (x0)x22z22,

which by Lemma 8.10, particularly (8.10.3), (8.10.8), (8.10.9) and (2), implies

(y0y1)× (x]0z) =
(
βc+ y21

)
×
(
x12x22z22 − T (x0)x22z22

)
= − βT (x0)x22z22 − y21x12x22z22 + T (x0)x22z22y21

= − T (x0)z̄22x22y21 + βT (x0)z̄22x22 + z̄22x22y21x12.

Comparing this with (14), we see that it suffices to show

T (x]22)y21 = T (x0)x22y21, y21x12x22 + 2βT (x0)x22 + x22y21x12 = 0.

Here the first equation agrees with (13), while the second one follows from (7),(4),(2)
and

y21x12x22 + 2βT (x0)x22 + x22y21x12

= −x22y22x22 − y22x
2
22 − T (y21x12)x22 + x22y21x12

= −x22y22x22 + T (x]22)y22 − x22

(
T (y21x12)d− y21x12

)
= −x22y22x22 + T (x]22)y22 − x22y21x12

= −x22y22x22 + T (x]22)y22 + x2
22y22 + x22y22x22

= T (x]22)y22 − T (x]22)y22 = 0.

This concludes the proof of (8.5.12), hence of Theorem 8.1. �
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8.12. Corollary. Let A be a separable alternative algebra of degree 3 over F , with
generic norm N , generic trace T , and adjoint x 7→ x]. If x0, y0, y1, y2 ∈ A satisfy
(8.5.1), then the equations (8.5.2)−(8.5.12) hold.

Proof. By hypothesis, the cubic Jordan algebra J(A, 1) over F is either special or
Albert. In any event, we may conclude from 4.1 and Theorem 8.1 that Lemma 8.5 (i)
holds. Hence so does Lemma 8.5 (ii). �

Remark. It could be argued with some justification that, since equations (8.5.2)-
−(8.5.12) are of a purely technical nature, Cor. 8.12 is of little intrinsic value. Yet
in view of the fact that our proof of these equations (under the hypothesis (8.5.1))
relies heavily on A being an associative algebra, the extension in Cor. 8.12 to the
alternative case by appealing to the first Tits construction of Albert algebras could
be of some interest from a methodological point of view. That we were able to
carry out this extension with virtually no extra cost, may serve as a justification to
include it here. Incidentally, the only alternative algebras to which Corollary 8.12
applies but which are not associative have the form A = F ⊕C, with C an octonion
algebra over F .

9. Non-unital Jordan algebras.

After the preceding preparations, we are finally ready to tackle the main result
of the paper. We begin by recalling the basic definitions.

9.1. The concept of a non-unital Jordan algebra. Following McCrimmon [12],
we define a non-unital (quadratic) Jordan algebra over k as a k-module J together
with two quadratic maps J → J , x 7→ x2, (the squaring), and U : J → Endk(J),
x 7→ Ux, (the U -operator) such that, setting

x ◦ y := Vxy := (x+ y)2 − x2 − y2

(the Jordan circle product) and

{xyz} := Vx,yz := Ux,zy := (Ux+z − Ux − Uz)y

(the Jordan triple product), the following identities hold in all scalar extensions.

Vx,xy = x2 ◦ y,
Ux(x ◦ y) = x ◦ Uxy

Uxx
2 = (x2)2

UxUyx
2 = (Uxy)2

Ux2 = Ux
2

UUxy = UxUyUx.

Given a non-unital Jordan algebra J , a (Jordan) subalgebra of J is a k-submodule
stable under the operations x2 and Uxy. An ideal of J is k-submodule I ⊆ J such
that I2 +I ◦J+UIJ+UJI+{JJI} ⊆ J . An ideal I ⊆ J is always a subalgebra, and
the quotient J/I is a non-unital Jordan algebra in a natural way. If I1, I2 are ideals
in J , so is UI1I2; if UI1I2 = {0}, then the ideals I1, I2 are said to be orthogonal.

Every unital Jordan algebra can be viewed as a non-unital Jordan algebra with
squaring defined by (2.1.1). Obviously, unital subalgebras then become subalgebras
also in the non-unital sense.
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9.2. Unitizations. Given a non-unital Jordan algebra J over k, let k1 be a free
k-module of rank 1. Then the direct sum Ĵ := J ⊕ k1 becomes a unital Jordan
algebra, the (free) unital hull of J , under the U -operator

Ux+λ1(y + µ1) = (Uxy + µx2 + 2λµx+ λ(x ◦ y) + λ2y) + λ2µ1,

making J ⊆ Ĵ an ideal [12]. By factoring out an ideal I of Ĵ that is maximal with
respect to the property of having trivial intersection with J (which exists by Zorn’s

Lemma), we obtain the unital Jordan algebra J ′ := Ĵ/I (a tight unital hull of J)
such that J embeds as an ideal in J ′ in a tight way, meaning that any nonzero ideal
of J ′ intersects J non-trivially.

9.3. Extending results to the non-unital case. Since non-unital Jordan alge-
bras can always be viewed as subalgebras of unital ones (9.2), many useful properties
of the former retain their validity in the broader setting. In particular, 2.6 holds
for arbitrary non-unital Jordan algebras, as do Propositions 5.1 and 5.2.

9.4. Non-degeneracy and primeness. Let J be a non-unital Jordan algebra
over k. An element z ∈ J is an absolute zero divisor if Uz = 0. We say J is
non-degenerate if it does not contain absolute zero divisors other than zero. There
is a unique smallest ideal in J , called its McCrimmon radical and denoted by
Mc(J), making the quotient J/Mc(J) non-degenerate. J is said to prime if it does
not contain non-zero orthogonal ideals. Non-unital Jordan algebras that are both
prime and non-degenerate are called strongly prime.

After these preparations, we will now be able to establish the main result of the
paper.

9.5. Theorem. Let J be a non-degenerate non-unital Jordan algebra over k. If
x, y ∈ J satisfy x ◦ y = 0, then Ux and Uy commute.

Proof. We carry out a number of reductions that will eventually allow us to make
use of our preceding answers to question (1.1). First of all, by [20, Corollary 4], J
is a subalgebra of a direct product of strongly prime non-unital Jordan algebras.
Hence we may assume that J itself is strongly prime. Now let J ′ be a tight unital
hull of J . By tightness, J ′ is also prime (nonzero orthogonal ideals of J ′ would give
rise to nonzero orthogonal ideals of J) and non-degenerate (we have Mc(J) = 0,
but also Mc(J) = Mc(J ′)∩J by [20, Corollary to Theorem 5], hence Mc(J ′) = 0 by
tightness). Thus we may assume that J is unital. Now the Zel′manov-McCrimmon
structure theory [15, 15.1,15.4] implies that J is either special or an Albert form.
Hence 4.1 and Theorem 8.1 yield the desired conclusion. �

Acknowledgements

We are indebted to O. Loos and K. McCrimmon for illuminating comments.
Our special thanks go to Y. Segev for having drawn our attention to the problem of
commuting U -operators in Jordan algebras, and for putting it in perspective with
the theory of Moufang sets. The permission of Y. Segev and K. Tent to quote one
of their unpublished results in Section 3 is gratefully acknowledged.

Last but not least, we are greatly indebted to the referee, who studied the paper
very carefully and, by making several useful suggestions, contributed significantly
to an improved presentation of the subject.



COMMUTING U-OPERATORS 25

References

1. T. De Medts and Y. Segev, A course on Moufang sets, Innov. Incidence Geom. 9 (2009),

79–122. MR 2658895 (2011h:20058)
2. T. De Medts and R.M. Weiss, Moufang sets and Jordan division algebras, Math. Ann. 335

(2006), no. 2, 415–433. MR 2221120 (2007e:17027)
3. J.R. Faulkner, Octonion planes defined by quadratic Jordan algebras, Mem. Amer. Math.

Soc., No. 104, Amer. Math. Soc., Providence, R.I., 1970. MR 0271180 (42 #6063)

4. , Finding octonion algebras in associative algebras, Proc. Amer. Math. Soc. 104 (1988),
no. 4, 1027–1030. MR 931729 (89g:17003)

5. N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Coll. Publ.,

Vol. XXXIX, Amer. Math. Soc., Providence, R.I., 1968. MR 0251099 (40 #4330)
6. , Lectures on quadratic Jordan algebras, Tata Institute of Fundamental Research,

Bombay, 1969, Tata Institute of Fundamental Research Lectures on Mathematics, No. 45.

MR 0325715 (48 #4062)
7. , Structure theory of Jordan algebras, University of Arkansas Lecture Notes in Math-

ematics, vol. 5, University of Arkansas, Fayetteville, Ark., 1981. MR 634508 (83b:17015)

8. S. Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New
York, 2002. MR 1878556 (2003e:00003)

9. R.E. Lewand and K. McCrimmon, Macdonald’s theorem for quadratic Jordan algebras, Pacific
J. Math. 35 (1970), 681–706. MR 0299648 (45 #8696)

10. K. McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras,

Trans. Amer. Math. Soc. 139 (1969), 495–510. MR 0238916 (39 #276)
11. , The Freudenthal-Springer-Tits constructions revisited, Trans. Amer. Math. Soc. 148

(1970), 293–314. MR 0271181 (42 #6064)

12. , Quadratic Jordan algebras and cubing operations, Trans. Amer. Math. Soc. 153
(1971), 265–278. MR 0268239 (42 #3138)

13. , Nonassociative algebras with scalar involution, Pacific J. Math. 116 (1985), no. 1,

85–109. MR 769825 (86d:17003)
14. , A taste of Jordan algebras, Universitext, Springer-Verlag, New York, 2004.

MR 2014924 (2004i:17001)
15. K. McCrimmon and E. Zel′manov, The structure of strongly prime quadratic Jordan algebras,

Adv. in Math. 69 (1988), no. 2, 133–222. MR 946263 (89k:17052)

16. H.P. Petersson, Embedding theorems for reduced Albert algebras over arbitrary fields, In prepa-
ration.

17. , On linear and quadratic Jordan division algebras, Math. Z. 177 (1981), no. 4, 541–

548. MR 82h:17013
18. H.P. Petersson and M.L. Racine, Jordan algebras of degree 3 and the Tits process, J. Algebra

98 (1986), no. 1, 211–243. MR 87h:17038a

19. T.A. Springer and F.D. Veldkamp, Octonions, Jordan algebras and exceptional groups,
Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1763974

(2001f:17006)

20. A. Thedy, z-closed ideals of quadratic Jordan algebras, Comm. Algebra 13 (1985), no. 12,
2537–2565. MR 811523 (87a:17026)

21. J. Tits and R.M. Weiss, Moufang polygons, Springer Monographs in Mathematics, Springer-
Verlag, Berlin, 2002. MR 1938841 (2003m:51008)
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