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Abstract

We consider two-tier voting system and try to determine optimal weights for a
fair representation in such systems. A prominent example of such a voting system
is the Council of Ministers of the European Union. Under the assumption of inde-
pendence of the voters, the square root law gives a fair distribution of power (based
on the Penrose-Banzhaf power index) and a fair distribution of weights (based on the
concept of the majority deficit), both given in the book by Felsenthal and Machover.
In this paper, special emphasis is given to the case of correlated voters. The coopera-
tive behaviour of the voters is modeled by suitable adoptions of spin systems known
from statistical physics. Under certain assumptions we are able to compute the op-
timal weights as well as the average deviation of the council’s vote from the public
vote which we call the democracy deficit.

Acknowledgement This paper will be presented at the Leverhulme Trust sponsored Vot-
ing Power in Practice Symposium held at the London School of Economics, 20–22 March
2011.

1 Introduction
In this paper, we consider two-tier voting systems. The first level of such a systems usually
consists of the voters in a country or an association of countries. The voters in each
constituency (or member country) are represented by a delegate in the second level voting
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system, the council. Delegates in the council are given a voting weight which as a rule
depends on the population of the constituency they represent.

Examples of such two-tier voting systems are the Council of Ministers of the Euro-
pean Union, the Electoral College in the USA and the ‘Bundesrat’, the state chamber of
Germany’s parliamentary system. In each case we assume that the representatives vote
according to the majority vote in their respective constituency.

What is a fair voting weight for a delegate in a council? This question arises immedi-
ately in all these examples. It seems self-evident that for a fair voting system the voting
outcome in the council should agree with the result of a popular vote. The US presidential
elections 2000 show that this is not always the case. While Al Gore won the public vote
the majority in the Electoral College elected Georg W. Bush as the 43rd president of the
USA. The difference between the voting result in the council and the public vote is called
the ‘democracy deficit’.

In fact, it is not hard to see, that no voting system for the council can guarantee that
the vote in the council and the public vote agree. In other words, no matter how we choose
the voting weights for the council members, the democracy deficit cannot be zero for all
possible distributions of ‘yes’- and ‘no’- votes among the voters. Thus, the best one can do
is to minimize the expected democracy deficit, i. e., the difference between the vote in the
council and popular vote. Obviously, the term ‘expected’ needs a careful interpretation. If
one assumes that all voters cast their votes independently of each other then one can show
that the expected democracy deficit is minimized if the voting weight of a representative
is chosen proportional to the square root

√
Nν of the population (Nν) of the respective

country (with number ν).
This is (one version of) the celebrated ‘square root law’ by Penrose (see

[Felsenthal and Machover 1998] and [Penrose 1946]). In this paper, we go beyond the
square root law by dropping the assumption of the voters’ independence. We apply two dif-
ferent schemes to model the correlation between the voters. In our main model we assume
that the voters are influenced by a ‘common belief’ of the society or -which is the same,
technically speaking- by a strong group of opinion makers. We call this system the CBM
(for ‘common belief model’ or ‘collective bias model’) (see [Kirsch 2007]). The CBM
can be looked upon as a generalization of a model proposed by Straffin [Straffin 1977] in
connection with the Shapley-Shubik power index (see [Shapley and Shubik 1954]). The
other model we look at takes into account that voters influence each other. It is based on a
model (the Curie-Weiss Model) for ferromagnetic behaviour taken from statistical physics
(see [Kirsch 2007] and cf. [Ellis 1985, Thompson 1972]).

If we assume that the voters in different countries vote independently of each other,
we can compute the optimal voting weights in terms of the expected margins of the voting
outcome in the countries. For the CBM the optimal weights are proportional to the pop-
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ulation Nν . We also compute the expected democracy deficit for these models (for large
Nν).

Under the assumption that the voters influence each other also across country borders
(according to the CBM) we can also compute the expected democracy deficit asymptoti-
cally. It turns out that in this case any voting weight is as good as any other one. In other
words, on an asymptotical scale any distribution of voting weights is close to optimal.

2 The General Model
We consider a situation where M states (countries, constituencies) form a federation. The
states are labeled by Greek characters, e. g., ν, κ, . . .. The number of voters (population)
of the state ν is denoted by Nν . Consequently, the total population of the union is given
by N =

∑M
ν=1Nν .

We represent the vote of the voter i in state ν by Xν i. This voter may vote either ‘yes’,
in which case we set Xν i = 1 or ‘no’ encoded as Xν i = −1. Consequently, the result
of a simple majority voting in the state ν is represented by the sum Sν =

∑Nν
i=1Xν i. A

voting in that state is affirmative if Sν > 0. For the simplicity of notation and to avoid
nonsignificant technicalities we assume that all Nν are odd numbers, this excludes a draw
described by Sν = 0.

We denote the voting decision in the state ν by χν = χν(Sν) which we set equal to 1
if Sν > 0 and equal to −1 if Sν ≤ 0. Thus, the representative of state ν will vote ‘yes’ if
χν = 1 and ‘no’ if χν = −1. For later use we note that χνSν = |Sν |.

If we denote the voting weight for state ν in the council by gν then the voting result in
the council is given by

C =
M∑
ν=1

gν χν . (1)

This voting result has to be compared with the popular vote given by

P =
M∑
ν=1

Sν . (2)

We call the absolute value of the difference between C and P the democracy deficit and
denote it by ∆

∆ = |C − P | (3)

=
∣∣∣ M∑
ν=1

gν χν −
M∑
ν=1

Sν

∣∣∣ . (4)

3



The democracy deficit ∆ depends explicitly on the voting weights g1, . . . , gM . The
voting weights should be chosen in such a way that the democracy deficit is as small as
possible.

The voting results Xν i are the voter’s reaction on a particular proposal ω. Hence, the
democracy deficit ∆ depends on the given proposal ω as well. It is easy to choose the
weights gν such that ∆ vanishes for a given proposal. But our goal is to optimize the
weights in such a way that ∆ is small for most proposals. Thus, we look at the expected
value of ∆2, denoted by

D := E
(

∆2
)
. (5)

We will call D the expected democracy deficit in the following (instead of the correct but
clumsy ‘expected square of the democracy deficit’).

By looking at expectation values we regard the proposals as random input to the voting
system. Hence the probability that the next proposal to the system is a particular proposal
ω is determined by a probability rule. We assume that there is no bias to certain proposals,
in particular any proposal and its counterproposal have the same probability.

The voting system reacts in a deterministic (and rational) way to this random input.
The voting results as well as the democracy deficit are therefore (otherwise deterministic)
functions of the random input, the proposal. The voting outcome is a vector in the space
Ω = {−1, 1}N , where N is the total number of voters and the probability distribution
of the proposals equips Ω with probability distribution P as well, namely the probability
of a given outcome (X1, . . . , XN) is the probability of all proposals ω that lead to that
outcome. Since the voters react rationally they vote −1 on the opposite to a proposal they
would favour and vice versa. Hence the probability distribution P satisfies

P(X1, . . . , XN) = P(−X1, . . . ,−XN) . (6)

We call such a measure a voting measure. For any voting measure we have P(Xi =
1) = P(Xi = −1) = 1

2
, but probabilities concerning more than one voter, like P(X1 =

1 and X2 = 1) cannot be computed from the mere assumption that P is a voting measure.
Such events concern the correlation structure of the measure and they have yet to be fixed
depending on the situation at hand. One possible specification is the assumption that all
voters act independently of each other. This leads to the property that

P(X1 = 1 and X2 = 1) = P(X1 = 1) · P(X2 = 1) = 1
4
.

More generally, under the assumption of independence we have

P
(
X1 = ξ1, X2 = ξ2, . . . , XN = ξN

)
=

1

2N
(7)
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for any ξ1, . . . , ξN ∈ {−1, 1}. The voting measure describes the mutual influence of
the voters on each other, mathematically speaking it describes the correlation structure of
the voting system. The above example describes independent voters - in some sense the
classical case of the theory. An extreme case is given by the measure Pu

Pu
(
X1 = 1, X2 = 1, . . . , XN = 1

)
= Pu

(
X1 = −1, X2 = −1, . . . , XN = −1

)
=

1

2
. (8)

For this (rather boring) voting measure the only possible outcomes are the unanimous
votes, it represents total (positive) correlation.

If P is a voting measure, we denote the expectation value with respect to P by E, as
was already anticipated in (5). Since we assume that the numbers Nν are odd, it follows
that Sν 6= 0. From this we conclude that E(χν) = 0 for any voting measure.

3 Optimal Weights for Independent States
We begin by determining optimal weights, under the assumption that voters in different
states are independent. Thus, we assume that the random variables Xν i and Xκj are inde-
pendent for ν 6= κ.

We want to minimize the function

D(γ1, . . . , γM) = E
(

∆(γ1, . . . , γM)2
)

=
M∑

ν,κ=1

(
γνγκE

(
χνχκ

)
− 2γνE

(
χνSκ

)
+ E

(
SνSκ

))
. (9)

The function D(γ1, . . . , γM) is a measure for the expected democracy deficit for voting
weights γ1, . . . , γM .

By the assumption of independent states we can conclude that

E
(
χνχκ

)
= E

(
χν
)
E
(
χκ
)

= 0 for ν 6= κ , (10)

E
(
χνSκ

)
= E

(
χν
)
E
(
Sκ
)

= 0 for ν 6= κ , (11)

and

E
(
SνSκ

)
= E

(
Sν
)
E
(
Sκ
)

= 0 for ν 6= κ . (12)
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Moreover, we have χ2
ν = 1 and χνSν = |Sν |, thus

D(γ1, . . . , γM) =
M∑
ν=1

(
γ2ν − 2γνE

(
|Sν |

)
+ E

(
S2
ν

))
. (13)

It is not hard to find the minimizing weights gν (by the usual procedure: Find the zeros of
the derivative), in fact: The weights g1, . . . , gM which minimize the function D are given
by

gν = E
(∣∣Sν∣∣) . (14)

This result has a very intuitive interpretation. The quantity Sν is the difference between
the ‘yes’-votes and the ‘no’-votes, so |Sν | describes the margin of the voting outcome, i. e.,
the surplus of votes of the winning party. Therefore, the optimal weights gν for the state
ν are given by the expected margin of a vote in that state. In fact, the delegate of state ν
does not represent the opinion of all voters in this state, but only those who agree with the
majority, he or she acts against the will of the minority, so as a net result the delegate just
represents the margin.

We can also compute the expected democracy deficit D for the optimal weights g1, . . . , gM

D(g1, . . . , gM) =
M∑
ν=1

(
E
(∣∣Sν∣∣2)− E

(∣∣Sν∣∣)2) =
M∑
ν=1

V
(∣∣Sν∣∣) (15)

where V(|Sν |) denotes the variance of the random quantity |Sν |.
We emphasize that we did not yet make assumptions about the correlation structure of

voters inside a country. Of course, the numerical evaluation of the optimal weights and
minimal democracy deficit requires further assumptions on the correlation between voters.

4 Independent Voters
In this section we assume that all voters act independently of each other, in mathematical
terms: all random variables Xν i are independent of each other. Under this assumption we
can compute the optimal weight gν = E(|Sν |) as well as the minimal expected democracy
deficit.

For the independent random variables Xν i we have the central limit theorem, namely
the weighted sums

1√
Nν

Sν :=
1√
Nν

Nν∑
i=1

Xν i (16)
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are asymptotically distributed for large Nν according to a standard normal distribution (cf.
Lamperti [Lamperti 1996]). From this it follows that for large Nν

E
(∣∣Sν∣∣) ≈ √2√

π

√
Nν , (17)

E
(∣∣Sν∣∣2) ≈ √

Nν , (18)

and

V
(∣∣Sν∣∣) ≈ π − 2

π
Nν . (19)

We conclude that the optimal weight for independent voters is proportional to the square
root of the population. This is exactly the content of the square root law by Penrose (see
[Penrose 1946] and [Felsenthal and Machover 1998]).

The above formulae also allow us to evaluate the minimum of the expected democracy
deficit

D(g1, . . . , gM) ≈ π − 2

π
N . (20)

This implies that the expected democracy deficit per voter, namely

E

((
∆

N

)2
)

(21)

converges to zero as N becomes large (with convergence rate 1
N

).

5 The Collective Bias Model
Now, we introduce and discuss a model for collective behaviour of voters. The basic idea
is that there is a mainstream opinion, e. g., a common belief due to the country’s tradition
or the influence of opinion makers. For a given proposal ω we model this ‘common belief’
by a value ζ ∈ [−1, 1] which depends on the proposal at hand. The value ζ = 1 means
there is such a strong common belief in favor of the proposal that all voters will vote ‘yes’,
ζ = −1 means all voters will vote ‘no’. In general, ζ denotes the expected outcome of
the voting, i. e., E(Xν i). The voting results Xν i themselves fluctuate around this value
randomly.

Let us be more precise about this. Suppose the voting results are X1, . . . , XN (where
we dropped the index ν for notational simplicity). Let µ be a measure on [−1, 1], which
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is the distribution of the common belief value ζ , that is µ(]a, b[) is the probability that the
value ζ is between a and b. Let Pζ be the probability measure on {−1, 1} with

Pζ(X1 = 1) = pζ = 1
2
(1 + ζ) ,

so that

Eζ(X1) := Pζ(X1 = 1)− Pζ(X1 = −1) = pζ − (1− pζ) = ζ .

For a given value of ζ we set

Pζ(ξ1, . . . , ξN) =
N∏
i=1

Pζ(ξi) . (22)

For any ζ ∈ [−1, 1] the expression Pζ is a probability distribution on Ω = {−1, 1}N . We
define the collective bias measure Pµ with respect to µ as

Pµ(X1 = ξ1, . . . , XN = ξN) :=

∫
Pζ(ξ1, . . . , ξn) dµ(ζ) . (23)

Note, that Pζ is not a voting measure (unless ζ = 1
2
). However Pµ is a voting measure

if µ is invariant under sign change, i. e., µ(]a, b[) = µ(] − b,−a[). We call µ the bias
measure.

If the measure µ is concentrated in 0, then Pµ makes the voting resultsXi independent,
thus we are in the case of section 4. If µ is the uniform distribution on [−1, 1] (that is
every point is equally likely), then the corresponding measure was already considered by
Straffin [Straffin 1977] where he established an intimate connection of this model to the
Shapley-Shubik index. In a similar way, the Penrose-Banzhaf measure is connected with
the model of independent voters.

The CBM can be looked upon as a model for spins in statistical mechanics. There
the voters are replaced with elementary magnets (spins) which can be directed upwards
(Xi = 1) or downwards (Xi = −1). In this language the Collective Bias Model describes
spins which do not interact with each other but are influenced by an exterior magnetic
field, namely the collective bias ζ .

In the papers [Kirsch 2007], [Kirsch and Langner 2012] and [Langner 2012] we in-
vestigate also another model for collective voting behaviour which comes directly from
statistical physics, the Curie-Weiss Model (CWM). In this model the spins (voters) influ-
ence each other by an interaction which makes spins to prefer to be directed parallel to the
others. For voting this means that voters prefer to agree to the other voters. The Curie-
Weiss Model is a very interesting tool to investigate collective behaviour. However, it is
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technically more involved than the other models we discuss. Therefore, we will mention
it only rather briefly and refer to the papers mentioned above for more details.

Let us define

H(X1, . . . , XN) = − 1

N

( N∑
i=1

Xi

)2
. (24)

This is the energy function for the spin configuration X1, . . . , XN . We use this to define
measures

Qβ(X1, . . . , XN) = e−βH(X1,...,XN ) (25)

where β ∈]0,∞[ is the inverse temperature in statistical physics. As a rule, Qβ is not a
probability measure, so we normalize it by dividing through its total mass Z and set

Pβ(X1, . . . , XN) =
e−βH(X1,...,XN )

Z
. (26)

This is the Curie-Weiss measure for inverse temperature β. The parameter β measures the
strength of the interaction between the voters. The extreme case β = 0 corresponds to the
model of independent voters, the other extreme β = ∞ describes the case of the measure
Pu defined in (8) for unanimous voting.

6 Optimal weights for the Collective Bias Model
Let us now suppose that voters in different countries are independent, but voting inside the
countries follows the CBM with bias measure µ. According to section 3 in this case the
optimal weights are given by

gν = Eµ
(∣∣Sν∣∣) . (27)

For large Nν we have
gν = Eµ

(∣∣Sν∣∣) = µ1Nν (28)

where µ1 =
∫
|ζ|dµ(ζ) is the first absolute moment of µ. Note, that for any probability

measure µ the quantity µ1 is non zero, except for the case µ = δ0, the measure is concen-
trated at the point 0. This means that the optimal weights for a council are proportional
to the population of the respective country if the voters can be described by a CBM. This
also includes the Straffin case (µ is the uniform distribution), which corresponds to the
Shapley-Shubik power index.

The only exception from proportionality is the case µ = δ0 corresponding to indepen-
dent voting (the Penrose-Banzhaf case), where the square root law applies.

We mention that there is a ‘phase transition’ for the Curie-Weiss Model if we vary β
from 0 to∞, namely
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gν = Eβ
(∣∣Sν∣∣) =



√
2√

π
√
1−β

√
Nν , for β < 1;

C N
3
4
ν , for β = 1;

C(β)Nν , for β > 1.

(29)

The constant C(β) converges to 0 as β ↘ 1 and to 1 as β ↗∞.

7 Democracy Deficit for the Collective Bias Model
Given the optimal weights (28) for the CBM (and independent states) we can compute (the
asymptotic behaviour of) the expected democracy Deficit Dµ

Dµ =
M∑
ν=1

V
(∣∣Sν∣∣) ≈ (µ2 − µ2

1)N
2 (30)

where µ1 =
∫
|ζ|dµ(ζ) and µ2 =

∫
|ζ|2dµ(ζ). Note that µ2 − µ2

1 6= 0 unless µ is con-
centrated in at most two points. It follows that the expected democracy deficit per voter,
i. e.,

Eµ

((
∆

N

)2
)

converges to a positive constant as the Nν tend to infinity (in a uniform way, i. e., Nν =
ανN ).

It is interesting to remark that the expected democracy deficit per voter converges also
to a constant if we choose a non optimal voting weight, like for instance gν ∼

√
Nν or

gν = 1 for all ν. This constant will in general be larger than the one for the optimal
weights, but the order of magnitude of D is not changed.

For the Curie-Weiss Model the expected democracy deficit per voter converges to zero
(for β 6= 1 even with rate 1

N
).

8 A Model with Global Collective Behaviour
So far we have always assumed that voter in different states act independently. In this
section we consider the case of collective behaviour across country borders. We assume
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that all voters act according to the Collective Bias measure Pµ. This means there is a
common belief, expressed through the measure µ, for all voters in the union.

Then, the formulae (10) – (13) are no longer valid. In fact, determining the optimal
voting weights requires to solve a rather complicated system of M dependent linear equa-
tions. Instead of doing this we try to look at the democracy deficit directly. It turns out
that for large Nν we have for any ν, κ

Eµ
(
χνχκ

)
≈ 1 , (31)

Eµ
(
χνSκ

)
≈ Eµ

(
|Sκ
∣∣) ≈ µ1Nκ (32)

and

E
(
SνSκ

)
≈ µ2 Nν Nκ . (33)

Inserting these terms into the expression for D we obtain

D(g1, . . . , gM) =
M∑

ν,κ=1

Eµ(χνχκ) gνgκ − 2
M∑
ν=1

gν

M∑
κ=1

Eµ(χνSκ) +
M∑

ν,κ=1

Eµ(SνSκ)

≈
M∑

ν,κ=1

gνgκ − 2
M∑
ν=1

gν

M∑
κ=1

µ1Nκ +
M∑

ν,κ=1

µ2NνNκ

=

(
M∑
ν=1

gν

)2

− 2µ1

( M∑
ν=1

gν
)
N + µ2N

2

= G2 − 2µ1G + µ2N
2 . (34)

This last expression depends only on the sum G =
∑M

ν=1 gν of the voting weights and not
on the single weight gν . This means that for large Nν the asymptotic value of D does not
depend on the way the weights are distributed among the member states of the union. The
minimal value of D is obtained by choosing G = µ1N independent of the values of the
particular weight gν . We also note that the value of G has no real meaning, since we don’t
change the voting system at all if we multiply all weights (and the quota) with the same
number C > 0.

Finally, we remark that the somewhat hand waving arguments in (34) need a careful
mathematical interpretation. A precise formulation gives:

lim
N→∞

Eµ
((∆(g1, . . . , gM)

N

)2)
= µ2 − µ2

1 (35)
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for G =
∑M

ν=1 gν = µ1N and

lim inf
N→∞

Eµ
((∆(g1, . . . , gM)

N

)2)
≥ µ2 − µ2

1 (36)

for any arbitrary choice of gν . This result can be interpreted in the following way: If there
is a strong common belief in the union across border lines then it doesn’t matter how one
distributes the voting weights in the council.
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