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Abstract: In this work we study Lifshitz tails for Laplacians in a percolation model on Rd. At any
lattice point i in Rd we remove a set S + i with a certain probability p. We consider the Laplacian on
the remaining subset of Rd with either Dirichlet or Neumann boundary conditions. We prove that the
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1 Introduction

In this paper we study the integrated density of states in the context of a quantum percolation in the
continuum. The Hamiltonian we consider is the Laplacian on a random subset Dω of Rd. The set Dω is
constructed as follows:
At any lattice point i ∈ Zd we remove from Rd with probability p and independently from the other
lattice points a set around i, more precisely we remove the set S + i = {x + i | x ∈ S} where S is a
compact subset of Rd. Dω is the what remains of Rd after removing these copies of S. Let us denote by
Hω the Dirichlet-Laplacian and by H̃ω the Neumann-Laplacian on the set Dω respectively.

We will be interested in the integrated density of states ND resp. NN of these operators and in
particular their behavior near the bottom of the spectrum. It turns out that under suitable conditions
on S and/or p the density of states shows Lifshitz behavior in the Dirichlet case, but doesn’t in the
Neumann case.

The integrated density of states (IDS) measures the number of energy levels per unit volume, below
a given energy, more precisely: Let P(−∞,E] be the spectral projection of a random Schrödinger operator
Hω, ΛL be a cube in Rd of side length L around the origin and χA the characteristic function of the set
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A ⊂ Rd. We consider
N(E) = lim

L→∞

1
| ΛL | tr(χΛL

P (−∞, E]). (1.1)

Under quite general assumption, this limit exists and is non random. This is in particular true for our
model operators Hω and H̃ω. The quantity N called the integrated density of states of Hω. See (11) and
references given there for an overview on the IDS.

The question we are interested in here concerns the behavior of N at the bottom of the spectrum
of Hω. In 1964, Lifshitz (14) argued that, for a Schrödinger operator of the form Hω = −∆ + Vω, there
exists c1, c2 > 0 such that N(E) satisfies the asymptotic:

N(E) ≃ c1 exp(−c2(E − E0)− d
2 ), E ↘ E0. (1.2)

Here E0 is the bottom of the spectrum of Hω. The behavior (1.2) is known as Lifshitz tails. In the last
thirty years, there has been vast literature, both physical and mathematical, concerning Lifshitz tails
and related phenomena. We do not try to give an exhaustive account of this literature. The paper (11)
gives a survey of such results and basic references on this subject. Below, we give results on the IDS
behavior in the context of our percolation operators Hω and H̃ω.

A quantum percolation Hamiltonian was studied already by de Gennes et al in (3; 4), where the
Hamiltonian of binary solid solution was considered. It is proved that the spectrum of these percolation
Hamiltonians is pure point if the fraction p is less than the critical value pc. We recall that pc is the
value of the well-known critical probability of the percolation theory: If p < pc, no infinite active cluster
exists almost surely, and for p > pc there exists almost surely one infinite cluster. Theses facts are given
in (5) and were mainly obtained by Hammersley in the late fifties. We notice that uniqueness of the
infinite cluster, was proved only thirty years later by Aizenman, Kesten and Newmann, see (5).

If the concentration of active sites is above the critical value, one speaks of the percolation regime.
For this regime it is argued (3) that the spectrum contains a continuous part. In (12), it is proved that
in the non-percolation case, p ∈]0, pc[, the spectrum of the Laplacian is P-almost surely only a dense
pure-point spectrum with infinitely degenerate eigenvalues.

Bond-percolation graphs are random subgraphs of the d-dimensional integer lattice generated by a
standard bond-percolation. The associated graph Laplacians, subject to Dirichlet or Neumann conditions
at these cluster boundary, represent bounded, self-adjoint, ergodic random operators with an off-diagonal
disorder. They have almost surely a non-random spectrum.

In (2) the authors considered the site dilution model on the hyper-cubic lattice Zd, for d ≥ 2. They
investigated the density of states for the tight-binding Hamiltonian projected onto an infinite cluster. It
is shown that, almost surely, the IDS is discontinuous on a set of energies which is dense in the band.
This is proved by constructing states supported on finite regions of the infinite cluster.

In the same context, in (19), Veselić studied Hamiltonians (a finite hopping range operators) corre-
sponding to site percolation on the lattice Zd and graphs with an amenable group action and character-
ize the set of energies which are almost surely eigenvalues with infinitely supported eigenfunctions. It is
proved that this set of energies is a dense subset of algebraic integers and this set of energies corresponds
to the discontinuity point of the IDS.

Spectral theory of random graphs, however, is still a widely open field. The recent contributions
(1; 6; 15) take a probabilistic point of view to derive heat-kernel estimates for Laplacians on supercritical
Bernoulli bond-percolation graphs in the d-dimensional hyper-cubic lattice. On the other hand, spectral
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theory methods are used by Kirsch and Müller in (12) to study spectral properties of the Laplacian on
bond-percolation graphs. Indeed they investigate the IDS of Laplacian on subcritical bond-percolation
graphs. Depending on the boundary condition that is chosen at cluster borders, two different types
of Lifshitz asymptotics at spectral edges were proved, precisely at the lower spectral edge for bond
probabilities p < pc, the IDS, Ñ(E) of the Neumann Laplacian satisfies

lim
E→0+

log | log
(
Ñ(E) − Ñ(0)

)
|

logE = −1
2 . (1.3)

Here one notices that the Lifshitz exponent 1
2 in (1.3) is independent of the spatial dimension d. (see

equation 1.2, for the usual dependence). This is due to the fact that asymptotically, Ñ is dominated
by the smallest eigenvalues which are caused by very long linear clusters. In contrast, for p < pc, it is
proved that the integrated density of states N(E) of the Dirichlet Laplacian satisfies

lim
E→0+

log | log
(
N(E)

)
|

logE = −d

2 . (1.4)

In (1.4), the Lifshitz exponent is in the classical form i.e is d
2 , this is explained by the fact that this is,

the dominating small Dirichlet eigenvalues arise from large fully connected cube-or sphere-like clusters.
We notice that due to some symmetries the Lifshitz tails at the upper spectral edge are related to the
ones at the lower spectral edge whereas at the upper spectral edge, the behavior is reversed.
For the dual case to (12), Müller and Stollmann in (16) pursue the investigation of (12) and studied
spectral asymptotics of the Laplacian on supercritical (p < pc) bond-percolation graphs. They studied
the influence and the contribution of the existence of the infinite cluster. The situation is different.
Indeed, in the present situation it is proved that NN exhibits van Hove asymptotics. Precisely

lim
E→0+

log
(
Ñ(E) − Ñ(0)

)
logE = d

2 . (1.5)

We notice that (1.5) is due to the existence of the d-dimensional infinite grid. In contrast to the Neumann
case, for the Dirichlet Laplacian (1.4) is still true for p ≥ pc situation.

Lifshitz tails for Neumann Laplacian on Erdös-Rényi random graphs at the lower spectral edge
E = 0, are considered in (7).

2 Model and results

2.1 The Quantum Percolation Hamiltonian

We start by describing our percolation Hamiltonian. Let S0 ⊂ Rd be a bounded open set and denote
by S the closure of S0. Furthermore, let {ωγ}γ∈Zd be a sequence of independent random variables with
P(ωγ = 1) = p and P(ωγ = 0) = 1 − p and set Ξω = {γ | ωγ = 1}. Then we define the random sets

Γω =
∪
i∈Ξω

(S + i) and Dω = Rd \ Γω. (2.6)

Finally we denote by Hω and H̃ω the Laplacian on Dω with Dirichlet resp. Neumann boundary conditions
at ∂Dω.
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We will always follow the convention to decorate quantities related to Neumann boundary conditions
at ∂Dω by a tilde, for example the corresponding operator is denoted by H̃ω, its integrated density of
states by Ñ(E) and so on. The quantities for Dirichlet boundary conditions will not be decorated, i. e.
will be denoted by Hω, N(E) etc.

For the operators Hω and H̃ω we will also have to consider the restrictions to ΛL = [−L
2 ,

L
2 ]d.

We denote the restriction of Hω to ΛL with Dirichlet and Neumann conditions at ∂ΛL by HD
L (ω) and

HN
L (ω) respectively. Similarly, H̃D

L (ω) and H̃D
L (ω) denote the restriction of H̃ω to ΛL with Dirichlet

resp. Neumann boundary conditions at the boundary of the cube ΛL. So, for example, the operator H̃D
L

is defined on L2(ΛL ∩Dω) and has Neumann boundary conditions on ∂Dω ∩ ΛL and Dirichlet boundary
conditions on ∂ΛL \Dω. Finally we will take the liberty to supress the argument ω when the dependence
of a quantity on ω is clear from the context.

In an informal way we may write Hω = −∆ + Vω, with the random ‘potential’:

Vω =
∑
γ∈Zd

ωγ f(x− γ) (2.7)

with f(x) =

 ∞, for x ∈ S

0 elsewhere
(2.8)

If the set S is contained in ]− 1
2 ,

1
2 [d then the set Dω contains a unique unbounded cluster independent

of the value of p. In fact, Dω always contains the set

D1 = Rd \
∪
i∈Zd

(S + i). (2.9)

Following our general convention, we denote by H1 the Laplacian on D1 with Dirichlet boundary con-
ditions and by H̃1 the same operator with Neumann boundary conditions.

Whenever D1 contains an unbounded component then Dω will as well. On the other hand if D1

contains no unbounded cluster then Dω may or may not contain an unbounded cluster depending on
the value of p and the shape of the set S. If Dω contains only bounded components then both Hω and
H̃ω have pure point spectra. If not stated otherwise we always assume from now on that S ⊂] − 1

2 ,
1
2 [d.

The families Hω and H̃ω are ergodic families of self-adjoint operators, more precisely:
Let Ui be the unitary translation operator on L2(Rd) given by

Uiψ(x) = ψ(x− i), ∀ψ ∈ L2(Rd) and x ∈ Rd.

As the probability measure P is ergodic with respect to the group of translation (Ti)i∈Zd , acting as
Ti(ω) = (ωγ+i)γ∈Zd , we get

T −1
i HωTi = H(Tiω), ∀i ∈ Zd, ω ∈ Ω. (2.10)

We may therefor apply the methods from (8; 10; 17) to conclude that there exists Σ,Σpp,Σac and Σsc

closed and non-random sets of R such that Σ is the spectrum of Hω with probability one and such that
if σpp (respectively σac and σsc) denote the pure point spectrum (respectively the absolutely continuous
and singular continuous spectrum) of Hω, then Σpp = σpp,Σac = σac and Σsc = σsc with probability
one.
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There is a little subtlety connected with the question of measurability in our case. Since the Hilbert
spaces the operators Hω and H̃ω act on depend on ω we need a notion of measurability appropriate for
our situation. We get around this problem by noticing that the kernel of the operators e−tHω and e−tH̃ω

can be expressed via the Feynman-Kac formula (see for example (9) and references given there). We
extend the operators e−tHω and e−tH̃ω to L2(Rd) by extending it by the zero operator on L2(Rd \Dω).
The corresponding operators are easily seen to be measurable in the sense of (10), as the kernels are
explicitly measurable. Moreover these operators form ergodic families. Consequently their spectra and
the above defined parts of the spectra are non random. Thus, the same assertion is true for Hω and H̃ω

as their spectra can be computed from the spectra of e−tHω and e−tH̃ω .
The following Lemma gives the precise location of the spectrum.

Lemma 2.1. Suppose that S ⊂] − 1
2 ,

1
2 [d.

1. For 0 ≤ p < 1, the spectrum Σ, of Hω is [0,+∞[ with probability one.
2. For 0 ≤ p ≤ 1, the spectrum Σ̃, of H̃ω is [0,+∞[ with probability one.

Remark 2.2. Unless S is empty the infimum of the spectrum of H1 will be strictly positive, so in part
1 of the above lemma we had to exclude the case p = 1. In contrast to this the spectrum of H̃1 always
contains 0. In fact the constant function on D1 (or on Dω in general) is a generalized eigenfunction for
E = 0.

Proof: First let us notice that for any ω ∈ Ω, we have

Hω ≥ 0 and H̃ω ≥ 0 (2.11)

so
Σ ⊂ [0,∞[ and Σ̃ ⊂ [0,∞[ (2.12)

To complete the proof we have to show the opposite inclusion, i.e

[0,+∞[⊂ Σ for P − almost everyω ∈ Ω. (2.13)

We do this for Hω, the proof for H̃ω is essentially the same.
For this, let Ω, be the following events

Ω =
{
ω ∈ Ω | For any n ∈ N, there exists a

xn
(

= xn(ω)
)

∈ Zd such that
(
xn + Λn+1

)
∩Dω = ∅

}
. (2.14)

Let E ∈ [0,+∞[= Σ(−∆) be arbitrarily fixed. Using Weyl criterion, we know that there exists a Weyl
sequence (φE,n)n∈N ⊂ L2(Rd) , for −∆. Thus ∥φE,n∥ = 1, for all n ∈ N and

lim
n→∞

∥(∆ + E · I)φE,n∥ = 0 (2.15)

Notice that for any i ∈ Zd, (UiφE,n)n∈N is also a Weyl sequence. Without loss of generality, we assume
that the sequence (φE,n)n∈N is compactly supported. So for any ω ∈ Ω, there exists a Weyl sequences
(φωE,n)n∈N for (−∆) such that

suppφωE,n ⊂ xn + Λn (2.16)
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with xn as in (2.14). By definition of Ω we have

suppφωE,n ∩ Dω = ∅. (2.17)

Consequently for any n ∈ N and ω ∈ Ω̃, φωE,n is in the domain of the operator Hω and we get

∥(Hω − EI)φωE,n)∥ = ∥(∆ + E · I)φωE,n∥. (2.18)

Hence, (φωE,n)n∈N is also a Weyl sequence for Hω. So we get (2.13) for any ω ∈ Ω.
It remains to check that P(Ω) = 1. Define

Ωn =
{
ω ∈ Ω | there exists a sequence yk ∈ Zd

such that for all k
(
yk + Λn+1

)
∩Dω = ∅

}
. (2.19)

By the Borel-Cantelli lemma we know that P
(
Ωn

)
= 1. Since Ω ⊃

∩
Ωn we conclude that P(Ω) = 1.

�

2.2 The main results

We investigate the integrated densities of states ND(E) and NN (E) for energies E near 0, the bottom
of the almost sure spectrum of both HD

ω and HN
ω . The first result says that in the Dirichlet case our

Percolation Hamiltonian has a Lifshitz singularity there, as one might guess from (2.7) and (2.8):

Theorem 2.3. Assume S ⊂] − 1
2 ,

1
2 [d and p ∈]0, 1[, then

lim
E→0+

log | logND(E)|
logE = −d

2 . (2.20)

At a first glance one might be tempted to expect the same behavior for NN . However, this is not the
case. It turns out, that 0 is a stable boundary for the Neumann operator in the sense of (17) and we
have a van Hove singularity in that case:

Theorem 2.4. Assume S ⊂] − 1
2 ,

1
2 [d and p ∈ [0, 1], then there is a constant C > 0 such that for small

E > 0
NN (E) ≥ C Ed/2. (2.21)

If the set S has a ‘hole’ in the sense that the complement {S of S contains a bounded connected
components M then the constant function on i+M is an eigenstate to energy E = 0 whenever ωi = 1.
Thus 0 is an eigenvalue of H̃X

ΛL
for X = N,D whose multiplicity is proportional to vol(ΛL) for typical

ω. Hence, the integrated density of states will be discontinuous at 0 whenever {S is not connected and
E = 0 is an eigenvalue of H̃ω with infinite multiplicity.

On the other hand, if S has no ‘holes’, i. e. if {S is connected, then 0 is not an eigenvalue of H̃ω

almost surely.
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3 Proofs

3.1 Preliminaries

We start by recalling the following result and giving some properties of the IDS.

Proposition 3.1. Let φ ∈ C∞
0 (Rd), then

lim
L→∞

1
vol(ΛL) tr(φ(Hω)χΛL

) = E
(
tr(χΛ1φ(Hω)χΛ1)

)
, (3.22)

for P-almost all ω. Here E, is the expectation with respect to the probability measure P.

Proof: First we write ΛL =
∑

i∈ΛL∩Zd Λ1(i), Here Λ1(i), is the cube of center i end side length 1. We
set ζi = tr(φ(Hω)χΛ1(i)). So ζi is an ergodic sequence (with respect to Zd) of random variables. So

1
vol(ΛL) tr(φ(Hω)χΛL

) = 1
vol(ΛL)

∑
i∈ΛL∪Zd

ζi. (3.23)

By the Birkhoff’s ergodic theorem, the sum in (3.23) converges to its expectation value. This ends the
proof of (3.22). �
Now, we notice that both sides of (3.22), are positive linear functionals on the bounded, continuous
functions. So, they define positives measures respectively µL and µ. i.e∫

R

φ(λ)dµL(λ) = 1
vol(ΛL) tr(φ(Hω)χΛL

)

and ∫
R

φ(λ)dµ(λ) = E
(
tr(χΛ1φ(Hω)χΛ1)

)
.

For those two measures we have the following result proved in (19),

Theorem 3.2. For almost all ω ∈ Ω and for all φ ∈ C∞
0 (R) we have

lim
k→∞

⟨φ, dµL⟩ = ⟨φ, dµ⟩.

Remark 3.3. We call the non-random probability measure µ the density of states measure. It verifies
the following fundamental properties

N(E) = µ((−∞, E]),

Σ(Hω) = supp(µ).

As mentioned above we denote the operator Hω restricted to L2(ΛL) with Dirichlet boundary conditions
at ∂ΛL by HD

ΛL
= HD

ΛL
(ω), and the corresponding operator with Neumann boundary conditions at ∂ΛL

by HN
ΛL

= HN
ΛL

(ω). We use an analogous notation for H̃ω.
Since these operators have compact resolvents their spectra are purely discrete. We order their

eigenvalues in increasing order with repetition of eigenvalues according to multiplicity. The eigenvalues
of HX

ΛL
with X = D or X = N are denoted by

EX1 (ΛL) ≤ EX2 (ΛL) ≤ · · · ≤ EXn (ΛL) ≤ · · · (3.24)
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and those of H̃X
ΛL

by
ẼX1 (ΛL) ≤ ẼX2 (ΛL) ≤ · · · ≤ ẼXn (ΛL) ≤ · · · (3.25)

If A is any operator with discrete spectrum, bounded below and E ∈ R define N(A,E) to be the
number of eigenvalues of A less than or equal to E, of course counted with their multiplicities.

To prove Theorem 2.3, we prove a lower and an upper bounds on N(E). The upper and lower bounds
are proven separately and based on the following result (see (9) or (17)).

1
| ΛL |E{N(HD

ΛL
(ω), E)} ≤ N(E) ≤ 1

| ΛL |E{N(HN
ΛL

(ω), E)}. (3.26)

and
1

| ΛL |E{N(H̃D
ΛL

(ω), E)} ≤ Ñ(E) ≤ 1
| ΛL |E{N(H̃N

ΛL
(ω), E)}. (3.27)

Inequalities in (3.26) and (3.27) are based on the method of Neumann-Dirichlet bracketing (see (18)
and (9)). Indeed

HN
Λ1 (ω) ⊕HN

Λ2 ≤ HN
Λ1∪Λ2 (ω) (3.28)

and
HD

Λ1∪Λ2(ω) ≤ HD
Λ1(ω) ⊕HD

Λ2(ω), (3.29)

hold on L2(Λ1 ∪Λ2), for all bounded cubes Λ1,Λ2 ⊂ Rd whenever the interior of Λ1 ∩Λ2 is empty ((18)).

3.2 The Dirichlet case:

3.2.1 The upper bound

The upper bound is proved by a comparison procedure. Indeed, let,

Ṽω =
∑
γ∈Zd

ωγχS(x− γ),

and
H̃ω = −∆ + Ṽω

For any ΛL ⊂ Rd, we set

QΛL
ω (φ,ψ) = ⟨φ,H0ψ⟩, φ, ψ ∈ H1

0 (ΛL\Γω) = DΛL
, (3.30)

and
Q̃ΛL
ω (φ,ψ) = ⟨φ, H̃ωψ⟩, φ, ψ ∈ H1

0 (ΛL) = D̃ΛL
. (3.31)

From (18), we recall the following result,

Lemma 3.4. For any L, k ∈ N∗, we have

sup
φ1,··· ,φk−1∈D̃ΛL

inf
ψ∈[φ1,··· ,φk−1]⊥∩D̃ΛL

,∥ψ∥=1
Q̃ΛL
ω (ψ,ψ) ≤

sup
ψ1,··· ,ψk−1∈DΛL

inf
φ∈[ψ1,··· ,ψk−1]⊥∩DΛL

,∥φ∥=1
QΛL
ω (φ,φ). (3.32)
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From Lemma 3.4, one deduces that for any n ∈ N∗, we have

En(H̃ω(ΛL)) ≤ En(Hω(ΛL)). (3.33)

Thus, we get that for any E ∈ R,

N(HΛL
(ω), E) ≤ N(H̃ΛL

(ω), E) (3.34)

We notice that for H̃ω it is already known that it exhibits Lifshitz tails, by the result of Kirsch and
Simon (13). This ends the proof of the upper bound. �

3.2.2 The lower bound

We recall that for any ΛL ⊂ Rd, we have

Hω ≤ HD
ΛL

(ω) ≤ HD
1,ΛL

. (3.35)

So by the min-max argument we get that

ED1 (ΛL) ≤ ED1 (H1,ΛL
). (3.36)

Using equation (3.26) one gets,

N(E) ≥ 1
Ld

· P{ED1 (ΛL) ≤ E}

≥ 1
Ld

· P{ED1 (ΛL) ≤ E and ∀γ ∈ ΛL ∩ Zd, ωγ = 0}

= 1
Ld

· P{ED1 (H0,ΛL
) ≤ E and ∀γ ∈ ΛL ∩ Zd, ωγ = 0}

≥ P{ω0 = 0}|ΛL| = (1 − p)L
d

. (3.37)

By this, we deal with the estimate of the volume of ΛL i.e the order of L. As H0,ΛL
is the free Laplacian

restricted to ΛL, it is known that ED1 (−∆ΛL
) ≃ 1

L2 . So to be less than E, L should be c · E− d
2 . This

ends the proof of the lower bound.

3.3 The Neumann case

We estimate:

NN (E) ≥ 1
Ld

E
(
N

(
H̃D

ΛL
(ω), E

))
≥ 1

Ld
P

(
E1

(
H̃D

ΛL
(ω)

)
≤ E

)
(3.38)

for arbitrary L. By the min-max-principle we have for any ψ ∈ Q
(
H̃D

ΛL
(ω)

)
, ψ ̸= 0, we have

E1
(
H̃D

ΛL
(ω)

)
≤

⟨∇ψ,∇ψ⟩DL
ω

⟨ψ,ψ⟩DL
ω

where we used ⟨·, ·⟩DL
ω

to denote the scalar product in the space L2(DL
ω ) = L2(Dω ∩ ΛL). We conclude

NN (E) ≥ 1
Ld

P
(

⟨∇ψ,∇ψ⟩DL
ω

≤ E ⟨ψ,ψ⟩DL
ω

)
(3.39)
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Now we construct a test function ψ (= ϕL) as follows: Let ϕ be a smooth function on Rd with suppϕ ⊂
] − 1

2 ,
1
2 [d, 0 ≤ ϕ(x) ≤ 1 and ϕ(x) = 1 for x ∈ [− 1

4 ,
1
4 ]d. We set:

ϕL(x) = 1
Ld/2 ϕ

( x
L

)
(3.40)

It follows that ϕL (or rather its restriction to DL
ω ) belongs to Q(H̃D

ΛL
(ω)) for all ω, so we may take ϕL

as a test function in (3.39).
We have

⟨∇ϕL,∇ϕL⟩DL
ω

≤ 1
Ld

∫
ΛL

1
L2

∣∣(∇ϕ)
( x
L

)∣∣2
dx

≤ C1
1
L2 (3.41)

and

⟨ϕL, ϕL⟩DL
ω

≥ 1
Ld

∫
DL

1

∣∣ϕ( x
L

∣∣2
dx

≥ 1
Ld

vol(D1 ∩ ΛL/4)

≥ C2 (3.42)

where C2 > 0 is a constant which only depends on the volume vol(M) of the set M .
Thus we have proved that NN (E) ≥ 1

Ld as longs as C1
1
L2 ≤ C2E. This can be guaranteed by

choosing L = C ′ E−1/2 with a suitable constant C ′. Thus we proved:

NN (E) ≥ C Ed/2 (3.43)

for some constant C > 0.
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