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Abstract

In this article we address the problem of three-
dimensional object recognition from two-dimensional
views. We use a viewer-centered model of object rep-
resentation and interpolate novel views from stored
sample views. The sample views are represented
by graphs which are labeled with Gabor wavelet re-
sponses as local descriptors of object points. The po-
sitions of the object points in a novel view are lin-
ear combinations of the corresponding point positions
in the sample views, and the novel feature vectors
are linear combinations of the Gabor responses in the
sample views. From such an interpolated graph we
reconstruct the novel view and analyse its quality for
different poses of the novel view in relation to the
sample views. Within the covered range of about30◦

tilt and 40◦ pan viewing angle between the sample
views we obtain good interpolation qualities. This
leads to a number of about 36 views which is suffi-
cient to represent the upper viewing hemisphere of an
arbitrary object. Our results are consistent with cur-
rent findings of biological and psychological research.
In addition, the idea of the proposed algorithm is suit-
able to be applied in data compression.

1 Introduction

In the study of three-dimensional object recognition
the ability of humans to recognize objects from un-
familiar views is one major subject of investigation.
From a theoretical point of view, it would be possi-
ble to establish a three-dimensional,object-centered
representation from some experienced views. To
recognize novel views this representation can be
aligned and projected to a hypothesized viewpoint,
and matched with the input image. This approach
is known asrecognition by alignment or mental ro-
tation and has been proposed early, e.g., by Shep-

ard and Cooper [1], Lowe [2], and Ullman [3].
In recent years, however, two-dimensional,viewer-
centered models of object representations have gained
acceptance, because of psychophysical and neuro-
physiological findings which support these models
(for a survey see [4]). One of the most supported idea
is theinterpolation of unfamiliar views. Novel views
can be generalized from stored views by view approx-
imation as described, e.g., by Poggio and Edelman
[5]. According to this theory humans and other pri-
mates can achieve viewpoint-invariant recognition of
objects by a system that interpolates between a small
number of stored sample views, which have been ex-
perienced previously, as shown by Bülthoff and Edel-
man [6] in psychophysical studies with humans.

A question frequently discussed concerns the dis-
tribution of the stored sample views, i.e., their num-
ber and distances. In a study with monkeys by Logo-
thetis et. al. [7] 10 views were found to be sufficient to
achieve view-independent performance for the entire
viewing sphere. But the same study claims that the
number of required viewpoints may depend on the ob-
ject class. The inability of monkeys to recognize ob-
jects rotated by more than approximately40◦ from a
familiar view is also reported. A similar result for hu-
man object recognition was published earlier by Rock
and DiVita [8]. Humans become very poor in recog-
nizing wire-like objects for view distancies larger than
approximately30◦.

Inspired by these results from biological research
we established a computer vision system which sim-
ulates a viewer-centered object recognition system.
Unfamiliar views can be reconstructed via view in-
terpolation. In this article we are concentrating on the
quality of the reconstructed, novel view for different
poses of the novel view in relation to three sample
views.



2 Methods

2.1 Representation of an Object

We recorded views of small toy objects in distances
of 3.6◦ in both, longitude and latitude direction on
the upper hemisphere of the object, resulting in 2500
views per object (see figure 1). Each view is repre-
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Figure 1: Viewing Hemisphere with Two Example
Views of Two Objects.Each crossing of the grid stands
for one view, thus the hemisphere consists of100 × 25

views. The dot in front marks view (0, 0).

sented by a graph, which covers the object in the im-
age. The vertices of a graph are labeled with Gabor
wavelet responses, which describe the local surround-
ings of the vertex in the image (for an example see the
graph for start view (2, 8) in figure 2). For the Ga-
bor transform we use a set of wavelets with 8 direc-
tions and 4 frequencies, thus for each vertex we ob-
tain a vector with 32 complex entries, which is called
jet. The graphs are generated automatically from the
images: first, the object is separated from the back-
ground by a segmentation algorithm described in [9],
which is based on the gray level values of the image.
Then a grid graph is put on the resulting object seg-
ment.

2.2 Tracking of Object Features

For the calculation of the position of an object point
in a novel view from the positions of the point in three
sample views it is necessary to have the exact corre-
spondences of the point in the sample views. It has

been shown that tracking of object features is excel-
lently suitable for providing precise correspondences,
especially in comparison with graph matching [10].
We use a tracking procedure which provides subpixel
precision. It is described in [11]. Given a sequence of
a moving object and the pixel position of a landmark
of the object in framen, the aim is to find the cor-
responding position of the landmark in framen + 1.
We extract the Gabor jets, described in subsection 2.1,
at the same pixel positions in the framesn andn + 1.
From a similarity function between two jets we calcu-
late the displacement vector between them, and thus
we gain the new position of the landmark in frame
n + 1. This process can be iterated to refine the po-
sition. For each vertex of the graph of framen the
displacements are calculated for framen + 1. Then
a graph is created with its vertices at the new corre-
sponding positions in framen + 1, and the Gabor re-
sponses for the new vertices are extracted at the new
positions.

For each recorded view of an object we track its
representing graph towards the right and upwards on
the hemisphere (see figure 2). We stop tracking once
the similarity between the tracked graph of the cur-
rent right (resp. upper) view and the original graph
of the start view drops below a preset threshold. This
is the case when vertices start to provide poor corre-
spondences.
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Figure 2: Example of Tracked Graphs.The graph
which represents view (2, 8) is tracked to the right view
(12, 8) and to the upper view (2, 14).



2.3 View Interpolation from Three
Sample Views

By tracking the original graph of a start view towards
the right and upwards a rectangular area is defined
on the hemisphere (see figure 3). We use the start,
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Figure 3: Example of an Interpolation Matrix on the
Hemisphere.Views marked by a dot are interpolated from
the start, the right, and the upper view.

the right, and the upper view as samples and interpo-
late the graphs of every second view which lies in-
side the rectangle. Our rectangles span a region of
43.2◦ towards the right (pan angle of right view mi-
nus pan angle of start view) and28.8◦ upwards (tilt
angle of upper view minus tilt angle of start view) for
each view on the hemisphere. We sample the views
to be interpolated in steps of7.2◦ in both directions,
thus we obtain a5 × 7 interpolation matrix for each
start view.

For creating a representation of a novel view in
form of a graph we have to calculate the jets of the
graph vertices, on the one hand, and their positions,
on the other hand. A jet of a vertex of the interpo-
lated graph is a weighted sum of the jets of the cor-
responding vertices in the sample views. The weights
are calculated according to the relative position of the
novel view with respect to the sample views. Detailed
formula are given in [12].

The position(x̂, ŷ) of a vertex in the novel view is
calculated from an extended stereo algorithm. The
positions(xi, yi), i = 1, 2, 3, of the corresponding
vertices in the sample views are projected orthogo-
nally to the hypothesized object point, which is ap-
proximated by the point of intersection of the projec-
tion rays. This point is projected orthogonally to the
novel view.

We have proved that this procedure is equivalent to
Ullman and Basri’s [13] approach of generating novel
views by linear combinations of sample models. In

this context our new coordinates(x̂, ŷ) of a vertex can
be expressed as linear combination of its coordinates
(xi, yi), i = 1, . . . , n, n = 2 or n = 3, in the sample
views, if the pan angle between start and right view
is not180◦ and if the start view is not situated in the
north pole of the hemisphere. Because both condi-
tions hold true for our simulations, our interpolated
views can always be expressed as linear combinations
of sample views. This means that our approach is
purely two-dimensional, view-based.

If the coordinates in the sample views are denoted
by (x1, y1) for the start view,(x2, y2) for the right
view, and(x3, y3) for the upper view, then following
equations hold true for three sample views:

x̂ =
2∑

i=1

ai(ϕ1, ϕ2, ϕ̂) · xi (1)

ŷ =

3∑

i=1

bi(ϕ1, ϕ2, ϕ̂, λ1, λ3, λ̂) · yi (2)

with ϕ1, ϕ2, ϕ̂ denoting pan angles of the start, right,
and novel view andλ1, λ3, λ̂ denoting tilt angles of
the start, upper, and novel view, respectively. Thus
thex-coordinatêx is a linear combination ofx1 and
x2 only. Detailed equations for the coefficients are
given in [12].

2.4 Evaluating the Interpolation by
View Reconstruction

After creating the interpolated graph as described
above, we have to assess its quality. For that purpose
we reconstruct the novel image from the interpolated
graph, on the one hand, and, on the other hand, from
its original graph. Using the reconstruction from the
original graph as ground truth, we can assess the qual-
ity of the interpolation by comparing the reconstruc-
tion from the interpolated graph to the ground truth
reconstruction (see figure 4).

For the reconstruction we apply an algorithm, de-
scribed in [14], which reconstructs a gray level image
from its Gabor transform. Each jet is locally recon-
structed restricted to a Voronoi area around its loca-
tion. The reconstruction is done utilizing basis func-
tions which depend on the used, linearly independent
Gabor wavelets. In this way, the background of the
images is reconstructed to zero values.

For the comparison of both reconstructed images
we calculate a relative error between them. IfZ

andZ̃ denote the reconstruction images of the novel
view from the original and the interpolated graph,
respectively, we regard̃Z as approximation ofZ.
The maximum error of approximating a pixel of
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Figure 4: Evaluating the Quality of an Interpolated Graph via View Reconstruction - An Example.Step 1) Calculate
the interpolated graph of the novel view (6, 10) from three sample views as described in subsection 2.3. Step 2) Reconstruct
the novel view from the interpolated graph. Step 3) Reconstruct the novel view from its original grid graph described in
subsection 2.1 (ground truth). Step 4) Compare both reconstructed images by calculating the relative errorE.

Z by the corresponding pixel of̃Z is emax =
max(max(Z), max(Z̃)) −min(min(Z), min(Z̃)).
Now we can calculate an errorE betweenZ and Z̃

relative toemax:

E :=
1

N
·

1

emax

·

N∑

i=1

|zi − z̃i| (3)

wherezi andz̃i, i = 1, . . . , N, are the pixels ofZ and
Z̃ with not bothzi = 0 and z̃i = 0, to exclude the
background from the calculations.1

E is a measure for the quality of our interpolated
graph. It has been shown in many studies, e.g., in
[15, 16], that a representation in form of a graph la-
beled with Gabor wavelet responses, like our origi-
nal graph, can be used for a robust object recogni-
tion. We claim that a small relative errorE justifies
the assumption of comparable recognition capabilities
of the interpolated graph.

2.5 Statistics

We use two different objects for our simulations (see
figure 1), and we interpolate5×7 novel views for each
view on the hemisphere with the current view as start

1To be robust against slight translations during reconstruction
we shiftZ andZ̃ against each other in a small range and calculate
E for all shifting positons. The finalE is the minimum over all
shifting positions.

view, according to the scheme depicted in figure 3.
For each interpolated and reconstructed view we cal-
culate the relative errorE, thus we obtain a5×7 error
matrix for each view on the hemisphere.2

From all entries of all error matrices we calculate
the mean error, the standard deviation, and the maxi-
mum error which occurs.

3 Results

For both objects the mean value of the relative er-
rorsE in the covered range of43.2◦ pan and28.8◦ tilt
angle is rather small (about5%) with a small standard
deviation (about 0.01). The maximum relative error
which occures is about11%. Thus we can assume,
that inside this range an interpolated graph is suitable
for recognition. The exact values are summarized in
table 1.

4 Summary and Conclusions

We have shown that only some views of a three-
dimensional object are sufficient to represent the
whole object. Unfamiliar views can be interpolated
from stored views. Within our tested range of about

2If the range which is covered by the tracked graphs is smaller
than the region which is spanned by the interpolation matrixthe
corresponding values in the error matrices remain undefined.



object object
“Tom” “dwarf”

mean error 0.0489 0.0522
standard deviation 0.0120 0.0110
maximum error 0.0908 0.1132

Table 1: Results of Interpolation from Three Sample
Views. The set of values, from which these results are cal-
culated, consists of one relative error for each entry of an
interpolation matrix for each view on the hemisphere.

30◦ tilt angle and40◦ pan angle between sample
views the quality of the reconstructed views is suffi-
ciently high to presume good recognition rates of the
object from interpolated views. From our results we
can estimate the total number of views needed to rep-
resent the upper viewing hemisphere of an object. If a
mean interpolation error of about5% and a maximum
interpolation error of about11% are tolerable, about
36 sample views are sufficient.

The range of good interpolation is probably not
limited by the quality of the interpolation, rather it
seems to be restricted by the tracking capabilities,
which depend on the complexity of the objects. We
suppose that the range of good interpolation could be
much larger, if the correspondences between sample
views are given.

The representation of a novel view can be derived
from three sample views by a linear combination of
the position of object points in the sample views and
a linear combination of the corresponding feature vec-
tors, which describe the surroundings of the points.

Our results are consistent with biological and psy-
chological research. In the introduction the good
recognition performance of humans and monkeys
within a range of about30◦ or 40◦ between sam-
ple views has already been mentioned. Although our
main motivation is to learn how the brain performs
three-dimensional object recognition, our results may
be also relevant to technical applications. If only
some views of a three-dimensional object need to be
stored to represent it, our algorithms can be used for
data compression.
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[14] M. Pötzsch, T. Maurer, L. Wiskott, and C. v. d.
Malsburg. Reconstruction from Graphs Labeled
with Responses of Gabor Filters. InProceedings
of the ICANN 1996, pages 845–850, 1996.

[15] M. Lades, J. C. Vorbrüggen, J. Buhmann,
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