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Abstract. A representation of a three-dimensional object is autonom-
ously learned from a sequence of the rotating object. The representation
consists of single views in form of graphs and is achieved by performing
a segmentation-based tracking of the object. First we apply a segmen-
tation algorithm which is based on gray level values. This provides the
location of the object in the images and a rough shape of it. Then we po-
sition landmarks on the object in the first frame of the sequence. These
landmarks are tracked throughout the sequence on the basis of Gabor
wavelet responses and guided by the segmentation result. During rota-
tion landmarks are lost and new landmarks are added when object parts
vanish or come into sight, respectively.

1 Introduction

In this paper we describe the learning of a viewpoint-invariant object representa-
tion. In our system each view of an object is represented by a single graph. Each
node of a graph is labeled with features which describe the local surroundings
of the node position. A graph for a particular view is generated autonomously
by performing a segmentation-based tracking with the nodes of the graph of the
previous view.

2 Segmentation-Based Tracking

The segmentation-based tracking of a rotating object consists of two parts. In
the first part we perform a segmentation of each image of the sequence based on
graylevel values, which provides the region of the image occupied by the object
(see subsection 2.1). In the second part we track landmarks on the object guided
by the result of the segmentation.

2.1 Segmentation

The segmentation method is described in [1] and is based on the system of
[2]. The segmentation model contains POTTS spins with coarse-to-fine dynam-
ics comparable to real-space renormalisation methods often used in theoretical
physics. Average intensity is used as the only low-level cue, although the system



Fig. 1. Overview of the segmentation model. The complex scene shown in A is divided
into 32 x 32 = 1024 patches in B. C shows the corresponding randomly initialized spin
image for k = 3, in which each spin value is displayed as the appropriate gray level. D
illustrates the renormalisation of the interaction between spins on different resolution
levels (arrows on left) and the coarse-to-fine dynamics (arrows on right).

is able to make use of additional cues if they become available. The segmentation
model [2] on which we have based our work divides an incoming image of some
fixed resolution into N small patches I;, i = {1, 2, ..., N}. Each surface receives a
label S;,i = {1,2,..., N} that encodes its membership of one of several possible
segments (see figure 1A—C). Because on the analogy between this label-based
model and an interacting spin system in solid state physics, we call such a la-
bel a “spin”. The range of values, k, allowed for a spin, S; € {1,2,...,k}, is a
parameter of the system and is set to k = 2, because we want to separate only
one object from the background. The images in our video sequences have been
reduced to a resolution of 256 x 256 pixels and we use N = 32 x 32 = 1024 spins,
resulting in patches of 8 x 8 = 64 pixels per spin. The aim now is to find that
spin configuration which encodes the “correct” segmentation of the given scene.
Each spin S; interacts with all other spins S; via an interaction matrix W;;. The
difference in mean intensity |I_Z — I_]‘ at the corresponding image regions is used
to compute the interaction W;; between the two spins S;, S; assigned to these
positions - the desired segmentation is mapped onto the global minimum of the
following energy function:
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The parameter a — we use @ = 100 — in combination with the maximum
function ensures that the difference in average intensity on the interval [0, o] is
mapped to [0,1]. To stress the Gestalt law of neighborhood [3], we restrict the
interaction to spins with distances below 7.1 spins. In order to map low similarity
to negative interaction and high similarity to positive one, we subtract the mean
interaction W from all similarity values to obtain the used interaction W;;.

We use the METROPOLIS [4] algorithm at zero temperature with a coarse-to-
fine dynamics to let the system relax to a local energy minimum (see figure 1D



Fig. 2. Tracking of facial landmarks. The frames 1, 10, 20, 30, 40, and 50 of the sequence
are shown here.

and [1] for the details). We have used 3 stages and N (1) = 1024 as the number
of spins in the highest resolution. The number of spins in each resolution is given
by N(n) = N(1)-272(»=1),

2.2 Tracking

The tracking procedure we use is described in [5] and based on [6] and [7]. Given
a sequence of a moving object and the pixel position of a landmark of the object
for frame n, the aim is to find the corresponding position of the landmark in
frame n + 1. As a visual feature, which describes the local surroundings of a
landmark, responses of Gabor wavelets of different frequencies and orientations
are used. These filter responses form the jet J. The jth component of the jet can
be written in terms of amplitude a; and phase ¢;. Thus, a similarity function
between two jets J and J’ can be defined as
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with d being the displacement vector of the two jets and k; being the wave
vectors of the Gabor filters. If J and J’ are extracted at same pixel positions
in the frames n and n + 1, d, and thus the new position of the landmark, can
be found by maximizing S with respect to d (see figure 2 for tracking facial
landmarks).

5(3,3,d) = (3)

2.3 Combining Segmentation and Tracking

With each image we perform a segmentation as described in subsection 2.1. But
this may provide also regions which are regarded as belonging to the object due
to their gray levels, but in fact do not belong to it (see figure 3). We get rid of
them by simply choosing that segment as object, which is closest to the center
of the image. Given this result we mask the original images with it (see again
figure 3). Now we can start the segmentation-based tracking by covering the
whole masked image of the start view with a grid graph. Then those nodes are
deleted which lie on the background or which lie on the object but are too close
to the background. The reason for this is to prevent nodes from clinging to the
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Fig. 3. Segmentation. Original image, result of the segmentation described in subsec-
tion 2.1, result after getting rid of wrong segments, masked image.

Fig. 4. Masked image with its graph. The first masked frame of a sequence with its
start grid graph on the object.

outline contour of the object during tracking. (Nodes on contours are tracked
very well in the sense that they stay on the contour, but they do not keep track
of the same object landmark.) The minimal allowed distance to the background
segment is determined by a certain fraction p of the radius of the largest Gabor
kernel used for tracking. For display purposes the remaining nodes are connected
by a minimal spanning tree (see figure 4). Given this reduced grid graph for the
first frame of the sequence we perform with each node the tracking we have
described in subsection 2.2. During the rotation of the object some parts of it
will vanish while others become visible. Therefore it is necessary that some nodes
will be lost and some other nodes have to be added. So, after a tracking step for
a new frame we delete and add some of the nodes.

1. Deletion of nodes: It is again checked whether the new node positions are still
on the object and whether the nodes did not move too close to the contour of
the object. A third deletion condition is that nodes come too close to other
nodes. In this case both nodes would contribute nearly the same information
to the representation of the view. The minimal allowed distance of two nodes
is the same as the minimal allowed distance to the background segment.

2. Addition of nodes: Here we check whether new nodes can be added according



to the result of the segmentation and consistent with the already existing
nodes. We first modify the masked image in such a way that a rectangular
surroundings of each already existing node is set to ”background”. The side
length of these surrounding region is the same as the distance of the nodes
in the initial grid graph of the first frame.

For this modified masked image we again create a new grid graph. All of the
nodes of this new grid graph which lie on the background now or which are
too close to the object’s outline contour are deleted. In case that there are
still nodes in the grid graph after this procedure, these nodes are added to
the already existing nodes, but only if they do not come to close to other
(already existing) nodes.

After the deletion and addition of nodes the new set of nodes is connected by
a new minimal spanning tree for display purposes. The same procedure (tracking,
deletion, and addition of nodes) is repeated for every frame.

3 Simulations and Results

For our simulations we used 100 frames per sequence, each of them with a resolu-
tion of 2562. For the tracking we use Gabor wavelets with four different frequen-
cies and eight different orientations. For the grid graphs we chose a grids of 15x15
nodes, and the fraction of the radius of the largest Gabor kernel was p = 0.2.
We present here the result of a simulation with a toy zebra performing a full
rotation on a turntable. In figure 5 you see some frames of the tracked sequence.
Results for other sequences can be seen at http://www.neuroinformatik.ruhr-uni-
bochum.de/ini/PEOPLE /gpeters/top.html.

4 Discussion and Outlook

We have shown that our system is capable of learning a representation for a
rotating object by a novel combination of algorithms for segmentation on the
one hand and for tracking on the other hand. Tracking of rotating objects means
to catch new aspects of the object while it rotates and to realize where old
parts of it vanish. Our method meets these conditions. In addition the learning
works autonomously with little a priori knowledge about the object. The only
assumptions are that the object has to be close to center of the images, that
it has to be separable from the background by the segmentation, and that the
surface structure is textured enough to allow the nodes to be tracked properly.

Up to now our representation belongs to the category of multiple-view based
models, i.e., each view is independent. We plan to make a transition to a repre-
sentation of a 3D-object in form of an aspect graph (e.g., [8], [9]). For this purpose
it is necessary to define similarities between the graphs of successive views. We
believe that the proposed representation is well suitable to define such similari-
ties by using cluster techniques, with the number of deleted and added nodes as
criterions.



Fig. 5. Results for the zebra sequence. The first three images of the first row show the
tracked graphs of the first three frames of the sequence. From the first to the second
frame three nodes have been added (on the legs of the zebra), from the second to the
third frame two nodes have been deleted (at the backside of the zebra and one of the
previously added ones) and two nodes have again been added (at the mouth and in the
middle of the body). The rest of the images show the representations for the frames 10,
20, 30, ..., 90. Some of these images show the problem that the gray level segmentation
has to deal with shadows, especially the first image of the second row and the second
image of the third row.
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