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Jochen Kerdels and Gabriele Peters

Abstract Grid cells of the entorhinal cortex provide a rare view on the deep stages
of information processing in the mammalian brain. Complementary to earlier grid
cell models that interpret the behavior of grid cells as specialized parts within a
system for navigation and orientation we developed a grid cell model that facilitates
an abstract computational perspective on the behavior of these cells. Recently, we
investigated the ability of our model to cope with increasing levels of input signal
noise as it would be expected to occur in natural neurobiological circuits. Here we
investigate these results further and introduce a new noise compensation mechanism
to our model that normalizes the output activity of simulated grid cells irrespective
of whether or not input noise is present. We present results from an extended series
of simulation runs to characterize the involved parameters.

1 Introduction

The parahippocampal-hippocampal region takes part in the deep stages of informa-
tion processing in the mammalian brain. It is generally assumed to play a vital role
in the formation of declarative, in particular episodic, memory as well as navigation
and orientation. The discovery of grid cells, whose activity correlates with the ani-
mal’s location in a regular pattern, facilitates a rare view on the neuronal processing
that occurs in this region of the brain [7, 9]. Complementary to earlier computa-
tional models of grid cells that interpret the behavior of grid cells as specialized parts
within a system for navigation and orientation [1, 5, 8, 18, 19, 23] we introduced
a new grid cell model that views the behavior of grid cells as just one instance of a
general information processing scheme [10, 11]. The model relies on principles of
self-organisation facilitated by the recursive growing neural gas (RGNG) algorithm.
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We could demonstrate [ 10, 12] that our model can not only describe the basic proper-
ties of grid cell activity but also recently observed phenomena like grid rescaling [2,
3] as well as grid-like activity in primates that correlates with eye movements [14]
instead of environmental location.

In addition, we recently investigated the ability of our model to cope with increas-
ing levels of noise in it’s input signal as it would be expected to occur in natural
neurobiological circuits [13]. Even with noise levels up to 90% of the input signal
amplitude the model was able to establish the expected activity patterns. However,
with increasing levels of noise the average maximum activity of the model’s output
dropped by two orders of magnitude. Here we investigate this aspect further and
present a noise compensation mechanism that we integrated in our grid cell model to
normalize the average maximum output activity irrespective of whether or not input
noise is present. The following section provides a short summary of our RGNG-
based grid cell model, and Sect. 3 revisits our previous results [13] and analyzes the
effects of input noise further. Subsequently, Sect.4 introduces our proposed noise
compensation mechanism and Sect. 5 presents the results obtained using this mech-
anism over various parameter ranges. Finally, Sect. 6 draws conclusions and outlines
future work.

2 RGNG-Based Grid Cell Model

The RGNG-based grid cell model is a neuron-centric model in which neurons act in
their “own interest” while being in competition with each other. A biological neuron
receives thousands of inputs from other neurons and the entirety of these inputs and
their possible values constitute the neuron’s input space. We hypothesize that grid
cells form a simple representation of their input space by learning a limited number
of input patterns or prototypes that reflect the input space structure. Simultaneously,
the competition among neurons in a local group of grid cells ensures that the simple
representations learned by the individual cells are pairwise distinct and interleave
in such a way that a complex representation of the input space emerges that is
distributed over the entire group of neurons. We model this behavior by a two layer
recursive growing neural gas that describes both the learning of prototypes within
individual cells as well as the simultaneous competition among the cells in the group.
Both processes are based on the same principles of self-organization utilizing a
form of competitive Hebbian learning. For a formal description and an in-depth
characterization of the model we refer to previous work [10, 13].

Here we focus on the operation of individual grid cells in the model. Their behavior
is equivalent to that of a regular growing neural gas (GNG) as it was introduced by
Fritzke [6]. A GNG is a network of units that is able to learn the topology of it’s input
space. Each unit is associated with a reference vector or prototype that represents a
local region of the input space. The neighborhood relations of these local regions
are reflected by the GNG network topology. In contrast to the original notion of
GNG units as individual neurons our model interprets the GNG units as different
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dendritic subsections of a single grid cell. Thus, we assume that competitive Hebbian
learning can occur within the dendritic tree of a single neuron allowing the neuron
to respond to multiple, different input patterns and to facilitate the formation of a
simple prototype-based representation of the neuron’s input space.

The basic learning mechanism selects for every input £ the best and second best
matching units (BMUs) s; and s, whose prototypes sj.w and sp.w are closest to the
input £ according to a distance function D. The GNG network is then updated by
creating (or refreshing) an edge between s; and s, and the prototype of the BMU s, as
well as the prototypes of all units connected to s; are adapted towards the input . In
addition, the output activity a, of the modelled grid cell u in response to the input &
is determined based on the relative distances of & towards sj.w and sp.w:
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using a distance function D. Figure 1 provides a geometric interpretation of the
ratio r. If input £ is close to BMU s, in relation to s, ratio r becomes 1. If on the
other hand input £ has about the same distance to s; as it has to s,, ratio r becomes 0.

Based on this measure of activity it becomes possible to correlate the simulated
grid cell’s activity with further variables, e.g., the recorded location of an animal
(Fig.2a) in a typical experimental setup to study grid cells. Figure 2b shows such a
correlation as a firing rate map, which is constructed according to the procedures
described by Sargolini et al. [21] butusing a5 x 5 boxcar filter for smoothing instead
of a Gaussian kernel as introduced by Stensola et al. [22]. This conforms to the de
facto standard of rate map construction in the grid cell literature. Each rate map
integrates position and activity data over 30,000 time steps corresponding to a single
experimental trial with a duration of 10 min recorded at 50 Hz.



266 J. Kerdels and G. Peters

(b)

= 45:";._“!' v_:" o7
'bfé‘i&@}gf‘

==
R NS

\
NS

Fig. 2 a Example trace of rat movement within a rectangular, 1 m x 1 m environment recorded
for a duration of 10 min. Movement data published by Sargolini et al. [21]. b Color-coded firing
rate map of a simulated grid cell ranging from dark blue (no activity) to red (maximum activity).
Extracted from [13]

3 Noise Resilience Revisited

Typical neurons in the the parahippocampal-hippocampal region of the brain have
peak firing rates that range between 1 and 50 Hz [4, 9, 16, 21]. Some proportion of this
firing rate is due to spontaneous activity of the corresponding neuron. According to
Koch [15] this random activity can occur about once per second, i.e., at 1 Hz. Hence,
the proportion of noise in a normalized firing rate resulting from this spontaneous
firing can be expected to lie between 1.0 and 0.02 given the peak firing rates stated
above.

We recently investigated the ability of the RGNG-based grid cell model to cope
with noise in it’s input signal that is caused by this spontaneous neural activity [13].
Since the model uses a vector of normalized neuronal activity as it’s input signal,
the proportion of noise in each input dimension depends on the assumed peak firing
rate of the corresponding input neuron. Unfortunately, there is no empirical data on
the distribution of peak firing rates in the input signal of biological grid cells. Thus,
we assumed a uniform distribution and tested the model with increasing levels &, of
noise reflecting assumed minimal peak firing rates. For example, a maximum noise
level of &, = 0.1 corresponds to a minimal peak firing rate of 10 Hz, and a level
of &, = 0.5 corresponds to a minimal peak firing rate of 2 Hz in the input neurons.

The input signal used in the experiments was constructed by assuming that the
animal location is encoded by two ensembles of input neurons that operate as one-
dimensional ring attractor networks. In these networks a stable “bump” of activity
encodes a linear position in a given direction. If the animal moves in that direction, the
bump of activity is moved accordingly updating the encoded position. Similar types
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of input signals for grid cell models were proposed in the literature by, e.g., Mhatre
etal. [17] as well as Pilly and Grossberg [20]. Formally, the input signal & := (v*, v”)
was implemented as two concatenated 50-dimensional vectors v* and v”. To generate
an input signal a position (x, y) € [0, 1] x [0, 1] was read from traces (Fig.2a) of
recorded rat movements that were published by Sargolini et al. [21] and mapped onto
the corresponding elements of v* and v” as follows:
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with d = 50 and s = 8. The parameter s controls the slope of the activity bump with
higher values of s resulting in a broader bump. Each input vector £ := (0", v”) was
then augmented by noise as follows:

07 := max[ min[ v} + & QUna— 1), 1], 0],

v; := max[ min[ v} +& QUma— 1), 1], 0],
Vie{0...d—1},

with maximum noise level &, and uniform random values U4 € [0, 1].

Using this type of input we ran a series of simulation runs with increasing levels &,
of noise. Each run simulated a group of 100 grid cells with 20 dendritic subsections
per cell using a fixed set of model parameters.! Figure 3 summarizes the results of
these simulations. Each column corresponds to a single simulation run and shows
an exemplary rate map of a grid cell chosen randomly from the 100 simulated cells
(top row), the average maximum activity (MX) and the average minimum activity
(MN) present in the rate maps of all simulated grid cells (below the rate map), the
distribution of gridness scores® (middle row), and an activity function plot that indi-
cates which values of ratio r corresponds to the respective average maximum activity
(bottom row). The exemplary rate maps as well as the gridness score distributions
show that the RGNG-based grid cell model is able to sustain the expected grid-like
activity patterns despite increasing levels of noise in it’s input signal reflecting the
robustness of the underlying principle of self-organisation. However, with increasing

1For a detailed description and motivation of all parameters we refer to [13].

2The gridness score ([—2, 2]) is a measure of how grid-like the firing pattern of a neuron is. Neurons
with gridness scores greater 0.4 are commonly identified as grid cell.
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Fig. 3 Artificial rate maps (top row), gridness distributions (middle row), and activity function
plots (bottom row) of simulation runs with varying levels &, of noise (columns) added to the inputs.
All simulation runs used a fixed set of parameters [13] and processed location inputs derived from
movement data published by Sargolini et al. [21]. Each artificial rate map was chosen randomly
from the particular set of rate maps. Average maximum activity (MX) and average minimum activity
(MN) across all rate maps of a particular simulation given above gridness distributions. Gridness
threshold of 0.4 indicated by red marks. Values of ratio r at average maximum activity (MX) given
in blue. Insets show magnified regions of the activity function where MX values are low. Extracted
from [13]

levels of noise the average maximum output activity of the simulated grid cells drops
by two orders of magnitude, though the difference between average maximum and
average minimum output activity is still at least two orders of magnitude for any
tested noise level &,.

The output activity a, of a simulated grid cell u depends directly on the ratio r,
which characterizes the relative distances between an input & and the prototypes of
the best and second best matching units s; and s,. Only if the input £ is much closer
to the prototype s;.w than s;.w, the activity will approach a value of 1. Otherwise, if
the distances between & and s;.w as well as £ and s,.w are rather similar, the activity
will be close to 0. This approximation of grid cell activity assumes that the input
signals to the model originate from a sufficiently low-dimensional manifold in the
high-dimensional input space. Only if this condition is met it is likely that some of
the inputs will match the particular best matching prototype closely resulting in a
strong activation of the corresponding grid cell. Adding noise to inputs from such
a lower-dimensional manifold moves the inputs away from the manifold in random
directions. As a consequence, each of the grid cell’s prototypes becomes surrounded
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noise increase

Fig. 4 Illustration of high-dimensional “dead zones” (blue-dotted spheres) surrounding prototypes
(black dots) that lie on a lower-dimensional manifold. The “dead zones” grow with increasing levels
of noise

with a kind of “dead zone” for which it is unlikely that any input will originate from
it (Fig.4). This rather unintuitive property of randomness in high-dimensional space
becomes more tangible if one considers the distribution of random points that lie
within the unit sphere. For a point to lie close to the center of this sphere all of it’s
coordinates must be close to zero. If the absolute value of only one coordinate is
large, i.e., close to one or negative one, the point will lie close to the surface of the
sphere. Thus, with increasing dimension it becomes more and more unlikely for a
random point that the absolute values of all of it’s coordinates will be low. Likewise,
it is equally unlikely that the high-dimensional noise added to an input will not move
the input away from it’s low dimensional manifold, and hence move it away from
the grid cell’s prototypes.

4 Noise Compensation

The results summarized above suggest that real grid cells should be able to process
inputs with low peak firing rates, that they may show a similar reduction in activity
when the proportion of noise in their inputs is high, and that they should not suffer
a degradation of their firing field geometry in the presence of noise. To the best of
our knowledge no experiments were conducted yet that investigated the behavior of
grid cells in response to (controlled) noise in their input signals. Since grid cells do
show a wide range of peak firing rates [4, 9, 16, 21], possible variations of noise in
their input signals may provide an explanation for these observations.

However, grid cells may also employ strategies to directly compensate for noise,
e.g., by changing electrotonic properties of their cell membranes [15]. To account
for this possibility we added a noise compensation mechanism to our model that
normalizes ratio r with respect to the level of noise. Like the RGNG-based grid cell
model itself the implemented noise compensation is a computational mechanism that
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is an abstract representation of this potential ability of grid cells and does not relate
to any specific neurobiological implementation. As described above, the addition of
noise to the inputs of the model results in “dead zones” around the prototypes of
each grid cell that effectively limit the maximum value of ratio r. To normalize r
without apriori knowledge about the level of noise that is present, it is necessary to
identify and track the border region of these “dead zones” around each prototype.
For that purpose a buffer by of size N was added to each unit s of a grid cell’s GNG
containing the N largest values of ratio r encountered so far while s was the BMU.
In addition, every entry of a buffer by has an age associated with it that is increased
every time the simulated grid cell processes an input and the corresponding unit s is
selected as BMU. Once the age of a buffer entry reaches a given age threshold A,
the value is evicted from the buffer. This way, changes in the level of input noise
that influence the size of the “dead zones” can be tracked. Using this additional
information a normalized ratio 7 can then be defined as:

7= max|:min|: ;, 1:| , Oi| ,
by

with by the median of all populated entries in buffer by .

5 Results

We characterized the normalized ratio 7 by conducting a series of simulation runs
that covered combinations of varying age thresholds Ay.x € {50, 250, 750, 1500,
3000}, varying buffer sizes N € {5, 11, 21, 41, 81}, and varying levels of noise &, €
{0.1, 0.3, 0.7, 0.9}. In addition, we reran corresponding simulations without normal-
izing ratio r to ensure that the input signal (including the random noise) was identical
to the other simulations. All simulation runs used the same set of parameters as the
previous simulations reported above and used the same location inputs derived from
movement data published by Sargolini et al. [21]. However, the section of movement
data that was analyzed here stems from a different experimental trial due to technical
constraints of the simulation environment. This change resulted in slight variations
in the gridness score distributions of the rerun results (compare Figs.3 and 8).

Figures 5, 6, 7, and 8 summarize the simulation results of all simulation runs.
Figure5 shows one exemplary rate map for each simulation run. The rate maps
were chosen randomly from one of the 100 grid cells per simulation. Figure 6 shows
corresponding activity histograms that show the distribution of activity values present
in all rate maps (100) within each simulation. Figure 7 provides for each simulation
run a histogram of gridness scores calculated based on the corresponding firing rate
maps. Lastly, Fig. 8 shows the results of the simulation reruns with non-normalized
ratio r for comparison.
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Fig. 5 Randomly chosen exemplary rate maps of simulation runs with varying age thresh-
olds Amax € {50,250, 750, 1500, 3000} (rows), varying buffer sizes N € {5, 11, 21,41, 81}
(columns), and varying levels of noise &, € {0.1,0.3,0.7, 0.9} (quadrants of 2 x 2 blocks). All
simulation runs used the same set of parameters as the simulation runs underlying the data pre-
sented in Fig. 3 and processed location inputs derived from movement data published by Sargolini
etal. [21]

The firing rate maps shown in Fig.5 reflect the influence of the two parame-
ters Amax and N on the normalized ratio 7 in an intuitive way. The age threshold
Amax determines the duration for which a recently encountered large value of non-
normalized ratio r is kept in the buffer and used to determine the “dead zone” bound-
ary surrounding the corresponding prototype. With 20 dendritic subsections, i.e.,
prototypes per grid cell and 30,000 time steps per 10min trial, each prototype will
be BMU for about 1500 time steps per trial or 2.5 time steps per second on average.
Thus, with an age threshold of A,,x = 50 recently encountered large values of r are
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Fig. 6 Distributions of the activity values present in the firing rate maps of individual simulation
runs. The shown data corresponds to the simulation runs shown in Fig.5. The histograms range
from O to 1

kept for about 20 seconds in the buffer before they are evicted. Larger values of A yax
prolong this time:

A 50 - 20s ,

Apax = 250 — 100s ,

Ama 750 — 300s ( 5min),
A

A

ma:

> >
I

~
Il

max = 1500 — 600s (10 min) ,
max = 3000 — 1200s (20 min) .

Similarly, the buffer size N does not only define how many values of non-normalized
ratio r are used to estimate a “dead zone” boundary, but it also implies how much
time is needed to fill the buffer on average:
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Fig.7 Distributions of gridness scores calculated from the firing rate maps of individual simulation
runs. The shown data corresponds to the simulation runs shown in Fig.5. The histograms range
from —1.5 to +1.5. Gridness score threshold of 0.4 indicated by red mark

N= 5— 20s,
N=11— 44s,
N =21 - 8.4s,
N =41 — 164s,
N =81 - 32.4s.

In cases where the age threshold Ay, is small and the buffer size N is large, the
encountered values of ratio r are evicted faster than the buffer can be filled. As a
consequence effectively all recent values of » are used to estimate the respective
“dead zone” boundary. This effect can be observed in the first row of Fig.5. With
increasing buffer size the estimated “dead zone” boundary of each prototype moves
towards the median of all encountered values of ratio r resulting in enlarged firing
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noise level
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L

Fig. 8 Randomly chosen exemplary rate maps (left), distributions of activity values (middle),
and distributions of gridness scores (right) from simulation runs with varying levels of noise &, €
{0.1,0.3, 0.7, 0.9} (quadrants of 2 x 2 blocks) using no noise compensation. All other parameters
were identical to the simulation runs presented in Figs.5, 6, and 7

0.7 0.9

fields that are separated by only thin regions of lower activity. This overestimation of
“dead zone” sizes is also reflected by the corresponding activity distributions shown
in the first row of Fig. 6. The distributions are either unimodal or bimodal instead
of being long-tail distributions as one would expected in case of a typical grid cell
firing pattern (compare Fig. 8, middle). Especially in cases of high levels of noise
(&, = 0.7) and larger buffer sizes (N > 21) the minimum activity of the simulated
cells increases to levels where the cell exhibits an unnatural continuous base level
activity regardless of it’s particular input.

With increasing age threshold A« the time window in which the buffer can
be filled with values of ratio r that are actually among the highest values that are
likely to occur given the particular noise level increases. Consequently, the quality
of the estimation of the particular “dead zone” boundary increases as well, which is
reflected by decreasing sizes of firing fields (Fig.5) and more long-tail distributions
of activity values (Fig.6). The activity distributions reveal that independent of a
particular combination of age threshold and buffer size the tails of the distributions
decrease with increasing levels of noise. Thus, the maximum activity of a simulated
cell with normalized ratio 7 still decreases with noise, but the magnitude of this
decrease is significantly lower compared to the decrease when the activity is based
on a non-normalized ratio » (Figs. 3 and 8). In fact, the decrease in maximum activity
due to noise using the normalized ratio 7 now matches the observed variability of
peak firing rates in biological grid cells.

The influence of normalizing ratio r on the resulting gridness scores of the simu-
lated grid cells is inconclusive (Fig. 7). In general, there appears to be a pattern where
the gridness scores increase with low to medium levels of noise before they decrease
again when the levels of noise increase further. Small amounts of noise may prevent
the learning algorithm from getting stuck in local minima and thus may result in
hexagonal firing patterns that are more regular. However, some simulation runs (e.g.,
Amax = 750, N = 5) deviate from this pattern and exhibit rather broad distributions
of gridness score values at a noise level of £, = 0.7, but a clear correlation with the
parameters age threshold or buffer size is not recognizable. One likely explanation
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for the observed variability in gridness score distributions is the alignment of grid
cell firing patterns in the RGNG-based grid cell model. In common with biological
grid cells, a group of grid cells modeled by the RGNG-based model align the rotation
and spacing of their firing patterns in a self-organizing manner. Depending on initial
conditions and the input presented so far this alignment process can get stuck in a
stable configuration that introduces irregularities in the otherwise hexagonal firing
patterns of the simulated grid cells (e.g., Amax = 1500, N =41, &, = 0.1 in Fig.5).
As similar “defects” in the firing patterns of biological grid cells were experimentally
observed and documented by Krupic et al. [16], it is inconclusive if this property of
the RGNG-based model is a “bug” or a“feature”. In the grid cell literature it is rather
common to exclude the firing rate maps of cells with gridness scores lower than a
given threshold (around 0.3-0.4) from publication resulting in a lack of knowledge
about cells that are almost grid cells given their firing rate maps.

6 Conclusions

We presented a noise compensation mechanism for our RGNG-based grid cell model
based on a dynamic normalization of the core measure used to derive the activity
of a simulated grid cell. The normalization is controlled by two parameters, age
threshold A,.x and buffer size N, whose influence we characterized by an extended
series of simulation runs. The results indicate that the age threshold parameter is
more critical than the buffer size parameter. It should have a value that translates to a
sliding time window of at least 5 min (in the context of the underlying experimental
setup) in which unnormalized values are collected and used to dynamically estimate
the normalization factor needed for the currently present noise level.

The proposed normalization procedure reduces the previously observed [13] drop
in the output activity of simulated grid cells in the presence of high levels of input
noise by one order of magnitude. The remaining reduction in output activity matches
the observed variability of peak firing rates in biological grid cells. If there is a
possible connection between the peak firing rates of grid cells and the level of noise
present in their input signal is an open question and remains to be investigated.
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