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Summary. Accurate short-term now- and forecasting of global tempera-1

tures is an important issue and helpful for policy design and decision mak-2

ing in the public and private sector. We compose a raw mixed-frequency3

data set from weather stations around the globe (1920-2020). First, we4

document smooth variation in average monthly and annual temperature se-5

ries by applying a dynamic stochastic coefficient model. Second, we use6

adaptive cross-validated forecasting methods which are robust to smooth7

changes of unknown form in the short-run. Therein, recent and past ob-8

servations are weighted in a mean squared error-optimal way. Overall, it9

turns out exponential smoothing methods (with bootstrap aggregation) of-10

ten performs best. Third, by exploiting monthly data, we propose a simple11

procedure to update annual nowcasts during a running calendar year and12

demonstrate its usefulness. Further, we show that these findings are robust13

with respect to climate zones. Finally, we investigate now- and forecasting14

of climate volatility via a range-based measure and a quantile-based cli-15

mate risk measure.16

1. Introduction17

While long-run effects of climate change are well-studied, less is known18

about short horizons. In this paper, we focus on short-term forecasting of19

global temperatures. Short-term effects of climate change are of immediate20

concern to the private and public sector. Therefore, accurate short-term21

forecasts are valuable to decision making and policy design in near future,22

see e.g. Burke et al. (2015) and Cashin et al. (2017) for economic policy23

issues related to climate. Short-term forecasts are important in economics24

per se, see e.g. Giannone et al. (2008) for macroeconomic nowcasting25

which is nowadays at the core of research activities in e.g. central banks.26

The forecasts in this work are generated by adaptive methods which27

are robust under recent and ongoing structural changes, see Giraitis et al.28
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(2013). These appear to be suitable for temperature series under contin-29

uous and ongoing climate change. The idea is to obtain robust forecasts30

under a wide range of possible underlying data generating processes. These31

might contain (non-)stationary stochastic and deterministic trends with32

structural breaks. Forecasts are generated by weighting recent and past33

observations in which the tuning parameter (e.g. a window size or a pa-34

rameter controlling the weighting function) is selected via cross-validation.35

Thereby, the particular underlying data generating process does not need36

to be modelled explicitly. Giraitis et al. (2013) show the theoretical validity37

of such procedures. Rossi (2021) reviews many approaches to forecasting38

under instabilities and recommends the adaptive forecasting procedures by39

Giraitis et al. (2013) in case of small and continuous breaks, while other40

methods are more appropriate when breaks are large, discrete and abrupt.41

The temperature data analyzed in this work is much better charac-42

terized by small and smooth shifts rather than large and abrupt breaks.43

Therefore, the applied adaptive methods are potentially helpful for im-44

proved forecasting. Raw station data is retrieved from the CRUTEM (Cli-45

matic Research Unit TEMperature) 5 data base and processed to form a46

balanced data set with high quality temperature measurements. In a first47

step of our preliminary analysis we fit a time-varying autoregressive model48

with a time-varying random attractor to the temperature series. The model49

and its nonparametric estimation technique are proposed in Giratis et al.50

(2014). The estimated model fits the data well and the results support the51

notion of smoothly evolving average temperatures.52

We tackle the issue of one-year ahead forecasts and propose a simple but53

effective method for constructing nowcasts of average temperatures during54

a running calendar year. The resulting nowcasts can be updated month by55

month and the empirical investigation shows that it only takes two realized56

monthly observations (those from January and February) to significantly57

outperform the best forecasts using only annual data (obtained from a lin-58

ear trend model with residual bagged exponential smoothing). Obviously,59

there is a trade-off between annual forecasts with relatively low estimation60

uncertainty, but no updating, and continuously updated averaged monthly61

forecasts with increased estimation uncertainty. The empirical results show62

that updating with realized values outweighs the remaining estimation un-63

certainty quite quickly during a running calendar year. Thereby, more64

accurate nowcasts can be offered. In general, these nowcasts have a mono-65

tonic mean squared error improvement over the calendar months by con-66

struction. We suggest a simple and consistent estimator for the calendar67

month at which the switch to monthly updated nowcasts occurs.68
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Our results for forecasting annual temperatures in the twelve differ-69

ent calendar months reveal a particular pattern in predictability: while70

predictability is relatively low between October and April, the opposite71

is found for the warmer months May to September. This pattern is also72

mirrored in the autocorrelation patterns of the calendar months series.73

In spite of some heterogeneity in the best performing approaches, mostly74

some variant of bagged exponential smoothing delivers the most accurate75

forecasts. Given that January and February values are relatively hard to76

forecast, updating the nowcasts with realized values explains the observed77

strong improvements in mean squared nowcast errors for the first calen-78

dar months. We also take the temporal hierarchy between monthly and79

annual forecasts into account and find that the so-called forecast reconcil-80

iation approach leads to slight improvements. These findings are robust81

with respect to climate zones.82

We also focus on the range and lower and upper five percent quantiles83

of temperature distributions (for which we find similar patterns). These84

are particularly critical for climate change risk.85

The remainder of the paper is organized as follows: Section 2 describes86

the data set and the construction of average temperatures from raw station87

data. In Section 3, a preliminary analysis is given with emphasis on robust88

trend testing and the estimation of the time-varying model by Giratis et89

al. (2014). The adaptive forecasting techniques are given in Section 4. The90

construction and updating of nowcasts is located in Section 5. Empirical91

results are reported in Section 6. Conclusions are drawn in Section 7.92

2. Data93

Data is obtained from CRUTEM 5 in NetCDF4 format. Using the R94

packages ”ncdf4” and ”ncdf4.helpers”, data is converted from the nc format95

to regular time series data. These data are raw station data similar to the96

ones used in Gonzalo and Gadea (2020) for an earlier CRUTEM release.97

We set the following standards to the selected weather stations in order98

to ensure excellent temperature data recording quality, minor measure-99

ment error and only a small proportion of missing data. In our experience,100

data quality varies considerably across weather stations around the globe.101

Criteria are in particular as follows:102

103

(i) Start date of recording in 1920 (or earlier);104

(ii) Continuous recording until 2020;105

(iii) One hundred percent coverage of data in all twelve calendar months;106
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(iv) Less than five percent of missing data points in each calendar month.107

108

Starting in 1920 offers a good balance between the length of the result-109

ing annual series and their quality. In sum, we study 1,152 out of 10,639110

available weather stations. These are of high available quality with con-111

tinuous recordings and form a balanced sample with only few missing data112

points. The balancedness of the sample ensures the comparability across113

time points which is an important feature. Thereby, we rule out spurious114

effects due to a different composition of weather stations across time. This115

would make a comparison difficult. Moreover, our handling even enables116

to track individual weather stations (cf. Gadea and Gonzalo, 2021 and He117

et al., 2021).118

The weather stations are located in the Americas (936), Europe (118),119

Russia (49), Asia (19), Pacific (17), Far East (11) and Africa (2). Clearly,120

many excluded stations do not fulfill the strong quality requirements. In121

fact, from the total sample of 10,639 stations, 3,229 are remaining when122

considering the start date restriction (i); 2,012 when additionally account-123

ing for the end date (ii). The coverage restriction (iii) reduces the sample124

to 1,709 stations. The requirement regarding the completeness (iv) of the125

time series leaves us with N = 1, 152 stations. Missing data is linearly126

imputed for all series.†127

We consider the period from 1920 (January) to 2020 (December) yield-128

ing T = 101 annual observations. Exactly as in the CRUTEM data base,129

the annual temperature is calculated as an average from monthly observa-130

tions (January to December) from the respective calendar year:131

yat =
1

N

N∑
i=1

yat,i (1)

where yat denotes the annual cross-sectional average computed from N132

weather stations measuring the individual annual average temperature yat,i133

with i = 1, 2, ...N . The individual annual average per station is defined as134

yat,i =
1

12

12∑
m=1

ymt,i

where ymt,i denotes the monthly recorded temperature in monthm = 1, 2, .., 12135

at station i in year t. This brings us directly to136

yat =
1

12N

12∑
m=1

N∑
i=1

ymt,i . (2)

†A complete list of weather stations with WMO id is available upon request.
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From the raw station data, we construct the average (global) tempera-137

ture. This measurement is of highest interest to academics, policy makers,138

practitioners and households. Besides, the variation around the mean is139

informative as well (see e.g. Gonzalo and Gadea, 2020 and Diebold and140

Rudebusch, 2022). Following Diebold and Rudebusch (2022), we consider141

the range. Other variation measures are less persistent leading to less142

predictability and less responsive forecasts. Finally, we also consider the143

lower and upper five percent quantile as a climate-at-risk measure. These144

are discussed in Section 6.3.145

3. Trend analysis146

Table 1 reports realized values of the annual and monthly temperature147

average time series for the years 1920, 1970 and 2020. Predictions from148

the individually selected forecasting method (in terms of lowest MSE) for149

the year 2021 are also given.150

Looking at the values of temperatures in different years increases are151

clearly visible for the annual average, but also for most of the individual152

calendar months. We start our trend analysis by running a robust trend153

test by Gonzalo and Gadea (2020). The authors suggest robust OLS-based154

HAC inference (see e.g. Newey and West (1987) and Andrews (1991)) in155

a simple linear regression framework:156

yt = α+ βt+ ut . (3)

Their t-test for H0 : β = 0 is shown to be robust against various forms157

of deterministic and stochastic trends. Results are reported in Table 1,158

column tHAC . Critical values are taken from the asymptotic distribution159

which standard normal. All reported statistics are positive and significant160

(at least at the nominal significance level of five percent) except for the161

October series. Overall, the existence of upward trends is confirmed for162

almost all series suggesting the existence of global warming.163

Next, we apply a dynamic stochastic coefficient process as proposed164

by Giraitis et al. (2014) to model the temperature series. Thereby, we165

decompose the climate series into a random persistent attractor and a166

dynamic part with a time-varying autoregressive coefficient:167

yt − µt = ρt−1(yt−1 − µt−1) + ut.

The model can be re-expressed as a time-varying autoregressive process168

containing a time-varying intercept αt:169

yt = αt + ρt−1yt−1 + ut (4)
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Table 1. Trend test results
Series 1920 1970 2020 2021 (pred) tHAC

Annual 9.98 9.79 11.12 11.26 4.13

Jan -4.58 -2.65 -0.46 -0.74 2.84
Feb -0.20 -0.66 1.65 1.11 2.66
Mar 6.04 5.12 5.15 4.05 3.95
Apr 8.67 9.37 8.74 10.32 4.13
May 15.06 13.60 17.19 15.15 4.42
Jun 19.62 19.10 20.56 20.02 2.65
Jul 21.06 21.42 22.66 22.50 2.25
Aug 21.13 20.43 21.92 21.65 4.10
Sep 15.52 16.69 18.59 18.03 2.15
Oct 11.96 11.52 11.44 11.93 1.14
Nov 4.51 4.78 4.41 5.63 3.55
Dec 0.85 -1.28 1.62 0.31 2.35

with αt = µt − ρt−1µt−1. Such a model has been applied previously to in-170

flation and real exchange rates. Both time-varying quantities αt and ρt can171

be estimated consistently by nonparametric estimation methods and point-172

wise confidence intervals are provided. As a result, the estimated random173

attractor is informative about the time-varying underlying intercept. The174

dynamic autoregressive parameter provides a time-varying measure for the175

persistence in the dynamic component.176

Figure 1 displays the estimation of the persistent random attractor and177

the dynamic AR coefficient for the annual series, while Figures 2 and 3 show178

the ones for annual calendar month series. Point-wise confidence intervals179

reported at the 90% level. We use a normal kernel and a bandwidth of
√
T180

as the theory suggests, see Theorem 2.4 and Corollary 2.3 in Giraitis et al.181

(2014).182

The directions of random attractors are in conjunction with signs of183

estimated linear OLS slopes in the linear trend test regression. Through-184

out, the shapes of estimated random attractors track the trajectories well185

and support the notion of smooth and continuous structural changes in186

temperature series rather than large and abrupt breaks. The estimated187

dynamic persistence shows some heterogeneous results with different pat-188

terns but typically indicated low or moderate levels of persistence. Clearly,189

static persistence ignoring any trends (red vertical line) is reduced as ex-190

pected when accounting for smoothly varying attractors. Diagnostic tests191

on residuals (Ljung-Box tests with one and five lags) reveal no remaining192
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Fig. 3. Time-varying persistence, calendar months
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autocorrelation at conventional significance levels.‡ Our evidence clearly193

points towards smooth and continuous changes and trends for which the194

following robust forecasting devices are appropriate, see the excellent sur-195

vey by Rossi (2021) and the discussion therein.196

4. Adaptive forecasting techniques197

General setup We consider a simple location framework following Giraitis198

et al. (2013):199

yt = βt + ut. (5)

The noise term ut is a martingale difference sequence being independent200

of βt. Here, we follow the general framework and do not specify the trend201

component βt, but rather allow for a wide class of stochastic or determin-202

istic processes with minimal structure. βt does not have to be smooth and203

may contain a unit root. Importantly, the nature of βt is neither assumed204

to be known specifically, nor estimated.§205

The adaptive forecasting scheme is about weighting the most recent and206

past observations in a flexible way:207

ŷt+1|t,H =

t−1∑
i=0

wt,i,Hyt−i. (6)

The weights wt,i,H are restricted to be positive and to sum up to one.208

They are, in general, depending on some tuning parameter H for which209

we consider cross-validation on the in-sample one-step ahead forecasts, see210

below.211

Different weighting schemes are available, e.g. parametric exponen-212

tial weighting and nonparametric schemes. Besides, some simple routines213

are considered. Among these is the mean of all available observations214

y1, y2, ..., yt with equal weights (Mean). Such a forecast would be optimal215

in case of a pure white noise process. Next, just using the last observa-216

tion yt gives a driftless random walk forecast (Last). Besides these two217

extremes of either equally weighting all observations or just focusing on218

‡Results are not reported to conserve space and are available upon request.
§Inoue et al. (2017) suggest several extensions (e.g. multi-step forecasts) to the

framework of Giraitis et al. (2013), see also Farmer et al. (2022) for a general
linear predictive regression. These authors have different aspects in view, while
we follow Giraitis et al. (2013) and focus on simple procedures with optimal
weighting of recent and past data through cross-validation. Their methods fit the
empirical situation of interest in this work very well.
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the last one, all possible variations can be averaged, see Pesaran and Tim-219

mermann (2007).220

ŷt+1|t =
1

t

t∑
H=1

ŷt+1|t,H

with221

ŷt+1|t,H =
1

H

t∑
i=t−H+1

yi .

This approach (Avg) combines all possible averages and might offer some222

robustness with respect to unknown persistence of the underlying time223

series. Finally, we consider a triangular weighting scheme (Tri), see Giraitis224

et al. (2013).225

Exponential smoothing has proven to be successful in short-term fore-226

casting in general and under small and continuous breaks in particular,227

see e.g. Petropoulos et al. (2022). We therefore consider exponential228

smoothing weights229

wt,i,H =
γi∑t
j=1 γ

j
(7)

with γ = exp(−H−1). Here, the tuning parameter H controls the de-230

gree of down-weighting past observations. Rather than using fixed or pre-231

determined values, we resort to cross-validation for which Giraitis et al.232

(2013) have established a theoretical framework showing that data-driven233

selection of H, i.e. Ĥ, yields MSE-optimal weights.¶ Their results hold234

under a wide range of processes, e.g. stationary, stochastic and determin-235

istic trends and structural breaks. Such forecasting devices have proven236

to be successful for many macroeconomic time series undergoing smooth237

structural changes, but less is known for climate time series.238

Additionally to the regular exponential smoothing procedure, we con-239

sider bagging, see Breimann (1996), Inoue and Kilian (2008) and Hille-240

brand and Medeiros (2010) for time series applications. Here, forecasts of241

multiple bootstrap samples are aggregated (via averaging) to forecast the242

original series. Bergmeir et al. (2016) have shown that bagged exponen-243

tial smoothing yields accurate forecasts. Related works are Dantas and244

Oliveira (2018) and Petropoulos et al. (2018). On the contrary, Barrow et245

¶The cross-validation uses Ĥ = argminH QT,H with QT,H = 1
T

∑T
t=1(yt −

ŷt|t−1,H)2 based on in-sample observations. Giraitis et al. (2013) show that the
minimal MSE can be obtained by cross-validation under a wide range of possible
processes including deterministic and stochastic trends and structural breaks.



12 Kruse-Becher

al. (2020) find bagging to perform worse. To the best of our knowledge,246

no results are yet available for temperature series. We thus provide new247

evidence on the empirical performance of bagging for exponential smooth-248

ing.249

The procedure works as follows: A variance-stabilizing Box-Cox trans-250

formation with data-driven parameter selection (see Guerrero, 1993) is251

applied in a first step. As our data is non-seasonal, a Loess-based proce-252

dure (see Cleveland et al., 2017) is used for decomposition. Residuals are253

bootstrapped via the moving block bootstrap by Kuensch (1989) to form254

bootstrapped series for which exponential smoothing is used to generate255

forecasts which are finally averaged.256

As an alternative to parametric exponential smoothing, we consider257

a nonparametric weighting method. For instance, it is not required that258

weights decrease monotonically which can be helpful during multiple struc-259

tural changes. The weights are determined by minimizing the one-step260

ahead forecast MSE subject to the constraint that they sum up to one.261

The Lagrangian leads to a system of equations which are solved by im-262

posing βt = β̂t for t = 1, 2, ..., T − 1 and βT = β̂T = β̂T−1. We use a263

local constant model with cross-validated bandwidth choice. For technical264

details on the procedure, we refer to Giraitis et al. (2013).265

Next, we consider the possibility of a parametric conditional mean266

model, e.g. a linear deterministic trend, i.e. ŷt+1|t = α̂ + β̂(t + 1). A267

linear trend might approximate for instance (logarithmic) carbon-dioxide268

emissions and real gross domestic product per capita. We study the result-269

ing pure linear trend forecasts (Trd) in separation, but also in combination270

with exponential or nonparametric weighting applied to the residuals of the271

linear trend model (Trd+ES, Trd+ES∗ and Trd+NP). By doing so, eventu-272

ally neglected features can be picked up. Thus, residuals can be processed273

in an adaptive way controlling for potential deviations from white noise in274

a robust way.275

As a benchmark forecast, we take a first-order autoregressive model276

(AR1). This benchmark covers many possible situations ranging from a277

white noise to a random walk.∥ Similarly to the linear trend model, we also278

consider exponential or nonparametric weighting for the residuals, labeled279

∥We have also considered the simple robust predictor suggested in Martinez
et al. (2022) (see also Castle et al., 2015 and Hendry, 2018) which is given as
ŷat+1|t = yat + ρ∆yat . It always performs better than the AR1 benchmark in terms
of MSE, but worse than exponential smoothing in all cases. This might be due
to the fact that their procedure performs very well for rather large and abrupt
breaks. Our data is instead characterized by small and smooth changes. The
authors also study a smooth robust predictor. It is, however, unclear how to
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as AR1+ES (or AR1+ES∗) and AR1+NP, respectively.280

As a final layer of robustness, we equally weight all forecasts from dif-281

ferent sources, see Elliott and Timmermann (2013) for an excellent survey282

article. This technique does require additional estimation and is known to283

be difficult to be beaten by more sophisticated weighting schemes. The284

combination of all forecasts with equal weights is labeled as ’Comb’.285

5. Nowcasting annual averages by monthly data286

The methods used in this work draw heavily from Giraitis et al. (2013).287

These are designed for non-seasonal (e.g. annual) data and focus on one-288

step ahead forecasts. Therefore, our primary interest lies in annual one-289

step ahead short-term forecasts. Besides, we are interested in nowcasts for290

the running calendar year. In order to enable nowcasts from non-seasonal291

monthly data, we consider twelve annual time series for the different cal-292

endar months. Hence, we forecast the one-step ahead annual average from293

a time series of e.g. January temperature series. By doing so, we obtain294

non-seasonal annual data and can apply the same set of methods as for the295

annual averaged series. Importantly, by collecting January to December296

forecasts we can construct nowcasts during the running calendar year by297

consecutively replacing month forecasts with realized values.298

As a by-product, we can also compare the annual forecast obtained from299

annual series with one obtained from averaging twelve monthly forecasts.300

Naturally, the latter one has a much higher uncertainty stemming from the301

fact that twelve (instead of a single) estimations are needed. Nonetheless,302

such a comparison is interesting per se and allows us to ’reconcile’ the fore-303

casts (see e.g. Athanasopoulos et al., 2017). Clearly, there is a temporal304

hierarchy in the data and the forecasts as annual observations are defined305

as averages of monthly observations. Interestingly, equally averaging (i)306

the annual forecast and (ii) the aggregated monthly one, leads to a recon-307

ciled forecast exploiting the temporal structure of the forecasts, see also308

Hollyman et al. (2021).∗∗309

select the window size optimally. One way might be to apply cross-validation
techniques. This extension is left for future research.
∗∗We have also considered other ways of forecast reconciliation, see Athana-
sopoulos et al. (2017). The reconciled forecast can be interpreted as a GLS
estimator which involves the structural scaling matrix and the covariance matrix
of reconciliation errors. More sophisticated variants of reconciliation beyond the
simple structural scaling with equal variances did not improve on the MSE and
are therefore not further considered.
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The annual temperature average is defined as310

yat =
1

12

12∑
m=1

ymt

where ymt denotes the contribution of month m = {1, 2, ..., 12}. Now, yat311

can be forecasted from an annual series which is the most obvious choice,312

i.e. ŷat+1|t. Another possibility would be to forecast the individual monthly313

contributions and to take their average to form the annual forecast. As314

mentioned, the monthly forecasts can be obtained from annual series again,315

i.e. ŷmt+1|t. The annual forecast is then obtained as316

ŷ
a
t+1|t =

1

12

12∑
m=1

ŷmt+1|t.

Averaging is a unique and preserving linear transformation and also allows317

the construction of nowcasts as follows. Let ŷa,mt+1|t denote the annual now-318

casts in month m. Precisely, data up to month m is available. Due to lags319

in reporting, this does not necessarily mean that such a nowcast is actually320

computed in month m. The nowcast can simply be constructed as follows:321

ŷa,mt+1|t =
1

12

(
m∑
i=1

yit+1 +

12∑
i=m+1

ŷit+1|t

)
. (8)

Here, the realized monthly temperatures for months 1 to m are used and322

the remaining n = 12−m months are forecasted. Setting m = 0 yields the323

annual averaged forecast ŷ
a
t+1|t based on monthly forecasts. Asm increases,324

more and more realized values are incorporated and less and less forecasts325

are needed. Setting m = 12 yields the realized annual average yat+1.326

It is clearly expected that the nowcast MSE, i.e.327

ω(a,m) = E
[
(yat+1 − ŷa,mt+1|t)

2
]
, (9)

is monotonically decreasing inm, i.e. ω(a,m+1) ≤ ω(a,m), see Fosten and328

Gutknecht (2020) for a related study. Moreover, the nowcast MSE ω(a,m)329

approaches zero as m approaches 12. In our empirical study, we investigate330

at which m̃ it is recommendable to switch from the annual forecast ŷat+1|t331

to the continuously updated nowcast ŷa,mt+1|t. Clearly, for low values of m,332

the annual forecast has the advantage of reduced uncertainty, while the333

nowcast updated with realized values gains attraction as m increases. We334
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determine m̃ by first constructing a confidence interval (based on HAC335

standard errors) for the MSE of annual forecast ω(a) and then taking the336

first m for which the nowcast MSE ω(a,m) is below the lower confidence337

bound, i.e.338

m̃ = inf
0≤m≤11

{m : ω(a,m) < ω(a) + seHAC(ω(a))qαT
}. (10)

At this point and beyond, due to monotonicity, the nowcast is performing339

significantly better and thus preferable. For consistency of the estimator,340

the size αT needs to shrink to zero as T grows to infinity, see inter alia341

Phillips et al. (2011).342

6. Empirical results343

6.1. Forecasting results344

In total, we have 16 forecast procedures in competition. The following345

forecast evaluation tables report the MSE relative (Rel MSE) to the AR(1)346

benchmark. A value below unity indicates a better performance and vice347

versa. Next, three statistics obtained from the Mincer-Zarnowitz (MZ)348

regression349

yt+1 = α+ βŷt+1|t + ut+1 (11)

are reported: (i) the regression R2 measuring the degree of predictability,350

(ii) the Wald statistic for testing rationality of the forecasts, i.e. H0 : α =351

0 ∪ β = 1, (critical value at the five percent level equals 5.99) and (iii)352

the bias t-statistic for H0 : α = 0 | β = 1 (imposing a slope coefficient of353

unity, i.e. β = 1) with a five percent critical value of 1.96. These entries354

are followed by p-values for the Ljung-Box statistic with one lag applied to355

the one-step forecast errors and their squares. The p-value for the Jarque-356

Bera statistic is also reported. Hence, we consider important optimality357

properties of the forecast errors, namely uncorrelatedness in the first two358

moments and normality. Finally, the model confidence set (MCS) p-value359

(see Hansen et al. 2011) is reported for those models included in the model360

confidence set. We run this procedure with a nominal significance level of361

twenty-five percent, see e.g. Bennedsen et al. (2021). Missing entries362

indicate that the respective procedure is eliminated and not contained in363

the final model confidence set. All computations are carried out in the364

open-source statistical software R.365
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Table 2 reports the evaluation results for the annual time series forecasts366

ŷat+1|t. Starting point is 1971 for the forecasting period. Thus, the period367

from 1920 to 1970 contains the observations for the estimation sample368

which is used for the first forecast in 1971. From that point onward, the369

estimation sample is recursively extended. All optimizations and cross-370

validations are repeated in each step, i.e. on an annual basis.371

The best performing specification is a linear trend with an additional372

bagged exponential smoothing (Trd+ES∗) for the residuals. Its relative373

MSE is 0.72 and close to other well performing forecasts obtained from374

exponential smoothing and its variants. Nonparametric weighting also375

performs relatively good with relative MSE values around 0.8. The pre-376

dictability (as measured by the Mincer-Zarnowitz regression R2) is 0.52 for377

the best performing Trd+ES∗ forecast indicating a medium level of pre-378

dictability in the underlying temperature series. The resulting forecasts379

are found to be rational and unbiased. The forecast errors appear to be380

uncorrelated, homoskedastic and normally distributed. The model confi-381

dence set includes ten forecasts in which the ES∗, AR1+ES∗ and Trd+ES∗382

reach the largest MCS p-values. From this perspective, the results are in-383

dicative that bagged exponential smoothing performs very well and best if384

applied to either linear trend or autoregressive residuals. Nonparametric385

forecasts are not unbiased and have autocorrelated errors. Furthermore,386

simple approaches do not perform well.387

Results for the evaluation of forecasts of annual series for the twelve388

calendar months are not reported to save space and available from the au-389

thor upon request. The individual results for the different calendar months390

indicate that the best performing forecasts are well specified in most cases.391

In a few situations, the rationality and bias statistics are significant at the392

five percent level, but not at the one percent level. While the best perform-393

ing forecasts for the annual averaged series are obtained by the Trd+ES∗394

approach, the results for calendar months are different and diverse. Most395

often, bagged exponential smoothing and its variants appear to perform396

best. We also find that the combination of all available forecasts (with397

equal weights) performs best (for January and February). Even simple398

linear trend forecasts without additional residual treatment are selected,399

albeit with very low levels of predictability (November and December).400

Overall, predictability seems to be quite low for the colder months401

October-April. For the warmer months, larger predictability is found.402

Thus, there is some form of seasonality in the predictability. This is also403

resembled in the underlying autocorrelation of the series, see the red hori-404

zontal lines in Figures 1 and 3. June and September appear to have largest405
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R2-values (0.37 and 0.36, both with bagged exponential smoothing). How-406

ever, the predictability is remarkably lower in comparison to the averaged407

annual level. A similar pattern is seen in the relative MSEs which are408

closer, but still significantly below unity. Moreover, the trend test results409

also indicate somewhat weaker (albeit still significant) evidence against the410

null of no trend.411

Figure 4 plots the global temperature average together with the best412

performing annual forecasts from the Trd+ES∗ approach in blue color.413

Next, the plot also contains the aggregated annual forecast obtained from414

twelve best performing individual forecasts for the respective monthly con-415

tributions in red color (i.e. ŷ
a
t+1|t). An equal weighting of the two forecasts416

gives the reconciled forecast exploiting the temporal hierarchy among the417

annual and monthly series. The annual forecast has the lowest MSE, fol-418

lowed by the reconciled forecast. The averaged monthly forecast performs419

worst among the three, see the nowcast MSE results plotted in Figure 5420

for m = 0.421

6.2. Nowcasting results422

Figure 5 depicts the nowcast MSEs for the yearly forecast ŷat+1|t which is423

constant with respect to m by definition as there is no updating. Monthly424

updates result in monotonically decreasing nowcast MSEs in m. They ap-425

proach zero for m being close to 12. Remarkably, even after one month426

(i.e. m = 1), the nowcast MSE is already smaller for the updated nowcast427

albeit insignificant (at the 10% level). However, after two months, the428

updated nowcast has a significantly lower MSE than the annual average,429

yielding m̃ = 2. The combination (with equal weights exploiting the tem-430

poral hierarchy) improves slightly on the pure nowcast for m = 1, but not431

for the remaining months in the year. Clearly, due to low predictability432

for the months January to April - as found above -, the nowcasts strongly433

benefit from replacing potentially difficult forecasts in a low predictability434

environment with realized values. The gains for the remaining months are435

still noticeable, but the largest magnitude in nowcast MSE reduction is436

observed for January and February. The loss from using the monthly fore-437

cast even for m = 0 is rather small as compared to the gain from using it438

for m = 1, 2, ..., 11. From a statistical viewpoint, a switch from the annual439

forecast to the continuously updated monthly nowcasts is advisable from440

February onward since m̃ = 2. Even though there might be a reporting441

lag which hinders the practitioners to exploit the realized monthly obser-442

vations immediately, the advantages of updates are clearly documented443

here. Our recommendation is thus to switch from the annual forecast to444
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the monthly updated nowcasts once the February data is made available445

to the forecaster.446

Figure 6 plots the observed temperature average together with three447

different nowcasts obtained during the running calendar year. The Jan-448

uary nowcast exploits the realized January value and uses forecasts for449

the remaining eleven months. These are obtained from the best perform-450

ing models. The June nowcast uses the first six observed monthly values451

and forecasts for the months July to December. It can be seen that the452

forecasts track the global temperature evolution quite well. Updating the453

nowcasts with monthly information improves the forecast accuracy strik-454

ingly. Unsurprisingly, the November nowcast is almost perfectly following455

the annual averages as only the December forecast is needed in addition456

to the other eleven realized monthly observations.457

6.3. Nowcasting climate zones458

We now turn to the analysis of different climate zones in order to investi-459

gate whether there are notable differences. So far, the global temperature460

averages are analyzed. A study of climate zones can reveal geographical461

differences in the strength of climate change and its short-term predictabil-462

ity.463

Following the Koeppen-Geiger classification scheme, we exploit longi-464

tude and latitude values to match the location of the analyzed weather465

stations in our sample with the climate zones. The classification results in466

19 stations in polar climate, 444 stations in snow climate, 537 stations in467

warm climate and 150 stations in arid climate. Two stations in equatorial468

climate are discarded.469

Figures 7–10 plot the annual temperature averages in the four different470

climate zones. In all four zones, a clear and significant upward trend is471

present, but the strongest (and least noisiest) trend is found for the polar472

region. This is reflected in a relatively high degree of predictability (R2 =473

0.83 for the best performing Trd+ES∗ forecast), see Table 3. Remarkably,474

this forecast is the only one included in the model confidence set. The475

results for the remaining three climate zones (snow, warm and arid) are476

quite similar, see Tables 4–6. Most notably, the Trd+ES∗ forecast is best477

performing in all climate zones.478

Turning to the nowcasting results, we find a very similar pattern to the479

global averages, see Figures 11–14. The optimal switch from annual to480

updated forecasts occurs in February. The polar zone is a slight exception481

with m̃ = 3 (March).482
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6.4. Annual range and Climate-at-Risk483

In this final subsection we focus on additional measures beyond the mean.484

First, we consider the range of temperatures, defined as the difference485

between the maximal and the minimal temperature, i.e.486

rat = max
i

yat,i −min
i

yat,i (12)

with yat,i =
1
12

∑12
m=1 y

m
t,i being the annual temperature average at station487

i. Such a measure is important to judge the spread of the temperature dis-488

tribution. The temperature range has been investigated in related recent489

studies like Diebold and Rudebusch (2022). Second, we consider the lower490

and upper five percent quantile of the temperature distribution character-491

izing the ”Climate-at-Risk”, labeled as qat,α = inf{yt ∈ R : α ≤ F (yt)} with492

α = 5% and α = 95% and F being the distribution of yt. The idea of con-493

sidering quantiles in the context of risk is similar to the famous ”Value-at-494

Risk” approach in financial econometrics (see e.g. Christoffersen, 2009). In495

financial markets, agents typically hold long positions in the portfolios and496

thus the risk is located in the left tail. A noticeable exception is Giot and497

Laurent (2003). Similarly, in macroeconomics, the concept of ”Growth-at-498

Risk” has emerged (Brownlees and Souza, 2021). In global warming, both,499

the lower and the upper tail are relevant for climate risk assessment, see500

also Gonzalo and Gadea (2020). Due to the fact that neither the range501

nor the quantiles are mean-preserving functions, the nowcasting method502

for the average temperature series cannot be adopted. We therefore focus503

on the forecasts of annual series in the remainder of this work.504
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Figure 15 displays the estimated random attractor and dynamic per-505

sistence for the annual range. While the range was increasing until the506

mid-1960s it experiences a smooth and steady decline until the end of the507

sample in 2020. A decreasing range coupled with an increasing mean fur-508

ther amplifies the severity of climate change. Moreover, the persistence509

increased from the 1960s onward. Figure 18 plots the forecasts from the510

most accurate method (in terms of MSE, relative to the benchmark: 0.83),511

namely the cross-validated exponential smoothing method (ES). Table 7512

contains the evaluation results. The degree of predictability (R2 = 0.49)513

is comparable to the average series. All diagnostic tests are passed. The514

model confidence set includes the bagged exponential smoothing forecasts,515

the autoregressive forecasts with exponentially smoothed residuals, the516

nonparametric forecasts (also in combination with an autoregressive con-517

ditional mean model) and the equally-weighted combination scheme.518

Finally, the random attractor estimation results are displayed in Fig-519

ures 16 and 17. Both are clearly smoothly upward trending in the recent520

decades. Moreover, both series are somewhat stronger autocorrelated than521

other annual temperature series. The forecast evaluation results for the522

lower and upper quantiles are reported in Tables 8 and 9. Both quan-523

tiles are characterized by medium predictability, while the best forecasting524

method for the upper quantile (ES∗) yields a relative MSE of 0.71 as op-525

posed to the lower quantile, where the linear the linear trend model plus526

ES∗ forecasts attain 0.88. For the upper quantile, the MCS contains ten527

forecasts, while the one for the lower only consists of five. Overall, (bagged)528

exponential smoothing also works very well for temperature series reflect-529

ing the climate risk. Figures 19 and 20 show that the movements in lower530

and upper climate tail risk can be reasonably tracked.531
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7. Conclusions and outlook532

Climate change is an indisputable and challenging issue affecting global533

society. A major concern are average temperatures and their deviations534

from historic means. For a newly composed high-dimensional data set535

from 1920 to 2020 based on the CRUTEM 5 data base, we document536

smooth variation and investigate robust forecasting devices for the short-537

term horizon of one year ahead. Cross-validated exponential smoothing538

(in combination with bootstrap aggregation) turns out to be a successful539

and robust forecasting device. We offer a simple and robust procedure to540

construct and update nowcasts for a running calendar year. Results show541

that updating with monthly realizations significantly improves nowcasts542

already after two months in comparison to the best annual forecast. The543

analysis of climate zones reveals robustness of the previous findings and544

the particular strength of climate change in the polar zone. Moreover, we545

study the range in annual temperature distributions and the lower (upper)546

five percent quantile in the context of climate tail risk assessment and547

forecasting. Our findings are similar to the ones for the average annual548

temperature forecasting. While the range is decreasing over time, both549

quantiles are increasing. Taken these facts together with an increasing550

mean culminates in serious signals regarding global warming from different551

distributional characteristics of temperatures.552
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