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Beam Structures in Practice

1 Mathematical modeling of vibration of structures made of joined together beams is a
topic of natural interest for engineers (pic from net).

2 Each beam is described by (Euler-Bernoulli) energy functional considering energy of:
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Matching Vertex Conditions in Planar Graph

1 Energy functional corresponding to network of beams Γ = (E, V ) is given by

Π =
1

2

∑
e∈E

∫
e
ae(x)

∣∣v′′e (x)
∣∣2dx.

Domain of Π consists of functions v ∈ ⊕
e∈E H

2(e) that satisfy certain vertex
conditions.

One way is to assign analogue of standard vertex conditions introduced for the
Laplacian (e.g. see the work by B. Dekoninck and S. Nicaise, 2000)

In order to study the spectral gap, the following vertex conditions are assumed (see the
work by P. Kurasov and J. Muller, 2020):

vi(c) = vj(c) when ei, ej adjacent to c

v′i(c) = 0

2 The corresponding Beam operators, mapping ve 7→ aev′′′′e , is de�ned from v ∈ ⊕
e∈E H

4(e)
satisfying at each vertex

vi(c) = vj(c) when ei, ej adjacent to c

v′i(c) = 0∑
ei∼c

v′′′i (c) = 0
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Matching Vertex Conditions in Planar Graph

Energy functional and corresponding vertex conditions

Π =
1

2

∑
e∈E

∫
e
ae(x)

∣∣v′′e (x)
∣∣2dx.

1 Vertex conditions on the quadratic form (see the work by J.C. Kiik, P. Kurasov, and M.
Usman, 2015)

v1(c) = v2(c) = v3(c)

sin(θ1)v′1(c) + sin(θ2)v′2(c) + sin(θ3)v′3(c) = 0

2 Corresponding self-adjoint Beam operator, mapping ve 7→ aev′′′′e , on every edge e ∈ E
satisfying (in addition to above conditions)

v′′1 (c)

sin(θ1)
=

v′′2 (c)

sin(θ2)
=

v′′3 (c)

sin(θ3)

v′′′1 (c) + v′′′2 (c) + v′′′3 (c) = 0
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Questions Regarding Generalization?

1 Role of Degrees of Freedom

Figure: Eigenfunctions corresponding �rst and second eigenvalues.

From Scalar to Vector Quantities
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Questions Regarding Generalization?

1 Generalization to three dimensional structures

x1

x2

x3

x0

E1

E2
E3

c

i1
j1

k1

i0

k0

α
θ

θ

θ

α

α

j0

2 Including all Degrees of Freedom
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Parameterization of Beam Deformation

1 Euler-Bernoulli hypothesis:

Plane sections remain plane,

Geometry of the spatial beam is described by the centroid line and a family of the
corresponding cross-sections.

2 Description of problem in basis:

Orthonormal basis { ~E1, ~E2, ~E3} span the physical space in which the beam is
embedded,

Orthonormal basis {~i,~j,~k} describes orientation of the cross section of beam

3 Deformed con�guration fully described by:

Position vector ~g(x) with x representing the arc-length coordinate,

Family of orthonormal basis {~i(x),~j(x),~k(x)} which describe the orientation of the
cross sections in the deformed con�guration.
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~ie
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Rigid Vertex Condition

1 The relationship between the cross-section basis in the initial un-deformed and the
deformed con�gurations can be expressed through R(x) ∈ SO(3)

~i(x) = R(x)~i, ~j(x) = R(x)~j, ~k(x) = R(x)~k

2 Introduce (linearized)-rotation vector ~ω(x) := α~ϑ(x)

~i(x) =~i+ ~ω(x)×~i, ~j(x) = ~j + ~ω(x)×~j, ~k(x) = ~k + ~ω(x)× ~k

with unit rotation vector ~ϑ(x) and angle of rotation α ∈ [0, π]

De�nition

A joint v with n incident beans {ei}ni=1 is called rigid, if the displacement and rotation
vectors on beams ei satisfy

~g1(v) = · · · = ~gn(v), and ~ω1(v) = · · · = ~ωn(v)
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Towards General Graph Γ = (V,E)

1 Kinematic Bernoulli assumptions for beam frame:

no vertex energy, pre-sress, or external force

U(Γ) =
1

2

∑
e∈E

∫
e

(
ae(x)

∣∣v′′e (x)
∣∣2 + be(x)

∣∣w′′e (x)
∣∣2 + ce(x)

∣∣u′e(x)
∣∣2 + de(x)

∣∣η′e(x)
∣∣2)dx.

2 Associated to each edge e ∈ E is a local orthonormal basis {~ie,~je, ~ke}

~ge(x) is displacement vector of edge e in global coordinate system at x ∈ e.

(ue, we, ve)(x) :=
(
~ge ·~ie, ~ge ·~je, ~ge · ~ke

)
(x)

~ωe(x) is (linearized) rotation vector of edge e in global coordinate system at x ∈ e

(ηe, ψe, φe)(x) :=
(
~ωe ·~ie, ~ωe ·~je, ~ωe · ~ke

)
(x)

3 A key ingredient of generalization to elastic frame is the property of vertex at which the
incident edges are met.
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Quadratic Form and Vertex Conditions

Theorem

Energy functional Π of the beam frame with free rigid joints is the quadratic form corresponding
to the positive closed sesquilinear form

h
[
Ψ̃,Ψ

]
:=
∑
e∈E

∫
e

(
aeṽ′′e v

′′
e + bew̃′′ew

′′
e + ceũ′eu

′
e + deη̃′eη

′
e

)
dx,

densely de�ned on

H =
⊕
e∈E

L2(e)×
⊕
e∈E

L2(e)×
⊕
e∈E

L2(e)×
⊕
e∈E

L2(e),

with the domain of h consisting of the vectors

Ψ :=
(
v, w, u, η

)T ∈ ⊕
e∈E

H2(e)×
⊕
e∈E

H2(e)×
⊕
e∈E

H1(e)×
⊕
e∈E

H1(e)

that satisfy, at every vertex v ∈ V , the �free rigid joint� conditions

continuity of displacement,

u1~i1 + w1~j1 + v1
~k1 = · · · = un~in + wn~jn + vn~kn

continuity of rotation,

η1~i1 − v′1~j1 + w′1
~k1 = · · · = ηn~in − v′n~jn + w′n

~kn

where n is the degree of v.
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Hamiltonian on Graph and Vertex Conditions

Theorem

Energy form Π on a beam frame with free rigid joints corresponds to the self-adjoint operator
H : H → H acting as

Ψe :=

veweue
ηe

 7→
aev

′′′′
e

bew′′′′e
−ceu′′e
−deη′′e


on every edge e ∈ E of the graph. The domain of the operator H consists of the functions

Ψ ∈
⊕
e∈E

H4(e)×
⊕
e∈E

H4(e)×
⊕
e∈E

H2(e)×
⊕
e∈E

H2(e)

that satisfy, at each vertex v ∈ V ,

continuity of displacement and rotation conditions respectively

u1~i1 + w1~j1 + v1
~k1 = · · · = unv

~inv + wnv
~jnv + vnv

~knv ,

η1~i1 − v′1~j1 + w′1
~k1 = · · · = ηnv

~inv − v′nv
~jnv + w′nv

~knv ,

equilibrium of forces and moments, respectively∑
e∼v

(
ceu
′
e
~ie − bew′′′e ~je − aev′′′e ~ke

)
= ~0,

∑
e∼v

(
deη
′
e
~ie − aev′′e~je + bew

′′
e
~ke
)

= ~0.
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Self-adjointness and Physics Behind Vertex Conditions

1 Equilibrium of forces at vertex∑
e∼v

(
ceu
′
e︸ ︷︷ ︸

Ny

~ie − bew′′′e︸ ︷︷ ︸
Vx

~je − aev′′′e︸ ︷︷ ︸
Vz

~ke
)

= ~0

2 Equilibrium of moments at vertex∑
e∼v

(
deη
′
e︸ ︷︷ ︸

My

~ie − aev′′e︸ ︷︷ ︸
Mx

~je + bew
′′
e︸ ︷︷ ︸

Mz

~ke
)

= ~0.
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Decoupling of Fields for Planar Graph

Corollary

Free planar network of beams is described by Hamiltonian

H(Γ)(v, η, w, u) =
(
H(Γ)

1 (v, η)
)
⊕
(
H(Γ)

2 (w, u)
)

where H(Γ)
1 and H(Γ)

2 are di�erential operators with action

H(Γ)
1 (v, η)

∣∣
e

=

(
ae

d4

dx4
0

0 −de d
2

dx2

)
, and H(Γ)

2 (w, u)
∣∣
e

=

(
be

d4

dx4
0

0 −ce d
2

dx2

)

H(Γ)
1 satisfying at each vertex v

v1 = · · · = vnv , and η1~i1 − v′1~j1 = · · · = ηnv
~inv − v′nv

~jnv ,∑
e∼v

deη
′
e
~ie − aev′′e~je = ~0, and

∑
e∼v

aev
′′′
e = 0.

H(Γ)
2 satisfying at each vertex v

w′1 = · · · = w′nv
, and u1~i1 + w1~j1 = · · · = unv

~inv + wnv
~jnv ,∑

e∼v
ceu
′
e
~ie − bew′′′e ~je = ~0, and

∑
e∼v

bew
′′
e = ~0.

Gregory Berkolaiko & Mahmood Ettehad Elastic Frames: Variational And Di�erential Formulation 18 / 32



Introduction and Motivation General Three Dimensional Graphs Energy Form and Di�erential Operator Symmetry and Irreduscible RepresentationsQuadratic Form and Vertex Conditions Hamiltonian on Graph and Vertex Conditions Decoupling of Fields for Planar Graph

Decoupling of Fields for Planar Graph

Corollary

Free planar network of beams is described by Hamiltonian

H(Γ)(v, η, w, u) =
(
H(Γ)

1 (v, η)
)
⊕
(
H(Γ)

2 (w, u)
)

where H(Γ)
1 and H(Γ)

2 are di�erential operators with action

H(Γ)
1 (v, η)

∣∣
e

=

(
ae

d4

dx4
0

0 −de d
2

dx2

)
, and H(Γ)

2 (w, u)
∣∣
e

=

(
be

d4

dx4
0

0 −ce d
2

dx2

)

H(Γ)
1 satisfying at each vertex v

v1 = · · · = vnv , and η1~i1 − v′1~j1 = · · · = ηnv
~inv − v′nv

~jnv ,∑
e∼v

deη
′
e
~ie − aev′′e~je = ~0, and

∑
e∼v

aev
′′′
e = 0.

H(Γ)
2 satisfying at each vertex v

w′1 = · · · = w′nv
, and u1~i1 + w1~j1 = · · · = unv

~inv + wnv
~jnv ,∑

e∼v
ceu
′
e
~ie − bew′′′e ~je = ~0, and

∑
e∼v

bew
′′
e = ~0.

Gregory Berkolaiko & Mahmood Ettehad Elastic Frames: Variational And Di�erential Formulation 18 / 32



Introduction and Motivation General Three Dimensional Graphs Energy Form and Di�erential Operator Symmetry and Irreduscible RepresentationsQuadratic Form and Vertex Conditions Hamiltonian on Graph and Vertex Conditions Decoupling of Fields for Planar Graph

Example: Planar Graph

Figure: Eigenfuctions corresponding to �rst and second eigenvalues for parameters
a = d = d0 = 1. Color bar shows value of in-axis torsion of edges.

Figure: Eigenfuctions corresponding to �rst and second eigenvalues for parameters b = 1 and
d = d0 = 103. Color bar shows value of in-axis torsion of edges.
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Section 4

1 Introduction and Motivation

Beam Structures in Practice

Planar Frames and Matching Vertex Conditions

Planar Frames and Matching Vertex Conditions

2 General Three Dimensional Graphs

Parameterization of Beam Deformation

Full Description of Euler�Bernoulli Energy Functional

3 Energy Form and Di�erential Operator

Quadratic Form and Vertex Conditions

Hamiltonian on Graph and Vertex Conditions

Decoupling of Fields for Planar Graph

4 Symmetry and Irreduscible Representations

Numerical Results and Discussion

Numerical Results and Discussion
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Irreduscible Representations

x1

x2

x3

x0

E1

E2
E3

c

i1
j1

k1

i0

k0

α
θ

θ

θ

α

α

j0

1 The graph ΓAT is invariant under the symmetry group G = D3, the dihedral group
of degree 3.

R : rotation of Γ by θ = 2π/3 with axis of rotation along E3

F : re�ection with respect to the planes passing through vertices x1, x0 and c.

2 The group G then can be described as

G = 〈R,F | R3 = I, F 2 = I, FRFR = I〉

with I to be the identity element. This implies that G contains the elements

G = {I, R,R2, F, FR, FR2}
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Decomposition of H

x1

x2

x3

x0

E1

E2
E3

c

i1
j1

k1

i0

k0

α
θ

θ

θ

α

α

j0

Theorem

The Hamiltonian operator H of the beam frame ΓAT is reduced by the decomposition

H = Hid ⊕Halt ⊕Hω ⊕Hω ,

where

Hid := {Ψ ∈ H : v0 = w0 = η0 = 0, ws = ηs = 0, v1 = v2 = v3, u1 = u2 = u3} ,
Halt := {Ψ ∈ H : v0 = w0 = u0 = 0, us = vs = 0, w1 = w2 = w3, η1 = η2 = η3} ,

Hω :=
{

Ψ ∈ H : u0 = η0 = 0, w0 = iv0, Ψ3 = ωΨ2 = ω2Ψ1

}
= Hω ,

where s ∈ {1, 2, 3} labels the legs, Ψs := (vs, ws, us, ηs)T , and ω = e2πi/3.
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Decomposition of H

Remark

A decomposition H =
⊕

αHα is reducing for an operator H if

H is invariant on each of the subspaces, and

the operator domain Dom(H) is aligned with respect to the decomposition, namely

Dom(H) =
⊕
α

(
Hα ∩ Dom(H)

)
.

This means that we can restrict H to each subspace in turn and every aspect of the
spectral data of the operator H is the sum (or union) of the spectral data of the
restricted parts.

In particular, since Hω = Hω, the eigenvalues of the corresponding restrictions are
equal and thus each eigenvalue of the restriction Hω = H

∣∣
Hω

enters the spectrum

of H with multiplicity two.

Kinematically, these eigenvalues correspond to the rotational wobbles of the antenna
beam.

Gregory Berkolaiko & Mahmood Ettehad Elastic Frames: Variational And Di�erential Formulation 23 / 32



Introduction and Motivation General Three Dimensional Graphs Energy Form and Di�erential Operator Symmetry and Irreduscible RepresentationsNumerical Results and Discussion Numerical Results and Discussion

Decomposition of H

Remark

A decomposition H =
⊕

αHα is reducing for an operator H if

H is invariant on each of the subspaces, and

the operator domain Dom(H) is aligned with respect to the decomposition, namely

Dom(H) =
⊕
α

(
Hα ∩ Dom(H)

)
.

This means that we can restrict H to each subspace in turn and every aspect of the
spectral data of the operator H is the sum (or union) of the spectral data of the
restricted parts.

In particular, since Hω = Hω, the eigenvalues of the corresponding restrictions are
equal and thus each eigenvalue of the restriction Hω = H

∣∣
Hω

enters the spectrum

of H with multiplicity two.

Kinematically, these eigenvalues correspond to the rotational wobbles of the antenna
beam.

Gregory Berkolaiko & Mahmood Ettehad Elastic Frames: Variational And Di�erential Formulation 23 / 32



Introduction and Motivation General Three Dimensional Graphs Energy Form and Di�erential Operator Symmetry and Irreduscible RepresentationsNumerical Results and Discussion Numerical Results and Discussion

Decomposition of H

Theorem

The Hamiltonian operator H of the beam frame ΓAT is reduced by the decomposition

H = Hid ⊕Halt ⊕Hω ⊕Hω ,
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Figure: Variation of determinant of matrices corresponding irreducible representations and their
corresponding eigenvalues: (left) trivial Mtri, (middle) alternative Malt, and (right) standard
Mω . All the results are based on unit materials parameters and beams lengths.
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H = Hid ⊕Halt ⊕Hω ⊕Hω

Hid := {Ψ ∈ H : v0 = w0 = η0 = 0, ws = ηs = 0, v1 = v2 = v3, u1 = u2 = u3} ,
Halt := {Ψ ∈ H : v0 = w0 = u0 = 0, us = vs = 0, w1 = w2 = w3, η1 = η2 = η3} ,

Hω :=
{

Ψ ∈ H : u0 = η0 = 0, w0 = iv0, Ψ3 = ωΨ2 = ω2Ψ1

}
= Hω,
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H = Hid ⊕Halt ⊕Hω ⊕Hω

Hid := {Ψ ∈ H : v0 = w0 = η0 = 0, ws = ηs = 0, v1 = v2 = v3, u1 = u2 = u3} ,
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Figure: Plot of the components of the �rst eigenfuction from Hid. Plots are obtained from a
�nite elements numerical computation and are displayed in the local coordinate system of the
corresponding edge. All the results are based on unit materials parameters and beams lengths.
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H = Hid ⊕Halt ⊕Hω ⊕Hω

Hid := {Ψ ∈ H : v0 = w0 = η0 = 0, ws = ηs = 0, v1 = v2 = v3, u1 = u2 = u3} ,
Halt := {Ψ ∈ H : v0 = w0 = u0 = 0, us = vs = 0, w1 = w2 = w3, η1 = η2 = η3} ,

Hω :=
{

Ψ ∈ H : u0 = η0 = 0, w0 = iv0, Ψ3 = ωΨ2 = ω2Ψ1

}
= Hω,
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H = Hid ⊕Halt ⊕Hω ⊕Hω

Halt := {Ψ ∈ H : v0 = w0 = u0 = 0, us = vs = 0, w1 = w2 = w3, η1 = η2 = η3} ,
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Figure: Plot of the components of the �rst eigenfuction from Halt. Plots are obtained from a
�nite elements numerical computation and are displayed in the local coordinate system of the
corresponding edge. All the results are based on unit materials parameters and beams lengths.
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H = Hid ⊕Halt ⊕Hω ⊕Hω
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Halt := {Ψ ∈ H : v0 = w0 = u0 = 0, us = vs = 0, w1 = w2 = w3, η1 = η2 = η3} ,

Hω :=
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Ψ ∈ H : u0 = η0 = 0, w0 = iv0, Ψ3 = ωΨ2 = ω2Ψ1

}
= Hω,
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Figure: Plot of (�rst) eigenfunction �elds corresponding to the eigenvalue of multiplicity two in
edge's local coordinate system by �nite element approximation.
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H = Hid ⊕Halt ⊕Hω ⊕Hω

Figure: Plot of (left) �rst, and (right) second displacement eigenfunction corresponding to
eigenvalue of standard representation in global coordinate system by �nite element
approximation. Color bar shows value of in-axis rotation of edges.
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H = Hid ⊕Halt ⊕Hω ⊕Hω
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Questions?

Thanks for your attention !
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