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o Introduction and Motivation
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Beam Structures in Practice

@ Mathematical modeling of vibration of structures made of joined together beams is a
topic of natural interest for engineers (pic from net).
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Matching Vertex Condltlons in Planar Graph

@ Energy functional corresponding to network of beams I = (E, V') is given by

Z/ae !v (z)| dex.

EEE
o Domain of II consists of functions v € @.c i H2(e) that satisfy certain vertex
conditions.

e One way is to assign analogue of standard vertex conditions introduced for the
Laplacian (e.g. see the work by B. Dekoninck and S. Nicaise, 2000)
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Matching Vertex Condltlons in Planar Graph

@ Energy functional corresponding to network of beams I = (E, V') is given by

Z/ae !v (z)| dex.

eEE

o Domain of II consists of functions v € @.c i H2(e) that satisfy certain vertex
conditions.

e One way is to assign analogue of standard vertex conditions introduced for the
Laplacian (e.g. see the work by B. Dekoninck and S. Nicaise, 2000)

o In order to study the spectral gap, the following vertex conditions are assumed (see the
work by P. Kurasov and J. Muller, 2020):

vi(c) =vj(c) when e;,e; adjacent to ¢

vi(c) =0

© The corresponding Beam operators, mapping ve — aevy”, is defined from v € @ cp H(e)
satisfying at each vertex

vi(c) =vj(c) when e;,e; adjacent to ¢

vi(c) =0
Z v’ (c) =0
e;~c
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Matching Vertex Condltlons in Planar Graph

Energy functional and corresponding vertex conditions

II=- Z/ae |'U” | dx.

eEE

@ Vertex conditions on the quadratic form (see the work by J.C. Kiik, P. Kurasov, and M.
Usman, 2015)

e vi(c) = va(c) = v3(c)
o sin(01)v] (c) + sin(02)v4(c) + sin(03)v5(c) =0
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Matching Vertex Condltlons in Planar Graph

Energy functional and corresponding vertex conditions

II=- Z/ae |'U” | dx.

eEE

@ Vertex conditions on the quadratic form (see the work by J.C. Kiik, P. Kurasov, and M.
Usman, 2015)

e vi(c) = va(c) = v3(c)
o sin(01)v] (c) + sin(02)v4(c) + sin(03)v5(c) =0

>

© Corresponding self-adjoint Beam operator, mapping ve — acv.
satisfying (in addition to above conditions)
o V() _ wi(e) _ vi(e)
sin(61) sin(62) sin(63)
o vf(c) + v} () + vf'(c) = 0

"' on every edge e € E
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Questions Regarding Generallzatlon"

Figure: Eigenfunctions corresponding first and second eigenvalues.
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Questions Regarding Generalization?

@ Role of Degrees of Freedom
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> 0

Figure: Eigenfunctions corresponding first and second eigenvalues.

From Scalar to Vector Quantities

lateral displacements angular displacement
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Section 2

© General Three Dimensional Graphs




I a General Three Dimensional Parameterization of Beam Deformation Ful

Parameterization of Beam Deformation

@ Euler-Bernoulli hypothesis:
o Plane sections remain plane,

o Geometry of the spatial beam is described by the centroid line and a family of the
corresponding cross-sections.
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Parameterization of Beam Deformation

@ Euler-Bernoulli hypothesis:
o Plane sections remain plane,

o Geometry of the spatial beam is described by the centroid line and a family of the
corresponding cross-sections.

© Description of problem in basis:

o Orthonormal basis {El, EQ,E;;} span the physical space in which the beam is
embedded,

o Orthonormal basis {7, 7, E} describes orientation of the cross section of beam

© Deformed configuration fully described by:

o Position vector g(x) with x representing the arc-length coordinate,

-

o Family of orthonormal basis {i(z),j(z), k(z)} which describe the orientation of the
cross sections in the deformed configuration.
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I a General Three Dimensional Parameterization of Beam Deformation Full De

Parameterization of Beam Deformation

@ Description of problem in basis:

o Orthonormal basis {]_3/17 EQ, Eg} span the physical space in which the beam is
embedded,

o Orthonormal basis {7, j, k} describes orientation of the cross section of beam
© Deformed configuration fully described by:
o Position vector g(x) with x representing the arc-length coordinate,

o Family of orthonormal basis {i(z), j(z), k(z)} which describe the orientation of the
cross sections in the deformed configuration.
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ngld Vertex Condition

@ The relationship between the cross-section basis in the initial un-deformed and the
deformed configurations can be expressed through R(z) € SO(3)

i(x) = R(2)i, j@)=R@)j,  k(z)=R()k
© Introduce (linearized)-rotation vector &(z) := ad(z)

i(x) =i+ d(z) x 1, F@) =7+ az) x §, E(x)=k+ad(x)x k

with unit rotation vector J(x) and angle of rotation « € [0, 7]

& Mahmood Ettehad
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General Three Dimen Parameterization of Beam Deformation Full De

Rigid Vertex Condition

@ The relationship between the cross-section basis in the initial un-deformed and the
deformed configurations can be expressed through R(z) € SO(3)

@) =R@)i, @) =R@)Jj, k@) =Rk
© Introduce (linearized)-rotation vector &(z) := ad(z)

i(x) =i+ d(z) x 1, F@) =7+ az) x §, E(x)=k+ad(x)x k

with unit rotation vector J(x) and angle of rotation « € [0, 7]

A joint v with n incident beans {e;}i-; is called rigid, if the displacement and rotation
vectors on beams e; satisfy

Gi(w) =+ =Gn(v), and &1(v) == dn(v)
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Towards General Graph I' = (V. E

@ Kinematic Bernoulli assumptions for beam frame:

@ no vertex energy, pre-sress, or external force

uo =1y / (ac (@) o @) + be(@)w @] + ce (@)t (@) + de (@) | ()| ) da.
e€cE"*®

© Associated to each edge e € E is a local orthonormal basis {fe,fe, l;e}

e ge(x) is displacement vector of edge e in global coordinate system at x € e.
(Ue, We, ve)(x) := (!76’ 'Ze’ge 'jevge : Ee)(x)
e We(z) is (linearized) rotation vector of edge e in global coordinate system at z € e

(nevwea¢e)(w) = (Qe ‘;eMDe '_;87‘36 . E;e)(ﬁ)
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Towards General Graph I' = (V, E

@ Kinematic Bernoulli assumptions for beam frame:

@ no vertex energy, pre-sress, or external force

u® — Z/ ae(@)[of @) + be(@) [0l @) + ce (@)l @) + de(@) ()] ) .

v(x) w(x)

© Associated to each edge e € E is a local orthonormal basis {fe,fe, l;e}

e ge(x) is displacement vector of edge e in global coordinate system at x € e.
(Ue, We, Ve ) () 1= (!76’ 'Ze’ge j@vge : Ee)(w)

e We(z) is (linearized) rotation vector of edge e in global coordinate system at z € e
(Nes ey de) () 1= (Be - Te, De - Je, Te - ke ) (2)

© A key ingredient of generalization to elastic frame is the property of vertex at which the
incident edges are met.
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© Energy Form and Differential Operator

nal And Differential



Quadratic Form and Vertex Conditions Hamilto

Quadratlc Form and Vertex Condltlons

Energy functional I1 of the beam frame with free rigid joints is the quadratic form corresponding
to the positive closed sesquilinear form

h[\fl,\ll] Z/ aev”'u +bﬁw”w”+ceu u +den917(,)d
ecE

densely defined on

H= @ La(e) x D La2(e) x D La(e) x P La(e),

eckE e€E ecE ecE

with the domain of h consisting of the vectors

Vi=(v, w, u )’ €@ He)x @ H(e)x @ H'(e) x @ H'(e)

eckE ecE eck eckE
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Quadratlc Form and Vertex Condltlons

Energy functional I1 of the beam frame with free rigid joints is the quadratic form corresponding
to the positive closed sesquilinear form

h[\fl,\ll] Z/ aev”'u +bﬁw”w”+ceu u +den917(,)d
ecE

densely defined on

H= @ La(e) x D La2(e) x D La(e) x P La(e),

eckE e€E e€EE ecE
with the domain of h consisting of the vectors
Ui=(v, w, u, 0" € @ H*e)x @ H>*(e)x @ H'(e) x @ H'(e)
e€E e€E e€E e€E
that satisfy, at every vertex v € V, the “free rigid joint” conditions
@ continuity of displacement,

—

w191 + w1j1 + vik1 = -+ = Unin + WnJn + Vnkn

@ continuity of rotation,

rd Vx4 VB e V4 Ve
Mi1 —v1J1 +wikl = = Nnin — Vpdn + Wekn

where n is the degree of v.
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Hamlltonlan on Graph and Vertex Conditions

Energy form 11 on a beam frame with free rigid joints corresponds to the self-adjoint operator
H:H — H acting as

"

W aevy
111

w, bew
W, := el — e
Ue —Celly
11
Ne _dﬂne

on every edge e € E of the graph. The domain of the operator H consists of the functions

Ve @ H*e) x @ Hi(e) x @@ H?(e) x @ H?(e)
ec k& ecE

ecE eckE

that satisfy, at each vertexv € V,
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al Three Dimensiona Quadratic Form and

Energy form 11 on a beam frame with free rigid joints corresponds to the self-adjoint operator
H:H — H acting as

"

W aevy
111
w, bew
W, := el — e
Ue —Celly
11
Ne _dﬂne

on every edge e € E of the graph. The domain of the operator H consists of the functions

Ve @ H*e) x @ Hi(e) x @@ H?(e) x @ H?(e)
ec k& ecE

eeE eeE
that satisfy, at each vertexv € V,
@ continuity of displacement and rotation conditions respectively

= Un,in, + Wy Iy aF Un,, kn,u 5

u1tl +wij1 + viky
g xs 77 g / e / ¢
Nii1 — V11 +wiki =0 = Nngin, — Uny Iny +wnvknv7

@ equilibrium of forces and moments, respectively

Z (ceugfe — bewé”je — aevé"lse) = 6,
e~v
S (dentie - acv!e + bewlk.) =3.

e~v
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Self-adjointness and Physics Behind Vertex Conditions

@ Equilibrium of forces at vertex

E (ceu/E e — bew!! Je — acvl’ ke> =0
v N N~ N~
N, v, Vs

© Equilibrium of moments at vertex
E (den'E ?e — aevg fe + bew/e' I;e) =0.
N~~~ N~ N~

v, My M,

Bending moment

components M.
R = 3
/ Normal force

AV Torsional moment

N, M M,
\ - —f/—b - y
7 v,
N
. *| Shear force components
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Decouphng of Fields for Planar Graph

Corollary

Free planar network of beams is described by Hamiltonian

H(F)(U,n,w,u) = (’ng)(v,n)) ® (Hg)(w,u))

where H(F) and H(F) are differential operators with action

d4 g
Qe 77 0 be -2 0
Wen- (F le) e e (F %)

0 —dem 0 —CegaZ
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on General Three Dir

Decouphng of Fields for Planar Graph

Corollary

Free planar network of beams is described by Hamiltonian

H(F)(U,n,w,u) = (’ng)(v,n)) ® (Hg)(w,u))

where H(F) and H(F) are differential operators with action

d4 g
Qe 77 0 be -2 0
Wen- (F le) e e (F %)

U —de g2 g ~Ce a2
iy e .
° H<1 ) satisfying at each vertex v
. . d A . > 2
V1 =::-=Un,, and M1 —V1J1 = = Nnylng — Un,Jne,
E denlie — aevlje =0, and E acvl =0
e~v e~v
o H' satisfying at each vertex v
2 ying
il / - = - >
wy = =w,,, and  u1il +WiJ1 = = Uny,in, + WnyJn,,
E cetbie — bew!' je =0, and E bew! = 0.
e~v e~
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Example: Planar Graph
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Figure: Eigenfuctions corresponding to first and second eigenvalues for parameters
a =d=dg = 1. Color bar shows value of in-axis torsion of edges.
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Figure: Eigenfuctions corresponding to first and second eigenvalues for parameters b = 1 and

d = do = 103. Color bar shows value of in-axis torsion of edges.
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© Symmetry and Irreduscible Representations
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Irreduscible Representations

£

@ The graph T' 47 is invariant under the symmetry group G = D3, the dihedral group
of degree 3.

e R : rotation of I" by 6 = 27/3 with axis of rotation along E3

o F': reflection with respect to the planes passing through vertices z1, 2z and c.

© The group G then can be described as
G=(R,F|R*=1I F*=1I, FRFR=1)

with I to be the identity element. This implies that G contains the elements

G ={I,R,R* F,FR,FR*}

& Mahmood Ettehad Elastic Frames: Var: nal And Differential Formulation



Theorem

The Hamiltonian operator H of the beam frame T ar is reduced by the decomposition
H=Hiqa ® Hart ® Hw ® He,
where
Hig :={¥ € H:vo =wo =mp =0, ws =ns =0, v1 =v2 =03, Ul = uz =uz},
Has :i={¥ € H:vg =wo =up =0, us =vs =0, w1 = w2 =ws, N1 =12 =173},
He = {\If € H:up=mn0 =0, wp=ivg, Y3 =wWy :w2\D1} — e
2mi/3

where s € {1,2,3} labels the legs, ¥, := (vs,ws,us,nS)T, and w = e

Mahmood Ettehad Elastic Frames: Variational And Differential Formulation




Introduction and Motivation al Three Dimensiona Numerical Result

Decomposition of H

A decomposition H = P H. is reducing for an operator H if
@ H is invariant on each of the subspaces, and
@ the operator domain Dom(H) is aligned with respect to the decomposition, namely

Dom(H) = @ (Ho NDom(H)).

[e3
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Decomposition of H

A decomposition H = P H. is reducing for an operator H if
@ H is invariant on each of the subspaces, and

@ the operator domain Dom(H) is aligned with respect to the decomposition, namely

Dom(H) = @ (Ho NDom(H)).

[e3

@ This means that we can restrict H to each subspace in turn and every aspect of the
spectral data of the operator H is the sum (or union) of the spectral data of the
restricted parts.

@ In particular, since H., = Hz, the eigenvalues of the corresponding restrictions are
equal and thus each eigenvalue of the restriction H,, = H‘H enters the spectrum
of H with multiplicity two.

e Kinematically, these eigenvalues correspond to the rotational wobbles of the antenna
beam.
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Decomposition of H

The Hamiltonian operator H of the beam frame T ar is reduced by the decomposition
H =Hia ® Hart ® Ho @ He,

* _eigenvalues + _eigenvalues * _eigenvalues

det(M, (k)
det(M,,(K))
det(M (k)

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure: Variation of determinant of matrices corresponding irreducible representations and their
corresponding eigenvalues: (left) trivial Mi,;, (middle) alternative M,¢, and (right) standard
M,,. All the results are based on unit materials parameters and beams lengths.
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H = Hia ® Hait ® Heo ® Ho

Hia:={¥ eH:vo=wo=1n0=0, ws =ns =0, v1 =v2 =03, U1 =uUz =us},
Halt :
Heo :

{\IIEHZUOIU)OIUOIO, us =vs =0, w1 = w2 = ws, 771:772:7]3}7

{\I’GHS’LL():T]O:O, wo = ivo, \1’320.)\1/2:(.02‘1/1} :/Hiw,




Numerical Results an
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Figure: Plot of the components of the first eigenfuction from #;4. Plots are obtained from a
finite elements numerical computation and are displayed in the local coordinate system of the
corresponding edge. All the results are based on unit materials parameters and beams lengths.
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Numerical Results an

Hig :={¥ €H:vo=wo=1n0=0, ws =ns =0,
Heart {VeH:vo=wo=u0=0, us =
He -

V1 = V2 = U3, ’tLl:UQ:’ng},

Vs = 0, w1 = w2 = wWs, T]1 = 7]2 = r/;;},
{\I/ € H:uo=mn0 =0, wo=1ive, U3 :w\IJQ:wQ\Ill} = Ho,




Numerical Results an

Hare :={V € H:vo=wo=up =0, us =vs =0, wy =wz =wsz, M1 =nN2 =173},

1 0 1 0
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Figure: Plot of the components of the first eigenfuction from #,);. Plots are obtained from a
finite elements numerical computation and are displayed in the local coordinate system of the
corresponding edge. All the results are based on unit materials parameters and beams lengths.
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Numerical Results an

H = Hig ® Hart ® Ho

Hid: {\IIEHZUOZU)OZUO
Hare :={V € H: vo = wo = up
He :={V € H:up =m0 =0,

=0, ws =10, =0, v1 =v2 =v3, Ul =u2 =us},
=0, us =vs =0, wy =w2 =ws, N1 =12 =73},

wo = ivg, ¥s =w¥y =w’ ¥} = Hg,

%10 1 1
02 2 . .
— — x X
3 X Z X
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0 0 1 1
0 05 1 0 05 1 0 05 1 0 05 1
-4
o220t N %10
— — < 05 = 3
g 2 g g
g =02 K =
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0 1
0 05 1 0 05 1 0 05 1 0 05 1
, x10% x10*
2 0.8
—~ 01 — — —
< X1 z i
> 0.05 S o QO 0.6
0 0
0 05 1 0 05 1 0 05 1 0 05 1

Figure: Plot of (first) eigenfunction fields corresponding to the eigenvalue of multiplicity two in
edge’s local coordinate system by finite element approximation.
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Numerical Results an

H= Hid @ Halt D

05

03
02
0.1
0
-0.1
-0.2
-0.3

Figure: Plot of (left) first, and (right) second displacement eigenfunction corresponding to
eigenvalue of standard representation in global coordinate system by finite element
approximation. Color bar shows value of in-axis rotation of edges.
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I a tenera ee 1 € s cussion Numerical Results and

Questions?

Thanks for your attention !




	Introduction and Motivation
	Beam Structures in Practice
	Planar Frames and Matching Vertex Conditions
	Planar Frames and Matching Vertex Conditions

	General Three Dimensional Graphs
	Parameterization of Beam Deformation
	Full Description of Euler–Bernoulli Energy Functional

	Energy Form and Differential Operator
	Quadratic Form and Vertex Conditions
	Hamiltonian on Graph and Vertex Conditions
	Decoupling of Fields for Planar Graph

	Symmetry and Irreduscible Representations
	Numerical Results and Discussion
	Numerical Results and Discussion


	fd@rm@0: 


