° DISKRETE MATHEMATIK UND OPTIMIERUNG

Helena Bergold, Winfried Hochstéttler, Uwe Mayer:

The Neighborhood Polynomial of Chordal Graphs

Technical Report feu-dmo
Contact: helena.bergold@fernuni-hagen.de, winfried.hochstaettler@fernuni-hagen.de,
privat@uwemayer.info

FernUniversitat in Hagen

Fakultdt fiir Mathematik und Informatik

Lehrgebiet fiir Diskrete Mathematik und Optimierung
D — 58084 Hagen

2000 Mathematics Subject Classification:
Keywords: neighborhood polynomial, domination polynomial, chordal graph, com-
parability graph, leafage, anchor width

The Neighborhood Polynomial of Chordal
Graphs

Helena Bergold, Winfried Hochstéattler, Uwe Mayer
FernUniversitdat in Hagen, Germany

Abstract

The neighborhood polynomial of a graph G is the generating function
of subsets of vertices in G that have a common neighbor. In this paper
we study the neighborhood polynomial and the complexity of its compu-
tation for chordal graphs. We will show that it is NP-hard to compute the
neighborhood polynomial on general chordal graphs. Furthermore we will
introduce a parameter for chordal graphs called anchor width and an algo-
rithm to compute the neighborhood polynomial which runs in polynomial
time if the anchor width is polynomially bounded. Finally we will show
that we can bound the anchor width for chordal comparability graphs and
chordal graphs with bounded leafage. The leafage of a chordal graphs is
the minimum number of leaves in the host tree of a subtree representation.
In particular, interval graphs have leafage at most 2. This shows that the
anchor width of interval graphs is at most quadratic.

1 Introduction

In this paper we study the neighborhood polynomial of graphs. Throughout
the paper, all graphs are simple, finite and undirected. For a graph G = (V, E),
the neighborhood of a vertex v € V is the set of all adjacent vertices, denoted
by Ng(v) ={u € V| (u,v) € E}. The neighborhood complez of a graph G was
first introduced by Lovasz [Lov78| and consists of all subsets of vertices W C V
which have a common neighbor, i.e.

Neg={UCV|IweV:UC Ng(v)}

This set-system is clearly hereditary, hence it is a simplicial complex.

To count the number of sets with cardinality & in Ng, we define the neighbor-
hood polynomial Ng(x), which is the generating function of the neighborhood
complex Ng, i.e.,

Ng(x) = Z zUl,

Ue Ng

Since we only consider finite graphs, the sum is finite and Ng(z) is a polynomial
such as all other generating functions considered in this paper. The constant
term of Ng(z) for every graph G is always 1, since the empty set is in the
neighborhood complex and the only set of cardinality 0. Furthermore, it is easy
to determine the linear coefficient which is the number of non-isolated vertices.

In this paper, we investigate the neighborhood polynomial of some graph classes.
In particular, we look at chordal graphs and subclasses like interval graphs,
split graphs and chordal comparability graphs. In Section [4] we discuss the
complexity of computing the neighborhood polynomial for each of these classes,.
In order to do this, we introduce the anchor width of a graph and develop an
algorithm for computing the neighborhood polynomial in Section [3] We will
see that the anchor width is the essential parameter. If for a graph class the
anchor width is polynomially bounded in the number of vertices, our algorithm
is efficient. In Section we investigate the leafage I(G) of a chordal graph
G on n vertices and show that the anchor width is at most n*(%). For interval
graphs, which are the graphs with leafage at most two, we give a family with
quadratic anchor width.

2 Preliminaries

The neighborhood polynomial was introduced by Brown and Nowakowski [BNOS|
who also investigated the effect on the neighborhood polynomial of some ele-
mentary graph operations. Given two graphs G7 = (V1, E1) and Gy = (Va, Es)
on disjoint vertex sets, the union G; UG5 of the graphs is the graph consisting of
both graphs without adding edges, i.e. the graph on the vertex set Vi UV, with
edge set E1 U FEs. The join G1+ G4 of the two graphs is the graph on the vertex
set V1 UV, consisting of both graphs together with all possible edges between
vertices in V; and vertices in V, i.e. E = E; U Ey U {vjvy | v € Vi, vg € Vol

Proposition 1 ([BNOS|). Let G1 and Gy be two graphs on disjoint vertex sets.
Then the neighborhood polynomial of the disjoint union G1 U Gs is

Ng,ua, () = Ng, (z) + Ng, ().

Proposition 2 ([BNOS8]). Let G; = (V4, E1), Gy = (Va, E2) be two graphs on
disjoint vertex sets. Then the neighborhood polynomial of the join G1 + Gs is

NG1+G2($) = (1 + x)|V2ING1 (I) + (1 + 1‘)‘V1|NG2($) - NG1 (x)NGQ(x)

This two graph operations, disjoint union and join, are used to define cographs.
Cographs are exactly the graphs which do not contain an induced P,. They
can be constructed recursively. Starting with a single vertex as a cograph, the
disjoint union and the join of two cographs are cographs. For this and other well-
known graph theoretic facts, we refer to [Gol80]. The neighborhood polynomial
of a single vertex graph is N(K,z) = 1 and the two operations disjoint union
and join, given by the two formulas in Proposition [1] and Proposition [2] are
computable in linear time. Note that (1 + z)™ can be computed in linear time
using the binomial theorem. Furthermore Corneil et al. [CPS85| present a linear
time algorithm to recognize cographs and construct their cotree. Hence it is
possible to compute the neighborhood polynomial of a cograph in quadratic
time.

Another graph operation is attaching a vertex v to a subset of vertices of a
graph G. This operation was studied by Alipour and Tittmann [ATI§|, who
gave an explicit formula for a neighborhood polynomial after attaching a vertex
to a subset of vertices. More formally for a graph G = (V, E), a subset U C V

of vertices and an additional vertex v ¢ V', we denote by Gy, the graph with
vertex set V' U {v} and edge set EU{uv | u € U}. In the following we use the
notation

NG(W) = (] Ne(w) and
weWw

NeW) = | Ne(w)
weW

for W C V.

Proposition 3 ([AT18]). Let G = (V, E) be a graph, U CV and v ¢ V. Then
the neighborhood polynomial of Gy, i

Ny, (@) = Ne(@) + Y ow+ Y (1)W1 4 2) Ve W,
wCcuU WCU

where

s —{w'w’ i NGOV) = 0
"

0, otherwise.

Using this formula, Alipour and Tittmann [AT18| showed that for a fixed inte-
ger k, computing the neighborhood polynomial of k-degenerate graphs is possi-
ble in polynomial time. A k-degenerate graph is a graph where every subgraph
has a vertex v with deg(v) < k. Using the degeneracy, we can pick one vertex
of degree < k after another and update the neighborhood polynomial by the
formula of Proposition [3] in order to get a polynomial runtime. As a corollary
it follows that there is a polynomial-time algorithm to compute the neighbor-
hood polynomial for planar and k-regular graphs [ATI8|. The update formula
of Alipour and Tittman (see Proposition [3)) was the starting point of our inves-
tigations for chordal graphs.

A graph G is said to be chordal if there is no induced cycle of length > 4.
Equivalently a graph is chordal if and only if it has a perfect elimination order.
A perfect elimination order is an ordering of the vertices vy, ..., v, such that
for all 4 the neighborhood of v; in G[{v, ... v,}] is a clique. Here for any subset
U C V the graph G[U] is the of U induced subgraph of G. A vertex v;, where
the neighborhood is a clique is called simplicial. It is well-known that every
chordal graph has at least two simplicial vertices, which gives us the perfect
elimination order (cf. [Gol80]).

In order to study the neighborhood polynomial of chordal graphs and subclasses,
we make use of the perfect elimination order in reverse order. We will adapt
the formula of Alipour and Tittmann (Proposition [3|) to our use. To construct
a chordal graph, it is enough to attach one vertex after another to a clique C' of
a graph G.

To get some complexity results of computing neighborhood polynomial, the
connection to the domination polynomial is useful. To define the domination
polynomial, we introduce dominating sets. A dominating set of a graph G =
(V,E) is a set of vertices D C V such that

D UNE(D)=V.

The family of all dominating sets of a graph G is denoted by D¢ and the
domination polynomial D¢ (x) is the generating function of Dg, i.e.

Dg(x)= Y =Vl

UeDg

The following relation between domination polynomials and neighborhood poly-
nomials holds, for a proof see for example [HT18| or [Day17].

Proposition 4. For any graph G = (V, E) and its complement graph G it holds:
Dg(x) + No(z) = (1 +2)V.

With other words this proposition says that every vertex set has either a com-
mon neighbor in the graph or is a dominating set in the complement graph. The
connection of these two polynomials can be used to determine the complexity
of computing the neighborhood polynomial. In particular, the neighborhood
polynomial is computable in polynomial time if and only if the domination
polynomial of the complement graph is computable in polynomial time. Fur-
thermore the contributions to the well-known graph problem DOMSET, the
problem of finding a minimal dominating set in a graph, imply some complexity
results for the neighborhood polynomial.

Corollary 5. Let G be a class of graphs and G the class of the complement
graphs of G. If DOMSET is NP-hard on G, then computing the neighborhood
polynomial on G is NP-hard as well.

Proof. DOMSET can be reduced to computing the domination polynomial as
we can easily find the smallest k& such that 2* has a nonzero coefficient in Dg(z).
With Proposition [4] the corollary holds. O

DOMSET is NP-hard on many graph classes such as chordal graphs [BJ82].
Afterwards Bertossi [Ber84] showed that it is NP-hard on bipartite graphs and
split graphs. Split graphs are the graphs where the vertex set can be parti-
tioned into a clique and an independent set. Since split graphs are exactly the
graphs which are chordal and co-chordal (i.e. the complement graph is chordal)
[GoI80], DOMSET is also NP-hard on co-chordal graphs. This together with
Corollary [p| shows the NP-hardness of computing the neighborhood polynomial
in split graphs (cf. [Dayl7]) and hence in chordal graphs.

3 Algorithm for Chordal Graphs

In this section, we derive an algorithm to compute the neighborhood polynomial
of chordal graphs, which runs in polynomial time if the so called anchor width is
polynomially bounded in the number of vertices. In chordal graphs the anchor
width can be exponential in the number of vertices (see Section , but there
are some subclasses such as chordal comparability graphs (Section and
interval graphs or more generally chordal graphs with bounded leafage (Section
which have polynomially bounded anchor width. Our algorithm relies on
the perfect elimination order of chordal graphs and comes from the vertex-
attachment formula of Alipour and Tittmann, see Proposition [3] First, we

adapt this formula to the special case that the set, to which we attach a vertex
is a clique. To study the new arising neighborhood sets we introduce anchor
sets, which are subsets of a clique appearing as a common neighborhood. The
maximal number of anchor sets of a clique, which we denote as anchor width, is
the essential parameter in this algorithms in order to get a polynomial runtime
for our algorithm.

Let C be a clique in a graph G = (V, E). We define the set of neighbors of the
clique C, not including the clique itself as the periphery of C, denoted by

Pg(C) = Ng(C)\C.

A subset M C Pg(C) of the periphery is called periphery set. Note that the
empty set is also a periphery set. We call a non-empty subset A of C' anchor
set, if it is the common neighborhood of some periphery set M. See Figure
for an illustration. For any M C Pg(C) we define the corresponding anchor set
as

Ag(M,C) = NE(M)NC

if the intersection is non-empty.

Ag(M,C)

Figure 1: An illustration of the introduced sets, the periphery Pc and an pe-
riphery set M with corresponding anchor set Ag (M, C) of a clique C.

Note that several periphery sets M and M’ can correspond to the same anchor
set, i.e. Ag(M,C) = Ag(M’,C). For an anchor set A, the periphery sets
M C Pg(C), whose common neighborhood in C' is A, build the family

Pc(A,C)={M C Pc(C) | Ag(M,C) = A}.
The generating function
Ps(A,C,z) = Z M|
MePg(A,C)

of Pg(A,C) is called periphery polynomial. Note that Pg(A,C) = 0 and
Po(A,Cz) = 0 if A is not an anchor set of C. Furthermore we define the
family of all anchor sets of a clique C' as

Ac(C)={ACC|A#0and IM C Po(C): A= Ag(M,C)}.

Note that for every clique, it holds C € Ag(C), since it is the anchor set of
the empty periphery set. The anchor width of a graph G on n vertices is the
smallest number % such that |Ag(C)| < k for all cliques C' in G or in other
words the maximal number of anchor sets appearing in a clique C of G.

For a maximal clique C),., and a clique C contained in C),4, the following
relations hold.

Lemma 6. Let C be a clique and Cqr o maximal clique containing C in a
graph G = (V, E). Then the following conditions hold:

(a) C’maz\c g PG(C) g PG(C1'TLG(I,‘) U (Cmal\c)
(b) A(C) = {ANC|ANC £0 and A € Ag(Crnaz)}

(¢) For any A € Ag(C) the periphery polynomial is

Pg(A,C,x) = (1 4 z)/Cmas\Cl Z Pg(A', Crraw,)

A/ GAG (C'maz)
A'NC=A

Proof. (a) Since every vertex in the clique C),4.\C is adjacent to C, the first
inclusion holds. Furthermore, every element which is adjacent to one of the
elements in C' is either an element of C,,,,\C or it is adjacent to an element
of Crhaz-

To show (b), we check which subsets of the clique C' can appear as an anchor
set. Let M’ C Pg(C) be a periphery set such that Ag(M,C) is a non-empty
anchor set. Using (a) we distinguish three cases.

If M’ C Cpuaz\C, the anchor set of M’ is C itself. If M’ C Pg(Chpyqaz) there
exists an anchor set A = Ag(M,Chuaz). Since M’ only consists of elements
of the periphery of C', the intersection of A with C provides the anchor set
Ag(M,C), which is non-empty. In the final case, M’ consist of elements of
Crnaz \C and Pg(Ciuaz). We only need to consider M = M’ N Pg(Chyaz), since
the elements of Cy,4,\C just lead to another intersection with C. We continue
as in the second case.

On the other hand, a set A’ = ANC # () for A € Ag(Chnaz) is always an anchor
set. For A there exists a periphery set M C Pg(Chua,) which has A as common
neighborhood Ag(M, Ciraz) in Cruar- If we take all elements of M which are
in the periphery of C, the common intersection of those elements inside C' is
exactly A’. Hence A’ is an anchor set.

(¢) The periphery polynomial Pg(A,C,x) counts the different periphery sets
with respective to the size, where A is the corresponding anchor set. As we
have seen in (b), an anchor set A is given by A = A’ N C for an anchor set
A" € Ag(Chraz). Since there are different possibilities to choose A’, we sum
over all corresponding periphery polynomials which are counted in Pg(A4’, C, x).
Furthermore all elements in C),4,\C are in the periphery of C (see (a)) with
neighborhood C. Hence we can add elements of C,,,4,\C to any periphery set M’
with anchor set Ag(M’, Cpaz) = A’ and still have as anchor set Ag(M,C) =
A. For the polynomial as generating function, we multiply Pg(A’,C,z) by
(14 2)/Cna\C1,

For different anchor sets A’ and A” with A”NC = A = A'NC, the corresponding
periphery sets are pairwise different, since the common neighborhood inside

Cinaz 1s different. So in order to get all periphery sets corresponding to A, we
need to add the polynomials. O

Due to Lemma [f] it is sufficient to provide the information about anchor sets
and periphery polynomials for all maximal cliques. With this information we
are able to compute the necessary information for all other cliques which are
not maximal. Furthermore the anchor width only depends on the size of the
anchor family of the maximal cliques.

For any set U C V of vertices we define the local neighborhood of U as the family
consisting of all vertex sets of G which have a common neighbor in U, i.e.

Ne(U)={WCV|welU: WC Na(v)}

In particular Ng(V) = Ng. For a clique C, we can partition the local neigh-
borhood Ng(C) by the following lemma into the sets

Na(A,C) ={N e Ng(C) | NN Pg(C) € Pa(A,C)}
for all anchor sets A of C.

Lemma 7. For any clique C of the graph G, it holds

No @) = |J Na(4,0),

AeAq(C)

Proof. For every N € Ng(C), there is an element as common intersection in C.
Hence the common neighborhood of N N Pg(C) inside C' is non-empty. This
common neighborhood is an anchor set A. Since these anchor sets differ for
different families N (A, C), the union is disjoint. O

Lemma [7] is useful since we only have to determine the generating functions
of Ng(A,C) for every A € Ag(C). Adding these generating functions, we
maintain the generating function of the local neighborhood Ng(C). In the next
lemma, we derive a formula to compute the generating function of Ng(A,C)
for every A € Ag(C).

Lemma 8. For a given anchor set A € Ag(C) of a clique C, the generating
function of Ng(A,C) is

Ne(A,C,z) = Pg(A,C, z) ((1 +)0l — gl x)IC\—\A\) '

Proof. We count the number of sets with respect to the cardinality in Ng (A, C).
Every M € Pg(A,C) is in Ng(A4,C). Furthermore we can extend every M to
a set IV such that we have a common neighbor in C. Since we look at all
M € Pg(A,C), it is enough to look at extensions N = M U X, where X is a
subset of C. In order to keep N in the local neighborhood Ng(C), we need a
common neighbor in C. Since the common neighborhood of M inside C' is the
anchor set A, the common neighborhood of N must contain an element of A.
Hence X cannot be the whole anchor set A. In particular, the possibilities to
extend M are the elements of the family

X={X]|JaeAd: X CC\{a}}.

All sets in X consist of a disjoint union of a proper subset of A and a subset of
C\A. This leads to a generating function

((1 + m)\AI _ x\A\) (1+ x)\c\—lAl
= (14 2)I€ — 2411 4 g)le-14l

of X. The generating function of Pg (A4, C), which counts the different possibil-
ities of M is counted by Pg (A, C,x). O

This leads us to the update formula similar to Proposition[3Jadapted to attaching
a vertex to a clique.

Corollary 9. Let G = (V,E) be a graph and C a clique in the graph. The
neighborhood polynomial of Gep, with vertex set VU {v} can be computed as
follows:

Neo,, (2) = Na(2) + 6 (C)

to > Pa(A,Crx) ((1+2)/ = 241 4)€1l
AEAG(C)

where

b (C {J;'C, if C is a maximal cliqgue in G,
G =

0, otherwise .

Proof. Let X € Ng.,, be a neighborhood set in the graph G¢p,,. We consider
the following three cases:

o If X CV but X € Ng(v), then X € Mg is in the neighborhood complex
of G. These sets are counted in the first summand Ng(x).

e Now let X CV and X C Ng(v). If X is a proper subset of C, it already
has a common neighbor in G, hence it is already counted in the first
summand. Similarly this holds if X = C and C is not a maximal clique
in G, i.e. C has a common neighbor in G. Thus the only case where a
new neighborhood arises is if C' is a maximal clique in G. In Gg¢y, the
common neighbor of C is v. This is counted in ¢ (C).

e Let us now consider the case v € X, i.e. X € V. Since v is connected
to all elements in C', we need to count all subsets Y C V which have a
common neighbor in C'. This is equivalent to count the number of elements
in N(C). Combining Lemma [7] and Lemma [§] we obtain

> oA, Ca) ((1+2) = a1 4 2)l0-1T)
AE€AG(C)

as a generating function of those subsets Y C V. In X there is just one
additional element v. Hence we have to multiply the polynomial with x.

Since the above cases are disjoint, this leads to the formula of the neighborhood
polynomial as stated. O

With this formula, we are able to compute the neighborhood polynomial af-
ter attaching a vertex v to a clique C in a graph. In order to compute the
neighborhood polynomial of a chordal graph G, we need the perfect elimina-
tion order vy, ..., v,. If the chordal graph is connected, we add the vertices in
reverse order, starting with v,, and then adding v; to the corresponding clique
in G[vi41,...,v,]. For attaching one vertex, the neighborhood polynomial can
be computed with Corollary 0] If the chordal graph is not connected we use
the same procedure explained above for every connected component and com-
pute the neighborhood polynomial by adding the polynomials of the connected
components as in Proposition [T}

In order to compute the formula, we need the anchor family of C' and the corre-
sponding periphery polynomials Pg (A, C, x) for every A € Ag(C). As we have
seen in Lemmalf]it is enough to store these informations for the maximal cliques
and compute them in every step for the required clique C'.

In the next paragraph, we see how we update the anchor families and periphery
polynomials for the maximal cliques after attaching a vertex in order to have
the correct ones in the next step. The graph with attached vertex v is denoted
by Gt = Gepy. We get a new maximal clique CT = C U {v} which we have
to add to the list of maximal cliques in the graph. The periphery of C* in G*
is Pg+(Ct) = Pg(C) and the family of anchor sets Ag+(C1) = Ag(C) with
the same periphery polynomials as in G, i.e. Pg+(A,C,x) = Pg(A,C,z) for all
Ae Ag+ (C+)

The maximal cliques in G which have no intersection with C, do not change
in GT. Let Cy,q4z be a maximal clique in G with Cpqe NC # 0. If C = Crraa,
we are done since this is not a maximal clique in GT. So we assume C # Ci,aq.
The periphery of C,q. in G consists of the periphery of C,,.. in G together
with the new element v, i.e.

Po+(Craz) = Pa(C) U {v}.

In the next step, we identify the anchor sets of C,,q, in GT. Any anchor set
of Cper in G remains an anchor set in Gt. Since the new vertex v is attached
to the subset Cy,qe NC' of the considered clique Cppqz, this subset Cpar NC # ()
is a new anchor set in G, if it was not already an anchor set in G. Furthermore
all subsets of C),q4., Which occur as non-empty intersection of Ch,q, N C with
an anchor set in Ag(Cypna,) build an anchor set in G*. Since the whole clique
Cinaz 18 an anchor set in G, the intersection C,,., N C occurs as intersection
Crnaz N (Chaz NC) with an anchor set of G. This shows

Ag+ (Cruas) =
Ac(Crmaz) U{AN (Crae N C) | AN (Coaw N C) # 0 and A € Ag(Crnaz) }-

Now we determine the periphery polynomial Pg+(Cinas) for every anchor set
A € Ag+(Chaz)- Since C' # Ciuaz, the intersection Ch,q, NC' is a proper subset
of Cruaz. We consider the following three cases

e If A is a proper subset of C'NC),qz, all corresponding periphery sets in G
are a corresponding periphery set in G and we can add v to correspond-
ing periphery set M in G, since the intersection with the neighborhood

Ng+(v) = C does not change the anchor set. In this case the periphery
polynomial is

IDG+ (Aa Cmamax) == (]- + (E)PG(A, Omarax)'

o If A= CnNCaz, the periphery sets in G with corresponding anchor set A
which are counted in Pg(A, Cpaz,x) still have the same anchor set in G¥.
Furthermore v is a new periphery set with anchor set A = C' N C,q, and
all periphery sets which have a superset A’ of A as corresponding anchor
set, form together with v a periphery set with anchor set A. Hence the
updated periphery polynomial is

IDGJr (Av C’mawy Z‘) =

Pa(A, Craz,) +2 | 1+ > Po(A', Craws) | . (1)
AIQAaAIEAG(Cmaa:)

e Otherwise A is not a subset of C' N C),q., hence v is not in a periphery set
with anchor set M. So the periphery polynomial stays the same, i.e.

Po+ (A7 Cmazs JJ) = PG(A7 Crmazs JJ)

This concludes the algorithm to compute the neighborhood polynomial of chordal
graphs.

Recall that the anchor width of a graph G is the smallest k such that |Aq(C)| < k
for all cliques of C'. The algorithm explained above leads to a polynomial time
algorithm if the anchor width is polynomially bounded.

Proposition 10. Let G be a chordal graph with n vertices with anchor width at
most k. Computing the neighborhood polynomial takes at most O(n3k + n2k?)
time.

Proof. Using lexicographic breadth-first search, we get a perfect elimination
order of the chordal graph G in linear time (cf. [Gol80]). After attaching one
vertex, there is one new maximal clique, containing v. We add this maximal
clique to the list of all maximal cliques in the graph, possibly removing the
neighborhood of v if it was in the list. This shows that we have at most n
maximal cliques. Furthermore we have an ordering of the vertices given by the
perfect elimination order which is the reverse order of attaching the vertices to
the graph. Hence in order to compute an intersection or test a subset relation,
we only need to compare the elements in the clique in the attached order. Both
is possible in linear time.

To update the neighborhood polynomial after vertex attachment to a clique C,
we first need to find a maximal clique, containing C' and compute its anchor
family and its periphery polynomials. In order to find this maximal clique we
test for every maximal clique (at most n) whether C is a subset. This needs at
most O(n?) time. Computing the anchor family takes O(nk) and for one anchor
set the periphery polynomial takes O(nk) and since we have at most k anchor
sets in a clique, we need O(nk?) for this step. Now using the update formula to
compute the neighborhood polynomial is possible in O(k).

10

Now in the next step, we have to update the anchor families and periphery
polynomials for all maximal cliques with non-empty intersection with C. We
have at most n maximal cliques, where we need to update this information.
Updating the anchor family for one maximal clique takes O(nk) time, see (I)).
Hence for all maximal cliques this takes at most O(n?k). For one anchor set,
updating the periphery polynomials takes at most O(kn) (see case (2)). In the
other cases this is possible in linear time. And since case (2) only appears for
one anchor set, this leads to a runtime of at most O(kn?) for all maximal cliques.
Since we add in total n vertices, one after another, this leads to a total runtime
of O(n3k 4+ n?k?). O

4 Complexity of the Anchor Width

In this section, we will discuss some subclasses of chordal graphs with bounded
anchor width.

4.1 Anchor Width of Split Graphs

The anchor width of split graphs is not polynomially bounded. Since split graphs
are chordal, the algorithm introduced in Section [3| might take super-polynomial
time.

Figure 2: left: The split graph S5 with anchor width 31 and right: The comple-
ment graph of Ss.

Proposition 11. The anchor width of split graphs can grow exponentially.

Proof. In order to prove this proposition, we construct an infinite family of split
graphs S,, on n = 2m vertices such that the anchor width is 2% .

We start with a clique C' = {cy, ..., cn} of size m and attach vertices py,...,pm
such that every p; (1 <i <m) is adjacent to ¢; for all j # i, see Figure This
constructed graph is a split graph since C is a clique and {p1,...pm} build an
independent set. All vertices p; are therefore in the periphery Po of C, hence
|Pc| = m = 2. All non-empty subsets of C' are an anchor set, hence the anchor

2
width of this graph is 2™ — 1 =27 — 1. O

11

4.2 Anchor Width of Chordal Comparability Graphs

In this section we introduce chordal comparability graphs and show that the
anchor degree of this graph class is bounded. A graph G = (V, E) is a com-
parability graph if there is a poset (V, <) such that two vertices u,v € V are
adjacent in G if and only if u < v.

Proposition 12. The anchor width of a chordal comparability graph with n
vertices 1s at most 2n.

Figure 3: Hasse diagram of a poset corresponding to a comparability graph with
induced Cy which gives a contradiction in the proof of Proposition @

Proof. Let G be a chordal comparability graph. Consider a maximal clique
Cmaz = {c1,...¢m} in G. Since G is a comparability graph, it comes from
a poset (V,<). A clique in the graph corresponds to a chain in the poset.
Hence the maximal clique C),,, of size m corresponds to a maximal chain
€1 < -+ < ¢y of length m in the poset. So whenever there is a vertex v ¢ Cyaz,
which is connected to ¢; € Cy,q. such that v < ¢; then v is connected to ¢ for
all k > i. Let i be the minimal element of the clique such that v < ¢;. Since
the clique is maximal, ¢ > 1 and v is not comparable to ¢;_1. Similar we get
for every vertex w ¢ Cp,q, which is connected to a vertex ¢; of the clique with
w > c¢; that w is connected to all elements ¢ of the clique with & < j. Let
¢; be the maximal element of the clique connected to w, then j < m and c¢j4+1
is not comparable to w. Hence an anchor set in C,,,; is a chain of the form
Ci < Cit1 < ... =< ¢j—1 < ¢;j. Assume there is an anchor set with 1 <i < j <m
and vertices v and w such that v < ¢; and w > ¢;. Then v and w are connected
by an edge since w > ¢; > ¢; > v holds. And since w and c;41 do not share
an edge and analogously v and ¢;_1, we get an induced cycle of length 4 which
is not possible since the graph is chordal. In Figure [3| the poset is illustrated

12

by its Hasse diagram and gives an illustration of the contradiction. This shows

that all anchor sets of Ciy,q0 are of the form ¢y < ... < ¢j—1 < ¢; for j <m or
¢ < Cig1 < ... < ¢y for ¢ > 1. We have at most 2m — 1 < 2n possibilities for
those sets. O

4.3 Leafage of Chordal Graphs

For a family of sets, the intersection graph is the graph consisting of one ver-
tex for every set in the family. Two vertices are adjacent if and only if the
corresponding sets have a non-empty intersection. The intersection graph of a
family of intervals is an interval graph which is chordal. Equivalently an inter-
val graph is an intersection graph of subtrees of a path. Chordal graphs are
exactly the graphs which are an intersection graph of a family of subtrees of a
host tree [Gav74]. We call a representation of a chordal graph by a family of
subtrees a subtree configuration. Lin et al. [LMWO9S| introduced a parameter
of a chordal graph, which measures how close a chordal graph is to an interval
graph. The leafage [(G) of a chordal graph G is defined as the minimal number
of leaves of the host tree among all subtree configurations. We call a subtree
representation optimal if it has the minimal number of leaves in the host tree.
The interval graphs are exactly the chordal graphs with leafage at most 2. The
split graphs 5, constructed in Section have leafage m and the host tree is
a star. In the following, we describe a subtree of a tree by the vertices, which
induce the subtree.

We study the connection between the anchor width and the leafage of a chordal
graph, and show that the anchor width of a chordal graph G is bounded from
above by n/(%) where n is the number of vertices. In particular the anchor
width of interval graphs is at most n?.

Every pairwise intersecting family of subtrees has the Helly property, i.e. the
intersection of all subtrees is non-empty [Gol80]. Hence there is at least one
common vertex ve in the host tree for every clique C of the chordal graph G.

Proposition 13. For a chordal graph G with leafage | = I(G) and n vertices,
the anchor width is at most nt.

Proof. Let C = Cjqe be a maximal clique in the graph G. We consider an
optimal subtree representation of G in a host tree T. Let ve be a vertex in the
host tree which corresponds to the clique C. We may assume there is only one
vertex in the host tree which is in the intersection of all subtrees corresponding
to the clique C. If there is a non-trivial subtree in the common intersection,
we can contract its edges without increasing the number of leaves. Since C
is a maximal clique, there is no other subtree in the subtree representation
containing ve. From ve there is a unique path in the host tree to all [leaves
which we denote by Py,..., P,

For a periphery set M C Pc, the corresponding anchor set consists of those
elements of the clique which have a non-empty intersection with all elements
of M. For every w € M, there is a tree T, representing w in the subtree
configuration. For every path P;, we define a vertex v; representing M on P; as
follows:

v; € argmin dist(v,v.),
vETW,; NP;

13

where w; is an element from the periphery such that

w; € argmax min _ dist(v,v.).
weM VETWNE;

So for every w € M such that T, N P; # 0, we choose the closest vertex v,, to
ve on the path P; of the corresponding tree T,,. Among those vertices {vy, }uw),
the vertex v; is the vertex with maximal distance to ve. If there is no subtree
T, of the periphery which has a non-empty intersection with the path P;, we
set v; = vo. Note that the v;’s are not necessarily distinct.

Now the anchor set A = Ag(M, C) consists exactly of all subtrees of the clique,
which contain all vy ...,v; and ve. If there is no such subtree corresponding to
an element of the clique, there is no corresponding anchor set to M in C. The
anchor set A is fully determined by the vertices v;.

Gavril [Gav74] and Shibata [Shi88| showed that there are subtree representations
such that every vertex of the host tree belongs to a maximal clique of the chordal
graph. Hence we may assume that there are at most n vertices in the host tree.
This implies that there are at most n choices for every v;. In total we have
at most n choices for every 4, which are n! choices for the tuple (vy,...v;) and
hence at most n! different anchor sets. This shows the upper bound for the
anchor width. O

Since interval graphs are the graphs with leafage at most 2, it follows:

Corollary 14. The anchor width of interval graphs is at most n?.

e
|
|
I
M |
|
" —o |
|
* o — 0 |
I
*——o — o —o |
|
I
|
3
|
13
|
.
|
.
|
13
C |
.
|
.
|
13
|
.
|
.
|
.
|
I
|
|
I
|
|
I
|

Figure 4: Construction of an interval graph with 21 vertices and a maximal
clique of size 11 and 25 anchor sets.

14

Furthermore we can show that there is an infinite family of interval graphs on
2
n = 4m+1 vertices with a clique of size 2m+1 which has at least m? = %

different anchor sets. For the construction (see Figure , we take the path
Pynq1 on 2m + 1 vertices v_pm,.. vo,...,v.,- Lhe subtrees corresponding to the
clique C' are the 2m + 1 paths on the vertices

{v_m,...,v;} fori=0,....,m and

{viy..., o} fori =—m,...,0.

The common intersection v of the clique is the vertex vg. Furthermore we
define the following subpaths, which are in the periphery of C:

{v_m,...,vi} fori=—m,...,—1 and

{viy...op} fori=1,...m.

For an illustration of the construction see Figure [df For any choice of i €
{-m...,—1} and j € {1,...,m}, we consider the two paths:

{vom,...,vi} and {v;,...on}

of the periphery. The anchor set corresponding to this two-element periphery
set consists of all paths in the host tree corresponding to a clique vertex which
contain v; and v;. For every choice of ¢ and j these anchor sets differ. Hence
there are at least m? anchor sets.

Acknowledgments

The authors thank Kolja Knauer and Manfred Scheucher for helpful discussions.

References

[AT18] M. Alipour and P. Tittmann. Graph operations and neighborhood
polynomials. |arXiv:1807.03971, 2018.

[Ber84] A. A. Bertossi. Dominating sets for split and bipartite graphs. In-
formation Processing Letters, 19(1):37-40, 1984.

[BJ82] K. S. Booth and J. H. Johnson. Dominating sets in chordal graphs.
SIAM Journal on Computing, 11(1):191-199, 1982.

[BNO8] J. I. Brown and R. J. Nowakowski. The neighbourhood polynomial
of a graphl. Australasian Journal of Combinatorics, 42:55-68, 2008.

[CPS85] D. G. Corneil, Y. Perl, and L. K. Stewart. |A linear recognition
algorithm for cographs. STAM Journal on Computing, 14(4):926-934,
1985.

[Dayl7] D. Day. |On the neighbourhood polynomial. Master thesis, Dalhousie
University, 2017.

15

https://arxiv.org/abs/1807.03971
http://doi.org/https://doi.org/10.1016/0020-0190(84)90126-1
http://doi.org/10.1137/0211015
https://ajc.maths.uq.edu.au/pdf/42/ajc_v42_p055.pdf
https://ajc.maths.uq.edu.au/pdf/42/ajc_v42_p055.pdf
http://doi.org/10.1137/0214065
http://doi.org/10.1137/0214065
https://dalspace.library.dal.ca/bitstream/handle/10222/72816/Day-Dylan-MSc-MATH-March-2017.pdf?sequence=1&isAllowed=y

[Gav74]

[Gol80]

[HT18|

[LMWOs]

[Lov78]

[Shiss]

F. Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47—
56, 1974.

M. C. Golumbic. |Algorithmic Graph Theory and Perfect Graphs.
1980.

I. Heinrich and P. Tittmann. Neighborhood and domination polyno-
mials of graphs. Graphs and Combinatorics, 34:1203-1216, 2018.

I.-J. Lin, T. A. McKee, and D. B. West. [The leafage of a chordal
graph. Discussiones Mathematicae Graph Theory, 18(1):23-48, 1998.

L. Lovéasz. Kneser’s conjecture, chromatic number, and homotopy.
Journal of Combinatorial Theory, Series A, 25(3):319-324, 1978.

Y. Shibata. |On the tree representation of chordal graphs. Journal of
Graph Theory, 12(3):421-428, 1988.

16

http://doi.org/10.1016/0095-8956
http://doi.org/10.1016/0095-8956
http://doi.org/10.1016/C2013-0-10739-8
http://doi.org/10.1007/s00373-018-1968-7
http://doi.org/10.1007/s00373-018-1968-7
https://www.dmgt.uz.zgora.pl/publish/view_pdf.php?ID=-2049
https://www.dmgt.uz.zgora.pl/publish/view_pdf.php?ID=-2049
http://doi.org/https://doi.org/10.1016/0097-3165(78)90022-5
http://doi.org/10.1002/jgt.3190120313

	Introduction
	Preliminaries
	Algorithm for Chordal Graphs
	Complexity of the Anchor Width
	Anchor Width of Split Graphs
	Anchor Width of Chordal Comparability Graphs
	Leafage of Chordal Graphs

