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EQUALITY PERFECT GRAPHS AND DIGRAPHS

STEPHAN DOMINIQUE ANDRES

Abstract. In the graph colouring game introduced by Bodlaender [7], two

players, Maker and Breaker, alternately colour uncoloured vertices of a given
graph G with one of k colours so that adjacent vertices receive different colours.

Maker wins if every vertex is coloured at the end. The game chromatic number

of G is the smallest k such that Maker has a winning strategy. In Bodlaender’s
original game, Maker begins. We consider also variants of this game where

Breaker begins or skippig is allowed [2] and their generalizations to digraphs [1].

For several pairs (g1, g2) of such (di)graph colouring games g1 and g2, which
define game chromatic numbers χg1 and χg2 , we characterise the classes of

graphs resp. digraphs such that for any induced sub(di)graph H, the game

chromatic numbers χg1 (H) and χg2 (H) of H are equal by means of forbidden
induced sub(di)graphs.

1. Introduction

The following graph colouring game was introduced by Bodlaender [7]. Two
players, Alice and Bob, alternately colour vertices of a given simple, undirected
graph by colours of a given colour set, so that adjacent vertices receive distinct
colours. If at the end of the game, when such move is not possible any more, all
vertices are coloured, Alice wins. Otherwise, if an uncoloured vertex is surrounded
by neighbours in all colours, Bob wins.

In Bodlaender’s original game, which we denote by gA, Alice is moving first. It
is also convenient to consider the game gB , where Bob is moving first.

The game chromatic number of a graph G is the smallest number of colours such
that Alice has a winning strategy in the graph colouring game. We denote it by
χgA(G) resp. χgB (G), depending on which game (gA or gB) we consider.

If we consider the question to characterise the class of graphs G with

χgA(G) = χgB (G),

we cannot expect to obtain a class of graphs with an interesting structure, since,
for any graph G, if we add a large clique C (of size s ≥ max{χgA(G), χgB(G)}), then
χgA(G∪C) = s = χgB (G∪C). Therefore we consider a slightly modified problem.
A graph G is equality-perfect if, for any induced subgraph H of G,

χgA(H) = χgB (H).

We will characterise the class of equality-perfect graphs. It turns out that this class
is equal to the class of [B,B]-perfect graphs that were characterised by forbidden
induced subgraphs and by an explicit structural characterisation in [3].
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Moreover, we consider other variants of the graph colouring game, where skipping
is allowed for one of the players, and define equality perfectness more generally
between any pair of such games. For some of these pairs, we characterise the
equality perfect graphs with regard to such a pair by a set of forbidden induced
subgraphs, for the other pairs we provide partial results. In some cases we obtain
the class of trivially perfect graphs, which appears in several contexts.

Finally, we extend the characterisations to digraph colouring games and propose
a similar problem for marking games.

2. Preliminaries

The graph colouring game [X,Y ] with parameter X ∈ {A,B} and parameter
Y ∈ {A,B,−} is defined as follows. Given an initially uncoloured, simple, undi-
rected, finite graph G = (V,E) and a set C of colours, two players, Alice and Bob,
alternately colour uncoloured vertices with a colour from C such that adjacent ver-
tices receive distinct colours. X ∈ {A,B} denotes the player who begins, where
“A” means “Alice” and “B” means Bob for short. Y ∈ {A,B,−} denotes whether
Alice (A), Bob (B), or none of the players (−) has the right to skip any number
of turns, respectively. In particular, this right includes the right to skip the first
turn. The game ends if no move is possible any more. Alice wins if every vertex
is coloured at the end of the game. Otherwise there is an uncoloured vertex with
neighbours in every colour, we say this vertex is surrounded. In the latter case, Bob
wins. Thus, for any (X,Y ), the game [X,Y ] is a maker-breaker game, where Alice
is the maker who tries to make a complete colouring whereas the breaker, Bob, tries
to prevent such a situation. We remark that the standard graph colouring games
gA and gB defined in the Introduction are the special cases

gA = [A,−] resp. gB = [B,−].

The game chromatic number χ[X,Y ](G) of G with regard to the game [X,Y ] is
the smallest size |C| of a colour set C such that Alice has a winning strategy for
the graph colouring game [X,Y ] played on G.

Determining good upper bounds for the maximum game chromatic numbers of
several classes of graphs has received considerable attention. Among the many
classes of graphs that have been investigated are e.g. forests [12], cactuses [19],
outerplanar graphs [14], planar graphs [6, 15, 26] or other graphs of fixed genus [15,
25], as well as line graphs of k-degenerate graphs [8], line graphs of planar graphs
and of other graphs admitting some special kind of decomposition [10] or incidence
graphs of graphs admitting some very general kind of decomposition [11].

The tightness of some of these bounds resp. lower bounds have also been consid-
ered, e.g. for the class of forests [7], planar graphs and k-trees [22] or planar graphs
with large girth [9].

It is well-known that the difference between the game chromatic numbers of a
graph with regard to different games can be arbitrarily large. A folklore example
which first was mentioned by Kierstead [15] is the graph Kn,n − M , which is a
complete bipartite graph with bipartitions of size n in which a perfect matching M
is deleted. Here Alice wins with 2 colours in the game gB , but needs n colours to
win in the game gA (cf. Figure 1). On the other hand, if we add an isolated vertex v
to Kn,n −M , the situation switches: on the (Kn,n −M) ∪K1, Alice wins with 2
colours in the game gA, but needs n colours to win in the game gB . This shows
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that this type of game is very sensitive with regard to changes of rules resp. small
changes of the play graph.

1

2

3

1

2

B:3

(a) Alice begins

1 A:2

(b) Bob begins

Figure 1. In the depictions of Kn,n −M , the vertices of the left
bipartite class are denoted by vi, those of the right bipartite class
by wi, respectively (i = 1, . . . , n), where vi and wj are adjacent if
and only if i 6= j. (a) In game [A,−], whenever Alice colours vi,
Bob colours wi with the same colour. For the remaining vertices
new colours are needed. With < n colours, Alice cannot win. (b)
In game [B,−] played with 2 colours, if Bob colours say v1 with
colour 1, then Alice colours w1 with colour 2. All colours of the
remaining vertices are fixed now, thus Alice wins with 2 colours.

Therefore it is interesting to characterise those graphs, for which the game chro-
matic number for a pair of games is equal for any induced subgraphs. Formally
we define for any pairs (X,Y ), (X ′, Y ′) ∈ {A,B} × {A,B,−} that a graph G is
([X,Y ], [X ′, Y ′])-equality perfect if, for any induced subgraph H of G,

χ[X,Y ](H) = χ[X′,Y ′](H).

An ([A,−], [B,−])-equality perfect graph is also called simply equality perfect. The
class of all ([X,Y ], [X ′, Y ′])-equality perfect graphs is denoted by

EP ([X,Y ], [X ′, Y ′]).

It turns out that this notion is strongly related to the notion of game-perfect
graphs. For (X,Y ) ∈ {A,B} × {A,B,−}, a graph G is game-perfect with regard to
the game [X,Y ] (or [X,Y ]-perfect for short) if, for any induced subgraph H of G,

χ[X,Y ](H) = ω(H),

where ω(H) denotes the size of a largest clique in H. The class of all game-perfect
graphs with regard to the game [X,Y ] is denoted by

GP [X,Y ].

Obviously, for any graph H,

(1) χ[B,B](H)

{
≥ χ[A,B](H) ≥ χ[A,−](H) ≥
≥ χ[B,−](H) ≥ χ[B,A](H) ≥

}
χ[A,A](H) ≥ χ(H) ≥ ω(H),

where χ(H) denotes the chromatic number of H. (1) implies immediately

(2) GP [B,B]

{
⊆ GP [A,B] ⊆ GP [A,−] ⊆
⊆ GP [B,−] ⊆ GP [B,A] ⊆

}
GP [A,A] ⊆ P,

where P denotes the class of perfect graphs. In fact, GP [A,B] = GP [A,−] and the
other inclusions in (2) are proper [3].
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Game-perfect graphs were introduced in [2]. Forbidden induced subgraph char-
acterisations and explicit structural characterisations of the four classes GP [B,B],
GP [A,B], GP [A,−], and GP [B,−] and partial characterisations of the other two
classes GP [B,A] and GP [A,A] are known [3, 5, 17].

Before we formulate the characterisation of [B,B]-perfect graphs we fix some
notation. By G we denote the complement of a graph G. Let G1 = (V1, E1) and
G2 = (V2, E2) be two graphs and G′2 = (V ′2 , E

′
2) an isomorphic copy of G2 with

V1 ∩ V ′2 = ∅. The disjoint union of the graphs G1 and G2 is defined as the graph
G1 ∪ G2 := (V1 ∪ V ′2 , E1 ∪ E′2), i.e. the graph where G1 and G′2 are disconnected.
The join of the graphs G1 and G2 is defined as the graph

G1 ∨G2 := G1 ∪G2,

i.e. the graph where G1 and G′2 are completely connected. By Pn, Cn and Kn we
denote the path, cycle and the complete graph with n vertices, respectively.

Theorem 1 ([3, Thm. 3]). Let G be a graph. Then the following are equivalent.

(i) G ∈ GP [B,B].
(ii) G does neither contain P4, nor C4, nor the split 3-star K2 ∨K3, nor the

double fan K1 ∨ (P3 ∪ P3) (see Figure 2) as an induced subgraph.
(iii) Every component of G is an ear animal

K1 ∨ (Km1
∪ . . . ∪Kmk

∪ (Kh ∨ (Ke1 ∪Ke2)))

for some k, h, e1, e2,m1, . . . ,mk ≥ 0 (see Figure3).

P4 C4 split 3-star
K2 ∨K3

double fan
K1 ∨ (P3 ∪ P3)

Figure 2. Forbidden configurations in game-perfect graphs for
the game [B,B]

Kh

Ke1 Ke2

Km1

Km2
. . .

Kmk

Figure 3. An ear animal
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A graph is trivially perfect if it does neither contain P4 nor C4 as an induced
subgraph. We denote the class of all trivially perfect graphs by TP . By a result
of Wolk [20, 21], TP is the class of comparability graphs of forests of rooted trees.
Golumbic [13] showed that TP is the class of all graphs where for each induced
subgraph the stability number and the number of maximal cliques are equal, which
motivated him to give trivially perfect graphs its name.

Since Bob wins Bodlaender’s graph colouring game with 2 colours on the P4 and
the C4,

GP [B,B]
(2)

⊆ GP [A,−] ⊆ TP.
However, there are many [B,−]-perfect graphs that are not trivially perfect: P4,
C4, the bull or the house are among the smallest examples.

Trivially perfect graphs admit a decomposition based on a tree, which relies on
the following result of Wolk [21]. A central vertex of a graph G is a vertex adjacent
every other vertex of G.

Lemma 2 ([21, p. 18f]). Every connected trivially perfect graph has a central vertex.

Let G = (V,E) be a trivially perfect graph. The clique module decomposition
forest of G is constructed recursively from G as follows, using Lemma 2. In each
component of G we replace the nonempty complete graph consisting of all central
vertices of the component by a single vertex. The set of these central vertices is
called layer L0. For any i ≥ 1, if we delete the vertices of all layers Lj , j < i,
the remaining graph is trivially perfect by the definition of trivially perfect graphs,
thus by Lemma 2 every of its components contains at least one central vertex. For
any such component, we again replace the complete graph consisting of all central
vertices of the component by a single vertex. The set of these central vertices is
called layer Li. Keeping the adjacencies of the original graph G, the graph obtained
by this procedure is a comparability graph of a forest of rooted trees each vertex of
which represents a maximal clique module, i.e. an inclusion-wise maximal clique K
such that, for every vertex v ∈ V \K, v is either completely connected or not at all
connected to K. If we delete the transitive edges in this graph, we obtain a unique
forest, which is the clique module decomposition forest. We will use this clique
module decomposition in the proof of Theorem 3 (ii) and (iv). The clique module
decomposition forest is related to the notion of elimination trees. In elimination
trees each vertex of a clique module is eliminated one by one, which, in general,
is not unique, since the vertices of a clique module can be chosen in an arbitrary
order, whereas in the clique module decomposition the whole clique is replaced by a
vertex. Elimination trees have been used for several problems, e.g. for the Cholesky
factorization of sparse square matrices [16].

We can now formulate our main result in the case of undirected graphs. In (iii)
and (iv) of Theorem 3, let D be the class of disconnected graphs.

Theorem 3. The structure of equality perfect graphs with regard to some pairs of
games can be described as follows.

(i) EP ([A,A], [B,B]) = GP [B,B],
EP ([A,−], [B,−]) = GP [B,B],
EP ([A,B], [B,−]) = GP [B,B],
EP ([A,−], [B,A]) = GP [B,B],
EP ([A,B], [B,A]) = GP [B,B].
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(ii) EP ([A,A], [A,−]) = TP ,
EP ([A,A], [A,B]) = TP ,
EP ([B,A], [B,B]) = TP ,
EP ([B,−], [B,B]) = TP .

(iii) EP ([A,−], [B,B]) ∩ D = GP [B,B] ∩ D,
EP ([A,A], [B,−]) ∩ D = GP [B,B] ∩ D.

(iv) EP ([A,−], [A,B]) ∩ D = TP ∩ D,
EP ([B,A], [B,−]) ∩ D = TP ∩ D.

We remark that in Theorem 3 only 13 of the 15 possible pairs of games have been
considered. Some partial results for the pairs {[B,A], [A,A]} and {[A,B], [B,B]},
which are missing in Theorem 3, are given in Section 5.

3. Equality Perfect Graphs: Proof of Theorem 3

The relation between equality-perfectness and game-perfectness is given by the
following simple but fundamental observation, the corollary of which will be fre-
quently used in the proof of Theorem 3.

Observation 4. For any X,X ′ ∈ {A,B}, Y, Y ′ ∈ {A,B,−},
GP [X,Y ] ∩GP [X ′, Y ′] ⊆ EP ([X,Y ], [X ′, Y ′]).

Proof. Let G ∈ GP [X,Y ]∩GP [X ′, Y ′] and H be an induced subgraph of G. Then

χ[X,Y ](H) = ω(H) = χ[X′,Y ′](H),

thus G ∈ EP ([X,Y ], [X ′, Y ′]). �

Corollary 5. For any X,X ′ ∈ {A,B}, Y, Y ′ ∈ {A,B,−},
GP [B,B] ⊆ EP ([X,Y ], [X ′, Y ′]).

Proof. GP [B,B]
(2)

⊆ GP [X,Y ] ∩GP [X ′, Y ′]
Obs. 4
⊆ EP ([X,Y ], [X ′, Y ′]). �

The proof of Theorem 3 uses the following three lemmata.

Lemma 6. Let G be the split 3-star K2 ∨K3 or the double fan K1 ∨ (P3 ∪P3) and
Y ∈ {A,B,−}. Then

(a) χ[A,Y ](G) = 3,
(b) χ[B,Y ](G) = 4.

Lemma 7. Let G be P4 or C4. Then

(a) χ[B,−](G) = χ[B,A](G) = χ[A,A](G) = 2,
(b) χ[A,−](G) = χ[A,B](G) = χ[B,B](G) = 3.

Lemma 8. Let G be P4 ∪K1, C4 ∪K1, the 4-fan P4 ∨K1 or the 4-wheel C4 ∨K1.
Then

(a) χ[A,−](G) = χ[B,A](G) = χ[A,A](G) = ω(G),
(b) χ[B,−](G) = χ[A,B](G) = χ[B,B](G) = ω(G) + 1.

Lemma 6, Lemma 7 and Lemma 8 are proved by describing explicit winning
strategies with ω(G) colours for Alice in the cases (a) and for Bob in the cases (b),
respectively. We first make two obvious remarks that will be implicitly used in all
the proofs of the lemmata without further mentioning.
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Remark 9. For any graph G, Bob wins any variant of the colouring game with
k < ω(G) colours.

Remark 10. For any graph G with maximum degree ∆, Alice wins any variant of
the colouring game with k ≥ ∆ + 1 colours.

Proof of Lemma 6. (a) A winning strategy for Alice with 3 colours in a game, where
Alice begins, played on the split 3-star is the following. In her first move, Alice
colours a vertex of degree 4 with the first colour. No matter what Bob does, with
her next move Alice can create a situation in which both vertices of degree 4 are
coloured. Since the other two or three vertices can be coloured anyway, she wins.

A winning strategy for Alice with 3 colours in a game, where Alice begins, played
on the double fan is the following. In her first move, Alice colours the central vertex
with the first colour. If after that Bob colours an end vertex of a P3 in the graph
of the remaining uncoloured vertices, she colours the other end vertex of the same
P3 with the same colour. Otherwise, she colours the central vertex of a P3. By
this strategy, the end vertices of the two P3 will obtain the same colour, thus Alice
wins.

(b) A winning strategy for Bob with 3 colours in a game, where Bob begins,
played on the split 3-star is the following. In his first move, Bob colours a vertex
of degree 2 with the first colour. No matter what Alices does, with his next move
Bob can create a situation in which two of the vertices of degree 2 are coloured
differently. Since then not both of the vertices of degree 4 can be coloured any
more, Bob wins.

With 4 colours Alice wins on the split 3-star: If Bob colours a vertex of degree 4,
she colours the second vertex of degree 4. If Bob colours a vertex of degree 2, she
colours another vertex of degree 2 with the same colour. After this pair of moves it
is not possible that a vertex of degree 4 will be surrounded by vertices of all colours.

A winning strategy for Bob with 3 colours in a game, where Bob begins, played
on the double fan is the following. In his first move, Bob colours the upper left
vertex with colour 1. To prevent Bob from colouring the upper right vertex with
colour 2, Alice must colour the upper right vertex with colour 1. Then Bob colours
the lower left vertex with colour 2, and in the same way, Alice must colour the lower
right vertex with colour 2. Then Bob colours a vertex of degree 3 with colour 3 and
wins, since the central vertex cannot be coloured.

With 4 colours Alice wins on the double fan: No matter what Bob does, in her
first move Alice can create a situation such that the central vertex is coloured.
After that she wins since every uncoloured vertex has degree at most 3 and there
are 4 colours available. �

Proof of Lemma 7. (a) In the games, where Alice can force Bob to begin, Bob must
colour a vertex of G and Alice colours a vertex at distance 2 with the same colour.
Therefore only 2 colours are needed.

(b) In the games, where Bob can force Alice to begin, Alice must colour a vertex
of G and Bob colours a vertex at distance 2 with a different colour. Then a third
colour is needed to complete the colouring. �

Proof of Lemma 8. (a) In the games, where Alice can force Bob to begin the colour-
ing of the induced P4 resp. C4, whenever Bob colours a vertex of the P4 resp. C4,
Alice colours a vertex at distance 2 with the same colour. Therefore only ω(G)
colours are needed.
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(b) In the games, where Bob can force Alice to begin the colouring of the induced
P4 resp. C4, at some point, Alice must colour a vertex of the P4 resp. C4 and Bob
colours a vertex at distance 2 with a different colour. Then at least ω(G)+1 colours
are needed to complete the colouring. �

The following key lemma states that the game chromatic number of trivially
perfect graphs depends only on the player who is beginning.

Lemma 11. Let G ∈ TP . Then skipping is not an advantage for the first player,
i.e.

χ[X,Y ](G) = χ[X,X](G)

for any X ∈ {A,B}, Y ∈ {A,B,−}.

The idea of the proof of Lemma 11 consists in describing a strategy for Alice for
the game [X,B] under the assumption that she has a winning strategy for the game
[X,A], which Alice will use as a basis for her strategy. Whenever her basic strategy
does not tell her what to do, she uses the clique module decomposition of G and
chooses an uncoloured vertex v from a clique module from the layer Li with the
smallest i such that Li contains an uncoloured vertex, and she colours v with any
feasible colour. It can be shown that there is such a feasible colour and that this
colouring does not help surround a vertex, in particular Bob cannot exploit this
colouring of v later to surround any other vertex.

Proof of Lemma 11. Let F be the clique module decomposition forest of G. F con-
sists of trees which are rooted in the clique modules of layer L0. Concerning these
roots we can define the parent, children, predecessors and successors of a clique
module. For a vertex v of G, let M(v) be the vertex of F (i.e., the clique module
of G) that contains the vertex v. Furthermore, let B(v) be the branch of F which
is rooted in the clique module M(v) and contains M(v) and all its successors. We
will use the clique module decomposition and this notation frequently in the proof.

Let X ∈ {A,B}. Since, by (1), χ[X,A](G) ≤ χ[X,−](G) ≤ χ[X,B](G), we only
have to prove that, if Alice has a winning strategy with k colours in the game
[X,A] on the trivially perfect graph G, she also has a winning strategy with at
most k colours in the game [X,B]. Assume Alice has a winning strategy in the
game [X,A]. Alice will use the same strategy for the game [X,B] whenever this is
possible. That means her basic strategy for the game [X,A] tells her which vertex
she should choose in the real game [X,B], and, if possible, she takes the same colour
for this vertex as her strategy tells her, otherwise any feasible colour. However, it
might be impossible to apply her basic strategy if, by her strategy she should skip,
or if by her strategy she should colour a vertex already coloured, or if her strategy
does not apply since Bob skips. In all these cases she considers the layers Li of
vertices defined in the construction of the clique module decomposition forest of G
and colours a vertex v in the layer Li with the smallest label i among all layers
with uncoloured vertices.

We consider the case that Alice cannot apply her basic strategy to choose a
vertex and we first have to prove that

Alice has a feasible colour to perform this move.

This follows from the fact that in the imaginated game [X,A] the vertex v would be
still uncoloured and, since Alice has a winning strategy for the imaginated game,
Alice would even later have a feasible colour for v in the game [X,A], thus she
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w1

w2

x

v

1

2[1]

1

Figure 4. Proof of the third assertion in the proof of Lemma 11

has a feasible colour now (at the time when the move is performed) in the game
[X,A]. Since, by Alice’s strategy, all neighbours of v that have been coloured
in the game [X,B] but not in the imaginated game [X,A] lie in the same clique
consisting of M(v) and all its predecessor clique modules in F , there are no two
non-adjacent such neighbours with distinct colours. Note that an additional colour
in game [X,B] would only be needed if there are two non-adjacent neighbours of an
uncoloured vertex which are coloured by different colours in game [X,B] but will be
coloured with the same colours in game [X,A]. As there are not at all non-adjacent
neighbours of v since all neighbours form a clique, there must be a feasible colour
for v in the game [X,B], as well.

Second we have to prove that

colouring v does not help surround a vertex.

In particular this means that Bob cannot exploit this colouring of v later to surround
any other vertex. Let u be an uncoloured neighbour of v. We will prove that every
neighbour z of u is adjacent to v. This will prove our second assertion since, as
already argued above, only non-adjacent neighbours of an uncoloured vertex can
be dangerous to possibly surround the uncoloured vertex. We distinguish several
cases.

The vertex u cannot be a member of a layer Lj with j < i, since, when Alice
colours v, every vertex in such a layer Lj is already coloured by Alice’s strategy.

In case u is a member of layer i, then, by the definition of F , u belongs to M(v),
since members of other clique modules in Li are non-adjacent with v. By the
definition of a clique module, u and v have the same neighbours.

In case u is a member of layer Lj with j > i, the vertex u must be in a clique
module corresponding to a vertex of B(v). Each neighbour z of u must lie either
also in a clique module corresponding to a vertex of B(v) or in a predecessor clique
module of M(v). In the first subcase M(z) is a successor of M(v). Since v is a
central vertex for the graph induced by the vertices of the clique modules of B(v),
v is adjacent to z. In the second subcase z is a central vertex of the graph induced
by the vertices of the clique modules of B(z), and M(v) is a vertex of B(z), in
particular z is adjacent to v.

This completes the discussion of the case that Alice cannot apply her strategy
to choose a vertex.
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Now we consider the case that Alice is forced to use a different colour in the
game [X,B] than in the game [X,A]. As a third assertion we have to prove that

if Alice is forced to use a different colour in the game [X,B] than
in the game [X,A] this does not help surround a vertex.

Assume to the contrary, an uncoloured vertex v in layer Li is going to be surrounded
by this type of move, i.e. some vertex w1 in a clique module of B(v) is coloured
by colour 1 and a vertex w2 in another clique module of B(v) should be coloured
by colour 1 by Alice’s strategy for the game [X,A], but cannot be coloured by this
colour in the real game [X,B], thus Alice colours w2 with colour 2. We assume
that the layer Li of vertex v is such that i is minimal, and among all vertices that
have a property like w2 corresponding to v, w2 is chosen to be in a layer Lj with
minimal j. Since w2 cannot be coloured with colour 1, there must be a clique
module on the path in F from B(v) to B(w2) that contains a vertex x that is
coloured with colour 1 in the real game [X,B] (see Figure 4). Since [X,A] cannot
be coloured by colour 1 in the imaginated game [X,A], there are only two reasons
how that can happen: either (I) x also had to be coloured in a different colour than
by Alice’s strategy for game [X,A] or (II) the vertex x was chosen in some move
because Alice could not apply her basic strategy.

Case (I) contradicts the minimality of the layers of v and w2.
Case (II), which is shown in Figure 4, implies that when x was chosen, vertex v

was already coloured since it is in a lower layer than x, which contradicts the fact
that v is not coloured.

Therefore our assumption is wrong and the lemma is proven. �

After these preparations we prove our main result.

Proof of Theorem 3. (i) Let EP be one of the five classes EP ([A,A], [B,B]) or
EP ([A,−], [B,−]) or EP ([A,B], [B,−]) or EP ([A,−], [B,A]) or EP ([A,B], [B,A]),
see Figure 5(a).

By Corollary 5, GP [B,B] ⊆ EP .
For the other implication, let G ∈ EP . By Lemma 6, G does neither contain

the split 3-star nor the double fan as an induced subgraph. By Lemma 7, G does
neither contain P4 nor C4 as an induced subgraph. This implies by Theorem 1 that
G ∈ GP [B,B].
(ii) Let EP be one of the four classes EP ([A,A], [A,−]) or EP ([A,A], [A,B]) or
EP ([B,A], [B,B]) or EP ([B,−], [B,B]), see Figure 5(b).

Let G ∈ TP be a trivially perfect graph and H be a subgraph of G. Then H is
trivially perfect. By Lemma 11, for any X ∈ {A,B}, Y ∈ {A,B,−},

χ[X,Y ](H) = χ[X,X](H),

i.e. G ∈ EP ([X,X], [X,Y ]). In particular, G ∈ EP .
For the other implication, let G ∈ EP . By Lemma 7, G does neither contain P4

nor C4 as an induced subgraph. Thus, by definition, G ∈ TP .
(iii) Let EP be one of the classes EP ([A,−], [B,B]) or EP ([A,A], [B,−]), see
Figure 5(c).

In line with (i), by Corollary 5, GP [B,B] ⊆ EP . Thus GP [B,B]∩D ⊆ EP ∩D.
For the other implication, let G ∈ EP ∩ D. By Lemma 6, G does neither

contain the split 3-star nor the double fan as an induced subgraph. By Lemma 8,
G does neither contain P4 ∪ K1 nor C4 ∪ K1 as an induced subgraph. Since, by
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assumption, G has at least two components, this means that none of the components
of G contains a P4 or a C4. This implies by Theorem 1 that G ∈ GP [B,B]. Thus
G ∈ GP [B,B] ∩ D.
(iv) Let EP be one of the classes EP ([A,−], [A,B]) or EP ([B,A], [B,−]), see
Figure 5(d).

Let G ∈ TP be a trivially perfect graph and H be a subgraph of G. Then H is
trivially perfect. By Lemma 11, for any X ∈ {A,B}, Y, Y ′ ∈ {A,B,−},

χ[X,Y ](H) = χ[X,X](H) = χ[X,Y ′](H),

i.e. G ∈ EP ([X,Y ], [X,Y ′]). In particular, G ∈ EP . Thus TP ∩ D ⊆ EP ∩ D.
For the other implication, let G ∈ EP ∩D. By Lemma 8, G does neither contain

P4 ∪K1 nor C4 ∪K1 as an induced subgraph. Since, by assumption, G has at least

A,A
A,−

A,B

B,−

B,A
B,B

6

7

(a)

The pairs of games separated by
Lemma 6 and Lemma 7 in (i) of
Theorem 3.

A,A
A,−

A,B

B,−

B,A
B,B

7

(b)

The pairs of games (with the
same player beginning) separated
by Lemma 7 in (ii) of Theorem 3.

A,A

A,−
A,B

B,−

B,B
B,A

6

8

(c)

The pairs of games separated by
Lemma 6 and Lemma 8 in (iii)
of Theorem 3. Pairs with dashed
lines are already contained in (i).

A,A

A,−
A,B

B,−

B,B
B,A

8

(d)

The pairs of games (with the
same player beginning) separated
by Lemma 8 in (iv) of Theorem 3.
Pairs with dashed lines are al-
ready contained in (ii).

Figure 5.
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two components, this means that none of the components of G contains P4 or C4.
Therefore every component of G is trivially perfect. Thus G ∈ TP ∩ D. �

From Theorem 3, using Theorem 1, we immediately get the following charac-
terisation of equality perfect graphs for some pairs of games by sets of forbidden
induced subgraphs.

Corollary 12. A graph is equality perfect

(i) with regard to a pair of games as in Theorem 3 (i) if and only if it contains
no induced P4, C4, split 3-star or double fan;

(ii) with regard to a pair of games as in Theorem 3 (ii) if and only if it contains
no induced P4 or C4.

4. Equality Perfect Digraphs

In this section we consider digraphs without loops and multiple arcs, however,
pairs of antiparallel arcs (v, w) and (w, v) are allowed. If we regard such pairs as
undirected edges, a natural generalization of graph colouring to digraphs is given
by the dichromatic number introduced by Neumann-Lara [18]. The dichromatic
number of a digraph D is the smallest number of induced acyclic digraphs that
cover all vertices of D.

Two digraph colouring games motivated on this notion were proposed. In the
strong digraph colouring game s[X,Y ] introduced in [1], Alice and Bob alternately
colour uncoloured vertices of a given digraph D with a colour from a given colour
set that is different to the colours of its previously coloured in-neighbours. In the
weak digraph colouring game w[X,Y ] introduced by Yang and Zhu [23], Alice and
Bob alternately colour uncoloured vertices of a given digraph D with a colour from
a given colour set such that no monochromatic directed cycles are created. In both
types of games, X ∈ {A,B} denotes the player who begins, Y ∈ {A,B,−} is the
player who is allowed to skip (if Y 6= −), and Alice wins if every vertex is coloured
at the end. The smallest number of colours such that Alice has a winning strategy
in the game s[X,Y ] and w[X,Y ] is the game chromatic number χs[X,Y ] and χw[X,Y ]

of D, respectively. Note that both the strong and the weak game chromatic number
of a symmetric digraph S is equal to the game chromatic number of its underlying
graph GS . In the following, we identify GS with S.

We define the classes EPs([X,Y ], [X ′, Y ′]) of strongly equality perfect digraphs
and EPw([X,Y ], [X ′, Y ′]) of weakly equality perfect digraphs with regard to the
pair ([X,Y ], [X ′, Y ′]) with X,X ′ ∈ {A,B}, Y, Y ′ ∈ {A,B,−} as the classes of
those digraphs for which, for any induced subdigraph H,

χs[X,Y ](H) = χs[X′,Y ′](H) or χw[X,Y ](H) = χw[X′,Y ′](H),

respectively. Notions of game-perfect digraphs have been introduced [4]. Observa-
tion 4 can be generalized with these notions to digraphs.

Lemma 13. Let Y ∈ {A,B,−} and ~P2 be the directed path on two vertices. Then

(a) χs[A,Y ](~P2) = 1,

(b) χs[B,Y ](~P2) = 2.

Proof of Lemma 14. (a) Playing with one colour, Alice colours the terminal vertex
of the single arc and wins, since the other vertex can be coloured with the same
colour.
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(b) Playing with one colour, Bob colours the initial vertex of the single arc and
wins, since the other vertex cannot be coloured with the same colour. �

Corollary 14. For any Y, Y ′ ∈ {A,B,−}, the class EPs([A, Y ], [B, Y ′]) is con-
tained in the class of undirected graphs (=symmetric digraphs).

Proof. Let D ∈ EPs([A, Y ], [B, Y ′]). By Lemma 13, D is symmetric. �

Theorem 15. The structure of equality perfect digraphs with regard to some pairs
of games can be described as follows.

(i) EPs([A,A], [B,B]) = EP ([A,A], [B,B]) = GP [B,B],
EPs([A,−], [B,−]) = EP ([A,−], [B,−]) = GP [B,B],
EPs([A,B], [B,−]) = EP ([A,B], [B,−]) = GP [B,B],
EPs([A,−], [B,A]) = EP ([A,−], [B,A]) = GP [B,B],
EPs([A,B], [B,A]) = EP ([A,B], [B,A]) = GP [B,B].

(ii) EPs([A,A], [B,−]) = EP ([A,A], [B,−]),
EPs([A,−], [B,B]) = EP ([A,−], [B,B]),
EPs([A,A], [B,A]) = EP ([A,A], [B,A]),
EPs([A,B], [B,B]) = EP ([A,B], [B,B]).

Proof. The statements are immediate from Corollary 14 and, for (i) also, Theo-
rem 3 (i). �

Corollary 16. A digraph is equality perfect with regard to a pair of games as in
Theorem 15 (i) if and only if it contains no induced P4, C4, split 3-star, double fan,

or directed path ~P2.

5. Final remarks and Open Problems

For the classes not mentioned in Theorem 3 (i) or (ii) or in Theorem 15 (i) partial
lists of minimal forbidden induced sub(di)graphs result from our work. However,
we do not know whether these lists are complete.

Problem 17. Let C be the class of connected graphs. Characterise the classes

EP ([A,−], [B,B]) ∩ C, EP ([B,−], [A,A]) ∩ C.

Lemma 18. Let Y ∈ {A,B,−} and T3 be the triple triangle and S3 be the triple
sword which are depicted in Figure 6.

(a) χ[A,Y ](T3) = χ[A,Y ](S3) = 3.
(b) χ[B,Y ](T3) = χ[B,Y ](T3) = 4.

Proof of Lemma 18. (a) We describe a winning strategy for Alice for the game
[A, Y ] played on the graphs T3 or S3 with 3 colours. Both graphs have two adjacent
vertices of degree ≥ 4, which we call middle vertices, all other vertices are of degree

T3 S3

Figure 6. The triple triangle T3 and the triple sword S3
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at most 2, thus can be coloured in any case. In her first move Alice colours a middle
vertex with colour 1. No matter what Bob does, by her next move Alice can achieve
a situation where both middle vertices are coloured, therefore she wins.

(b) We describe a winning strategy for Bob for the game [B, Y ] played on the
triple triangle T3 with 3 colours. In his first move, Bob colours the bottom vertex
with colour 1. By symmetry, we distiguish only three cases. If Alice colours a
vertex v of degree 4 with colour 2, Bob colours a vertex at distance 2 from v with
colour 3 and wins. If Alice instead colours a vertex w of degree 2 with colour 1 or 2,
Bob colours a vertex at distance 3 from w with the other colour 2 or 1, respectively.
Now the neighbour z with degree 4 of the vertex coloured with 2 is in danger: if
one of its two uncoloured neighbours is coloured with colour three, then Bob will
win. Alice can only prevent him from colouring one of them unless she colours z.
But if she colours z, necessarily with colour 3, Bob colours the uncoloured vertex
at distance 2 from z with colour 2, which results in a win for him, since the second
vertex of degree 4 is surrounded. Third, if Alice skips, Bob colours a vertex w of
degree 2 with colour 2. In the same way as in the second case, Alice is forced to
colour the neighbour z of w with degree 4 with colour 3, which enables Bob to win
if he colours a vertex at distance 2 from z.

We describe a winning strategy for Bob for the game [B, Y ] played on the triple
sword S3 with 3 colours, which is somehow similar to the previous one. In his first
move, Bob colours the top vertex of degree 2 with colour 1. To prevent Bob from
winning by colouring the bottom vertex of degree 2 with another colour, Alice must
colour this bottom vertex with colour 1. But then Bob colours another vertex of
degree 2, with colour 2. Now the vertex of degree 5 is in danger: To prevent a
situation in which it cannot be coloured, Alice must colour it with colour 3. Then
Bob colours the vertex of degree 1 with colour 2 and wins. �

From Lemma 6, Lemma 8 and Lemma 18 we know that the split 3-star, the
double fan, P4 ∪K1, C4 ∪K1, the 4-fan P4 ∨K1, the 4-wheel C4 ∨K1, the triple
triangle T3 and the triple sword S3 are forbidden induced subgraphs for the classes
occurring in Problem 17.

Problem 19. Let C be the class of connected graphs. Characterise the classes

EP ([A,−], [A,B]) ∩ C, EP ([B,A], [B,−]) ∩ C.

From Lemma 8 we know that P4∪K1, C4∪K1, the 4-fan P4∨K1, and the 4-wheel
C4 ∨K1 are forbidden induced subgraphs for the classes occurring in Problem 19.

Problem 20. Characterise the classes EP ([A,B], [B,B]) and EP ([B,A], [A,A]).

From Lemma 6 and Lemma 18 we know that the split 3-star, the double fan,
the triple triangle T3, and the triple sword S3 are forbidden induced subgraphs
for the classes EP ([B,A], [A,A]) and EP ([A,B], [B,B]) occurring in Problem 23.
Both classes seem to have a rich and rather complicated structure. We notice that
the T3 and S3 also occur as two of the minimal forbidden induced subgraphs for
[B,A]-perfect and [B,−]-perfect graphs [5, 17].

For Y ∈ {A,B,−}, let Y :=

 B if Y = A,
− if Y = −,
A if Y = B.
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Our results encourage us to formulate the following, surprisingly unintuitive

Conjecture 21 (Duality Conjecture). Let (X,Y ), (X ′, Y ′) ∈ {A,B} × {A,B,−}.
Then

EP ([X,Y ], [X ′, Y ′]) = EP
([
X,Y

]
,
[
X ′, Y ′

])
.

Problem 22. Characterise the classes

EPs([A,B], [A,−]) and EPs([B,A], [B,−]).

Problem 23. Characterise the classes

EPs([A,A], [A,−]), EPs([A,A], [A,B]),

EPs([B,A], [B,B]), EPs([B,−], [B,B]).

P ′′4 P ′4 C ′′4 C ′4 C+
4

Figure 7. Some digraphs based on P4 or C4. In the figure, an
undirected edge vw represents the two arcs (v, w) and (w, v).

Lemma 24. Let sg1 be one of the games s[A,A], s[B,A], or s[B,−] and sg2 be
one of the games s[A,−], s[A,B], or s[B,B]. Let D be one of the digraphs depicted
in Figure 7. Then

(a) χsg1(D) = 2.
(b) χsg2(D) = 3.

Proof of Lemma 24. (a) Analog to the proof of Lemma 7, we describe a winning
strategy for Alice with 2 colours for a game where she can force Bob to begin.
No matter which vertex Bob colours in his first move, Alice colours the vertex at
distance 2 from it with the same colour and wins.

(b) Analog to the proof of Lemma 7, we describe a winning strategy for Bob with
2 colours for a game where he can force Alice to begin. If Alice colours a vertex,
Bob colours the vertex at distance 2 from it with the same colour and wins. �

The pairs of games occurring in Problem 23 have been characterised in the case
of undirected graphs in Theorem 3 (ii). From Lemma 24 we know that the digraphs
depicted in Figure 7 belong to the list of forbidden induced non-graphical digraphs.

We have not investigated the classes of weakly equality perfect digraphs, which
seem to be rich classes and an interesting subject of further research.

Problem 25. Characterise the classes

EPw([X,Y ], [X ′, Y ′])

for any X,X ′ ∈ {A,B}, Y, Y ′ ∈ {A,B,−}.

Many results concerning game chromatic numbers were obtained by means of a
marking game introduced by Zhu [24], which defines the game colouring number
colA(G) and colB(G) of a graph G depending on whether Alice (A) or Bob (B)
begins the game. We define a graph to be marking equality perfect if, for any
induced subgraph, colA(H) = colB(H).
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Problem 26. Characterise the class of marking equality perfect graphs by means
of forbidden induced subgraphs.

It is easy to see that for the diamond K2 ∨K2 the game colouring number is 3 if
Alice begins and 4 if Bob begins (cf. [3]), thus the diamond is one of the forbidden
induced subgraphs in marking equality perfect graphs.
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