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Abstract

We prove that the game colouring number of the m-th power of a
forest of maximum degree A > 3 is bounded from above by

(A—1)™ -1

2™ +1
A_1 + + 1,

which improves the best known bound by an asymptotic factor of 2.
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1 Introduction

Graph colouring considers the problem to assign colours to the vertices of a
given graph in such a way that adjacent vertices receive distinct colours. Clas-
sical graph colouring can be regarded as a one-player game, where the single
player has the goal to colour every vertex in such a way that she uses a min-
imum number of colours. Competitive graph colouring considers the situation
that there is a second player, too, who has the goal to increase the number of
colours used. In a maker-breaker graph colouring game, the players are usually
called Alice, who tries to minimize the number of colours, and Bob, who tries
to maximize the number of colours. In the basic variant of such a game, pop-
ularised to the graph theory community by Bodlaender [5], the players move
alternately. In each move they colour exactly one uncoloured vertex of the
given graph the vertices of which are initially uncoloured. Alice begins. The
most important parameter considered concerning this game is the so-called game
chromatic number, which is the smallest number of colours that is sufficent to
colour every vertex in case both players use optimal strategies.



The maximum game chromatic number for graphs from many interesting
classes of graphs has been examined by many authors. The first class of graphs
the maximum game chromatic number of which was determined were forests.
The result is contained in the initial paper of Faigle et al. [8]. In order to prove
that 4 is an upper bound for the game chromatic number of a tree, Faigle et al.
used a so-called activation strategy for Alice. This type of strategy was named
and generalized by Kierstead [9] and modified and used by many authors to
obtain upper bounds for the game chromatic number of other classes of more
complex graphs (some references can be found in the survey paper of Bartnicki
et al. [4], some more, more recent references concerning graph colouring games
can be taken from [2, 11]). A remarkable fact about the activation strategy is
that it does not depend on the colours assigned to neighbours of uncoloured
vertices but only on the number of coloured neighbours of uncoloured vertices.
This fact motivated Zhu [12] to introduce the following maker-breaker marking
game defining a graph parameter that is simultanously an upper bound for
the game chromatic number and a competitive version of the colouring number
named by Erdés and Hajnal [6]. The following rules of this marking game are
very similar to those of Bodlaender’s colouring game.

Alice and Bob alternately mark vertices of a given graph G = (V, E) until
every vertex is marked. The way they choose the vertices to be marked creates a
linear ordering < on the set V', where the smallest element is the first vertex that
was marked and the largest the last vertex marked. The back degree bd<(v) of
a vertex v with respect to the ordering < is defined as the number of previously
marked neighbours of v, i.e.

bd<(v) :==|{w eV |vw € E,w < v}|.
The score sc(G, <) of G with respect to the linear ordering < is defined by
se(G, <) =1+ max bd< (v).

Alice’s goal is to minimize the score, Bob tries to maximize it. Let <* be a
linear ordering in case both players play according to optimal strategies. Then
the game colouring number coly(G) of G is defined as

colyg(G) = sc(G, <7).
For a non-empty class C of graphs we define
coly(C) := sup coly(G).
Gec

An application of game colouring number with regard to the graph packing
problem was given by Kierstead and Kostochka [10].

In this paper we consider the game colouring number of the class of powers
of forests.

We only consider finite, simple, and loopless graphs. The m-th power G™
of a graph G = (V, E) is defined as the graph (V, E,,) with

\%
En={vw e (2> | 1 < distg(v,w) < m},



where the distance distg(v,w) denotes, as usual, the number of edges on a
shortest path from v to w in G. In particular, we have G° = (V,(}) and G! = G.
The square of G is the 2nd power G2.

In order to examine the marking game on the power F™™ of a forest F' we
will often argue with the forest F' itself, which has the same vertex set as F™.
The vertex sets are identified in a canonical manner. It is useful to define a
k-neighbour of a vertex v as a vertex w with distp(v,w) = k. A k<-neighbour
of a vertex v is an f-neighbour for some 1 < ¢ < k. Hence adjacency in F™
corresponds to m<-neighbourhood in F'.

Esperet and Zhu [7] and Yang [11] determined upper bounds for the game
colouring number of squares of graphs depending on the maximum degree of the
original graph. The first author and Theuser [3] generalized a global bound for
graphs from the paper of Esperet and Zhu [7] from squares to arbitrary powers
of graphs and obtained the following upper bound in the special case of powers
of forests.

Theorem 1 (A., Theuser (2015)). Let F be a forest with mazimum degree
A > 3. Let m € N. Then we have

(A—1)m -1

l,(F™) <2
CO!J( )— A—2

+ 2.

Here we will prove a bound which is better by factor ~ 2 for large A.

Theorem 2. Let F' be a forest with mazimum degree A > 3. Let m € N. Then
we have

(A-1)"—1
l,(F") < ~————— 42 4+ 1.
coly(F™) < N + 2™ +
2 Proof of Theorem 2
In case m = 1, Theorem 2 specializes to the result of Faigle et al. [8] that the

game colouring number of a forest is at most 4.

Let us give a brief review of the strategy for Alice Faigle et al. essentially used
in order to prove this upper bound. Let F be a forest (of maximum degree A).
During the game, a special set A of vertices, called active vertices is updated. At
the beginning, A = (). Whenever a player marks the first vertex in a component
T (which is a tree) of F, this vertex is activated and becomes root of the tree of
active vertices of T', which is a rooted tree induced by the vertex set V(T') N A.
We denote the tree of active vertices of the component T by T4 and its root
by r(T). In her first move, Alice marks an arbitrary vertex. Whenever Bob
marks a vertex v in a component T, let w be the first active vertex on the path
from v to r(T) (v = w might be possible). After Bob’s move, every vertex on
the path from v to 7(T') is activated, i.e. it becomes member of A. Alice’s next
move depends on whether v = w or v # w. Note that v = w if and only if
v=r(T) or v was active (v € T4) at the time v was marked by Bob. Alice uses
the following strategy:



Alice’s basic activation strategy:

Rule A1l If v # w and w is unmarked, then Alice marks w.

Rule B Otherwise, Alice chooses a component tree Tj that contains an un-
marked vertex and, if r(Tp) exists, she marks an unmarked vertex with
smallest distance from r(Ty), if r(Tp) does not exist, she marks a vertex
in Ty (which will become r(Tp)).

It is easy to see that if Alice uses this strategy, every unmarked vertex has at
most two active children. Therefore it has at most three marked (1-)neighbours,
hence coly (F) < 4.

With Theuser [3] the first author applied this strategy to the underlying
forest F' of its m-th power I in order to prove Theorem 1. For this purpose
we consider the game on F instead of F™ and have to count the maximal number
of marked m<-neighbours an unmarked vertex may have.

In the proof of Theorem 2 we use a modification of the activation strategy
in [3]. The main difference is the additional rule A2, which gives us a significant
improvement in the upper bound we establish.

Alice’s refined activation strategy:

Rule A1l If v # w and w is unmarked, then Alice marks w.

Rule A2 If v # w and w is marked and there is an unmarked vertex on the
path from w to r(T'), then Alice marks the first unmarked vertex on this
path (i.e. the unmarked vertex on the path that is nearest to w).

Rule B Otherwise, Alice chooses a component tree Tj that contains an un-
marked vertex and, if r(Tp) exists, she marks an unmarked vertex with
smallest distance from r(Typ), if r(Tp) does not exist, she marks a vertex
in Ty (which will become r(Tp)).

Proof of Theorem 2. Let m > 2. Alice uses the strategy explained above. In the
following arguments we consider the underlying forest F'. We will show that at
any time in the game after Alice’s move the invariant holds that any unmarked
vertex of F' has at most

(A—1)" -1

M = "—1"5

+ 2™ — 1.
marked m<-neighbours. Since Bob can increase the number of marked m<-
neighbours of an unmarked vertex in his next by at most one, this means that
Alice can force a score of at most M,, + 2 in the marking game on the graph
.

We prove the validity of the invariant by induction on the number of moves.
In Alice’s first move the invariant obviously holds. Assume now it holds after
some move of Alice. We consider the next pair of moves of Bob and Alice.



We use the same notions, namely the set of active vertices A, active rooted
tree T4 with root 7(7T') as in the description of the special case m = 1 above. To
be able to argue more precisely we also consider T" as rooted tree with root r(T).
In this rooted tree, for a vertex z, let p(x) be the predecessor of x and C(z) the
set of children of z. For k > 1 we define the iterates

P ) = pF(a)),
C%x) = {a},

cHl(z) = U C(y).

yeCk(z)

For a vertex w, let c1,¢2,¢3, ..., Ceg(a)—1 be the children of x in the order they
are activated in the course of the game; then we call ¢; the i-th active child of
x. In the following lemmata we use the notion of i-th active child even before
the move after which it is activated.

The rules of the above refined activation strategy imply the following lem-
mata.

Lemma 3 (Consequence of Rule Al). At the time Bob marks a vertex in the
subtree rooted in the second active child of a vertex x, the vertex x will be marked
after Alice’s move.

Proof. We may assume that x is unmarked before Bob’s move. By Rule B,
Alice will never mark an inactive vertex that is not adjacent to a marked vertex.
Therefore, when Bob, for the first time, marks a vertex v in the subtree rooted
in the second active child ¢ of x, the vertex vg is the first active vertex in the
subtree rooted in cy. Therefore the first active vertex on the path from vg to
the root 7(T') is the vertex x. By Rule A1, the vertex = will be marked in Alice’s
next move. O

By contraposition, we conclude

Lemma 4. After Alice’s move, for any unmarked vertex u, there is at most one
child ¢ € C(u) of u such that in the rooted subtree of ¢ (including c) there exists
at least one marked vertez. O

Lemma 5 (Consequence of Rule A2). At the time Bob marks a vertex in
the subtree rooted in the k-th active child of a vertex x, k > 3, the vertices
p(z),...,p""2(x) will be marked after Alice’s move.

Proof. As above, by the rules of the game, Alice will never mark an inactive
vertex that is not adjacent to a marked vertex. Therefore the first marked
vertex v; in the i-th child tree of x, i = 2,...,k, must be marked by Bob. By
Lemma 3, the vertex x will be marked after Alice’s move immediately after Bob
marked vo. By induction on i, it follows from Rule A2, that p'~2(z) will be
marked after Alice’s move immediately after Bob marked v;, i = 3,..., k. O

Let u be an unmarked vertex after Alice’s move. By Lemma 4, at most two
neighbours of u are marked, one child ¢y and the parent p(u). We will determine



(i) an upper bound for the number of vertices in V(TA)ﬁUZZl1 C*(u), namely

2m—1

)
and

(ii) an upper bound for the number of vertices in the ancestor’s part of the
active tree with distance at most m from u, namely

(A—1)m—1
A—2

Summing these two values obviously gives an upper bound for the number of
marked m<-neighbours of an unmarked vertex after Alice’s move.

Bound in (i): This bound is proved by a series of lemmata. We first intro-
duce a key notion. A big vertex is a vertex z € V(T4) N U;”:_ll C*(u) with the
property

(V1) either z has b > 3 active children and was marked by Alice by Rule A1,

(V2) or z has b > 2 active children and was marked by Alice by Rule A2 or
marked by Bob.

A rabbit of a big vertex z is an active child ¢ of z which is in case (V1) neither
the first nor the second active child of z and in case (V2) not the first active
child of z.

Let S; resp. Sy be the set of rabbits of some big vertex of type (V1) resp.
type (V2). Let Bs be the set of big vertices of type (V2). Let Ds be the set of
active vertices in UZZE C*(u) with exactly one active child.

Arguing with Rule A2 we can prove

Lemma 6. (a) Let z € C*(u), 1 <k < m — 1, be a big vertex of type (V1).
Then there exist b—2 vertices from V(TA)HU;:ll C*(u) which were marked
by Alice by Rule A2 when Bob marked a vertex in the subtree rooted in a
rabbit of z.

(b) Let z € C*(u), 1 <k < m — 1, be a big vertex of type (V2). Then there
exist b — 1 vertices from V(T4) N U;:ll C'(u) which were marked by Alice
by Rule A2 when Bob marked a verter in the subtree rooted in a rabbit

of z.

Proof. Alice, by her strategy, will never mark a vertex in a subtree rooted in a
rabbit of z unless every vertex on the path from z to r(T) is marked (which does
not hold since u = p¥(z) is unmarked). Therefore, every rabbit will be created
by Bob. Moreover in case (a), by Lemma 3, z will be marked by Alice before
Bob creates the first rabbit. In case (b), again by Lemma 3, z will be marked
by Bob or by Alice before Bob creates the first rabbit, otherwise z would not be
of type (V2). Since z is marked, the path from z to u is active before the first



rabbit is created. Whenever Bob creates a rabbit, Alice marks a vertex on the
path from (7). Since u is unmarked, this vertex, by Lemma 5, indeed must lie
on the path from z to u, i.e. the vertex is in V/(T4) N U;:ll C'(u), which proves
the lemma. O

The preceding lemma helps us to prove the following key lemma of the proof.

Lemma 7. There exists an injective mapping f: S1USy — Bo U Ds.

Proof. The mapping f is defined by Alice’s reaction on Bob’s moves creating a
rabbit of some big vertex: Each such rabbit is mapped to the vertex Alice marks
immediately in the next move. By construction and the rules of the game, the
mapping is injective. We only have to show that it is well-defined, i.e. that it
maps to By U Ds. According to the proof of Lemma 6 a vertex in the image
f(S1 U Sy) lies in the set UZZE C*(u). It suffices to show that such a vertex
y € f(S1US2) will never become a big vertex of type (V1). But this follows
from the fact that y is marked by Alice by rule A2, implying that y has at most
one active child. Therefore y will be in Dy as long as it has still one active child
and become a big vertex of type (V2), i.e. a member of By, whenever a second
child is activated. O

Now we modify the part 7" of the active tree T4 with vertex set V(T") :=
V(Ta)N U;n;ll C*(u) in the following way. For every big vertex z and every
rabbit ¢ of z we delete the active subtree rooted in ¢, move it, and append it as
a child of f(c).

Lemma 8. In the modified tree Ty of the part T’ of the active tree every vertex
has at most two children, i.e. Ty is a binary tree rooted in the unique active child
of u.

Proof. If f(c) € Do, the vertex f(c) has exactly one active child before the
modification and gets exactly another one after the modification. If f(c) € Ba,
it has exactly one active non-rabbit child before the modifcation. Since every
subtree rooted in a rabbit of f(c) is deleted, after the modification f(c) has
exactly two active children. This proves the lemma. O

Lemma 9. Ty has the same number of vertices as the original part T’ of the
active tree and none of the moved vertices lies outside | J;-, C*(u).

Proof. The first assertion follows since we do not delete subtrees, moreover, we
move them. The second follows from the fact that we move them to a lower
level in the binary tree, but not below the level of the root (the unique active
child of u). O

Corollary 10. Ty has at most 2™ — 1 vertices.



Proof. By Lemma 8, Tj is a binary tree. By the second assertion of Lemma 9,
Ty has height at most m — 1. Therefore, at level ¢ we have at most 2" vertices,
1=0,...,m— 1. Summing up, we get at most

m—1
> ot=2m—1
i=0
vertices. O

Corollary 11. The number of marked m<-neighbours of u in the child trees of
u 15 at most

<™ 1. (1)

V(Ta) N | C*(u)
k=1

Proof. By the first assertion of Lemma 9 and Corollary 10

— [V(Ty) < 27 — 1.

V(Ta) N | CF(u)
k=1

Corollary 11 gives us the desired bound (i).

Bound in (ii): If we consider p(u) and consider the tree T' as rooted in wu,
then in the new “child” subtree rooted in p(u) (which is the tree of foremothers
and aunts and so on) there might be at most (A — 1)*~! marked vertices at
distance k from u in the new subtree. Therefore the number of marked vertices
in the new subtree is at most

m—1
_A-pm-1
> (A-1f = = 2)

Combining (i) and (ii), i.e. adding the bounds (1) and (2), in total the

number of m<-neighbours after Alice’s move is at most
(A-1)m -1
— 42" — 1= M,,.
A2 "

This completes the proof of Theorem 2. O

3 Open problems

In [3] a lower bound for the game colouring number of the class of m-th powers
of forests of maximum degree A, based on an observation of Agnarsson and
Halldérsson [1], is given, which is Q(A Ed ). Therefore even the improved bound
in Theorem 2 leaves a large asymptotic gap between lower and upper bound.



Problem 12. Let F be the class of forests with maximum degree A and m € N.
Determine colyg({F™ | F € F}).

If m =2and A > 9, the gap in Problem 12 was reduced by Esperet and
Zhu [7] who proved that

A+1<col,{F?’|FeF}<A+3.

It might be that a generalization of the activation strategy can be applied
to powers of members of graph classes with some tree decomposition structure.

Problem 13. Let Ty be the class of k-trees with maximum degree A and m € N.
Determine coly({G™ | G € T }).

More generally,

Problem 14. Let G;, be the class of k-degenerate graphs with mazimum degree
A and m € N. Determine coly({G™ | G € Gi}).

Exact values for the game colouring number of powers of special forests are
only known for large paths [3].

Problem 15. Determine the exact values coly,(F™) for allm € N and interest-
ing special forests F'.
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