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Abstract

We generalize the methods of Esperet and Zhu [6] providing an
upper bound for the game colouring number of squares of graphs to
obtain upper bounds for the game colouring number of m-th powers
of graphs, m ≥ 3, which rely on the maximum degree and the game
colouring number of the underlying graph. Furthermore, we improve
these bounds in case the underlying graph is a forest.
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1 Introduction

The game colouring number of a graph, introduced by Zhu [14], is a com-
mon tool to bound a game-theoretic graph colouring parameter, the game
chromatic number, which was introduced by Bodlaender [3], the idea of the
underlying game dates back to Steven J. Brams [8]. Though, the concept of
game colouring number does not make use of the notion of colours, but is
defined simply by the following marking game.

We are given a finite graph G = (V,E). At the beginning every vertex
v ∈ V is unmarked. Two players, Alice and Bob, alternately mark vertices,
one vertex in a turn, with Alice beginning. The game ends if every vertex
is marked. The players thereby create a linear ordering L of the vertices.
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The back degree bdL(v) of a vertex v (with respect to L) is the number of
neighbours of v that precede v in L, i.e. the number of previously marked
neighbours of v in the game. The score sc(G,L) (with respect to L) is the
maximum back degree over all vertices. Alice tries to minimize the score,
Bob tries to maximize the score. The smallest score Alice can achieve with
some strategy against every strategy of Bob is called game score scg(G) of
the graph G, i.e. the game score is the score obtained if both players use
optimal strategies.

The game colouring number colg(G) of G is defined as

colg(G) = 1 + scg(G).

For a nonempty class C of graphs we further define

colg(C) = sup
G∈C

colg(G).

The motivation to consider the value scg(G)+1 instead of scg(G) comes
from the observation that colg(G) is an upper bound for the game chromatic
number, cf. [14]. This is analog to the non-game case: the chromatic number
χ(G) is bounded above by the colouring number col(G) of a graph G.

The colouring number of G, named by Erdős and Hajnal [5], is defined
as

col(G) = 1 +min
L∈L

sc(G,L) = 1 + min
L∈L

max
v∈V

bdL(v),

where minimization ranges over the set L of all linear orderings of vertices,
hence describing a situation without malicious adversary Bob.

Observation 1. For any graph G,

colg(G) ≥ col(G) ≥ χ(G).

All graphs considered in this paper are finite, simple, and loopless.
The m-th power of a graph G = (V,E), denoted by Gm, is a graph

(V,Em) with vw ∈ Em if and only if 1 ≤ distG(v,w) ≤ m. In particular,
G0 = (V, ∅) and G1 = G. The 2nd power of a graph is also called square of
a graph.

Esperet and Zhu [6] obtained the following upper bound for the game
colouring number of the square of a graph G, which uses the game colouring
number of G and the maximum degree of G.

Theorem 2 ((Esperet and Zhu (2009))). Let G be a graph with maximum
degree ∆. Then

colg(G
2) ≤ (colg(G)− 1)(2∆ − colg(G) + 1) + 1.
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Using structural properties of specific classes of graphs, they improved
the above result in some special cases as follows.

Theorem 3 ((Esperet and Zhu (2009))). Let G be a graph with maximum
degree ∆.

(i) If G is a forest with ∆ ≥ 9, then colg(G
2) ≤ ∆+ 3.

(ii) If G is outerplanar, then colg(G
2) ≤ 2∆ + 14.

(iii) If G is planar, then colg(G
2) ≤ 23∆ + 75.

Theorem 3 (iii) was improved by Yang [13] in an asymptotic way.

Theorem 4 ((Yang (2009))). There is a constant C such that, for any
planar graph G with maximum degree ∆,

colg(G
2) ≤ 5∆ + C.

In Section 3 we extend the methods of Esperet and Zhu and obtain
a generalization of Theorem 2 to arbitrary powers of a graph. The upper
bound is improved in the case of forests in Section 4. The exceptional trivial
case of paths is solved completely for large paths. Apart from this result, the
tightness of the bounds is a widely open problem, as discussed in Section 5.

2 Notation

In order to examine the marking game on the power Gm of a graph G we
will often argue with the graph G itself, which has the same vertex set as
Gm. The vertex sets are identified in a canonical manner. For the purpose
of that reasoning we also introduce the following notions.

By the distance distG(v,w) of two vertices v and w we denote the number
of edges on a shortest path between v and w in the original graph G. A
k-neighbour of a vertex v is a vertex w with distance distG(v,w) = k. A
k≤-neighbour of a vertex v is a vertex w with distance distG(v,w) = ℓ and
1 ≤ ℓ ≤ k.

We denote the path (resp. cycle) with n vertices by Pn (resp. Cn).

3 Upper bounds for powers of graphs

Using an inductive refinement of the methods of Esperet and Zhu [6] we
prove the following
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Theorem 5. Let G be a graph with maximum degree ∆ ≥ 3 and m ∈ N\{0}.

(a) If colg(G) ∈ {∆,∆+ 1}, then

colg(G
m) ≤ colg(G) + ∆(colg(G)− 1)

(∆ − 1)m−1 − 1

∆− 2
.

(b) If colg(G) = ∆− 1, then

colg(G
m) ≤ 1− 2m+∆

(∆− 1)m − 1

∆− 2
.

(c) If colg(G) ≤ ∆− 2, then

colg(G
m) ≤ 1 + ∆

(∆− 1)m − 1

∆− 2
− (∆ − colg(G) + 1)

(∆ − colg(G))m − 1

∆− colg(G)− 1
︸ ︷︷ ︸

=:B(∆,colg(G),m)

.

Theorem 5 generalizes the result of Esperet and Zhu [6] (Theorem 2).

Remark 6. Note that when m = 2 the bound in part (c) in Theorem 5
reduces to the bound of Theorem 2, since

B(∆, colg(G), 2) = 1 +∆2 − (∆− colg(G) + 1)2

= (colg(G)− 1)(2∆ − colg(G) + 1) + 1.

Proof of Theorem 5. For m = 1 the assertions are trivial.
Let m ≥ 2. We let k = colg(G) − 1 and D = ∆ − 1. Alice uses the

winning strategy to obtain a score of k, when playing the marking game on
G. We prove that, if she uses the same strategy for the graph Gm, the score
will be at most the upper bound given in the theorem minus one. Moreover,
we prove that at any time of the game, any unmarked vertex has at most
such many marked neighbours in Gm as this score.

Let v be an unmarked vertex at a certain time of the game. Let Mn

resp. Un be the number of marked resp. unmarked n-neighbours of v in G.
We have to give an upper bound for

1 +
m∑

n=1

Mn.

We have
M1 ≤ k, U1 ≤ D + 1−M1.
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Since in the graph G, for 2 ≤ n ≤ m, any marked vertex at distance n−1
from v has at most D = ∆− 1 marked neighbours at distance n from v and
any unmarked vertex at distance n− 1 from v has at most k = colg(G) − 1
marked neighbours at distance n from v, we have the recursion

Mn ≤ Mn−1D + Un−1k,

and, since the number of vertices which have positive distance n from v in
G is bounded by (D + 1)Dn−1, we have the recursion

Un ≤ (D + 1)Dn−1 −Mn.

Using the two previous recursions, we obtain the following:

Mn ≤ Mn−1(D − k) + (D + 1)Dn−2k. (1)

Therefore, for n ≥ 2, if colg(G) ≤ ∆, we have

Mn ≤ (D − k)n−1M1 +

n−2∑

i=0

(D + 1)Dik(D − k)n−2−i

≤ (D − k)n−1k +
n−2∑

i=0

(D + 1)Dik(D − k)n−2−i

=: Xn.

If k < D, i.e. if colg(G) ≤ ∆− 1, using the identity

xn−1 − yn−1 = (x− y)

n−2∑

i=0

xiyn−2−i (2)

we have

Xn
(2)
= (D − k)n−1k + (D + 1)k

Dn−1 − (D − k)n−1

D − (D − k)

= (D − k)n−1k + (D + 1)(Dn−1 − (D − k)n−1) (3)

= (k −D − 1)(D − k)n−1 + (D + 1)Dn−1.

We remark that, even in case n = 1, we have

M1 ≤ k = (k −D − 1)(D − k)n−1 + (D + 1)Dn−1.
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Assuming k < D, by (3) we have

colg(G
m) ≤ 1 +

m∑

n=1

Mn

≤ 1 +

m∑

n=1

Xn

= 1 +
m−1∑

n=0

((k −D − 1)(D − k)n + (D + 1)Dn)

=: Bm.

Then, if k < D − 1, i.e. if colg(G) ≤ ∆− 2, we have

colg(G
m) ≤ Bm = 1 + (D + 1)

Dm − 1

D − 1
− (D + 1− k)

(D − k)m − 1

D − k − 1
,

which proves (c).
On the other hand, if k = D − 1, i.e. if colg(G) = ∆− 1, we have

colg(G
m) ≤ Bm

= 1 +

m−1∑

n=0



(k −D − 1
︸ ︷︷ ︸

=−2

)(D − k
︸ ︷︷ ︸

=1

)n + (D + 1)Dn





= 1− 2m+ (D + 1)
Dm − 1

D − 1
,

which proves (b).
If k = D, i.e. if colg(G) = ∆, for n ≥ 2, we have

Mn ≤ Xn = (D + 1)Dn−2k.

In case k = D + 1, i.e. if colg(G) = ∆ + 1, for n ≥ 2, from (1) we also
have

Mn ≤ (D + 1)Dn−2k −Mn−1

≤ (D + 1)Dn−2k.

Therefore, if k ∈ {D,D + 1}, i.e. if colg(G) ≥ ∆, we have

colg(G
m) ≤ 1 + k +

m∑

n=2

Mn
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≤ 1 + k + (D + 1)k

m−2∑

n=0

Dn

= 1 + k + (D + 1)k
Dm−1 − 1

D − 1
,

which proves (a).

4 Forests

In case the graph of the game is a power of a forest, Theorem 5 can be
improved in the following way.

Theorem 7. Let F be a forest with maximum degree ∆ ≥ 3. Let m ∈ N.
Then we have

colg(F
m) ≤

2(∆ − 1)m − 2

∆− 2
+ 2.

Proof. For m = 0, colg(F
m) ≤ 1. For m = 1, colg(F

m) ≤ 4, by a result of
Faigle et al. [7]. Therefore the assertion holds for m ∈ {0, 1}.

Let m ≥ 2. We will describe a strategy for Alice, so that Alice wins the
marking game on the graph Fm with score

sc :=
2(∆ − 1)m − 2

∆− 2
+ 1.

This strategy is a generalization of the standard activation strategy for
forests (cf. [7, 9, 14]).

For the description of the strategy we use the forest F and consider the
vertices of the power Fm as vertices of the underlying forest F . Each vertex
that is the first vertex marked in a component T of F is called the root of
the component tree T and denoted by r(T ). In her first move, Alice marks
an arbitrary vertex. After that, Alice always marks a certain vertex (to be
specified later in Rule A and B) in the same component Bob has marked
a vertex in his previous move except if there is not any vertex left in the
component. In the latter case Alice proceeds according to Rule B.

All vertices on paths in a component T between marked vertices and
r(T ) are called active vertices. Whenever Bob marks a vertex v, Alice’s
answer depends on the position of v relative to the subtree TA induced by
the paths between active vertices before Bob’s move. If v /∈ V (TA), then let
w be the first vertex in V (TA) on the path from v to r(T ).

As long as there are still unmarked vertices, Alice marks according the
following rules.
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Rule A If v /∈ V (TA) and w is unmarked, then Alice marks w.

Rule B Otherwise, Alice chooses a tree T0 that contains an unmarked ver-
tex and, if r(T0) exists, she marks an unmarked vertex with smallest
distance from r(T0), if r(T0) does not exist, she marks a vertex in T0

(which will become r(T0)).

We will show that at any time in the game after Alice’s move any un-
marked vertex has at most sc− 1 marked m≤-neighbours.

subtree belonging to p(u)

subtree belonging to c

r(T )

p(u)

u

c2
c

w

Figure 1: Strategy in the proof of Theorem 7: Immediately after Bob colours
the vertex w in the uncoloured child tree belonging to c2, Alice will colour
the uncoloured vertex u

After Alice’s first move this is certainly true. Assume it is true after
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Alice’s N -th move. After Bob’s next move any unmarked vertex has at
most sc marked m≤-neighbours. We consider the situation after Alice’s
(N + 1)st move. Let u be an unmarked vertex in a certain component T of
F . We consider T as rooted tree with root r(T ) and denote by p(x) resp.
C(x) the predecessor resp. the set of children of a vertex x.

The rules of the above activation strategy imply the following lemma,
the idea of which was implicitly used already in [7].

Lemma 8. After Alice’s move, for any unmarked vertex u, there is at most
one child c ∈ C(u) of u such that in the rooted subtree of c (including c)
there are marked vertices.

Proof. See [7, 9, 14].

See Fig. 1 for a typical situation of the game.
Using Lemma 8, there are at most

m−1∑

k=0

(∆− 1)k =
(∆ − 1)m − 1

∆− 2
(4)

marked vertices which arem≤-neighbours of u in the child trees below u. On
the other hand, if we consider p(u) and consider the tree T as rooted in u,
then in the new “child” tree rooted in p(u) (which is the tree of foremothers
and aunts and so on) there might be, analogously, at most

(∆− 1)m − 1

∆− 2

marked m≤-neighbours of u. In total we have at most

2
(∆ − 1)m − 1

∆− 2
= sc− 1

marked m≤-neighbours of u, which proves the theorem.

We remark that the precondition ∆ ≥ 3 was used in the proof of The-
orem 7 when applying the geometric series in (4). In the following, we
consider some graphs with ∆ = 2.

Proposition 9. Let m,n ∈ N with n ≥ 4m. Then

colg(P
m
n ) = 2m+ 1.
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Proof. The case m = 0 is trivial. Let m > 0. The upper bound is obvious
since the number of m≤-neighbours of a vertex in a path is at most 2m. To
prove the lower bound we describe a strategy of Bob to force a score of 2m
in the marking game on the m-th power of the path Pn. To simplify the
strategy we consider the game played on the underlying path Pn.

If n ≥ 4m + 1, in his first 2m moves, Bob ensures that the first m and
the last m vertices of the path are marked, leaving at least one unmarked
interior vertex. The last interior vertex to be marked will have 2m marked
m≤-neighbours.

Consider the case n = 4m. In his first 2m − 2 moves, Bob ensures
that the first m − 1 and the last m − 1 vertices of the path are marked.
Let ul resp. ur be the m-th vertex counted from the left resp. the right
end of the path. After Alice’s next move there are still three unmarked
vertices. In case at least one of ul, ur is marked, Bob marks the other one
(if any, otherwise an arbitrary vertex) and leaves two interior unmarked
vertices. The last vertex of them to be marked will have 2m marked m≤-
neighbours in the Pn. In case both of ul and ur are unmarked, there is an
unmarked interior vertex v. Either v has already 2m marked m≤-neighbours
or distPn

(ul, v) ≤ m or distPn
(ur, v) ≤ m, but not both. Assume w.l.o.g.

distPn
(ul, v) ≤ m. Then Bob marks ul and v has 2mmarkedm≤-neighbours.

Therefore colg(P
m
n ) ≥ 2m+ 1.

Proposition 9 is best possible in the following way.

Proposition 10. Let m,n ∈ N with n ≤ 4m− 1. Then

colg(P
m
n ) ≤ 2m.

Proof. We describe a strategy of Alice on Pn that ensures that, at any time
in the game, every unmarked vertex of Pn has at most 2m− 1 marked m≤-
neighbours. In her first move, Alice marks a central vertex v such that Pn\v
decomposes into a left path L and a right path R, both containing at most
2m− 1 vertices. Whenever Bob marks a vertex in L (resp. R), Alice marks
the unmarked vertex in L (resp. R) with smallest distance to v.

Consider an unmarked vertex w in L at a certain time in the game. We
will argue that to the left of w there are at most m − 1 marked vertices.
Indeed, if there were at least m marked vertices to the left of w, then Alice
would have marked at least m− 1 vertices in L to the right of w. But then
the number of vertices in L would be at least 1 + m +m − 1 = 2m which
contradicts |V (L)| ≤ 2m− 1. The similar reasoning holds for R. Therefore
at any time there are at most m − 1 marked vertices to the exterior of an
unmarked vertex and at most m marked m≤-neighbours to the interior.
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Open problem 11. For all values (m,n) ∈ N
2, n ≤ 4m− 1, determine the

exact value of colg(P
m
n ).

Some partial results for Open Problem 11 can be found in [11].
We remark that the same idea as in the proof of Proposition 9 can be

used to prove the following.

Proposition 12. Let m,n ∈ N with n ≥ 4m. Then

colg(C
m
n ) = 2m+ 1.

Proof. Since Pm
n is a spanning subgraph of Cm

n , when Bob uses his strategy
from the proof of Proposition 9 to achieve a score of 2m in the marking game
on Pm

n for the marking game on Cm
n , he will achieve a score of at least 2m

because the additional edges might only increase the score but not decrease.
Therefore colg(C

m
n ) ≥ colg(P

m
n ) ≥ 2m + 1. On the other hand, obviously

colg(C
m
n ) ≤ 2m+ 1.

Open problem 13. For all values (m,n) ∈ N
2, n ≤ 4m− 1, determine the

exact value of colg(C
m
n ).

5 Remarks on tightness

From Theorem 5 we obtain immediately the following

Corollary 14. Let m ∈ N \ {0}. For a graph G from the class G(∆, c) of
graphs with maximum degree ∆ and colg(G) = c we have

colg(G
m) = O(∆m−1c).

A lower bound was given by Agnarsson and Halldórsson [1]. Their con-
struction of a complete (∆ − 1)-ary tree of height

⌊
m
2

⌋
used to prove the

tightness of their Theorem 3.1 shows

Theorem 15 ((Agnarsson and Halldórsson (2003))). There is a graph G
with maximum degree ∆ and

χ(Gm) = Ω
(

∆⌊m

2
⌋
)

.

Since, by Observation 1, colg(G
m) ≥ col(Gm) ≥ χ(Gm), Theorem 15

implies for the class G(∆) of graphs with maximum degree ∆

colg({G
m | G ∈ G(∆)}) = Ω

(

∆⌊m

2
⌋
)

.
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We cannot say anything better about the tightness of the bounds in
Theorem 5 resp. Theorem 7 for the class of m-th powers of graphs with
fixed maximum degree resp. for the class of m-th powers of forests with
fixed maximum degree and m ≥ 3. As already mentioned, Esperet and
Zhu [6] improved the bound of Theorem 7 in the case m = 2 for forests with
large maximum degree to the value ∆ + 3 (cf. Theorem 3 (i)).

It seems to be very hard to obtain reasonable tightness results for the
game colouring number in the general cases of powers of graphs and even of
forests considered in this paper. Similar large gaps between upper bounds
and examples which provide lower bounds for the game colouring number
of a class of graphs are known for the class of planar graphs which were
studied in the last two decades using different sophisticated methods, cf. [2,
4, 9, 10, 12, 14, 15, 16].

Open problem 16. For the class G(∆) of graphs with maximum degree ∆,
what is the asymptotic behaviour of

colg({G
m | G ∈ G(∆)})

when ∆ −→ ∞?

Open problem 17. For the class F(∆) of forests with maximum degree ∆,
what is the asymptotic behaviour of

colg({G
m | G ∈ F(∆)})

when ∆ −→ ∞?
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