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BICIRCULAR MATROIDS ARE 3-COLORABLE

LUIS GODDYN, WINFRIED HOCHSTÄTTLER, AND NANCY ANN NEUDAUER

Abstract. Hugo Hadwiger proved that a graph which is not 3-colorable must have a K4-minor and conjec-

tured that a graph which is not k-colorable must have a Kk+1-minor. Meanwhile the class of graphs without

K4-minor has been identified as the class of series-parallel networks.
[Hochstättler, Nešetřil 2006] extended the theory of colorings and nowhere-zero-flows to oriented matroids.

We generalize the notion of being series-parallel to oriented matroids and show that generalized series-

parallel oriented matroids are 3-colorable. Finally, we prove that every orientation of a bicircular matroid is
generalized series-parallel.

1. Introduction

Hadwiger’s conjecture, that every graph which is not k-colorable must have a Kk+1-minor, is “one of the
deepest unsolved problems in graph theory”[5]. While the first non-trivial case, k = 3, was proved by Hadwiger,
he pointed out that Klaus Wagner had shown that k = 4 is equivalent to the Four Color Theorem [22, 2, 16].
Robertson, Seymour and Thomas [17] reduced the case k = 5 to the Four Color Theorem. The conjecture
remains open for k ≥ 6.

Recently, Goddyn and Hochstättler [11] observed that a proper generalization of Hadwiger’s conjecture to
regular matroids includes Tutte’s flow conjectures for the cases k ∈ {4, 5} [19, 20, 21] while the case k = 3
remains the only non-trivial settled case. Let N be a matroid. We say that an oriented matroid O is N -free if
no minor of its underlying matroid O is isomorphic to N . Hadwiger’s conjecture for regular matroids asserts
that an oriented matroid O that is M(Kk+1)-free is either k-colorable or k = 4 and O has the cographic
matroid of Petersen’s graph as a minor.

Hochstättler and Nešetřil [12] generalized the theory of nowhere-zero flows to the class of oriented matroids.
Hochstättler and Nickel [13, 14] extended this work and defined the chromatic number of an oriented matroid.
They also showed that the chromatic number of a simple oriented matroid of rank r is at most r + 1, with
equality if and only if the matroid is an orientation of M(Kr+1). This suggests that, in some sense, complete
graphs are necessary to construct oriented matroids with large chromatic number. With their definition of
chromatic number, Hadwiger’s conjecture may, to our knowledge, hold true for the class of oriented matroids.
But, in this setting, the case k = 3 remains open: Are M(K4)-free oriented matroids always 3-colorable?

Jim Geelen asked [8] for some characterization of matroids without an M(K4)-minor. Here we define the
class of generalized series-parallel oriented matroids (Definition 2), which might provide some progress towards
an answer to Geelen’s question in the oriented case. While it is clear by definition that every generalized series-
parallel matroid is M(K4)-free, the converse statement, if true, would verify Hadwiger’s conjecture for oriented
matroids in the case k = 3.

We assume some familiarity with graph theory, matroid theory and oriented matroids; standard references
are [23, 15, 4]. The paper is organized as follows. In the next section we review the definition of the chromatic
number of an oriented matroid. In Section 3 we define generalized series-parallel oriented matroids and prove
that they are 3-colorable. In Section 4 we prove that every orientation of a bicircular matroid is generalized
series-parallel, and is therefore 3-colorable. We conclude with several open problems.

2. Nowhere-Zero Coflows in Oriented Matroids

A tension in a digraph D = (V,A) is a map f∗ : A→ R such that∑
a∈C+

f∗(a)−
∑

a∈C−

f∗(a) = 0
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for all cycles C in the underlying graph of D, with forward arcs C+ and backward arcs C−. We say that f∗

is a nowhere-zero-k tension (NZ-k tension) if f∗ : A→ {±1,±2 . . . ,±(k − 1)}.
Let c : V → {0, 1, . . . , k − 1} be a proper k-coloring of a connected graph G = (V,E). Let D = (V,A) be

some orientation of G and define f∗ : A→ {±1, . . . ,±(k− 1)} by f∗((u, v)) = c(v)− c(u). Then f∗ is a NZ-k
tension. The Kirchhoff Voltage Law implies every NZ-k tension arises from a proper k-coloring this way (see
for example [19, 9]).

The notion of a NZ-k tension can be generalized to a regular matroid M (essentially done by Arrowsmith
and Jaeger [3]) by referring to the integer combinations of rows in a totally unimodular matrix representation
of M . If one attempts to further generalize NZ-k tensions to the class of oriented matroids one faces the
difficulty that, for example, the four point line does not admit a nontrivial tension. The following definitions
from [12, 13, 14] avoid this difficulty.

The coflow lattice of an oriented matroid O on a finite set E, denoted as FO∗ , is the integer lattice generated
by the signed characteristic vectors of the signed cocircuits D of O, where the signed characteristic vector of
a signed cocircuit D = (D+, D−) is defined by

~D(e) :=


1 if e ∈ D+

−1 if e ∈ D−

0 otherwise.

That is

FO∗ =

{∑
D∈D

λD ~D | λi ∈ Z

}
⊆ Z|E|.

We call any x ∈ FO∗ a coflow of O. Such an x is a nowhere-zero-k coflow (NZ-k coflow) if 0 < |x(e)| < k
holds for e ∈ E. The chromatic number χ(O) is the minimum k such that O has a NZ-k coflow. It is easy
to see that χ(O) has a finite value if and only if O has no loops. Since reorienting an element of e in the
groundset of O corresponds to negating x(e) in every coflow x, the chromatic number is reorientation invariant.
It is shown [13] that χ(O) is a matroid invariant for uniform or corank 3 oriented matroids. It is unknown
whether this is the case in general, but it is known [13] that the dimension of FO∗ in general is not a matroid
invariant. Although there are alternative ways to define the chromatic number of an oriented matroid [10, 6],
the following theorem supports the suitability of our definition of χ(O) with regard to Hadwiger’s conjecture.

Theorem 1 ([14]). Let O be a simple oriented matroid of rank r ≥ 3. Then χ(O) ≤ r + 1. Moreover,
χ(O) = r + 1 if and only if O is an orientation of M(Kr+1).

3. Generalized Series-parallel Oriented Matroids

Recall that a parallel extension of a matroid M is an extension by an element e′ which is parallel to some
element e of M while a series extension is a coextension by an element e′ which is coparallel to some element.
A matroid is called series-parallel [1] if it can be obtained from a one element matroid by a sequence of series
and parallel extensions.

It is well known that series-parallel matroids are exactly the graphic matroids of series-parallel networks,
which are the graphs without a K4-minor. The latter makes an inductive proof of Hadwiger’s conjecture for
the case k = 3 almost trivial: if G arises by a parallel extension from G′, any proper 3-coloring of G′ remains
a proper 3-coloring of G whereas if G arises by subdividing an edge e into e and e′, we have a free color for
the new vertex. Translating this proof into a proof for the resulting NZ-3 coflow in an orientation of G, the
key point arises in the case G′ = G/e (series extension) where the induction step relies on the existence of a

{0,±1}-valued coflow in ~G, say g∗, whose support is {e, e′}. It has been shown in [13, Theorem 3.8] that such
a coflow g∗ exists in the coflow lattice of any orientation of a uniform oriented matroid, proving that this class
of matroids is 3-colorable. This motivates the following definition.

Definition 2. Let O be an oriented matroid. We say that O is generalized series-parallel (GSP) if every
simple minor of O has a {0,±1}-valued coflow which has exactly one or two nonzero entries.

By its definition, the class of GSP oriented matroids is closed under minors. Note that an orientation of a
regular matroid is GSP if and only if it is an orientation of a series-parallel matroid.
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Theorem 3. Let O be a GSP oriented matroid on a finite set E without loops. Then O has a NZ-3 coflow.

Proof. We proceed by induction on |E|. If O is not simple, then it has two parallel or antiparallel elements e
and e′. Since O \ {e′} is generalized series-parallel without loops, by induction it admits a NZ-3 coflow which
extends to a NZ-3 coflow in O because every cocircuit contains both or none of e and e′ and either always with
the same or always with opposite sign. Thus, we may assume O is simple and that O has a {0,±1}-valued
coflow, say g∗, whose support is {e, e′} (possibly with e = e′). By reorienting e′ if necessary, we may assume
that g∗(e′) = 1. Let O′ = O/e. Then O′ is a GSP oriented matroid without loops and hence there exists
a NZ-3 coflow f ′

∗
in O′, which extends to a coflow f∗ in O which is 0 on e and has entries from {±1,±2}

elsewhere. If f∗(e′) ∈ {−2, 0, 1}, then f∗ + g∗ is a NZ-3 coflow in O. Otherwise we have f∗(e′) ∈ {−1, 2}, so
f∗ − g∗ is a NZ-3 coflow in O. �

An practical way to prove that every orientation of a matroid from a certain minor closed class is GSP is
to show the existence of positive colines for that class.

Definition 4. Let M be a matroid. A copoint of M is a flat of codimension 1, i.e., a hyperplane. A coline
is a flat of codimension 2. If L is a coline of M and L ⊆ H a copoint, then we say H is a copoint on L. The
copoint is simple if |H \ L| = 1, otherwise it is fat. A coline L is positive if there are more simple than fat
copoints on L.

Lemma 5. If an orientable matroid M has a positive coline, then every orientation O of M has a {0,±1}-
valued coflow which has exactly two nonzero entries.

Proof. Let L be a positive coline of M and O some orientation of M . By [4] Proposition 4.1.17 the interval

[L, 1̂] in the big face lattice has the structure of the big face lattice of an even cycle. Here, each antipodal pair
of vertices of the even cycle corresponds to a copoint of L. Neighboring copoints in this cycle are conformal
vectors (see [4] 3.7). Since L is positive, by the pidgeonhole principle there must exist two neighboring simple
copoints D1, D2 ∈ D in the even cycle. Since both copoints are simple, (D1 ∪ D2) \ L = {e1, e2} and since

they are conformal, ~D1 − ~D2 is a vector with exactly two non-zeroes which are +1 or −1, namely on e1 and
e2. �

4. Bicircular Matroids

In this section we will show that orientations of bicircular matroids are GSP and hence 3-colorable by
Theorem 3.

Definition 6. [18] Let G = (V,E) be a not necessarily simple graph. The bicircular matroid B(G) represented
by G has as its independent sets the subsets of E that contain the edge set of at most one cycle of G in each
of its connected components. A matroid is bicircular if deleting its loops results in B(G) for some graph G.

Note that the original definition of a bicircular matroid did not allow loops. We conclude easily from the
definition:

Proposition 7. (1) Bicircular matroids are closed under taking minors.
(2) For any graph G, the edge set of every forest in G defines a closed set, i.e., a flat of B(G).

The following result suffices for our purpose.

Theorem 8. Every simple bicircular matroid M of rank ≥ 2 has a positive coline.

Proof. If M has two coloops, then deleting both of them results in a coline of M which has exactly 2 simple
copoints on it, and no other copoints. If M has exactly one coloop, say e, then we must have rank(M) ≥ 3.
Applying induction on |M |, we find that M/e has a positive coline which, together with e, gives a positive
coline of M . Similarly, if a connected component of M has a positive coline, then adding to it every other
component of M results in a positive coline of M . Thus we may assume M is connected, simple, with rank
≥ 3, and without coloops. Therefore M = B(G) for some connected graph G with |V (G)| = rank(M) ≥ 3.
We select G to have the fewest possible number of loops. Let T1 be a spanning tree of G, and let v be a leaf
of T1. Let {e1, e2, . . . , ek} be the set of non-loop edges of G which are incident with v, for some k ≥ 1. Since
M is simple, v is incident to at most one loop edge of G; we denote this loop edge by ` if it exists in G. If
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k = 1, then ` must exist, for otherwise e1 is a coloop of M . But now we have that B(G) = B(G′) where G′ is
the graph obtained from G by repositioning ` so that e1 and ` are parallel edges in G′. This contradicts the
choice of G. So we may assume k ≥ 2.

Exactly one edge in {e1, e2, . . . , ek} belongs to T1, say e1 ∈ E(T1). Let F = T1 − e1 and let Ti = F + ei,
for 1 ≤ i ≤ k. Then Ti is a spanning tree of G and v is a leaf of Ti, for 1 ≤ i ≤ k. By Proposition 7, the set
L := E(F ) is a flat of M . Since it is also independent in M and |L| = |V (G)|− 2, it is a coline of M . Also, for
1 ≤ i ≤ k, the set L∪{ei} = E(Ti) is a simple copoint on L. If ` exists then L∪{`} is also a simple copoint on
L. Every remaining edge e ∈ E(G)−L−{e1, e2, . . . , ek, `} has both of its endpoints in the connected subgraph
F − v, so the closure of L ∪ {e} in M is the copoint E − {e1, e2, . . . , ek, `}. There are no other copoints on L,
and at most one of them is fat. Since k ≥ 2, we have shown that L is a positive coline of M . �

Theorem 9. Every orientation of a bicircular matroid is GSP.

Proof. The statement trivially holds for bicircular matroids of rank ≤ 1. The result now follows from Lemma 5,
Theorem 8 and Proposition 7. �

Corollary 10. Bicircular matroids are 3-colorable.

5. Open Problems and Conjectures

The definition of an oriented matroid being GSP does not seem to be related to duality.

Question 11. Are GSP oriented matroids closed under duality?

Since M(K4) is not series-parallel, every GSP oriented matroid is M(K4)-free. Probably it would be too
much to hope for the other inclusion:

Question 12. Does there exist an M(K4)-free oriented matroid which is not GSP?

The previous question begs the following, more fundamental one.

Question 13. Does there exist a M(K4)-free matroid which is not orientable?

Not every M(K4)-free matroid has a positive coline, an example being P7. We checked with Lukas Finschi’s
database [7] that P7 has a unique reorientation class. Although there is no positive coline, this class still is
GSP. Every bicircular matroid is a gammoid. Since P7 is not a gammoid, the following might be a possible
extension of Theorem 9 to the class of gammoids, which includes the class of transversal matroids.

Conjecture 14. Every simple gammoid of rank at least two has a positive coline.

Acknowledgement. The term positive coline is due to Stephanie Adolph.
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