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Abstract

The clique number ω(D) of a digraph D is the size of the largest bidi-
rectionally complete subdigraph of D. D is perfect if, for any induced
subdigraph H of D, the dichromatic number χ(H) defined by Neumann-
Lara [17] equals the clique number ω(H). Using the Strong Perfect Graph
Theorem [9] we give a characterization of perfect digraphs by a set of for-
bidden induced subdigraphs. Modifying a recent proof of Bang-Jensen et
al. [2] we show that the recognition of perfect digraphs is co-NP-complete.
It turns out that perfect digraphs are exactly the complements of clique-
acyclic superorientations of perfect graphs. Thus, we obtain as a corol-
lary that complements of perfect digraphs have a kernel, using a result of
Boros and Gurvich [6]. Finally, we prove that it is NP-complete to decide
whether a perfect digraph has a kernel.
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1 Introduction

A conjecture that kept mathematicians busy with for a long time was Berge’s
Conjecture (cf. [3, 4]) which says that a graph is perfect if and only if it is a
Berge graph, i.e., it does neither contain odd holes nor odd antiholes as induced
subgraphs. After many partial results, the most famous being Lovasz’ proof of
the (Weak) Perfect Graph Theorem [16] stating that a graph is perfect if and
only if its complement is perfect, a proof of Berge’s Conjecture was published
in 2006 by Chudnovsky et al. [9], so that Berge’s Conjecture is now known as
the Strong Perfect Graph Theorem (SPGT).

∗Partial support by the Fakultätspreis of the Faculty of Mathematics and Computer Science
of the FernUniversität in Hagen is greatfully acknowledged.
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The importance of perfect graphs lies in computer science. Many problems
that are NP-complete for graphs in general are polynomially solvable for perfect
graphs, e.g. the maximum clique problem, the maximum stable set problem,
the graph coloring problem and the minimum clique covering problem (see [15]
resp. [13]). This is applicable, since the members of many important classes of
graphs are known to be perfect, e.g. bipartite graphs and their line graphs, split
graphs, chordal graphs, and comparability graphs.

In this note we make a first step to generalize the theory of perfect graphs
to digraphs. For that purpose we replace the underlying coloring parameter,
the chromatic number, by the dichromatic number introduced by Neumann-
Lara [17] and independently by Jacob and Meyniel [14]. As main result we
obtain that a digraph is perfect if and only if it does not contain induced di-
rected cycles of length at least 3 and its symmetric part is a perfect graph.
Hence, using the SPGT, we derive a characterization of perfect digraphs by
means of forbidden induced subdigraphs. In this paper we describe some fur-
ther consequences of the main result in complexity theory and kernel theory.

Bokal et al. [5] proved that 2-coloring a digraph feasibly is an NP-complete
problem. By our results, k-coloring of perfect digraphs is in P for any k. We also
show that it is possible to determine a maximum induced acyclic subdigraph of
a perfect digraph in polynomial time. Note that for symmetric digraphs this is
equivalent to computing a stable set.

By a result of Chudnovsky et al. [8] the recognition of Berge graphs is in P,
and so, by the SPGT [9], the same holds for the recognition of perfect graphs.
In contrast to this, the recognition of induced directed cycles of length at least 3,
which are a main obstruction for perfect digraphs, is NP-complete by a result of
Bang-Jensen et al. [2]. By a small modification of their proof we, unfortunately,
must conclude that the recognition of perfect digraphs is co-NP-complete.

Our belief that our definition of perfection in digraphs is a natural concept is
supported by the observation that perfect digraphs are exactly the complements
of clique-acyclic superorientations of perfect graphs. Using a result of Boros and
Gurvich [6] we conclude that complements of perfect digraphs have a kernel,
whereas it is NP-complete to decide whether whether a perfect digraph has a
kernel.

2 Notation

We start with some definitions. For basic terminology we refer to Bang-Jensen
and Gutin [1]. For the rest of the paper, we only consider digraphs without
loops. Let D = (V,A) be a digraph. The dichromatic number χ(D) of D is
the smallest cardinality |C| of a color set C, so that it is possible to assign a
color from C to each vertex of D such that for every color c ∈ C the subdigraph
induced by the vertices colored with c is acyclic, i.e. it does not contain a directed
cycle. A clique in a digraph D is a subdigraph in which for any two distinct
vertices v and w both arcs (v, w) and (w, v) exist. The clique number ω(D)
of D is the size of the largest clique in D. The clique number is an obvious
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lower bound for the dichromatic number. D is called perfect if, for any induced
subdigraph H of D, χ(H) = ω(H).

An (undirected) graph G = (V,E) can be considered as the symmetric di-
graph DG = (V,A) with A = {(v, w), (w, v) | vw ∈ E}. In the following, we will
not distinguish between G and DG. In this way, the dichromatic number of a
graph G is its chromatic number χ(G), the clique number of G is its usual clique
number ω(G), and G is perfect as a digraph if and only if G is perfect as a graph.
For us, an edge vw in a digraph D = (V,A) is the set {(v, w), (w, v)} ⊆ A of
two antiparallel arcs, and a single arc in D is an arc (v, w) ∈ A with (w, v) /∈ A.
The oriented part O(D) of a digraph D = (V,A) is the digraph (V,A1) where
A1 is the set of all single arcs of D, and the symmetric part S(D) of D is the
digraph (V,A2) where A2 is the union of all edges of D. Obviously, S(D) is a
graph, and by definition we have

Observation 1. For any digraph D, ω(D) = ω(S(D)).

The (loopless) complement D of a digraph D = (V,A) is the digraph

D = (V, ((V × V ) \ {(v, v) | v ∈ V }) \A).

For any digraph D = (V,A), the underlying graph G(D) = (V,E) is a graph
that has an edge vw ∈ E if and only if (v, w) ∈ A or (w, v) ∈ A (possibly both).
By definition we have

Observation 2. For any digraph D, S(D) = G(D).

A digraph D is a superorientation of a graph G, if G = G(D). A super-
orientation D of G is clique-acyclic if there does not exist a clique of G which
is induced by the vertex set of a (not necessarily induced) directed cycle of D.
Whenever a set S ⊆ V induces a subdigraph H = (S, ∅) of a digraph D = (V,A),
the set S is called stable. A kernel in a digraph D = (V,A) is a stable set K ⊆ V
that is absorbing, i.e. for any v ∈ V \K there is an arc (v, w) ∈ A with w ∈ K.

In the formulation of the SPGT and in our directed generalization some
special types of graphs resp. digraphs are needed. An odd hole is an undirected
cycle Cn with an odd number n ≥ 5 of vertices. An odd antihole is the com-
plement of an odd hole (without loops). A filled odd hole/antihole is a digraph
H, so that S(H) is an odd hole/antihole. For n ≥ 3, the directed cycle on n

vertices is denoted by ~Cn. Furthermore, for a digraph D = (V,A) and V ′ ⊆ V ,
by D[V ′] we denote the subdigraph of D induced by the vertices of V ′.

3 A strong perfect digraph theorem

The following main result is the basis of all results of this paper.

Theorem 3. A digraph D = (V,A) is perfect if and only if S(D) is perfect and

D does not contain any directed cycle ~Cn with n ≥ 3 as induced subdigraph.
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Proof. Assume S(D) is not perfect. Then there is an induced subgraph H =
(V ′, E′) of S(D) with ω(H) < χ(H). Since S(D[V ′]) = H, we conclude by
Observation 1,

ω(D[V ′]) = ω(S(D[V ′])) = ω(H) < χ(H) = χ(S(D[V ′])) ≤ χ(D[V ′]),

therefore D is not perfect. If D contains a directed cycle ~Cn with n ≥ 3 as
induced subdigraph, then D is obviously not perfect, since ω(~Cn) = 1 < 2 =

χ(~Cn).
Now assume that S(D) is perfect but D is not perfect. It suffices to show

that D contains an induced directed cycle of length at least 3. Let H = (V ′, A′)
be an induced subdigraph of D such that ω(H) < χ(H). As S(H) is perfect,
there is a proper coloring of S(H) = S(D)[V ′] with ω(S(H)) colors, i.e., by
Observation 1, with ω(H) colors. This cannot be a feasible coloring for the
digraph H. Hence there is a (not necessarily induced) monochromatic directed

cycle ~Cn with n ≥ 3 in O(H). Let C be such a cycle of minimal length. C
cannot have a chord that is an edge vw, since both terminal vertices v and w
of any such edge vw are colored in the same color contradicting the fact that
the coloring is a proper coloring of S(H). By minimality, C does not have a
chord that is a single arc. Therefore, C is an induced directed cycle (of length
at least 3) in H, and thus in D.

We actually have proven:

Remark 4. If D is a perfect digraph, then any feasible coloring of S(D) is also
a feasible coloring for D.

Corollary 5. A digraph D = (V,A) is perfect if and only if it does neither

contain a filled odd hole, nor a filled odd antihole, nor a directed cycle ~Cn with
n ≥ 3 as induced subdigraph.

Proof. If D contains any configuration of the three forbidden types, D is obvi-
ously not perfect, since each of these configurations is not perfect.

Assume, D does not contain any of these configurations. Then S(D) does
neither contain odd holes nor odd antiholes, therefore, by the Strong Perfect
Graph Theorem [9], S(D) is perfect. Using Theorem 3, we conclude that D is
perfect.

4 Some complexity results

Using some well-known complexity results, in this section we describe several
immediate consequences of Theorem 3.

Proposition 6. There is a polynomial time algorithm to determine an induced
acyclic subdigraph of maximum cardinality of a perfect digraph D.
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Proof. Let D be a perfect digraph. By Theorem 3, S(D) is a perfect graph.
By a result of Grötschel, Lovász and Schrijver [12] it is possible to find a stable
set I of S(D) of maximum cardinality in polynomial time. D[I] = O(D)[I] is
an acyclic digraph, since D is perfect and therefore does not contain induced
directed cycles by Theorem 3, hence, as S(D[I]) = (I, ∅), it does not contain
any directed cycles. By the maximality of I, D[I] is a maximal induced acyclic
subdigraph of D.

Proposition 7. k-coloring of perfect digraphs is in P for any k ≥ 1.

Proof. By Remark 4 it follows that a coloring of a perfect digraph D with ω(D)
colors can be obtained by coloring the perfect graph S(D), which is possible in
polynomial time (see [12]).

The preceding result does not depend on an efficient recognition of perfect
digraphs. The good news on the tractability of the above problems is bedimed,
though, by the result that the recognition problem for perfect digraphs is hard.
In order to test, whether a digraph D is perfect, by Theorem 3 we have to test

(a) whether S(D) is perfect, and

(b) whether D does not contain an induced directed cycle ~Cn, n ≥ 3.

The first can indeed be tested efficiently by the results of Chudnovsky et al. [8]
and the SPGT [9], but the second is a co-NP-complete problem by a recent
result of Bang-Jensen et al. ([2], Theorem 11). The proof of Bang-Jensen et al.
can be easily modified to prove the following.

Theorem 8. The recognition of perfect digraphs is co-NP-complete.

Proof. We reduce 3-SAT to non-perfect digraph recognition. We consider an
instance of 3-SAT

F =

m∧
i=1

Ci =

m∧
i=1

(li1 ∨ li2 ∨ li3) with lij ∈ {x1, . . . , xn, x1, . . . , xn}.

For each variable xk we construct a variable gadget V G(k) and for each clause
Ci a clause gadget CG(i), as shown in Fig. 1. These gadgets are very similar to
those used in Theorem 11 of the paper of Bang-Jensen et al. [2], only the edges
(which are redundant for correctness of the reduction) are missing here. The
rest of the construction is the same as in [2]: We form a chain of variable gadgets
by introducing vertices b0 and an+1 and the arcs (bk, ak+1) for k ∈ {0, 1, . . . , n},
and a chain of clause gadgets by introducing the vertices d0 and cm+1 and the
arcs (di, ci+1) for i ∈ {0, 1, . . . ,m}. We close the two chains to form a ring by
introducing the arcs (an+1, d0) and (cm+1, b0). Finally, for each literal lij (which
is xk or xk) we connect the vertex lij in the clause gadget CG(i) with the vertex
lij in the variable gadget V G(k) by an edge. This completes the construction
of the digraph D(F ).
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Figure 1: Variable gadget V G(k) (left) and clause gadget CG(i) (right)

We remark that S(D(F )) is a forest of stars, thus bipartite and hence perfect,
so by Theorem 3 testing whether D(F ) is not perfect and testing whether D(F )
has an induced directed cycle of length at least 3 is the same. We have to show
that D(F ) has an induced directed cycle if and only if F is satisfiable. Let
(z1, . . . , zn) ∈ {0, 1}n be an assignment satisfying F . Then the directed path
through all yk with

yk =

{
xk if zk = 1
xk if zk = 0

can be extended to an induced directed cycle through the clause gadgets by
the construction, since in every clause there is a literal yk the adjacent edge of
which is only connected to the vertex yk in V G(k). On the other hand, if there
is an induced directed cycle through the ring using the literals (y1, . . . , yn) in
the variable gadgets, then (z1, . . . , zn) with zk = 1 if yk = xk and zk = 0 if
yk = xk is an assignment satisfying F , since for every clause some literal yk
that lies on the cycle is satisfied.

5 A weak perfect digraph theorem

Note that perfection of digraphs does not behave as well as perfection of graphs
in a second aspect: there is no analogon to Lovasz’ Weak Perfect Graph Theo-
rem [16] in an obvious way. A digraph may be perfect but its complement may

be not perfect. An easy instance of this type is the directed 4-cycle ~C4, which

is not perfect, and its complement ~C4, which is perfect.
However, the following might be considered a weak perfect digraph theorem.

Theorem 9. A digraph D is perfect if and only if the complement D is a
clique-acyclic superorientation of a perfect graph.

Before we prove the above theorem we note

Lemma 10. Let D be a digraph. The following are equivalent.

(i) D contains no induced directed cycle.
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(ii) D contains no induced complements of directed cycles.

(iii) D is clique-acyclic.

Proof. (iii) =⇒ (ii) ⇐⇒ (i) are obvious. For (ii) =⇒ (iii) assume that D is not
clique-acyclic, i.e. there is a directed cycle which induces a clique in G(D). Let
C be such a cycle of minimal length. If there were a single arc chord there would
be a directed cycle of smaller length, contradicting minimality. So every chord
of C is an edge, i.e. C induces the complement of a directed cycle.

Proof of Theorem 9. By our main result, D is perfect if and only if S(D) is
perfect and D does not contain induced directed cycles. By Lemma 10 the latter
is equivalent to S(D) being perfect and D being clique-acyclic. By Lovasz’ weak
perfect graph theorem [16] and Observation 2 we have

S(D) perfect ⇐⇒ S(D) perfect

⇐⇒ G(D) perfect

⇐⇒ D is superorientation of perfect graph.

Summarizing we obtain the proposed equivalence.

Our result on the complexity of perfect digraph recognition implies.

Corollary 11. The recognition of clique-acyclic superorientations of perfect
graphs is co-NP-complete.

Proof. This is immediate from Theorems 8 and 9, using the fact that the com-
plement of a given digraph can be constructed in polynomial time.

Whenever one considers digraphs the question of the existence of a kernel
is interesting and has quite some applications (cf. [7]). A fascinating relation
between perfect graphs and kernels was given by Boros and Gurvich [6].

Theorem 12 (Boros and Gurvich [6]). Perfect graphs are kernel solvable.

In our terminology, Theorem 12 means that every clique acyclic superorien-
tation of a perfect graph has a kernel.

Corollary 13. For any perfect digraph D, the complement D has a kernel.

Proof. Let D be perfect. By Theorem 9, D is a clique acylic superorientation
of a perfect graph. By the result of Boros and Gurvich (Theorem 12), D has a
kernel.

The preceding result is in contrast to the following theorem.

Theorem 14. It is NP-complete to decide whether a perfect digraph has a
kernel.
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Proof. Obviously, the problem of the existence of a kernel in perfect digraphs is
in NP. We give a reduction from 3-SAT which is a slight variation of Chvatal’s
classical proof (see [10]). Given a 3-SAT formula f with clauses C1, . . . , Cm and
variables x1, . . . , xn, we construct a digraph Df as follows. For each variable xj ,
we introduce two literal vertices xj , xj joined by an edge xjxj . For each clause

Ci = li1 ∨ li2 ∨ li3 we add a copy Hi of ~C4, and add the twelve arcs connecting
its four vertices to the three vertices representing the literals of the clause, see
Figure 2.

x2 x2 x3x3x8 x8

Figure 2: Connections for the clause x8 ∨ x2 ∨ x3 in the construction of Df

Df is a perfect digraph, since its symmetric part is a matching and the only
directed cycles are the directed 4-cycles in the Hi’s, which are not induced. Since
each of the Hi does not admit a kernel, and any kernel must contain exactly
one literal vertex for each variable, it is immediate that Df has a kernel if and
only if the formula is satisfiable.

6 Open questions

Since there are many special classes of perfect graphs with algorithms of their
own it seems natural to ask:

Open question 15. Are there any interesting special classes of perfect digraphs
with efficient algorithms for problems different from coloring and the maximum
induced acyclic subdigraph problem?

Open question 16. Are there other problems that are NP-complete or co-
NP-complete for digraphs in general as well as for perfect digraphs?

Being clique-acyclic is a sufficient but not a necessary condition for a super-
orientation of a perfect graph to have a kernel. This raises the question:

Open question 17. What is the complexity of recognizing superorientations of
perfect graphs that have a kernel?
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