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Abstract

In the binary paint shop problem we are given a word on n characters
of length 2n where every character occurs exactly twice. The objective is
to colour the letters of the word in two colours, such that each character
receives both colours and the number of colour changes of consecutive
letters is minimized. Amini et. al proved that the expected number of
colour changes of the heuristic greedy colouring is at most 2n/3. They
also conjectured that the true value is n/2. We verify their conjecture
and, furthermore, compute an expected number of 2n/3 colour changes
for a heuristic, named red first, which behaves well on some worst case
examples for the greedy algorithm. From our proof method, finally, we
derive a new recursive greedy heuristic which achieves an average number
of 2n/5 colour changes.

Key words: greedy algorithm, paint shop problem, average perfor-
mance

MSC: 90C59, 90B35, 68R15

1 Introduction

Motivated by the problem of minimizing colour changes in a paint shop in an
automobile plant Epping, Hochstättler and Oertel [3] introduced the following
problem:

PPW(2,1)[Binary Paint Shop Problem]: Let Σ be a finite alphabet of car-
dinality n. We call the elements of Σ characters and their occurrence in a
word a letter. An instance of PPW (2, 1) is a word w = (w1, . . . , w2n) ∈ Σ2n

in which each character occurs exactly twice. A feasible colouring is a colour-
ing (f1, . . . , f2n) ∈ {0, 1}2n with the property that i 6= j and wi = wj implies
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{fi, fj} = {0, 1}. The objective is to find a feasible colouring such that the
number

∑2n−1
i=1 |fi − fi+1| of colour changes is minimized.

Bonsma, Epping and Hochstättler [2] and, by a different reduction, Meunier
and Sebő [4] showed that PPW (2, 1) is APX -hard. It is not known whether
PPW (2, 1) is also APX -easy, i.e. whether it admits an approximation with a
guaranteed constant ratio.

The greedy algorithm for PPW (2, 1) is a feasible colouring that colours w1

with 0 and then, processing the word from left to right, the first occurrence of
each other character with the colour of its predecessor, the second occurrence
with the remaining colour.

Amini, Meunier, Michel and Mojaheri [1] showed that, assuming a uniform
distribution on the words of length 2n, the expected number En(g) of colour
changes computed by the greedy algorithm is

En(g) ≤ 2n

3
.

They conjectured that En(g) ∼ n
2 . We verify this conjecture and show:

Theorem 1. If the instances of the paintshop problem of size 2n are uniformly
distributed, then the expected number of colour changes computed by the greedy
algorithm is given by

En(g) =
n−1∑
k=0

2k2 − 1
4k2 − 1

.

Unfortunately, the greedy algorithm does not approximate the optimum
value within a constant factor. We will present a class of examples where it
behaves poorly. This class is coloured optimally by red first, a heuristic which
colours the first occurence of each character by 0 and the other with 1. As
is to be expected, this heuristic on average is not competitive with the greedy
algorithm:

Theorem 2. If the instances of the paintshop problem of size 2n are uniformly
distributed, then the expected number of colour changes computed by red first is
given by

En(rf) =
2n + 1

3
.

The key idea in the analysis of the above heuristics inspired a third algorithm
which is a recursive application of the greedy idea. This heuristic behaves
substantially better than the greedy algorithm:

Theorem 3. If the instances of the paintshop problem of size 2n are uniformly
distributed, then the expected number of colour changes computed by the recur-
sive greedy algorithm is bounded as follows.

2
5
n +

8
15
≤ En(rg) ≤ 2

5
n +

7
10

.
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The paper is organized as follows. In Section 2 first we count the patterns
of consecutive colours in a feasible colouring and use this to prove Theorem 1.
Furthermore, we present a class of worst case examples with unbounded perfor-
mance ratio for this heuristic. In Section 3 we proceed analogously with red first.
In Section 4 we present the recursive greedy heuristic and prove Theorem 3. We
conclude with some open questions.

2 The greedy algorithm

If (w1, . . . , w2n) is an instance of PPW (2, 1) and (f1, . . . , f2n) a feasible colour-
ing, then for i = 1, . . . , 2n− 1 we call wiwi+1 a gap of type fifi+1

Lemma 4. Let w be an instance of the paint shop problem with length 2n, which
is feasibly coloured and where f1 = 0. Let k be the number of colour changes
in w. If k is even, then the number of gaps of the four possible types is given by
the following table:

type 01 10 11 00

#gaps k
2

k
2 n− k

2 n− 1− k
2

.

If k is odd, we have

type 01 10 11 00

#gaps k+1
2

k−1
2 n− k+1

2 n− k+1
2

.

Proof. Assume that k is even. Clearly, half of the colour changes produce a gap
of type 01 and the others of type 10. The number of gaps of type 00 or 11 in
total must be 2n− 1− k and hence be odd. Since we have the same number of
0s and 1s but the first and the last letter are coloured with 0, we have one more
gap of type 11 than of 00.

If k is odd, we have one more gap of type 01 than of 10 and the same number
of type 11 as of type 00.

We now turn to a first simple observation about the behaviour of the greedy
colouring.

Lemma 5. Assume the instances of the paint shop problem of size 2n are uni-
formly distributed, w is such an instance and Z the character at position 2n. If
greedy colouring is applied to w, then the probability that the first occurrence of
Z is coloured with 0 is n

2n−1 , and with probability n−1
2n−1 it is coloured with 1.

Proof. Let w′ be the word obtained from w by deleting both occurrences of Z.
There are 2n−1 words w leading to the same word w′ since the first occurrence
of Z can be placed after each character of w′ and at the beginning of w′. The
first occurrence of Z is colored with 0 if it is placed in a gap of type 00 or 01
or at the beginning, or if k is even and it is placed at the end. Otherwise it is
coloured with 1. Thus, the claim follows from Lemma 4.
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As a consequence of the recursive construction in the proof of Lemma 5 we
conclude:

Proposition 6. The number of different instances of the paint shop problem of
length 2n is

n∏
i=1

(2i− 1).

Using Lemma 5 we can prove Theorem 1.

Proof of Theorem 1. We prove En(g) =
∑n−1

k=0
2k2−1
4k2−1 by induction on n. For

n = 1 it is trivial. Now let n > 1 and the assertion be proved for n − 1.
Let w be a word of length 2n and Z be the last letter of w. Let w′ be the
word obtained from w by deleting both occurrences of Z. Let Z ′ be the last
letter of w′. Then w has the same number of colour changes as w′ if the first
occurrence of Z and the last occurrence of Z ′ are coloured differently, and w has
one additional colour change if the first occurrence of Z and the last occurrence
of Z ′ are coloured the same, since in the latter case there is an additional colour
change before the second occurrence of Z.

By Lemma 5, the first occurrence of Z is 0 with probability n
2n−1 , and the

last occurrence of Z ′ is 0 with probability n−2
2n−3 . This gives a probability of

p0 =
n

2n− 1
· n− 2

2n− 3
=

n2 − 2n

4n2 − 8n + 3

for the case that both are 0. Analogously, by Lemma 5, the first occurrence of
Z is 1 with probability n−1

2n−1 , and the last occurrence of Z ′ is 1 with probability
n−1
2n−3 . This gives a probability of

p1 =
n− 1
2n− 1

· n− 1
2n− 3

=
n2 − 2n + 1
4n2 − 8n + 3

for the case that both are 1. In total we have one additional colour change with
probability

p0 + p1 =
2n2 − 4n + 1
4n2 − 8n + 3

=
2(n− 1)2 − 1
4(n− 1)2 − 1

.

This implies, using the induction hypothesis, that

En(g) = En−1(g) +
2(n− 1)2 − 1
4(n− 1)2 − 1

=
n−1∑
k=0

2k2 − 1
4k2 − 1

.

Thus the theorem is established.

The following corollary was conjectured by Amini et al. [1].

Corollary 7.

lim
n→∞

1
n

En(g) =
1
2
.
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Proof. This follows from

n−1∑
k=0

2k2 − 1
4k2 − 1

=
n

2
+ O(1).

While the average performance of the greedy algorithm seems to be quite
reasonable, it is not a constant factor approximation algorithm. This is seen
considering the following class of instances.

Let A1, . . . , A2k be different characters and

a = A1, . . . , Ak, Ak, Ak+1, . . . , A2k, A2k, A1, Ak+1, A2, Ak+2, . . . , Ak−1, A2k−1.

Greedy colouring requires 2k = n colour changes, the optimal solution only 3
(between AkAk, AkAk+1, and A2kA2k).

3 Red first colouring

The worst case examples for the greedy colouring are coloured optimally, if we
color the first occurrence of each character with 0. We call this strategy red
first colouring since in the previous work on the paint shop problem the colours
where usually named red and blue.

Again we consider the uniform distribution on the instances of the paint
shop problem on words of length 2n. We denote by pn

2k+1 the probability that
red first colouring produces exactly 2k + 1 colour changes. In particular,

pn
−1 = 0 and pn−1

2n−1 = 0. (1)

Note that the number of colour changes of red first colouring is always odd
since the first letter is coloured 0, the last 1.

Lemma 8. For all n ≥ 2,

pn
2k+1 =

n− k

2n− 1
pn−1
2k−1 +

n + k

2n− 1
pn−1
2k+1.

Proof. Let w be a word of length 2n for which red first colouring uses exactly
2k + 1 colour changes. Let Z be the last letter of w, and w′ be the word
obtained from w by deleting both occurrences of Z. There are two additional
colour changes if and only if the first occurrence of Z is in a gap of type 11 or
at the end of w′. By Lemma 4 the probability that Z is inserted into such a
gap in a word of length 2n− 2 with 2k − 1 color changes is

1
2n− 1

(
n− 1− 2k − 1 + 1

2
+ 1
)

=
n− k

2n− 1
.
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Analogously, the probability that the first occurrence of Z is inserted into a gap
of type 01, 10, 00 or at the beginning in a word of length 2n − 2 with 2k + 1
color changes – causing no additional colour change – is

1
2n− 1

(
2k + 1 + 1

2
+

2k + 1− 1
2

+ n− 1− 2k + 1 + 1
2

+ 1
)

=
n + k

2n− 1
.

The claim follows, since the probability that w′ is coloured with 2k − 1 resp.
2k + 1 colours is pn−1

2k−1 resp. pn−1
2k+1.

Applying this recursion we now prove Theorem 2.

Proof of Theorem 2. We prove En(rf) = 2n+1
3 by induction on n. For n = 1

the assertion is trivial. Now let n > 1 and the assertion be proved for n − 1.
Using Lemma 8 and the induction hypothesis we obtain

En(rf) =
n−1∑
k=0

(2k + 1)pn
2k+1

Lemma 8=
n−1∑
k=0

(2k + 1)
(

n− k

2n− 1
pn−1
2k−1 +

n + k

2n− 1
pn−1
2k+1

)

=
n−2∑

k=−1

(2k + 3)
n− k − 1

2n− 1
pn−1
2k+1 +

n−1∑
k=0

(2k + 1)
n + k

2n− 1
pn−1
2k+1

(1)
=

n−2∑
k=0

(
(2k + 1)

2n− 1
2n− 1

− 2k + 1
2n− 1

+
2n− 1
2n− 1

)
pn−1
2k+1

=
2n− 2
2n− 1

n−2∑
k=0

(2k + 1)pn−1
2k+1 +

n−2∑
k=0

pn−1
2k+1

=
2n− 2
2n− 1

En−1(rf) + 1

i.h.=
2n− 2
2n− 1

· 2n− 1
3

+ 1

=
2n + 1

3
.

This proves the theorem.

Corollary 9.

lim
n→∞

1
n

En(rf) =
2
3
.

Red first colouring is not a constant factor approximation, too. Consider
the word

b = B1, B2, . . . , Bk, B1, Bk+1, B2, Bk+2, . . . , Bk, B2k, Bk+1, Bk+2, . . . , B2k.
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Red first colouring yields 2k + 1 = n + 1 colour changes, while the optimal
solution requires only two (between BkB1 and B2k, Bk+1). Note that greedy
colouring obtains the optimal solution in this example.

If we concatenate the word a from Section 2 and the word b (assuming that
Bi 6= Aj for all i, j), then we obtain a class of examples which show that the
heuristic “best of” greedy colouring and red first colouring is not a constant
factor approximation to the optimal solution.

4 Recursive greedy colouring

The analysis of the greedy colouring indicates that it is suboptimal only to
consider the predecessor of a letter. If we insert the first occurrence of our “last
letter” Z into a gap of type 01 or 10, an additional colour change can always be
avoided. This idea yields a feasible colouring with only two colour changes when
applied to the word ACABBC, while the greedy algorithm needs three colour
changes. Formally, we arrive at the recursive algorithm displayed in Table 1.

recursive greedy colouring(w)
if length(w) = 2:

colour w with 01
else:

let w′ arise from w by deleting both occurences of the last character Z
recursive greedy colouring(w′)
if the first occurrence of Z is at the beginning of w′:

colour the first Z with 0
if the first occurrence of Z is at the end of w′:

colour the first Z with the colour of its predecessor
let k denote the number of colour changes of w′

if k is odd:
if the first occurrence of Z is in a gap of type 11:

colour the first Z with 1
if the first occurrence of Z is in a gap of type 00, 01 or 10:

colour the first Z with 0
else:

if the first occurrence of Z is in a gap of type 00:
colour the first Z with 0

if the first occurrence of Z is in a gap of type 11, 01 or 10:
colour the first Z with 1

colour the second Z accordingly

Table 1: The recursive greedy algorithm

Note that in one recursive call an additional colour change will occur only if
either k is odd and the first Z is inserted into a gap of type 11 or at the end or
k is even and the first Z is in a gap of type 00 or in the beginning or at the end.
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Again, we consider the uniform distribution on the instances of the paint
shop problem on words of length 2n. We denote by qn

k the probability that
recursive greedy colouring produces exactly k colour changes. In particular,

qn
−1 = 0 and qn−1

2n−1 = 0. (2)

Lemma 10. For k ≥ 2,

qn
k+1 =

n−
⌈

k
2

⌉
2n− 1

qn−1
k +

n +
⌊

k
2

⌋
2n− 1

qn−1
k+1 .

Proof. Let w be a word of length 2n and w′ be the word where both occurrences
of the last character Z are deleted. As in Lemma 5, there are exactly 2n − 1
words w leading to the same word w′. Let k+1 be the number of colour changes
in w by recursive greedy colouring.

If k is even, then w has an additional colour change wrt. w′ if and only if
the first occurrence of Z is inserted into a gap of type 00 or at the beginning or
at the end. By Lemma 4 this happens in(

n− 2− k

2

)
+ 1 + 1 = n− k

2

cases. w has the same number of colour changes as w′ if the first occurrence of
Z is inserted between 01, 10, 00 or at the beginning. Since k + 1 is odd this
gives, by Lemma 4,

k + 2
2

+
k

2
+
(

n− 1− k + 2
2

)
+ 1 = n +

k

2

cases. In total we obtain

qn
k+1 =

n− k
2

2n− 1
qn−1
k +

n + k
2

2n− 1
qn−1
k+1 .

If k is odd, then w has an additional colour change wrt. w′ if the first
occurrence of Z is inserted between 11 or at the end. This gives, by Lemma 4,(

n− 1− k + 1
2

)
+ 1 = n− k + 1

2

cases. w has the same number of colour changes as w′ if the first occurrence of
Z is inserted between 11, 10, or 01. Since k + 1 is even Lemma 4 yields,

k + 1
2

+
k + 1

2
+
(

n− 1− k + 1
2

)
= n +

k − 1
2

cases. In total we obtain

qn
k+1 =

n− k+1
2

2n− 1
qn−1
k +

n + k−1
2

2n− 1
qn−1
k+1 .

In both cases this implies the assertion.
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Lemma 11. Let rg be the number of colour changes for recursive greedy colour-
ing. Then, for all n ≥ 2,

En(rg) =
4n− 3
4n− 2

En−1(rg) +
n− 1

4 −
1
4

∑n−2
k=0(−1)kqn−1

k+1

2n− 1
.

Proof. For n ≥ 2, by the previous lemma,

En(rg) =
n−1∑
k=0

(k + 1)qn
k+1

=
1

2n− 1

n−1∑
k=0

(k + 1)
((

n−
⌈

k

2

⌉)
qn−1
k +

(
n +

⌊
k

2

⌋)
qn−1
k+1

)
(2)
=

1
2n− 1

(
n−1∑
k=1

(k + 1)
(

n−
⌈

k

2

⌉)
qn−1
k

+
n−2∑
k=0

(k + 1)
(

n +
⌊

k

2

⌋)
qn−1
k+1

)

=
1

2n− 1

(
n−2∑
k=0

(k + 2)
(

n−
⌈

k + 1
2

⌉)
qn−1
k+1

+
n−2∑
k=0

(k + 1)
(

n +
⌊

k

2

⌋)
qn−1
k+1

)

=
1

2n− 1

n−2∑
k=0

(k + 1)(2n− 1)qn−1
k+1

+
1

2n− 1

n−2∑
k=0

(
n−

⌈
k + 1

2

⌉)
qn−1
k+1

= En−1(rg) +
n

2n− 1
− 1

2n− 1

n−2∑
k=0

(
k + 1

2
+

1
4

+
1
4

(−1)k

)
qn−1
k+1

=
4n− 3
4n− 2

En−1(rg) +
n− 1

4 −
1
4

∑n−2
k=0(−1)kqn−1

k+1

2n− 1
.

Lemma 12. (a) For n ≥ 1,

∀k ∈ N0 :
∞∑

`=k

(
qn
2`+1 − qn

2`+2

)
≥ 0,

moreover

∀0 ≤ k ≤ n− 1
2

:
∞∑

`=k

(
qn
2`+1 − qn

2`+2

)
> 0.
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(b) For n ≥ 2,
∞∑

`=0

(
qn
2`+1 − qn

2`+2

)
≤ 1

3
.

Proof. First note that all occurring sums have only a finite number of nonzero
terms. We prove the two assertions of (a) and the assertion of (b) simultaneously
by induction on n. For n = 1 we have

∞∑
`=k

(
qn
2`+1 − qn

2`+2

)
=
{

1 if k = 0
0 if k ≥ 1,

thus both assertions of (a) hold. For n = 2 we have

∞∑
`=0

(
qn
2`+1 − qn

2`+2

)
=

2
3
− 1

3
=

1
3
,

thus the assertion of (b) holds.
Now let n ≥ 2 (for the proof of (a)) resp. n ≥ 3 (for the proof of (b)) and

all assertions be proved for n− 1. Then, for any k ∈ N0, by Lemma 10

∞∑
`=k

(
qn
2`+1 − qn

2`+2

)
Lem. 10=

∞∑
`=k

(
n− `

2n− 1
qn−1
2` +

n + `

2n− 1
qn−1
2`+1 −

n− `− 1
2n− 1

qn−1
2`+1 −

n + `

2n− 1
qn−1
2`+2

)

=
n− k

2n− 1
qn−1
2k︸ ︷︷ ︸

=:X(k)

+
∞∑

`=k

(
n− `− 1

2n− 1
qn−1
2`+2 −

n + `

2n− 1
qn−1
2`+2 +

2` + 1
2n− 1

qn−1
2`+1

)

= X(k) +
∞∑

`=k

2` + 1
2n− 1

(
qn−1
2`+1 − qn−1

2`+2

)
=: X(k) + Y (k).

In order to prove (b) we note that X(0) = 0. Thus we are left to estimate the
sum Y (0) which can be done using the induction hypothesis in the following
way:

Y (0) ≤ 2n− 1
2n− 1

∞∑
`=0

(
qn−1
2`+1 − qn−1

2`+2

) i.h.
≤ 1

3
.

Thus (b) is established.
For (a), we continue our estimations.

X(k) + Y (k)
≥ Y (k)
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=
2k + 1
2n− 1

∞∑
`=k

(
qn−1
2`+1 − qn−1

2`+2

)
+

∞∑
s=k+1

2
2n− 1

∞∑
`=s

(
qn−1
2`+1 − qn−1

2`+2

)
i.h.
≥ 0.

This proves the first assertion of (a). Note that in the proof in the first step
qn−1
2k = 0 for k > n−1

2 and qn−1
2k > 0 for 1 ≤ k ≤ n−1

2 , which leads to a strict
inequality in the first step. Furthermore if k = 0, then

∞∑
`=k

(
qn−1
2`+1 − qn−1

2`+2

)
> 0

by the induction hypothesis for the second assertion, which leads to a > 0 in
the last step. The last two observations together imply the second assertion of
(a).

Corollary 13. Assume that the instances of length 2n are coloured by recursive
greedy. Then the probability that the last letter is coloured with 1 is greater than
the probability that the last letter is coloured with 0.

Proof. This follows from Lemma 12 (a) by setting k = 0.

Lemma 14. For all n ≥ 3,

4n− 3
4n− 2

En−1(rg) +
3n− 1
6n− 3

≤ En(rg) ≤ 4n− 3
4n− 2

En−1(rg) +
4n− 1
8n− 4

Proof. This follows by the formula of Lemma 11, since by Lemma 12 (a) resp.
(b)

1
4

(a)

≤ 1
4

+
1
4

n−2∑
k=0

(−1)kqn−1
k+1

(b)

≤ 1
4

+
1
4
· 1

3
=

1
3
.

Now we are able to prove our main theorem.

Theorem 3. For all n ≥ 1,

2
5
n +

8
15
≤ En(rg) ≤ 2

5
n +

7
10

.

Proof. We proceed by induction on n. For n = 1, En(rg) = 1, thus the assertion
holds. For n = 2, En(rg) = 4

3 = 2
5 ·2+ 8

15 , thus the assertion holds. Now assume
n > 2 and the assertion be proved for n− 1. Then by using the upper bound of
the previous lemma and the induction hypothesis

En(rg) ≤ 4n− 3
4n− 2

(
2
5

(n− 1) +
7
10

)
+

4n− 1
8n− 4

=
(16n2 − 28n + 12) + (28n− 21) + (20n− 5)

40n− 20
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=
16n2 − 8n

40n− 20
+

28n− 14
40n− 20

=
2
5
n +

7
10

.

By the lower bound of the previous lemma and the induction hypothesis

En(rg) ≥ 4n− 3
4n− 2

(
2
5

(n− 1) +
8
15

)
+

3n− 1
6n− 3

=
(24n2 − 42n + 18) + (32n− 24) + (30n− 10)

60n− 30

=
24n2 − 12n

60n− 30
+

32n− 16
60n− 30

=
2
5
n +

8
15

.

This proves the theorem.

Corollary 15.

lim
n→∞

1
n

En(rg) =
2
5
.

5 Open problems

We remark that recursive greedy colouring solves the second worst case example
b to optimality, while it also fails on example a producing the same colouring
as the non-recursive greedy colouring.

In particular the following question remains open.

Problem 16. Is there a constant factor approximation for PPW (2, 1)?

Furthermore, Theorem 3 leaves a gap of 1
6 . This is optimal in the following

sense. The lower bound 2
5n + 8

15 is attained for n = 2 and n = 3. Numerical
simulations suggest that the difference En(rg) − 2

5n tends (very slowly) to 7
10

when n −→∞. Therefore the upper bound seems to be best possible.
Another open question, which may be hard, is the following.

Problem 17. What is the expected value of optimal colouring?
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