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Introduction

A lot of problems that are difficult to solve on graphs in general were proved to be efficiently
solvable on specific classes of graphs. For example, graph isomorphism and graph coloring
are NP-complete in general, but can be solved in polynomial time on the class of P4-free
graphs.

A promising paradigm to solve difficult problems on a class of graphs involves a unique tree
representation for each graph in the class. Every leaf in the tree represents one vertex in the
graph and the inner nodes of the tree represent operations with which the graph for this node and
eventually the graph for the whole tree can be constructed from the graphs of its subtrees. If the
class of a graph as well as its tree representation can be determined in polynomial time, this tree
representation can be used to create polynomial-time algorithms for problems that are hard on
general graphs.

P4-free graphs are also known as cographs, hence the name cotree for their tree representation.
The class of cographs is a subclass of the class of P4-sparse graphs that allows only a "low den-
sity" of induced P4 subgraphs. P4-sparse graphs also have a unique tree representation, which
indicates that the problems efficiently solvable on cographs may also be efficiently solvable on
P4-sparse graphs.

Some of the problems that are NP-complete for all graphs and efficiently solvable for cographs
involve a generalized coloring known as matrix partition. In the standard coloring problem,
an algorithm has to decide whether a graph is k-colorable, that is whether its vertices can be
partitioned into k independent sets. The matrix partition problem allows additional conditions,
such as whether the vertices of a graph can be partitioned into k independent sets and l cliques
and there can even be restrictions on whether the vertices of a specific part may or must or must
not be adjacent to the vertices of another part.

An even further generalization of the matrix partition problem is the matrix partition problem
with lists. In addition to the conditions of the matrix partition, a vertex may only be placed in
parts allowed by its list. The tree representation of a graph can be used to find such a matrix
partition or determine that no partition exists for the graph.

A graph G is an M-obstruction if there is no partition of the vertices of G such that the coloring
conditions defined by the the partition matrix M are satisfied. A minimal M-obstruction is an
M-obstruction that contains no M-obstructions other than itself as an induced subgraph. The
possible size of minimal M-obstructions has an upper bound depending on the class of G and
M. Specific values for these upper bounds can be proved with the help of a tree representa-
tion.
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Introduction

This thesis is based upon an article by Feder, Hell, and Hochstättler [FHH06] featuring a linear-
time algorithm to decide the matrix partition problem with lists on cographs and that proves
upper bounds for the size of minimal matrix obstructions cographs. The theorems and algorithms
can be generalized to also include P4-sparse graphs. This generalisation is the main part of this
thesis.

Chapters 1 and 2 define the terms needed in the rest of this thesis. A polynomial-time algorithm
for the matrix partition problem with lists for P4-sparse graphs is presented in Chapter 3, next to
a proof that the problem becomes NP-complete if the matrix defining the coloring conditions is
part of the problem, even for complete graphs. The rest of this thesis focuses on minimal matrix
obstructions. It is proved that the size of a P4-sparse minimal matrix obstruction with lists grows
at most factorially. If no lists are involved, an exponential upper bound for the size of minimal
matrix obstructions that are P4-sparse is shown in Chapter 4. By restricting to constant matrices,
a polynomial upper bound can be proved in Chapter 5.
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Part I.

Preliminaries

1



1. Types of graphs

Although some graph problems are generally hard to solve, there are classes of graphs allowing
these problems to be solved efficiently. This chapter defines some of these classes and shows
how they relate to each other.

Before that, some basic conventions are defined: N shall contain all positive whole numbers
including 0, as opposed to N∗ B N ∖ {0}. For m ∈ N, let the sets Nm ⊂ N and N∗

m ⊂ N∗ be
defined as Nm B {x ∈ N ∣ x ≤ m} and N∗

m B {x ∈ N∗ ∣ x ≤ m}.

When X is a set, its power set is written as P(X)B {Y ∣ Y ⊆ X}.

The symbol ∧ stands for the logical AND, the symbol ∨ is a logical OR.

The magnitude of a function’s slope can be described with the big O notation: Let f ∶ N → R
and g ∶ N→ R be functions, then f ∈ O(g) ⇔ lim supn←∞ ∣ f (n)

g(n) ∣ < ∞. This may less formally be
written as f (n) ∈ O(g(n)), where the parameter name is usually n or m.

1.1. Simple Graphs

All graphs in this thesis are simple and the term graph is used as a short form for simple
graph.

Definition 1. A simple graph G is a tuple (V,E) with V ≠ ∅ (the vertices) and E (the edges)
being finite sets. The set of edges E is a subset of {{v,w} ∣ v,w ∈ V, v ≠ w}, which is the set of
two-element subsets of V.

The size ∣G∣ of a graph G = (V,E) is the number of its vertices, ∣G∣B ∣V ∣.

Two vertices v1, v2 ∈ V are adjacent if {v1, v2} ∈ E and non-adjacent if {v1, v2} ∉ E.

v1 $ v2 B {v1, v2} is a short form for an edge.

The set of all vertices adjacent to v1 ∈ V is N(v1)B {v2 ∈ V ∣ v1 $ v2 ∈ E}, the set of all vertices
non-adjacent to v1 is N(v1)B {v2 ∈ V ∣ v1 $ v2 ∉ E}.

v1 ∈ V distinguishes between v2 ∈ V and v3 ∈ V if v1 is adjacent to exactly one of the vertices v2
and v3: v1 $ v2 ∈ E ⇔ v1 $ v3 ∉ E.

Remark 1. Simple graphs have no parallel edges: For every two adjacent vertices v1, v2 ∈ V,
there is exactly one edge e ∈ E with e = v1 $ v2.
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1. Types of graphs

Remark 2. Simple graphs have no loops: If v1, v2 ∈ V are adjacent vertices, then v1 ≠ v2.

Definition 2. The complement graph G = (V,E) of a graph G = (V,E) is the graph with the set
of edges E B {v1 $ v2 ∣ v1, v2 ∈ V ∧ v1 $ v2 ∉ E}. That means that two vertices v1, v2 ∈ V, v1 ≠ v2
are adjacent in G if and only if they are non-adjacent in G.

Definition 3. A graph G = (V,E) containing every possible edge is called a complete graph, i.e.
E = {v1 $ v2 ∣ v1, v2 ∈ V ∧ v1 ≠ v2}. The complete graph with n vertices is Kn. The complement
Kn = (V,∅) of a complete graph is an empty graph.

Definition 4. A graph G′ = (V ′,E′) is called an induced subgraph of G = (V,E) if V ′ ⊆ V
and any two vertices in G′ are adjacent if and only if they are adjacent in G. This may also be
written as G′ ⊂ G or G′ = G ∩ V ′. Similarly, G ∖ V ′ is the induced subgraph G ∩ (V ∖ V ′) of G.

Definition 5. The set of vertices of a complete induced subgraph is called a clique, therefore
any set of pairwise adjacent vertices is a clique.

Similarly, a set of pairwise non-adjacent vertices is called an independent set.

Definition 6. A graph G = (V,E) is k-colorable if there is a partition A1, . . . ,Ak of its vertex set
V = ⋃k

i=1 Ai, consisting of k ∈ N pairwise disjoint parts, such that every part Ai (1 ≤ i ≤ k) is an
independent set.

A graph G = (V,E) is perfect if, for every induced subgraph G′ = (V ′,E) ⊂ G, there is a k ∈ N
such that the largest clique of G′ has size k and G′ is k-colorable.

1.2. Cographs

Cographs are a class of simple graphs that allow a lot of hard graph algorithms to be solved
efficiently. In order to define cographs, the graph P4, the chordless path of length 3, will be
defined first:

Definition 7. The chordless path of length 3, P4, is a simple graph (V,E) with four vertices
{v1, v2, v3, v4} = V and exactly three edges {v1 $ v2, v2 $ v3, v3 $ v4} = E.

Remark 3. The complement graph of P4 is P4.

In the 1970s, various researchers discovered cographs independently, although they used differ-
ent definitions and names. Jung used the term D∗-graph [Jun78], Seinsche worked on them as
graphs that have no induced subgraph isomorphic to P4 [Sei74], and Sumner called them HD
(or Hereditary Dacey) graphs [Sum74].

Definition 8. A cograph is a graph (V,E), which does not have a P4 as an induced subgraph.
This means, that for any four vertices v1, v2, v3, v4 ∈ V with v1$v2, v2$v3, v3$v4 ∈ E, there must
be another edge e ∈ E ∩ {v1 $ v3, v1 $ v4, v2 $ v4} .
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1. Types of graphs

There are a couple of other characterizations of cographs. The most important characterization
is the cotree representation of a cograph. [CLB81]

Definition 9. A cotree T(G) = (VT(G),ET(G)) is a tree representing a graph G = (V,E). T(G)’s
inner nodes are labeled ∪ or + and its leaves are exactly the vertices of G. Two vertices of G are
connected if and only if their least common ancestor in T(G) is labeled +.

A normalized cotree will have its inner nodes labeled + and ∪ in alteration, which means that
a ∪ node’s parent will always be labeled + and the other way around. All graphs represented
by a cotree can also be represented by a normalized cotree since a node and its child having the
same label can be contracted to one node. This will obviously not change the label of the least
common ancestor for any two leaves. Two normalized cotrees representing the same graph will
be isomorphic. Normalized cotrees are therefore unique representations of cotree-representable
graphs.

A binary cotree is a cotree in binary form, that means every node has exactly two child nodes
or it is a leaf. This cotree representation is also unique if a proper algorithm for splitting nodes
with more than two child nodes is used for its construction. Figures 1.1 and 1.2 show a cograph
and its binary cotree representation.

Figure 1.1.: An example of a cograph Figure 1.2.: Binary cotree corresponding to
the cograph

Corneil et al. have proved that a graph is a cograph if and only if it has a cotree representation
[CLB81]. A graph can be built from its cotree in polynomial time by assigning each node
t ∈ VT(G) a graph Gt. For each leaf v ∈ V , the graph Gv is the single vertex graph Gv = ({v} ,∅)
containing only the leaf vertex itself.

For an inner node t ∈ VT(G) ∖ V labeled ∪, the graph Gt is the disjoint union Gu1 ∪ . . . ∪Gun of
the graphs of its n child nodes u1, . . . ,un in T(G).

For an inner node t ∈ VT(G) ∖ V labeled +, the graph Gt is the join

Gu1 + . . . +Gun B (Vu1 ∪ . . . ∪ Vun ,Eu1 ∪ . . .Eun ∪ {x $ y ∣ 1 ≤ i, j ≤ n ∧ i ≠ j ∧ x ∈ Vui ∧ y ∈ Vu j}

of the graphs of t’s child nodes u1, . . . ,un in T(G).

The graph Gr assigned to the root r ∈ VT(G) of T(G) is the cograph that T(G) represents. Corneil
et al. have proven that the unique cotree of a cograph can be computed in linear time [CPS85],
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1. Types of graphs

Bretscher et al. have developed an easier cograph recognition algorithm that runs in linear time
[BCHP08].

1.3. P4-sparse Graphs

Another class of simple graphs are the P4-sparse graphs. P4-sparse graphs constitute a superclass
of cographs. Hoàng first defined this type of graph and showed besides other things that P4-
sparse graphs are perfect [Hoà85].

Definition 10. A simple graph G = (V,E) is called a P4-sparse graph if every subgraph of G
induced by any five vertices in V contains at most one P4 as an induced subgraph.

Extending the available operations in the cograph’s cotree representation by additional node op-
erations yields a unique tree representation of P4-sparse graphs. Jamison and Olariu have shown
how to acquire this tree representation in polynomial time [JO92a]. An important definition for
this tree representation is the graph class called a spider:

Definition 11. A simple graph G = (V,E) is called a spider if its vertex set splits into an even
number 2ν ≥ 4 of vertices c1, . . . , cν, s1, . . . , sν and a vertex set R, such that

• c1, . . . , cν comprise a clique. Every two vertices ci, c j (1 ≤ i, j ≤ ν) are adjacent.

• s1, . . . , sν comprise an independent set. Every two vertices si, s j (1 ≤ i, j ≤ ν) are non-
adjacent to each other.

• Each vertex ci (1 ≤ i ≤ ν) is adjacent to all vertices in R.

• No vertex si (1 ≤ i ≤ ν) is adjacent to a vertex in R.

• Either

– the vertices ci and s j are adjacent if and only if i = j (slim spider), or

– the vertices ci and s j are adjacent if and only if i ≠ j (fat spider).

The vertices c1, . . . , cν are the body of the spider, the vertices s1, . . . , sν are the spider’s legs, and
the set R is the spider’s head. If R is an empty set, the graph is called a headless spider.

An example of a spider graph is shown in Figure 1.3. The class of spider graphs is the basis for
two new graph operations.

Definition 12. Let s1, . . . , sν, c1, . . . , cν be vertices with ν ≥ 2. Let R = (VR,ER) be a graph. Let
ECR B {ci $ r∣1 ≤ i ≤ ν, r ∈ VR}.
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1. Types of graphs

Figure 1.3.: Example of a slim spider graph with ν = 8 and R = {r1, r2, r3}

The functions ⍟ and ★ are defined as

⍟ ∶ c1, . . . , cν, s1, . . . , sν,R ↦({c1, . . . , cν, s1, . . . , sν} ∪ VR,Eslim ∪ ER ∪ ECR)
⍟ ∶ c1, . . . , cν, s1, . . . , sν ↦({c1, . . . , cν, s1, . . . , sν} ,Eslim)
★ ∶ c1, . . . , cν, s1, . . . , sν,R ↦({c1, . . . , cν, s1, . . . , sν} ∪ VR,Efat ∪ ER ∪ ECR)
★ ∶ c1, . . . , cν, s1, . . . , sν ↦({c1, . . . , cν, s1, . . . , sν} ,Efat)

where Eslim B {ci $ si∣1 ≤ i ≤ ν} and Efat B {ci $ s j∣1 ≤ i, j ≤ ν ∧ i ≠ j}. Obviously, ⍟ maps to
slim spider graphs and ★ maps to fat spider graphs.

The P4-sparse graph’s tree representation extends cotrees by the two labels ⍟ and ★ for inner
nodes. When constructing the graph G = (V,E) represented by the tree T(G) = (VT(G),ET(G)),
every node t ∈ VT(G) is assigned a graph Gt. Again, the tree’s leaves are the graph G’s vertices.
An inner node t ∈ VT(G) now has four possible operations to create its graph out of its children,
depending on its label:

• A node labeled ∪ is assigned the graph created by the disjoint union of the graphs of its
child nodes, which is the same as for cotrees.

• A node labeled + is assigned the join of the graphs of its child nodes, again identical to
cotrees

• The graph Gt B ⍟(c1, . . . , cν, s1, . . . , sν,Gr) of a node labeled ⍟ is the operation ⍟ applied
to its leaf child nodes c1, . . . , cν, s1, . . . , sν and the graph of its child r. If a node labeled ⍟
has an even number of leaf child nodes c1, . . . , cν, s1, . . . , sν and no further children, then
Gt B ⍟(c1, . . . , cν, s1, . . . , sν) is a slim headless spider graph.
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1. Types of graphs

• Similarly, the graph Gt B ★(c1, . . . , cν, s1, . . . , sν,Gr) of a node labeled ★ is the operation
★ applied to its child leaves c1, . . . , cν, s1, . . . , sν and the graph of the its child node r.
If a node labeled ★ has an even number of leaf child nodes, c1, . . . , cν, s1, . . . , sν, then
Gt B ★(c1, . . . , cν, s1, . . . , sν) is a fat headless spider graph.

This definition of a tree representation for P4-sparse graph differs a little from the original tree
representation defined by Jamison and Olariu, but their proof that a graph is P4-sparse if and
only if it can be represented by such a tree applies here as well [JO92a]. They have also shown
in a later publication that the tree representation of a P4-sparse graph can be computed in linear
time [JO92b]. Figure 1.4 shows an example of a P4-sparse graph next to its tree representation
in Figure 1.5.

Figure 1.4.: An example of a P4-sparse
graph

Figure 1.5.: Tree representation corresponding to
the P4-sparse graph

Definition 13. A split graph G = (C ∪ S ,E) consists of a clique C and an independent set S .
G is called avoiding if for all s ∈ S and all c ∈ C, the number of vertices in C non-adjacent to
s is ∣N(s) ∩C∣ ≥ 2 and the number of vertices in S adjacent to c is ∣N(c) ∩ S ∣ ≥ 2. G is called
minimal avoiding if G has the following properties:

1. Every vertex c ∈ C is non-adjacent to a vertex s ∈ S such that ∣N(s) ∩C∣ = 2.

2. Every vertex s ∈ S is adjacent to a vertex c ∈ C such that ∣N(c) ∩ S ∣ = 2.

3. G is avoiding.

Remark 4. Let the split graph G = (C ∪ S ,E) be avoiding. Then the vertices of G split into a
clique C and an independent set S with C ≠ ∅, S ≠ ∅, and C ∩ S = ∅.

Proposition 1. Let G = (C ∪ S ,E) be an avoiding split graph. Then G contains a minimal
avoiding graph as an induced subgraph.

Proof. This proof will show that every avoiding split graph that does not already satisfy the
properties of a minimal avoiding split graph contains a vertex x ∈ C ∪ S such that G ∖ {x} is an
avoiding split graph. This way, vertices can be removed from the graph until we get a minimal
avoiding induced subgraph of G. As G contains only a finite number of vertices, such an induced
subgraph can always be found.
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1. Types of graphs

Thus, assume that for the avoiding split graph G does not satisfy at least one of the first two
properties of minimal avoiding graphs. By complementing G if necessary, we may assume that
property 1 is not satisfied, hence there is a vertex c ∈ C for which all vertices s ∈ N(s) have
∣N(s)∩C∣ ≥ 3. Any induced subgraph of a split graph obviously is a split graph and G∖{c} also
is avoiding as the condition for avoiding graphs is affected only for vertices in S and of course
only those that have been non-adjacent to c before its removal; since these vertices s ∈ N(c) had
the property ∣N(s) ∩C∣ ≥ 3 in G, they still satisfy the avoiding condition ∣N(s) ∩ (C ∖ {c})∣ ≥ 2
in G ∖ {c}.

Proposition 2. An avoiding split graph G = (V,E) is not P4-sparse.

Proof. Assume that the proposition is false and let G = (V,E) be a counterexample with a
minimum number of vertices. By Proposition 1, G has a minimal avoiding subgraph and, as G
has a minimum number of vertices, G itself must be minimal avoiding.

Since G is a split graph, there is a vertex s1 ∈ S . G is minimal avoiding, so s1 is adjacent to
a vertex c1 ∈ C with N(c1) ∩ S = {s1, s2}. Let s3 ∈ S be a vertex non-adjacent to c1 with
N(s3) ∩ C = {c1, c2}. Let c3 ∈ C be a vertex adjacent to s3 such that c3 is adjacent to exactly
two vertices in S . The graph G ∩ {s1, s2, s3, c1, c2, c3} that was constructed so far is depicted in
Figure 1.6 with a legend to be found in Figure 1.11.

If c3 is adjacent neither to s1 nor s2, then G ∩ {s1, s2, s3, c1, c3} is a graph of size 5 with two
induced P4s, contradicting that G is P4-sparse. This contradiction is shown in Figure 1.7. Thus,
we may assume that c3 is adjacent to s2 and non-adjacent to s1.

If c2 is adjacent to s1, then G ∩ {s1, s3, c1, c2, c3} would be a graph of size 5 with two induced
P4s, which is shown in Figure 1.8.

As G is avoiding, c2 is adjacent to a vertex s4 ∈ S , s4 ≠ s2. Because s4 ∉ {s1, s2} = N(c1) ∩ S ,
we see c1 $ s4 ∉ E. Another consequence is c2 $ s2 ∈ E as otherwise G∩{s1, s2, s4, c1, c2} would
be a graph of size 5 with two induced P4s. Figure 1.9 shows the contradiction if c2 $ s2 ∉ E.

G is avoiding, so there are two vertices c4, c5 ∈ C, c4 ≠ c5 that are non-adjacent to s2. Since
{c4, c5} ∩ {c1, c2} = ∅ and N(s3) ∩ C = {c1, c2}, we conclude that s3 is adjacent to c4 and c5.
G ∩ {s2, s3, c1, c4, c5} yields the final contradiction, as shown in Figure 1.10.

Theorem 1. Every P4-sparse graph with vertices contains a maximum clique C and a maximum
independent set S that meet in one vertex, ∣C ∩ S ∣ = 1.

Proof. Let G = (V,E) be a P4-sparse graph with C ⊂ V being a maximum clique and S ⊂ V
being a maximum independent set. We may assume C ∩ S = ∅ as a clique and an independent
set may intersect only in at most one vertex and in that case we would already have ∣C ∩ S ∣ = 1.

G is not avoiding, so there is a vertex s ∈ S with ∣N(s)∩C∣ < 2 or a vertex c ∈ C with ∣N(c)∩S ∣ <
2. By complementing G if necessary, we may assume s ∈ S with ∣N(s)∩C∣ ≤ 1. Actually we have
∣N(s) ∩C∣ = 1 since ∣N(s) ∩C∣ = 0 implies that C ∪ {s} would be a larger clique than C. Thus,

8



1. Types of graphs

Figure 1.6.: Six vertices of G Figure 1.7.: The subgraph is
not P4-sparse

Figure 1.8.: Again, G is not
P4-sparse

Figure 1.9.: Next subgraph
that is not P4-
sparse

Figure 1.10.: The final contra-
diction, G is not
P4-sparse

Figure 1.11.: Legend for the
other figures

there is exactly one vertex cs ∈ C that is non-adjacent to s. As a result, C ∖ {cs} ∪ {s} induces a
maximum clique in G that meets the maximum independent set S in exactly one vertex, s.
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2. Generalized Colorings

The original n-coloring problem asked whether the vertices of a graph can be partitioned into
n independent sets. Although there are different generalizations for this problem, this thesis
focuses on matrix partitions, which does not only add parts of cliques, but can also place re-
strictions on the edges between vertices of different parts. Therefore, several well-known graph
partition problems can be represented as a matrix partition, which was first defined by Feder et
al. [FHKM99].

Definition 14. Let M ∈ {0,1,∗}m×m be a symmetric matrix with m rows and m columns with
entries either 0,1, or ∗. Then M is called a partition matrix.

The graph G = (V,E) admits M if its vertices can be partitioned into m disjoint sets A1, . . . ,Am

such that for every i, j ∈ N∗
m, i ≠ j,

• if Mi,i = 0, then Ai is an independent set,

• if Mi,i = 1, then Ai is a clique,

• if Mi,i = ∗, then there is no restriction on the edges between vertices of Ai,

• if Mi, j = 0, then every vertex in Ai is non-adjacent to every vertex in A j,

• if Mi, j = 1, then every vertex in Ai is adjacent to every vertex in A j, and

• if Mi, j = ∗, then there is no restriction on the edges between Ai and A j.

The partition A1, . . . ,Am is called an M-partition. The numbers 1, . . . ,m uniquely identify a set
of vertices in the partition A1, . . . ,Am. Therefore these number may also be called parts in order
to highlight their meaning in this context. If a graph G does not admit the matrix M, then G
obstructs M. G is a minimal M-obstruction if G obstructs M and all induced subgraphs of G
except G itself admit M.

A partition submatrix M′ of a matrix M is a submatrix of M such that the diagonal entries in
M′ are diagonal entries in M.

Definition 15. LetM ⊂ ⋃m
µ=1{0,1,∗}µ×µ be a set of symmetric matrices and let G be a graph.

G admitsM if there is a matrix M ∈ M that G admits. If G obstructs all matrices M ∈ M then
G obstructsM. G is a minimalM-obstruction if G obstructsM and all induced subgraphs of
G except G itself admitM.

10



2. Generalized Colorings

The decision whether a graph admits a matrix M or not is the M-partition problem. The general
matrix partition problem may also be called M-partition problem, even if M is not explicitly
defined.

Some problems require the sets Ai (i ∈ N∗
m) to be non-empty, which will not be the focus of this

thesis, although some results may also apply to these problems.

Definition 16. Let M ∈ {0,1,∗}m×m be a symmetric matrix. Then M ∈ {0,1,∗}m×m denotes the
complement of M and, for all i, j ∈ N∗

m, the entries of M satisfy the conditions Mi, j = 0⇔ Mi, j =
1 and Mi, j = 1⇔ Mi, j = 0.

Definition 17. Let M ∈ {0,1,∗}m×m be a symmetric matrix and P,Q ⊆ N∗
m. The matrix MP,Q ∈

{0,1,∗}∣P∣×∣Q∣ is defined as the submatrix of M where only the rows in P and only the columns
in Q are taken. MP ∈ {0,1,∗}∣P∣×∣P∣ is a short form for the partition submatrix MP B MP,P.

2.1. Generalized Colorings with lists

Feder et al. [FHKM03] and Cameron et al. [CEHS04] applied the list concept [AT92, FS92] to
the matrix partition problem as a further generalization. Here, the vertices cannot be placed into
any arbitrary part, instead there is a predefined list of parts for every vertex determining to which
parts the vertex may belong:

Definition 18. Let the matrix M ∈ {0,1,∗}m×m with m rows and m columns be symmetric and
each of its entries is either 0, 1, or ∗.

Let there be a graph G = (V,E). The function L ∶ V → P (N∗
m) assigns a set of parts to each

vertex in G.

Each set L (v) ⊂ N∗
m is called a list, while the function L is referred to as lists.

The graph G with lists L admits M if there is an M-partition A1, . . . ,Am such that

v ∈ Ai ⇒ i ∈ L (v) (v ∈ V,1 ≤ i ≤ m)

In this case, A1, . . . ,Am is called a list M-partition (or just M-partition if it is clear from the
context that lists are involved).

The matrix partition problem without lists is identical to the matrix partition problem with lists
if all lists L (v) are set to N∗

m. With these lists, there are no restrictions on where the vertices
can be placed. Therefore, all algorithms for list matrix partition problems can also be used for
matrix partition problems without lists.

Remark 5. A graph G with lists L has an M-partition A1, . . . ,Am if and only if A1, . . . ,Am is an
M-partition of G with lists L.
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2. Generalized Colorings

Definition 19. Let the matrix M ∈ {0,1,∗}m×m be symmetric and let G = (V,E) be a graph with
lists L. Let G′ = (V ′,E′) be an induced subgraph of G.

Then the lists LV′ ∶ V ′ → P (N∗
m) are defined as LV′(v′) ↦ L(v′) for all v ∈ V ′. The form

LG′ B LV′ may also be used for the same function.

With this definition, list M-partitions for subgraphs can be described by restricting the list to the
subgraph’s vertex subset:

Definition 20. Let the matrix M ∈ {0,1,∗}m×m be symmetric and let G be a graph with lists
L. G is a minimal M-obstruction with lists L if G obstructs M with lists L and every induced
subgraph G′ of G admits M with lists LG′ .

If partition submatrices of M are involved, every list’s parts have to be changed such that the
numbers in the list still refers to the same rows and columns in the matrix. This is accomplished
with the help of a mapping function:

Definition 21. Let m ∈ N∗, P ⊆ N∗
m, then ηP ∶ P → N∗

∣P∣ is defined as ηP ∶ x ↦ ∣P ∩N∗
x ∣, i.e. x is

the ηP(x)th element of P regarding the natural order of N). Its inverse function η−1
P ∶ N∗

∣P∣ → P
therefore is η−1

P (y) = min{x ∈ N ∣ y = ∣N∗
x ∩ P∣}, i. e. η−1

P (y) is the yth element of P.

Let MP ∈ {0,1,∗}∣P∣×∣P∣ be a partition submatrix of M ∈ {0,1,∗}m×m and let L ∶ V → P (N∗
m)

be lists for M. Then the lists PL ∶ V → P (N∗
∣P∣) are defined as PL(v) ↦ ηP(P ∩ L(v)) =

{ηP(x) ∣ x ∈ P ∩ L(v)}, i.e. the parts in P are enumerated as 1, . . . , ∣P∣ in the lists while parts
not in P are discarded.

If M′ is a partition submatrix of M, the relationship between list M′-partitions and list M-
partitions can be described with these restrictions of L:

Definition 22. Let the matrix M ∈ {0,1,∗}m×m be symmetric and letM ⊆ ⋃m
µ=1{0,1,∗}µ×µ be

a collection of partition submatrices of M. Let G be a graph with lists L ∶ V → P (N∗
m).

Then G is anM-obstruction with lists L if, for every matrix M′ ∈ M and every P ⊆ N∗
m with

MP = M′, G obstructs M′ with lists PL.

G is a minimalM-obstruction with lists L if G is anM-obstruction with lists L and no induced
subgraph G′ of G other than G itself is anM-obstruction with lists LG′ .

In this thesis, a set of matricesM and lists L may be given without formally mentioning which
matrix M the matrices in M are partition submatrices of and for which matrix the lists L are
defined. This applies especially to the following Chapter 3, which discusses list M-partitions.
In these cases, the matrices in the set are partition submatrices of the matrix with the symbol
M, which is defined as a symmetric matrix M ∈ {0,1,∗}m×m throughout the major part of the
chapter.
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3. List M-partitions of P4-sparse Graphs

3.1. Preliminary remarks about list M-partitions

Theorems very similar to the following two lemmas have already been proved by Feder et al.
([FHH06], Lemma 2.1 and Corollary 2.2), the following proofs are slightly adapted for the
lemmas found here.

Lemma 1. Let G = G1 ∪G2 be a disconnected graph and M ∈ {0,1,∗}m×m.

G admits M with lists L if and only if there are sets of parts P,Q ⊂ N∗
m such that G1 admits MP

with lists PLG1 , G2 admits MQ with lists QLG2 , and MP,Q contains no 1.

Proof. “⇐” Let 1Ai (i ∈ P) be an MP-partition of G1 with lists PLG1 and let 2Ai (i ∈ Q) be an MQ-
partition of G2 with lists QLG2 and let Ai B 1Ai ∪ 2Ai (1 ≤ i ≤ m) be the join of these partitions,
where 1Ai and 2Ai are empty sets for i ∉ P and i ∉ Q, respectively. The partition A1, . . . ,Am of G
is compatible with the lists L, because for every j ∈ {1,2}, i ∈ N∗

m, and every v ∈ jAi, we have
ηP(i) ∈ PLG j(v) and thus i ∈ L(v). Hence, we just have to validate that the M-partition condition
is not violated.

Assume the vertices v,w ∈ V violate the M-partition condition of A1, . . . ,Am. Then the vertices
v,w will not both be within the same graph G1 or G2, because then they would also violate the
partition condition of 1Ai (i ∈ P) or 2Ai (i ∈ Q). Therefore, one of the vertices is in G1 and the
other is in G2 and therefore they are not adjacent. As v,w violate the partition condition, the
corresponding matrix entry must be M j,k = 1 for v ∈ A j, w ∈ Ak. On the other hand, MP,Q does
not contain a 1 and this also means M j,k ≠ 1, a contradiction.

“⇒” Let A1, . . . ,Am be an M-partition of G with lists L. Define jAi B Ai ∩ V j for G j = (V j,E j),
j ∈ {1,2} and i ∈ {1, . . . ,m}. Let P,Q be defined via i ∈ P⇔ 1Ai ≠ ∅ and i ∈ Q⇔ 2Ai ≠ ∅.

Then, obviously, 1Ai (i ∈ P) is a valid MP-partition with lists PLG1 and 2Ai (i ∈ Q) is a valid
MQ-partition with lists QLG2 , so G1 admits MP with lists PLG1 and G2 admits MQ with lists
QLG2 .

Assume that MP,Q contains a 1. Then there are j ∈ P, k ∈ Q with M j,k = 1 and, by the definition
of P and Q, there are vertices v ∈ A j ∩ V1 and w ∈ Ak ∩ V2. These vertices are non-adjacent,
because v is in G1 and w in G2 and the two subgraphs are disconnected. Therefore A1, . . . ,Am is
no valid partition of G, which contradicts the assumptions. Therefore MP,Q contains no 1.
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3. List M-partitions of P4-sparse Graphs

Corollary 1. Let G = G1 ∪G2 be a disconnected graph and M ∈ {0,1,∗}m×m.

G obstructs M with lists L if and only if for all sets of parts P,Q ⊂ N∗
m the subgraph G1 obstructs

MP with lists PLG1 , G2 obstructs MQ with lists QLG2 , or MP,Q contains a 1.

Lemma 2. Let M ⊂ ⋃m
µ=1 {0,1,∗}µ×µ be a set of partition submatrices of M ∈ {0,1,∗}m×m

and let G = G1 ∪ G2 be a disconnected graph with lists L. For i ∈ {1,2}, let the matrix set
Mi ⊂ ⋃m

µ=1 {0,1,∗}µ×µ only contain partition submatrices of matrices in M and let Gi be an
Mi-obstruction with lists LGi . For every matrix M̃ ∈ M and all sets of parts P,Q ⊂ N∗

m, let there
be a 1 in M̃P,Q, or M̃P ∈ M1, or M̃Q ∈ M2.

If G is a minimal M-obstruction with lists L, then G1 is a minimal M1-obstruction with lists
LG1 and G2 is a minimalM2-obstruction with lists LG2 .

Proof. Assume G1 is not a minimal M1-obstruction with lists LG1 , then G1 has an induced
subgraph G′

1 ≠ G1 that obstructs M1 with lists LG′1
. By Corollary 1, the induced subgraph

G′ = G′
1 ∪G2 ≠ G of G is anM-obstruction with lists LG′ , which contradicts that G is a minimal

M-obstruction with lists L. Thus, the initial assumption is wrong and G1 is a minimal M1-
obstruction with lists LG1 .

Swapping G1 and G2 as well as M1 and M2 in the proof above shows that G2 is a minimal
M2-obstruction with lists LG2 .

If no lists are used, the condition that the matrices inM are partition submatrices of a matrix
M ∈ {0,1,∗}m×m may be omitted, as it is required only to have a proper definition for the lists of
the submatrices; a matrix M ∈ {0,1,∗}m′×m′ with lists L(v) B N∗

m′ (v ∈ V) can always be found
by putting all matrices inM in the diagonal of M (m′ is the sum of all matrix sizes inM in this
case):

Corollary 2. LetM ⊂ ⋃m
µ=1 {0,1,∗}µ×µ be a set of matrices and let G = G1 ∪G2 be a discon-

nected graph. For i ∈ {1,2}, let the matrix set Mi ⊂ ⋃m
µ=1 {0,1,∗}µ×µ only contain partition

submatrices of matrices inM and let Gi be anMi-obstruction. For every matrix M̃ ∈ M and
all sets of parts P,Q ⊂ N∗

m, let there be a 1 in M̃P,Q, or M̃P ∈ M1, or M̃Q ∈ M2.

If G is a minimal M-obstruction, then G1 is a minimal M1-obstruction and G2 is a minimal
M2-obstruction.

As a result of Corollary 1, matrix setsM1,M2 as required by Lemma 2 can always be chosen:
for example, Mi could contain all partition submatrices M̃ of all matrices in M such that Gi

obstructs M̃ with lists LGi . Thus, if G = G1 ∪G2 is a minimalM-obstruction with lists for some
setM of partition submatrices of a matrix M, then G1 is a minimalM1-obstruction with lists
for some matrix setM1.

The following lemma limits the number of vertices that certain spider graphs have. This ensures
that the time complexity for some algorithms (namely the ones in Section 3.2 and Section 4.2)
on P4-sparse graphs presented in this thesis does not depend on the number of vertices n but
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3. List M-partitions of P4-sparse Graphs

instead on the number of partitions m. For a fixed matrix size m, these algorithms can be shown
to become polynomial in n.

Definition 23. Let G = (V,E) be a graph. Two pairs of vertices (a,b), (a′,b′) ∈ V×V are called
a twin couple if a $ b ∈ E ⇔ a′ $ b′ ∈ E, and a $ c ∈ E ⇔ a′ $ c ∈ E, and b $ c ∈ E ⇔ b′ $ c ∈ E
(c ∈ V ∖ {a,b,a′,b′}).

Lemma 3. Let M ∈ {0,1,∗}m×m denote a partition matrix and G = (V,E) a graph with lists L.
Let the pairs of vertices (a1,b1), . . . , (am+2,bm+s) ∈ V ×V be pairwise disjoint and twin couples
such that L(ai) = L(a j), L(bi) = L(b j) (1 ≤ i, j ≤ m + 2). Then G ∖ {a1,b1} with lists LV∖{a1,b1}
admits M if and only if G admits M with lists L.

Proof. “⇐” If G admits an M-partition with lists L, then G∖{a1,b1} also admits an M-partition
with lists LV∖{a1,b1}.

“⇒” Assume G ∖ {a1,b1} has an M-partition with lists LV∖{a1,b1} with parts A1, . . . ,Am. The
m+1 vertices a2, . . . ,am+2 are elements of the m sets A1, . . . ,Am, so by the pigeon hole principle,
there must be a part with at least two different vertices from {a2, . . . ,am+2}. Without loss of
generality, we may assume a2,a3 ∈ A1. Adding a1 to A1 and b1 to the part A j containing b2
yields an M-partition of G, which will now be proved. First, we observe 1 ∈ L(a2) = L(a1) and
j ∈ L(b2) = L(b1), so our choice of classes for a1 and b1 is compatible with the lists.

Now assume that there exists a pair of vertices x, y violating the partition condition. Since there
is no violation without a1 and b1, one of the vertices x, y must be a1 or b1. Without loss of
generality, the two cases x = a1 and y = b1 may be looked at separately.

In the case x = a1, the twin couple property a1$c ∈ E ⇔ a2$c ∈ E for all c ∈ V ∖{a1,b1,a2,b2}
implies y ∈ {b1,a2,b2}. Because (a1,b1) and (a3,b3) are also twin couples, we observe y ∈
{b1,a3,b3}, which means y = b1.

The case y = b1 similarly leads to x = a1: Because (a1,b1), (a2,b2), and (a3,b3) are pairwise
twin couples, we have b1$c ∈ E ⇔ b2$c ∈ E (c ∈ V∖{a1,b1,a2,b2}) and b1$c′ ∈ E ⇔ b3$c′ ∈ E
(c ∈ V ∖ {a1,b1,a3,b3}) and therefore x ∈ {a1,a2,b2} ∪ {a1,a3,b3}.

This means that the two cases are in fact only one and the pair of vertices (x, y) = (a1,b1) are the
only vertices violating the partition condition. The vertex pairs (a1,b1) and (a2,b2) are a twin
couple, hence a1 $ b1 ∈ E ⇔ a2 $ b2 ∈ E. Since a1,a2 ∈ A1 and b1,b2 ∈ A j, (a2,b2) also violates
the partition condition, which contradicts the choice of A1, . . . ,Am as classes for an M-partition
of G ∖ {a1,b1}.

Hence, the original assumption must be wrong and G admits an M-partition.
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3. List M-partitions of P4-sparse Graphs

3.2. The list M-partition problem with fixed-size matrices

The list M-partition problem is NP-complete because it is a generalization of the NP-complete
coloring-problem (see Section 2.1). If the matrix size m is fixed, the M-partition problem is still
NP-complete. For some matrices, the M-partition problem is NP-complete, even if the whole
matrix is fixed, because for example Planar 3-colorability reduces to an M-partition with a fixed
matrix [Sto73].

If the graph is a cograph and the size m ∈ N∗ of the matrix M ∈ {0,1,∗}m×m is fixed, there
is an algorithm that decides the list M-partition problem in linear time [FHH06]. This section
generalizes this algorithm to P4-sparse graphs. The algorithm solves the list M-partition problem
with a fixed size m of the matrix for P4-sparse graphs in linear time.

Proposition 3. The list M-partition problem for headless spider graphs can be solved in time
O (nm +m2 ⋅ 16m), linear in n.

Proof. A headless spider graph G = ({c1, . . . , cν, s1, . . . , sν} ,E) with lists L satisfies the con-
ditions in Lemma 3 if p ≥ m + 2 vertex pairs (c1, s1), . . . , (cp, sp) have the same lists. These
pairs of vertices are twin couples, so removing the vertices cm+2, . . . , cp and sm+2, . . . , sp yields,
by Lemma 3, an induced subgraph of G that admits exactly the same matrices of size m with
corresponding lists.

Removing these redundant vertices for all different list pairs leads to the induced subgraph G′ =
(V ′,E′) of G, which contains at most m+1 vertex pairs with identical list pairs for each list pair.
G′ with lists L′ B LG′ still admits the same matrices with size m as G with lists L.

As there are (2m)2 = 22m different combinations of two lists and G′ contains at most m+1 vertex
pairs for each combination, the number of vertices in G′ is n′ B ∣V ′∣ ≤ 2 ⋅(m+1)⋅22m. Obviously,
this upper limit for n′ does not depend on the number n of vertices in G, although calculating G′

from G takes linear time in n. Therefore, checking all partitions whether they constitute a valid
M-partition does not increase the time in regards to n:

For every partition to check, every vertex is an element of one of the m classes. This means
that there are n′m possibilities to distribute the vertices to m classes. First, each partition is
checked whether it is compatible with the lists L′, which takes the time O (n′ ⋅m) per partition.
Partitions violating the partition condition given by the matrix M can be dropped in time O (n′2)
by comparing the adjacency of every pair of vertices in parts i, j ∈ {1, . . . ,m} to the value of Mi, j.
All other partitions are valid, so G′ with lists L′ and thereby G with lists L admits M if and only
if at least one valid partition is left.

The steps of this algorithm taking the most time are the calculation of G′ from G, which takes
the time O(n ⋅m), and the adjacency comparison, which takes the time O (n′2). As a whole, the

algorithm therefore takes the time O (mn + n′2) ⊂ O (nm + 4m2(22m)2) = O (nm +m2 ⋅ 16m).
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3. List M-partitions of P4-sparse Graphs

The algorithm described in this section exploits the tree representation of spider graphs. The
matrices admitted by the graph of a node in the tree will be calculated from the node’s children.
The next lemma is a prerequisite for such an operation on spider nodes.

Lemma 4. Let G = (S ∪ R,E) be a spider graph with lists L. The vertices R are the head of
the spider and the rest of the vertices S B {c1, . . . , cν, s1, . . . , sν} split into the spider’s body
{c1, . . . , cν} and legs {s1, . . . , sν}.

Then G admits a matrix M ∈ {0,1,∗}m×m if and only if there are submatrices MS ,MR of M
(with S,R ⊂ N∗

m) such that G ∩ R with lists LR admits MR and G ∩ S admits MS with lists L′

defined as follows:

L′(ci)BL(ci) ∖ {x ∈ N∗
m ∣ ∃y ∈ R.Mx,y = 0}

L′(si)BL(si) ∖ {x ∈ N∗
m ∣ ∃y ∈ R.Mx,y = 1}

Proof. “⇒” Let the graph G admit a matrix M ∈ {0,1,∗}m×m. Then G has an M-partition with
classes A1, . . . ,Am. Let S ⊂ N∗

m denote the set of indices i of classes Ai containing vertices of S .
Similarly, letR ⊂ N∗

m be the set of indices j of parts A j containing vertices of R.

Since G with lists L has an M-partition with classes A1, . . . ,Am, the same M-partition will be
valid if it is restricted to the vertices of the induced subgraph G ∩ R with lists LR. Restricting
the M-partition to the induced subgraph G ∩ S with lists LS also yields a valid partition for the
induced subgraph. As all vertices of R are in parts Ai with i ∈ R and all vertices of S are in parts
Ai with i ∈ S , G∩R with lists LR will also admit MR and G∩S with lists LS will also admit MS .

The last thing to prove is that G ∩ S still admits MS if the lists L′ instead of LS are used. By the
definition of L′, this claim is true if there are no parts x ∈ S and y ∈ R with

• a vertex ci ∈ Ax and Mx,y = 0 or

• a vertex si ∈ Ax and Mx,y = 1.

The first case is not possible, because y ∈ R implies Ay ∩ R ≠ ∅ and therefore ci is adjacent to
a vertex r ∈ Ay ∩ R. Then Mx,y = 0 contradicts that A1, . . . ,Am constitute an M-partition for G.
The latter case is not possible either, because the vertex r ∈ Ay ∩ R is non-adjacent to si, which
contradicts Mx,y = 1 and A1, . . . ,Am being a valid M-partition for G.

Hence, G ∩ S with lists L′ admits MS .

“⇐” Let there be sets S,R ⊂ N∗
m, such that G ∩ R with lists LR admits MR and G ∩ S with lists

L′ admits MS .

Then G ∩ R has an MR-partition RAi (i ∈ R) with lists RLR and G ∩ S has an MS-partition S Ai

(i ∈ S) with lists L′. The rest of the sets are treated as empty sets, RAi B ∅ (i ∈ N∗
m ∖ R) and

S Ai B ∅ (i ∈ N∗
m ∖ S). The join Ai B RAi ∪ S Ai (1 ≤ i ≤ m) of these classes constitutes an

M-partition for G with lists L:
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3. List M-partitions of P4-sparse Graphs

The sets A1, . . . ,Am are supersets of the sets RA1, . . . , RAm and S A1, . . . , S Am and the lists L′ are
stricter than L, so any two vertices both within the same induced subgraph G ∩ R or G ∩ S will
not violate the partition condition for A1, . . . ,Am. Therefore, if the vertex pair r,q violates the
partition condition, there will be one vertex r ∈ R∩Ay with some y ∈ R and one vertex q ∈ S ∩Ax

with some x ∈ S. If q = ci for an i ∈ {1, . . . , ν}, then x ∈ L′(q) = L′(ci) implies Mx,y ≠ 0
by the definition of L′. This cannot be a violation of the partition condition, because ci and r
are adjacent, so we may assume q = si for an i ∈ {1, . . . , ν}. Then x ∈ L′(si) = L′(q) implies
Mx,y ≠ 1, which is also no violation of the partition condition, because si and r are not adjacent.
Therefore the partition condition is not violated and the classes A1, . . . ,Am constitute a partition
of G with lists L. Thus, G with lists L admits M.

Lemma 4 requires a given partition submatrix MS for the spider body and legs in order to deter-
mine whether G admits the matrix M. If no such submatrix is given, the algorithm from Propo-
sition 3 efficiently calculates all possible partition submatrices. With this prerequisites, the ma-
trices admitted by a given spider graph can be calculated in linear time:

Proposition 4. Let the graph G = (S ∪ R,E) with lists L be a spider graph, where S is the
spider’s body and legs and R is the spider’s head. Let 2ν B ∣S ∣ be the number of vertices
in S and let M ∈ {0,1,∗}m×m be a matrix. Let the set of matrices MR contain all partition
submatrices of M that the induced subgraph G ∩ R of G with lists LR admits.

Given G = (S ∪ R,E), L, M, andMR, the set of partition submatrices of M admitted by G can
be calculated in time O (ν ⋅m ⋅ 4m +m2 ⋅ 64m), linear in ν.

Proof. For each set of parts R ⊂ N∗
m such that G ∩ R with lists LR admits the submatrix MR of

M, three steps are processed. Note that MR ∈ MR.

Step 1: Let the lists L′ for the graph G∩S be defined like the lists L′ in Lemma 4. Calculating
L′ as follows takes the time O (ν ⋅m2): There are 2 ⋅ν lists to calculate and each of them contains
at most m parts. For each part i ∈ {1, . . . ,m}, the ∣R∣ ≤ m entries from the row Mi,1, . . . ,Mi,m of
the matrix M have to be checked in order to decide whether i lies within the list or not.

Step 2: The setMS of all matrices that G ∩ S admits with lists L′ can be calculated in time
O (2m⋅( νm + m2 ⋅ 16m )) = O (ν ⋅m ⋅ 2m +m2 ⋅ 32m) by using the algorithm in Proposition 3 on
every partition submatrix of M, of which 2m exist.

Step 3: For each set of parts S such that MS ∈ MS , Lemma 4 implies that G with lists R∪SL
admits the matrix MR∪S . This takes the time O (m ⋅ 2m), as for each of the at most 2m partition
submatrices inMS , only the at most m parts have to be joined from the two setsR and S.

Step 1 to 3 as a whole need O (ν ⋅m ⋅ 2m +m2 ⋅ 32m) time, as step 2 dominates the time require-
ments. With Step 1 to 3 repeated for each of the 2m possible sets of parts R ⊂ N∗

m, all partition
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3. List M-partitions of P4-sparse Graphs

submatrices admitted by G with lists L are calculated in time O (2m ⋅ (ν ⋅m ⋅ 2m +m2 ⋅ 32m)) =
O (ν ⋅m ⋅ 4m +m2 ⋅ 64m)

Theorem 2. The M-partition problem with lists can be decided in linear time for P4-sparse
graphs if the size of M is constant and the graph is given in its tree representation.

Proof. Let G = (V,E) be a P4-sparse graph with lists L. For each vertex set V ′ ⊂ V , let the
matrix setMV′ ⊂M be the set of partition submatrices admitted by G ∩ V ′ with lists LV′ . Each
node t of the tree representation of G is assigned a vertex set Vt ⊂ V , such that the subtree rooted
at t represents the induced subgraph G ∩Vt. The setMVt containing all partition submatrices of
M admitted by the induced subgraph G∩Vt with lists LVt will be calculated for each node t from
the leaves to the root:

A leaf node maps to exactly one vertex v ∈ V . For any partition P ⊂ N∗
m, the leaf’s graph G∩{v}

with lists PL{v} admits MP if and only if L(v) ∩ P ≠ ∅. CalculatingM{v} therefore takes the
time O (2m) or maybe O (m2), depending on howM{v} is stored.

For an inner node t labeled ∪ or + with the vertex set Vt, the set of admitted matricesMVt can
be calculated in time 2O(m) if the sets of admitted matrices of the child nodes are known. This
was proven by Feder et al. ([FHH06], Lemma 2.1 and its complement).

Assume that the inner node t is a spider node labeled ⍟ or ★, so the vertex set Vt assigned to
t is Vt = {c1, . . . , cν, s1, . . . , sν} ∪ R. The set of admitted matrices MVt with lists LVt can be
calculated in time O (ν ⋅m ⋅ 4m +m2 ⋅ 64m) if the set of admitted matricesMR is known. This is
the result of Proposition 4. Because t has 2ν leaves as child nodes and the whole tree contains
n leaves, the complexity for calculating all sets of admitted matrices for all spider nodes is
O (n ⋅m ⋅ 4m +m2 ⋅ 64m) ∈ 2O(m) ⋅ n.

The tree contains n leaves and thereby at most n − 1 inner nodes, so calculating the sets of
admitted matrices for every node in the tree takes the time 2O(m) ⋅ n. With this information
available, the list M-partition problem can be decided since G with lists L admits M if and only
if M ∈ MV andMV was calculated as the set of admitted matrices for the root node.

Corollary 3. The M-partition problem with lists can be decided in linear time for P4-sparse
graphs if the size of M is constant.

3.3. The list M-partition problem with variable-sized M

If both the matrix M and the graph G with lists L are variable, the list M-partition problem is
NP-complete, since 3-Satisfiability (3SAT) can be reduced to the problem. This fact will be
shown in this section.

The 3SAT problem is about deciding whether an arbitrary boolean formula in conjunctive nor-
mal form (CNF) such that every clause contains exactly three literals is satisfiable. This prob-
lem is NP-complete [Coo71]. A boolean formula is in CNF if each clause is a logical OR
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3. List M-partitions of P4-sparse Graphs

of its literals and the clauses are connected by a logical AND. A boolean formula is satisfi-
able if the variables can be assigned values of true and false such that the formula evaluates
true.

Let E be a boolean formula in CNF with three literals per clause. Let A ∈ N∗ be the number of
variables appearing in E and let B ∈ N∗ be the number of clauses. Let a1, . . . ,aA denote these
variables.

E =
B
⋀
β=1

(1xβ ∨ 2xβ ∨ 3xβ)

Every ixβ (β ∈ N∗
B, i ∈ {1,2,3}) is a literal, a possibly negated boolean variable of E. Variables

can appear more than once in the formula, that means ixβ1 and jxβ2 might be the same variable,
even if i ≠ j or β1 ≠ β2.

Let G = (A ∪ B,{x $ y ∣ x, y ∈ A ∪ B ∧ x ≠ y}) be the complete graph with A + B (A B ∣A∣,
B B ∣B∣) vertices. The vertex aα ∈ A (1 ≤ α ≤ A) represents the variable aα of E. As explained
later in detail, every vertex in A will have two possible parts of an M-partition that determine
whether the corresponding variable is true or false in a specific assignment. Each vertex bβ ∈ B
(1 ≤ β ≤ B) corresponds to one clause 1xβ ∨ 2xβ ∨ 3xβ of E. These vertices choose between three
parts of an M-partition, where every part requires a different literal of the clause to be true. This
will also be described more formally later.

The symmetric matrix M ∈ {0,1,∗}2⋅A+3⋅B×2⋅A+3⋅B has 2 ⋅ A + 3 ⋅ B rows and the same number of
columns. M splits into two diagonal blocks 12A ∈ 2AM2A and 13B ∈ 3BM3B containing only 1
entries and a submatrix C ∈ 2AM3B as well as C’s transposed CT in the upper right and lower
left corner. Therefore, it looks like this:

(12A C
CT 13B

)

The columns of C can be grouped into B submatrices βC ∈ {0,1,∗}2A×3(1 ≤ β ≤ B). The matrix
βC encodes the clause 1xβ∨2xβ∨3xβ: For 1 ≤ α ≤ A, the i-th column (1 ≤ i ≤ 3) of the (2α−1)-th
and (2α)-th row of βC are

• ( 1
1 ) if the literal ixβ does not represent the variable aα,

• ( 1
0 ) if the literal ixβ unnegatedly represents the variable aα, and

• ( 0
1 ) if the literal ixβ negates the variable aα.

The vertex aα is only allowed to be placed in partitions 2α − 1 and 2α by its list L (aα) =
{2α − 1,2α}. The vertex bβ must be in only one of the partitions 2A + 3β − 2, 2A + 3β − 1, or
2A + 3β because of its list L (bβ) = {2A + 3β − 2,2A + 3β − 1,2A + 3β}.

As the construction of G, L and M is straightforward, it is obviously possibly to construct
them in polynomial time, given a boolean formula E. The following theorem reduces the
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3. List M-partitions of P4-sparse Graphs

satisfiability problem for E to the list M-partition problem and therefore shows that it is NP-
complete.

Proposition 5. The previously defined graph G with lists L admits an M-partition if and only if
the boolean formula E is satisfiable.

Proof. “⇒” Assume that G = (A ∪ B,E) admits an M-partition A1, . . . ,A2A,B1, . . . ,B3B with
lists L. Bi is the (2A + i)-th part of the partition. By the definition of the lists L, we obviously
have A = ⋃2A

i=1 Ai and B = ⋃3B
i=1 Bi.

For every α ∈ {1, . . . ,A}, let the variable aα have the value true if aα ∈ A2α−1 and false if
aα ∈ A2α (by construction of the list L (aα) = {2α − 1,2α}, there are no further possibilities).

For every β ∈ {1, . . . , B}, the vertex bβ is in a part B3β−3+i with i ∈ {1,2,3} by construction of
the list L (bβ) = {2A + 3β − 2,2A + 3β − 1,2A + 3β}. Let α ∈ {1, . . . ,A} be chosen such that aα
is the variable represented by the literal ixβ, then

(M2α−1,2A+3β−3+i

M2α,2A+3β−3+i
) = (C2α−1,3β−3+i

C2α,3β−3+i
) = (βC2α−1,i

βC2α,i
)

is either

• ( 1
0 ) if ixβ does not negate aα, or

• ( 0
1 ) if ixβ negates aα.

As the vertices bβ and aα are adjacent, aα must be in part 2α− 1 if the literal ixβ does not negate
aα, in this case let aα be assigned true, or in partition 2α if the literal ixβ negates aα, then let aα
be assigned false. In both cases, ixβ evaluates true, so the whole clause 1xβ ∨ 2xβ ∨ 3xβ is true
with the given assignment.

This applies to every clause and therefore, the assignment satisfies the boolean formula E if the
graph G with lists L admits an M-partition.

“⇐” Assuming there is an assignment to the variables a1, . . . ,aA satisfying E, an M-partition
A1, . . . ,A2A,B1, . . . ,B3B admitted by G can be constructed:

For every α ∈ {1, . . . ,A},

• if aα is true, then A2α−1 B {aα}, A2α B ∅,

• if aα is false, then A2α−1 B ∅, A2α B {aα}.

For every β ∈ {1, . . . , B}, the clause 1xβ ∨ 2xβ ∨ 3xβ holds true for the observed assignment.
Therefore, an i ∈ {1,2,3} exists such that ixβ is true. After defining B3β−3+i B {bβ}, B3β−3+ j B

∅ ( j ∈ {1,2,3} ∖ {i}), all vertices are assigned to parts with respect to their lists.

Since the diagonal blocks of M will obviously not prevent G from admitting the M-partition
(they contain only 1 entries and G is a complete graph), only the submatrix C needs to be
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3. List M-partitions of P4-sparse Graphs

analyzed more thoroughly. G would obstruct the M-partition with lists L only if there were
α ∈ N∗

A, β ∈ N∗
B with aα ∈ A2α−i for some i ∈ {0,1} and bβ ∈ B3β−3+ j for some j ∈ {1,2,3} such

that C2α−i,3β−3+ j = 0. By the construction of C, this can happen only if either i = 0 and the literal
jxβ unnegatedly represents the variable aα or i = 1 and the literal jxβ negates the variable aα. By
the definition of the parts A2α−1 and A2α, aα would be false if jxβ negates aα and true if jxβ is
aα. In both cases, the literal jxβ evaluates false. This contradicts the choice of j, since, by the
construction of B3β−3+ j, bβ ∈ B3β−3+ j implies that ixβ is true.

Therefore G with lists L admits the M-partition.

Theorem 3. The list M-partition problem is NP-complete for complete graphs if the graph, its
lists and M are variable.

Proof. The boolean formula E is an arbitrary boolean formula in CNF with exactly three literals
per clause. Deciding its satisfiability is the NP-complete 3SAT problem [Coo71]. The preceding
proposition therefore reduces the 3SAT problem to a list M-partition problem, so this is also
NP-hard.

Whether given sets are a valid partition can be decided in polynomial time by comparing the
adjacency of every pair of vertices with the matrix entry determined by their parts. Thus, the list
M-partition problem is in NP and so the list M-partition problem is NP-complete for complete
graphs.

The theorem is still true if G and M are complemented:

Corollary 4. The list M-partition problem is NP-complete for empty graphs if the graph, its
lists and M are variable.

As the problem is NP-complete for complete graphs, of course it is also NP-complete for all
larger classes of graphs.

Corollary 5. If the graph, its lists and M are variable, the list M-partition problem is NP-
complete for complete bipartite graphs, for cographs, and for P4-sparse graphs.

3.4. Maximum size of a minimal M-obstruction graph with lists

Theorem 4. Let f ∶ m ↦ 4m+1 ⋅ (m + 1)!. For every m ∈ N∗, every m-by-m matrix M, and every
P4-sparse graph G with lists that is a minimal M-obstruction, G has at most f (m) vertices.

Proof. Let M be a matrix an m-by-m matrix and let G be a P4-sparse graph with lists L that is a
minimal M-obstruction. Either G or its complement is disconnected or G is a spider graph since
G is P4-sparse. The theorem will be proved by induction over m ∈ N∗.
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3. List M-partitions of P4-sparse Graphs

Let m = 1. If a graph G obstructs M with lists L, then G = (V,E) has a vertex u ∈ V with the list
L(u) = ∅ or G contains two vertices v,w ∈ V that are adjacent or non-adjacent while the matrix
is M = (0) or M = (1), respectively. In the first case, G ∩ {u} obstructs M with lists L{u} and
since G is a minimal M-obstruction with lists L, we have V = {u} and ∣G∣ = 1 < f (1). In the
second case, G ∩ {v,w} obstructs M with lists L{v,w} and this implies ∣G∣ = 2 < f (1).

Now assume that the theorem is correct for all m′ < m ∈ N∗ ∖ {1}.

Case 1: Assume that G or its complement is disconnected. If G is not a spider graph,
we may assume that G = G1 ∪G2 is disconnected by complementing G and M if necessary. For
j ∈ {1,2}, letM j contain all partition submatrices of M that G j = (V j,E j) obstructs with lists
LG j , all of which have a size lower than m because G j = (V j,E j) admits M with lists LG j . Using
M B {M} in Corollary 1 and Lemma 2 shows that G j is a minimalM j-obstruction with lists
LG j . For every matrix M̃ ∈ M j, the largest P4-sparse graph that minimally obstructs M̃ with lists
has a size of at most f (i) by the inductive assumption where i is the size of M̃. For each M̃ ∈ M j,
G j obstructs M̃ with lists and therefore contains a minimal M̃-obstruction G j,M̃ = (V j,M̃,E j,M̃) as
an induced subgraph. G j∩(⋃M̃∈M j

V j,M̃) obstructsM j and as G j is a minimalM j-obstruction,
we see V j = ⋃M̃∈M j

V j,M̃. This implies ∣G j∣ ≤ ∑M̃∈M j
∣V j,M̃ ∣ ≤ ∑0<i<m (m

i ) f (i). Combining
the results from j = 1 and j = 2 yields ∣G∣ = ∣G1∣ + ∣G2∣ ≤ 2∑0<i<m (m

i ) f (i). By the inductive
assumption, this implies the proposition:

∣G∣ ≤ 2 ∑
0<i<m

(m
i
) f (i)

= 2 ∑
0<i<m

m!
i! ⋅ (m − i)!

4i+1(i + 1)!

= 2 ∑
0<i<m

(m + 1)!4m+1 4i−m

(m − i)!
i + 1
m + 1

< 4m+1(m + 1)! ⋅ 2 ∑
0<k<m

4−k

k!

< 4m+1(m + 1)! ⋅ 2(e
1
4 − 1)

< 4m+1(m + 1)! = f (m)

Case 2: Assume that G is a spider graph. G = (V,E) is a spider graph with the vertex set
V = S ∪C ∪R partitioned into the spider’s body C = {c1, . . . , cν}, legs S = {s1, . . . , sν}, and head
R. As G is a minimal M-obstruction with lists L, Lemma 3 implies that, for each pair of lists
(L(ci), L(si)) ⊂ N∗

m ×N∗
m, there are at most m+ 1 pairs of vertices in {(c1, s1); . . . ; (cν, sν)} that

have these lists. There are (2m)2 possible pairs of lists, so we see ∣S ∪C∣ ≤ (m + 1) ⋅ 2 ⋅ (2m)2.

For R = ∅, this implies the claim ∣G∣ = ∣S ∪C∣ ≤ 2(m + 1)4m < f (m). Thus, assume R ≠ ∅.

For each r ∈ R, the induced subgraph G ∖ {r} admits M with lists LG∖{r} since G is a minimal
M-obstruction with lists L. By Lemma 4, there are sets Sr,Rr ⊂ N∗

m such that G∩(R∖{r}) with
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3. List M-partitions of P4-sparse Graphs

lists LR∖{r} admits MRr and G ∩ (S ∪C) admits MSr with lists L′r ∶ S ∪C → P(N∗
m) defined as

follows:

L′r(ci)BL(ci) ∖ {x ∈ N∗
m ∣ ∃y ∈ Rr.Mx,y = 0}

L′r(si)BL(si) ∖ {x ∈ N∗
m ∣ ∃y ∈ Rr.Mx,y = 1}

As G obstructs M with lists L, by Lemma 4 it is not possible that G ∩ R admits MRr with lists
LR while G ∩ (S ∪C) admits MSr with lists L′r. Thus, G ∩ R obstructs MRr with lists LR. This
implies Rr ≠ N∗

m since G ∩ R as an induced subgraph of the minimal M-obstruction G admits
M = MN∗m .

LetMR B {MRr ∣ r ∈ R}. Then G∩R obstructsMR with lists LR and, for any r ∈ R, G∩(R∖{r})
admits a matrix inMR. Hence, G ∩ R is a minimalMR-obstruction. Similar to Case 1, we see
that the size of G ∩ R is at most the sum of the sizes of all minimal MRr -obstructions. The
matrices inMR have a size of at most m − 1, so we conclude

∣R∣ ≤ ∑
0<i<m

(m
i
) f (i)

< 4m+1(m + 1)! ⋅ (e
1
4 − 1)

< 4m+1(m + 1)! ⋅ 1
3

The size of G therefore is

∣G∣ = ∣S ∪C∣ + ∣R∣

= 2(m + 1)4m + 4m+1(m + 1)! ⋅ 1
3

= (m + 1)4m+1 ⋅ 1
2
+ 4m+1(m + 1)! ⋅ 1

3

< (4m+1(m + 1)!) ⋅ (1
2
+ 1

3
)

< 4m+1(m + 1)! = f (m)
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4. Minimal M-obstruction, P4-sparse Graph
without lists

This chapter has its focus on the M-partition problem without lists. The matrix M has no di-
agonal ∗s, since otherwise any graph would admit M and the problem becomes trivial. By
permutating the rows and columns, M may be written in block form with k diagonal 0s in the
first rows and then l diagonal 1s.

4.1. Upper Bounds for minimal M-obstruction, P4-sparse
Graphs with bound clique sizes

Proposition 6. LetM ⊂ ⋃m
µ=1 {0,1,∗}µ×µ be a non-empty set of matrices with a maximum size

of m ∈ N∗. Let G be a P4-sparse graph that obstructsM minimally. Let the maximum clique
size in G be r ∈ N∗.

Then G has at most g(m, r)B 2(m+r
r ) −m − 1 vertices.

Proof. The proposition will be proved by induction over m + r.

The lowest possible value for m is 1, in which case there is only one matrix M ∈ M, and then
G has at least one vertex, as it is an M-obstruction. This implies r ≥ 1. The lowest possible
value for m + r therefore is m + r = 2 with M = {(1)} and G = ({v,w},∅}. This implies
∣G∣ = 2 = 2 ⋅ 2 − 1 − 1 = g(1,1).

Let m, r ∈ N∗ and assume the proposition to be true for all r′,m′ with r′ + m′ < r + m. LetM
be a set of matrices with maximum size m and let G be a P4-sparse graph with maximum clique
size r.

The root node of G in its tree representation is either one of the two types of spider nodes ⍟
or ★, a node ∪ for a disjoint union, or a node + for a join. The following proof distinguishes
between these cases. The upper limit of vertices of G for roots ⍟, ★ and + will be shown to be
∣G∣ ≤ g(m, t) + g(m, r − t) with t ∈ {1, . . . , r − 1}. If the root is labeled ∪, the upper limit is only
∣G∣ ≤ g(m − 1, r) + g(m, t) + g(m, r − t).
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4. Minimal M-obstruction, P4-sparse Graph without lists

Case 1: Assume the root node is labeled +. In this case, there are two disjoint, P4-sparse
graphs G1, G2 with G = G1 +G2. Let t be the size of the largest clique in G1 and let t′ be the
largest clique in G2. The union of these cliques is a clique in G of size t + t′. r ≥ t + t′ being
the size of the maximum clique in G implies 1 ≤ t ≤ r − 1 and t′ ≤ r − t. Using Lemma 2, we
conclude that G1 and G2 are minimal obstruction graphs of matrix sets with maximum size m,
which means ∣G∣ ≤ g(m, t) + g(m, r − t) by induction.

Case 2: Assume the root node is a spider node. Before the main part of the proof, note
that the following formula is correct for all m ≥ 1 and ρ ≥ 1:

2ρ = 2ρ + 2 − 2 = 2(1 + ρ
ρ

) − 1 − 1 ≤ 2(m + ρ
ρ

) −m − 1 = g(m, ρ) (4.1.1)

Since G = (V,E) is a spider graph, its node set may be written as V = {c1, . . . , cν}∪{s1, . . . , sν}∪
R, where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν} is the spider’s legs, and R is the spider’s
head, which is the same terminology as in Definition 11. If R is empty, G has exactly 2ν ≤ 2r
vertices. Using Inequality 4.1.1, this results in ∣G∣ ≤ 2r = 2r − 2t + 2t ≤ g(m, r − t) + g(m, t) for
any t ∈ {1, . . . , r − 1}.

Now assume R ≠ ∅. Any clique in G ∩ R is part of a clique in G with the ν additional vertices
c1, . . . , cν. As the maximum clique size in G is r, the maximum clique size in G ∩ R is r − ν. By
the inductive assumption, the number of vertices in G ∩ R is ∣R∣ ≤ g(m, r − ν), which limits the
number of vertices in G to

∣G∣ = ∣G ∩ {s1, . . . , sν, c1, . . . , cν}∣ + ∣G ∩ R∣ = 2ν + ∣R∣ ≤ g(m, ν) + g(m, r − ν)

The inequality in the preceding formula is a result of Inequality 4.1.1. By the definition of spider
nodes, we have 1 ≤ ν, and as the maximum clique size r − ν of G ∩ R is positive, we have ν < r.
Defining t B ν results in the same inequality as in the case R = ∅: ∣G∣ ≤ g(m, r− t)+g(m, t) with
1 ≤ t ≤ r − 1.

Case 3: Assume the root node is labeled ∪. For all 1 ≤ r′ < r, g(m, r′) = 2(m+r′

r′ )−m−1 <
2(m+r

r ) − m − 1 = g(m, r) is true. Therefore and by the inductive assumption, we conclude
∣G∣ < g(m, r) if the largest clique in G contains less than r vertices. Hence, we will assume that
the largest clique in G contains exactly r vertices.

G is a P4-sparse graph and therefore perfect and r-colorable. Let Fr ∈ {0,1,∗}r×r be the matrix
with only 0s on the diagonal and only ∗s everywhere else. Due to the fact that the graphs
admitting Fr are exactly the r-colorable graphs and since G obstructs all matrices in M, no
matrix inM contains Fr as a submatrix.

Since the root node is labeled ∪, G is a disconnected graph. Let G1 be the induced subgraph of G
containing only the vertices of the connected component with the largest clique, which has size
r, while the induced subgraph G2 contains all other vertices. Thus, G1 and G2 are two disjoint,
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4. Minimal M-obstruction, P4-sparse Graph without lists

P4-sparse induced subgraphs of G with G = G1 ∪ G2. As G obstructs the set M minimally,
G1 ⊊ G admits a matrix M ∈ M. LetMM be the set of partition submatrices MQ of M such that
there are sets of parts P,Q ⊂ N∗

m with MP,Q not containing a 1 and G1 having an MP-partition.
G2 obstructsMM as otherwise G1 ∪G2 = G would admit M by Lemma 1. Because Fr is not
a submatrix of M and G1 contains a clique of size r, every MP contains a 1 in its diagonal.
Because MP,Q does not contain a 1, we conclude MQ ≠ M and therefore MQ has a size smaller
than m. G2 obstructsM2 B ⋃M∈MMM, as it is a union of matrix sets obstructed by G2.

Assume there is an induced subgraph G′
2 of G2 that obstructsM2. Let M be any matrix inM.

Then for all sets of parts P,Q ⊂ N∗
m for which G1 admits MP and MP,Q contains no 1, we have

MQ ∈ M2 and therefore G′
2 obstructs MQ. This means G′

2 ∪G1 obstructs M by Corollary 1. As
M was chosen arbitrarily, G′

2∪G1, an induced subgraph of G, also obstructsM. This contradicts
that G is a minimalM-obstruction.

Hence, G2 is a minimalM2-obstruction and the matrices inM2 have a size of at most m − 1.
By the inductive assumption, G2 has only ∣G2∣ ≤ g(m − 1, r) vertices. Since G1 is P4-sparse and
connected, the root node in the tree representation of G1 is either labeled + or a spider node. As
shown, there is a t ∈ {1, . . . , r − 1} in these cases such that G1 has ∣G1∣ ≤ g(m, t) + g(m, r − t)
vertices. Adding the two inequalities yields ∣G∣ = ∣G2∣ + ∣G1∣ ≤ g(m− 1, r)+ g(m, t)+ g(m, r− t).

All cases: Inductive step. The rest of this proof requires an inequality that will be proved
first. Iteratively using the well-known identity ∀a, x ∈ N.(a+x

x ) = (a+x+1
x+1 )− (a+x

x+1), we find (a+x
x )−

(a+x′

x′ ) = −∑
x′−1
i=x (a+i

i+1) for all x′ > x. Thus, for t ≤ r − 1 and m ∈ N∗ we have

(m + t
t

) + (m + (r − t)
r − t

)

=(m + 1
1

) − (m + 1
1

) + (m + t
t

) + (m + (r − 1)
r − 1

) − (m + (r − 1)
r − 1

) + (m + (r − t)
r − t

)

=(m + 1
1

) + (m + (r − 1)
r − 1

) +
t−1

∑
i=1

(m + i
i + 1

) −
r−2

∑
i=r−t

(m + i
i + 1

)

=(m + 1
1

) + (m + (r − 1)
r − 1

) +
t−1

∑
i=1

((m + i
i + 1

) − (m + i + r − t − 1
i + r − t

))

≤(m + 1
1

) + (m + (r − 1)
r − 1

)

(4.1.2)

Even in the worst case – if the root node is labeled ∪ –, the proposition can be proved with the
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help of Inequality 4.1.2:

∣G∣ ≤ g(m − 1, r) + g(m, t) + g(m, r − t)

= 2(m + r − 1
r

) −m − 2 + 2(m + t
t

) −m − 1 + 2(m + r − t
r − t

) −m − 1

≤ 2((m + r − 1
r

) + (m + r − 1
r − 1

)) + 2(m + 1
1

) − 3m − 4

= 2(m + r
r

) + (2m + 2) − 3m − 4

< 2(m + r
r

) −m − 1

= g(m, r)

Complementing G in Proposition 6 yields the following corollary:

Corollary 6. LetM be a matrix set with maximum matrix size m ∈ N∗. Let G be a P4-sparse
graph and a minimal M-obstruction. The largest stable set in G contains at most r vertices.
Then G has at most g(m, r) = 2(m+r

r ) −m − 1 vertices.

4.2. Upper Bounds for minimal M-obstruction, P4-sparse
Graphs

Theorem 5. Any minimal M-obstruction, P4-sparse graph G has at most O (16m) vertices.

Proof. Let G be in its tree representation and assign every node t of the tree a set Mt of par-
tition submatrices of M such that the graph Gt corresponding to the node t is a minimal Mt-
obstruction. The setMt0 of the root t0 consists of the matrix M only. Obviously, the number of
vertices of Gt is the number of leaves of the subtree rooted at t and therefore, the size of G = Gt0
is the number of leaves in the whole tree.

Let h (m, m̃) denote the maximum number of vertices that a graph Gt can have if the greatest
size of a matrix in Mt is m̃ and all matrices in Mt are submatrices of a matrix of size m. In
the first step of this proof, the inequality h (m, m̃) ≤ 2m (2(2m̃

m̃ ) − m̃ − 1) + 2h (m, m̃ − 1) will be
shown.

If Gt has a maximum clique size of at most m̃, then the size of Gt is ∣Gt∣ ≤ 2(2m̃
m̃ ) − m̃ − 1 by

Proposition 6. The size of Gt is also ∣Gt∣ ≤ 2(2m̃
m̃ ) − m̃ − 1 if the largest independent set in Gt has

size at most m̃ by Corollary 6.

If instead the maximum clique size of Gt is greater than the maximum matrix size m̃ of Mt

and the maximum independent set size of Gt is also greater than m̃, there are different cases to
consider:
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Case 1: Assume the node t is labeled ∪. Let k be the maximum number of diagonal 0s of
the matrices inMt. The node t has two child nodes t′ and t′′ with Gt = Gt′ ∪Gt′′ . There are two
subcases, of which only the first will be proved completely here. In the second subcase, Gt will
be shown to consist of the induced subgraphs G′ with an independent set of size greater than m̃
and an induced subgraph G′′ with ∣G′′∣ ≤ (2m̃

m̃ ) − m̃ − 1. The second subcase will be shown later
to also lead to a number of vertices of Gt of at most 2m (2(2m̃

m̃ ) − m̃ − 1) + 2h (m, m̃ − 1).

In the first subcase, Gt′ and Gt′′ both contain a clique of size greater than k. Let Mt′′ be the
set of all matrices M̃Q such that there is a matrix M̃ ∈ Mt with size m̂ and and parts P,Q ⊂ N∗

m̂
such that M̃P,Q contains no 1 and Gt′ admits M̃P. There are more vertices in the largest clique
of Gt′ than there are diagonal 0s in M̃P. Because vertices of the same clique cannot be placed
in the same part i if M̃i,i = 0, every M̃P-partition of Gt′ uses a part j ∈ P with M̃ j, j = 1. From
the facts that M̃P,Q contains no 1, M̃ j, j = 1 and j ∈ P follows j ∉ Q, and therefore the matrix M̃Q

is smaller than M̃P∪Q and especially ∣Q∣ < m̂ ≤ m̃. By Corollary 1, Gt′′ obstructs the matrix M̃Q

and therefore Gt′′ obstructsMt′′ . By Lemma 2, Gt′′ is also a minimalMt′′-obstruction. As the
maximum matrix size ofMt′′ is smaller than m̃, this means ∣Gt′′ ∣ ≤ h (m, m̃ − 1).

Because Gt′′ also contains a clique of size greater than k, the graphs Gt′ and Gt′′ in the proof
above can be exchanged, which proves the inequality ∣Gt′ ∣ ≤ h (m, m̃ − 1). Therefore, the size of
Gt is ∣Gt∣ = ∣Gt′ ∣ + ∣Gt′′ ∣ ≤ 2h (m, m̃ − 1).

In the other subcase, let G′′ B Gt′′ have a maximum clique size of at most k, without loss of
generality, and let the largest clique in G′ B Gt′ have a size greater than m̃. Therefore the number
of vertices in Gt′′ is ∣G′′∣ ≤ (2m̃

m̃ )− m̃− 1. Obviously no matrix can contain more diagonal 0s than
it has rows, so k is smaller than m̃. This subcase will be analyzed together with similar subcases
of different labels for the node t later in this proof.

Case 2: Assume the node t is labeled +. Let l be the maximum number of diagonal 1s
of the matrices inMt. Let t′ and t′′ be the child nodes of t, which means that Gt = Gt′ +Gt′′ .
Complementing G and M in the case where t is labeled ∪ leads to the conclusion that Gt has at
most 2h (m, m̃ − 1) vertices if both Gt′ and Gt′′ contain an independent set of size greater than l.

Otherwise and without loss of generality, let the graph G′′ B Gt′′ have a maximum independent
set with size of at most l and therefore its number of vertices is ∣G′′∣ ≤ (2m̃

m̃ ) − m̃ − 1. In this
subcase, G′ B Gt′ has an independent set of size greater than m̃. This subcase will be analyzed
later in the proof, together with similar subcases of different labels for the node t.

Case 3: Assume the node t is a spider node. Using the terminology from Definition 11,
let Gt = (Vt,Et) contain the vertices in the set Vt = {c1, . . . , cν} ∪ {s1, . . . , sν} ∪ R.

Because Gt is a minimalMt-obstruction graph, Lemma 3 can be applied if lists are defined as
L (v) B Vt ∖ {v} for every vertex v ∈ Vt, which effectively means that there are no restrictions
where vertices can be placed. Lemma 3 implies that the number 2ν of vertices in the spider’s
body and legs Gt ∖ R is at most 2m̃ + 2.
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If the spider’s head Gt ∩ R has a maximum clique size or maximum independent set size of at
most m̃, then the number of vertices of Gt ∩ R is at most 2(2m̃

m̃ ) − m̃ − 1. In this subcase, the
number of vertices in Gt is ∣Gt∣ = 2ν + ∣R∣ ≤ 2m̃ + 2 + 2(2m̃

m̃ ) − m̃ − 1 = 2(2m̃
m̃ ) + m̃ + 1.

Otherwise, G′ B G∩R has a clique and an independent set of size greater than m̃ and G′′ B G∖R
has at most 2m̃+2 vertices. This subcase will now be analyzed together with the similar subcases
of nodes labeled ∪ or +.

At this point, Gt has been shown to either have less than max{2(2m̃
m̃ ) + m̃ + 1,2h (m, m̃ − 1)}

vertices or that all of the vertices of Gt are in the disjoint induced subgraphs G′ and G′′, where
G′′ has at most max{2m̃ + 2, (2m̃

m̃ ) − m̃ − 1} vertices and G′ has an independent set or clique of
size greater than m̃.

G′
1 B G′ may have less than max{2(2m̃

m̃ ) + m̃ + 1,2h (m, m̃ − 1)} vertices or, again, G′
1 splits up

into two induced subgraphs G′
2 and G′′

2 with G′
2 being a graph with an independent set or clique

of size greater than m̃ and G′′
2 having at most max{2m̃+2, (2m̃

m̃ )−m̃−1} vertices. Further repetition
leads to 2s graphs G′

1, . . . ,G
′
s and G′′

1 , . . . ,G
′′
s , such that for every 1 ≤ i ≤ s, G′

i contains a clique
and an independent set with more than m̃ vertices and G′′

i has at most max{2m̃+2, (2m̃
m̃ )− m̃−1}

vertices. Let G′
s have at most max{2(2m̃

m̃ ) + m̃ + 1,2h (m, m̃ − 1)} vertices. An upper limit for s
will now be proved, namely s ≤ 2m, which will eventually lead to an upper limit for the number
of vertices of Gt.

For 1 ≤ i ≤ s, let Ni be the set Ni B {P ⊂ N∗
m ∣ G′

i obstructs MP}. For two indices i, j (1 ≤ i < j ≤
s), G′

j is an induced subgraph of G′
i and G′

i is a minimal obstruction graph for some setMt of
submatrices of M. Therefore G′

j does not obstructMt and hence Ni ⊊ N j. As there are only 2m

different subsets of N∗
m, this implies s ≤ 2m,

Hence, the s graphs G′′
1 , . . . ,G

′′
s together have at most 2m ⋅ max{2m̃ + 2, (2m̃

m̃ ) − m̃ − 1} vertices
while G′

s has at most max{2(2m̃
m̃ ) + m̃ + 1,2h (m, m̃ − 1)} vertices. Because every vertex of Gt

lies in exactly one of the induced subgraphs G′′
1 , . . . ,G

′′
s ,G

′
s, Gt has at most 2m ⋅ max{2m̃ +

2, (2m̃
m̃ ) − m̃ − 1} + max{2(2m̃

m̃ ) + m̃ + 1,2h (m, m̃ − 1)} vertices, which together with the other
cases completes the first step of the proof: For every m ≥ m̃ > 1, the maximum number of
vertices of a minimalM-obstruction, P4-sparse graph where all matrices inM are submatrices
of a matrix M ∈ {0,1,∗}m×m is

h (m, m̃) ≤2m ⋅max{2m̃ + 2,(2m̃
m̃

) − m̃ − 1} +max{2(2m̃
m̃

) + m̃ + 1,2h (m, m̃ − 1)}

< (2m + 1) ⋅ (2(2m̃
m̃

) + m̃ + 1) + 2h (m, m̃ − 1)

In the case m̃ = 1, we have h (m,1) ≤ 3 < (2m + 1) ⋅ (2(2
1) + 1 + 1).

In the second step of the proof, the recursion will be resolved to a sum. The formula will be
simplified even further with the help of the inequality ∑m

m̃=1 (2m̃
m̃ ) ≤ ∑2m

m̃=1 (2m
m̃ ) = 22m:

31



4. Minimal M-obstruction, P4-sparse Graph without lists

h (m,m) <
m

∑
m̃=1

2m−m̃ ⋅ (2m + 1) ⋅ (2(2m̃
m̃

) + m̃ + 1)

≤(22m+1) ⋅
m

∑
m̃=1

(2(2m̃
m̃

) + m̃ + 1)

≤(22m+1) ⋅ (22m+1 + m(m + 1)
2

+m)

Therefore, the number of vertices of any minimal M-obstruction, P4-sparse graph is at most
h (m,m) ∈ O ((22m+1) ⋅ (22m+1 + m(m+1)

2 +m)) = O(16m).
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5. Minimal M-obstruction, P4-sparse Graphs
with constant matrices M

In this chapter, let the matrix M be an (a,b, c)-block matrix. This means that its first k diagonal
entries are all 0 and all other l diagonal entries are 1. The diagonal of M does not contain any
∗, so the matrix size is m = k + l. The entries of M can be divided into four blocks: the upper
left block with all diagonal 0s, the lower right block with all diagonal 1s, and the two remaining
blocks on the lower left and the upper right. In each of these blocks, all entries have the same
value, except those in the diagonal of M. The off-diagonal entries in the upper left block all have
the value a, while the off-diagonal entries in the lower right block all have the value b. All other
entries, which are those in the upper right and lower left block, have the value c. a, b, and c can
be 0, 1, and ∗, but we may assume a ≠ 0 and b ≠ 1 because such blocks are equal to a single 0 and
1 entry. A matrix meeting those criteria is also called a constant matrix.

An (a,b, c)-block matrix is completely determined by the parameters a,b, c, the number k of 0s
in its diagonal and the number l of 1s in its diagonal. If a,b,c are clear from the context, then
M[k′, l′] stands for the (a,b, c)-block matrix with k′ diagonal 0s and l′ diagonal 1s. Note that
M[k′, l′] is a partition submatrix of M if and only if k′ ≤ k and l′ ≤ l. If k′ < 0 or l′ < 0, then
M[k′, l′] shall be treated like a matrix that every graph obstructs.

Lemma 5. Let M be an (a,b, c)-block matrix with a = ∗,b ∈ {0,∗}, c ∈ {0,∗}, let G = G1 ∪G2
be a disconnected graph and let k, x, y ∈ N be natural numbers. If G1 admits M[k, x] and G2
admits M[k, y] then G admits M[k, x + y].

Proof. Let A1, . . . ,Ak+x be an M[k, x]-partition of G1 and let B1, . . . , Bk+y be an M[k, y]-partition
of G2. Then obviously A1 ∪ B1, . . . ,Ak ∪ Bk,Ak+1, . . . ,Ak+x,Bk+1, . . . , Bk+y is an M[k, x + y]-
partition of G.

5.1. (∗,∗,∗)-block matrices

Theorem 6. Let M be a (∗,∗,∗)-block matrix and let G be a minimal M-obstruction, P4-sparse
graph. Then G is a cograph.

Proof. This proof distinguishes between two cases: Either one of the values k or l are zero or
both k and l are greater than 0.
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5. Minimal M-obstruction, P4-sparse Graphs with constant matrices M

Starting with the first case, either k or l is 0. We may assume l = 0, the other subcase follows by
complementation of G and M. A graph admits M if and only if it is k-colorable. Since G as a
P4-sparse graph is perfect, it is k-colorable if and only if its largest clique consists of at most k
vertices. Therefore, a P4-sparse graph obstructs M if and only if it has the complete graph Km+1
with m + 1 = k + 1 vertices as an induced subgraph. Km+1 is P4-sparse already, so it is the only
minimal M-obstructing P4-sparse graph. Km+1 is also a cograph, so all minimal M-obstruction
P4-sparse graphs are cographs if k = 0 or l = 0.

Looking at the second case, let both k and l be at least 1. First assume the root node in the
tree representation of G is a spider node. Using the terminology as in Definition 11, the node
set V of G = (V,E) may be written as V = {c1, . . . , cν, s1, . . . , sν} ∪ R where {c1, . . . , cν} is the
spider’s body, {s1, . . . , sν} is the spider’s legs, and R is the spider’s head. Since G is a minimal
M-obstruction, every induced subgraph of G admits M, so there is an M-partition A1, . . . ,Am

of G ∩ R, where A1, . . . ,Ak are independent sets and Ak−1, . . . ,Am are l cliques. The vertices
s1, . . . , sν are non-adjacent to each other and they are non-adjacent to every vertex in R, so
A1 ∪ {s1, . . . , sν} is also an independent set. Similarly, the vertices c1, . . . , cν are adjacent to
each other and adjacent to every vertex in R, so Am ∪ {c1, . . . , cν} constitutes a clique. Hence,
A1 ∪ {s1, . . . , sν} ,A2, . . . ,Am−1,Am ∪ {c1, . . . , cν} is an M-partition of the M-obstructing graph
G, which is a contradiction. Therefore the root node of G is not a spider node.

The rest of the proof uses induction on the matrix size m. The induction base m = 1 has already
been proved, as this case implies either k = 0 or l = 0. The induction step was already proved
for all matrices smaller than the given matrix M. As shown above, the root node in the tree
representation of G is not a spider node, so by complementing G and M if necessary, we may
assume that G = G1 ∪G2 is a disconnected graph.

G is a minimal M-obstruction, so the induced subgraphs G1 and G2 both admit M = M[k, l].
This implies that G1 obstructs M[k,0], as otherwise G would admit M[k,0 + l] = M[k, l] = M
by Lemma 5. Now let l1 be the smallest number such that G1 admits M[k, l1]. As G1 obstructs
M[k,0] but admits M[k, l], we have 0 < l1 ≤ l. G obstructs M = M[k, l1 + (l − l1)] and hence G2
obstructs M[k, l − l1]. LetM1,M2 be matrix sets defined asM1 B {M[k, l′] ∣ 0 ≤ l′ < l1} and
M2 B {M[k, l′] ∣ 0 ≤ l′ ≤ l − l1}. This satisfies the conditions of Lemma 2: G1 obstructs M1
and G2 obstructsM2. For any two sets of parts P,Q ⊆ N∗

m with MP ∉ M1 and MQ ∉ M2, the
matrix MP has the partition submatrix M[0, l1] and MQ has the partition submatrix M[0, l−l1+1].
Since MP and MQ together contain at least l1 + l − l1 + 1 > l rows with a 1 in the diagonal entry,
the submatrix MPQ of M contains at least one 1 in the diagonal. By Lemma 2, G1 is a minimal
M1-obstruction and G2 is a minimal M2-obstruction. All matrices obstructing M[k, l1 − 1]
also obstruct M1 and all matrices obstructing M[k, l − l1] also obstruct M2. Thus, G1 is a
minimal M[k, l1−1]-obstruction and G2 is a minimal M[k, l−l1]-obstruction, so by the inductive
assumption, both G1 and G2 are cographs. This makes G = G1 ∪G2 a cograph, too.

Because Feder et al. have determined the number of vertices of cograph minimal M-obstructions
for (∗,∗,∗)-block matrices ([FHKM99], Corollary 4.2), the number of vertices of G can be
exactly specified using the preceding theorem:
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Corollary 7. Let M be a (∗,∗,∗)-block matrix. Then every P4-sparse, minimal M-obstruction
graph has exactly (k + 1)(l + 1) vertices.

5.2. Staircase-like (a,b, c)-block matrices

By excluding the redundant cases a ≠ 0 and b ≠ 1, there are 12 combinations of a, b, and c
to consider. In the first of these combinations, (a,b, c) = (∗,∗,∗), minimal M-obstructing P4-
sparse graphs were already shown to have the same upper bound of vertices as M-obstruction
cographs in Theorem 6. In this section, upper bounds for the other combinations will be proved.
In order to do that, spider graphs and disconnected graphs will be shown to have a couple of
properties that are needed for the proof of the upper bound.

Lemma 6. Let M be an (1,∗,∗)-block matrix and let G be an M-obstruction spider graph with
the vertex set V = {c1, . . . , cν, s1, . . . , sν} ∪R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν}
is the spider’s legs, and R is the spider’s head.

Then all of the following holds:

• G ∩ R obstructs M[k, l − ν]

• k = 0 or l = 0 or G ∩ R obstructs M[1, l].

Proof. We assume that G ∩ R does not obstruct M[k, l − ν], so there is an M[k, l − ν]-partition
A1, . . . ,Ak,B1, . . . , Bl−ν of G ∩ R. The vertices c1, . . . , cν, s1, . . . , sν can be partitioned into the ν
cliques Ci B {ci, si} (1 ≤ i ≤ ν) if G is a slim spider or C1 B {c1, sν}, Ci B {ci, si−1} (2 ≤ i ≤ ν)
if G is a fat spider. Then A1, . . . ,Ak,B1, . . . , Bl−ν,C1, . . . ,Cν are an M[k, l−ν+ν]-partition, which
contradicts the fact that G obstructs M = M[k, l]. Figure 5.1 illustrates this M[k, l]-partition of
G in the case of a slim spider graph.

Assume next that k > 0 and l > 0 although G ∩ R does not obstruct M[1, l]. Then there is
an M[1, l]-partition A,B1, . . . , Bl of G ∩ R such that A is an independent set and B1, . . . , Bl are
cliques. Since the vertices s1, . . . , sν are non-adjacent to all vertices in R, especially A, and since
the vertices c1, . . . , cν are adjacent to all vertices in R, the set A ∪ {s1, . . . , sν} is an indepen-
dent set in G and the set B1 ∪ {c1, . . . , cν} is a clique in G. Therefore, A ∪ {s1, . . . , sν} ,B1 ∪
{c1, . . . , cν} ,B2, . . . , Bl is an M[1, l]-partition of G. Since k > 0, the matrix M[1, l] is a partition
submatrix of M[k, l] and therefore G does not only admit M[1, l] but also M[k, l] = M, which
is a contradiction. Figure 5.2 illustrates this M[1, l]-partition of G in the case of a fat spider
graph.

Proposition 7. Let M be an (1,∗,∗)-block matrix with l > 0 and let G be a spider graph with
the vertex set V = {c1, . . . , cν, s1, . . . , sν} ∪R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν}
is the spider’s legs, and R is the spider’s head. G obstructs M if and only if G ∖ {c1, . . . , cν}
obstructs M.
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Figure 5.1.: Possible partition of G if G∩R
does not obstruct M[k, l − ν]

Figure 5.2.: Possible partition of G if G∩R
does not obstruct M[1, l] (IS is
an independent set)

Proof. “⇒” Assume that G obstructs M. By Lemma 6, G ∩ R obstructs M[k, l − ν] and, if k is
greater than 0, G ∩ R also obstructs M[1, l].

We assume contrary to the proposition that G′ B G ∖ {c1, . . . , cν} admits M. Then there is an
M-partition A1, . . . ,Ak,B1, . . . , Bl of G′.

Assume all vertices s1, . . . , sν in the spider’s legs are elements of clique parts. All vertices in the
spider’s legs are pairwise non-adjacent, therefore we may assume s1 ∈ B1, . . . , sν ∈ Bν, without
loss of generality. As the vertices in R are non-adjacent to the vertices in the spider’s legs, none
of the vertices in R can be an element of a clique together with a vertex s j (1 ≤ j ≤ ν). This
implies B j ∩ R = ∅ (1 ≤ j ≤ ν) and therefore the parts A1 ∩ R, . . . ,Ak ∩ R,Bν+1 ∩ R, . . . , Bl ∩ R
constitute an M[k, l − ν]-partition of G ∩ R. This contradicts Lemma 6.

Assume that at least one of the vertices s1, . . . , sν in the spider’s legs is an element of an inde-
pendent set part. This implies k > 0 and then, by Lemma 6, G ∩ R obstructs M[1, l]. Assuming
s1 ∈ A1 without loss of generality, as M is a (1,∗,∗)-block matrix, all vertices in A2, . . . ,Ak must
be adjacent to s1. Because s1 is non-adjacent to the vertices in R, we get A j ∩ R = ∅ (2 ≤ j ≤ k).
This makes A1 ∩ R,B1 ∩ R, . . . , Bl ∩ R an M[1, l]-partition of G ∩ R, a contradiction to the initial
assumption that G ∩ R obstructs M[1, l].

The initial assumption must be wrong and G′ obstructs M.

“⇐” Trivial.

Complementing M yields the following corollary:

Corollary 8. Let M be a (∗,0,∗)-block matrix with k > 0 and let G be a spider graph with
the vertex set V = {c1, . . . , cν, s1, . . . , sν} ∪R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν}
is the spider’s legs, and R is the spider’s head. G obstructs M if and only if G ∖ {s1, . . . , sν}
obstructs M.

Lemma 7. Let M be an (a,b, c)-block matrix with a = 1 and let the graph G have an induced
subgraph P3 B ({x, y, z},{x $ z}). Then G obstructs M[k,0].
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Proof. Assume G had an M[k,0]-partition A1, . . . ,Ak. Because a = 1 and because there are no
clique parts, two vertices are adjacent to each other if and only if they are in different independent
set parts. The non-adjacent vertices x and y must be elements of the same independent set part,
let this part be x, y ∈ A1, without loss of generality. z is adjacent to x, which implies z ∉ A1,
while it is non-adjacent to y, which implies z ∈ A1. This is a contradiction and so G obstructs
M[k,0].

Corollary 9. Let M be an (a,b, c)-block matrix with a = 1 and let G be a spider graph with the
vertex set V = {c1, . . . , cν, s1, . . . , sν} ∪ R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν} is
the spider’s legs, and R is the spider’s head.

Then G ∖ {c1} obstructs M[k,0] and for G ≠ P4, the following statements are true:

• if G is a fat spider graph, the induced subgraph G ∖ {s1, c1} obstructs M[k,0].

• if G is a slim spider graph, the induced subgraph G ∖ {s1, c2} obstructs M[k,0].

Proof. By Lemma 7, we have to show that these graphs contain P3 as an induced subgraph.

G ∖ {c1} contains the induced subgraph G ∩ {c2, s1, s2} = P3.

If G is a fat spider graph, G′ B G∖{s1, c1} contains the non-adjacent vertices sB s2 and cB c2.
If G is a slim spider graph, let the vertices s and c in G′ B G ∖ {s1, c2} be defined as s B s2
and c B c1, so they are non-adjacent again. If there is a vertex r ∈ R, G′ contains the induced
subgraph G ∩ {r, s, c} = P3, as shown in Figure 5.3. For R = ∅, we must have ν > 2 as otherwise
G would be P4. In this case, G′ contains G∩{s2, s3, c3} = P3, which is shown in Figure 5.4.

Figure 5.3.: Example of the induced sub-
graph G ∖ {s1, c1} of a fat spi-
der graph G

Figure 5.4.: Example of a slim spider graph
G ≠ P4 and its induced sub-
graph G ∖ {s1, c2}

Combining the results of Proposition 7, Corollary 8, and Corollary 9 as well as its complement
yields the following proposition since every M-obstruction spider graph G has an M-obstruction
induced subgraph G′ ⊊ G:

Proposition 8. Let M be a (a,b, c)-block matrix with (a,b, c) ∈ {(1,∗,∗), (∗,0,∗)} and let G
be a spider graph. Then G is not a minimal M-obstruction.
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Lemma 8. Let M be an (1,0,∗)-block matrix and let G be a spider graph with the vertex set
V = {c1, . . . , cν, s1, . . . , sν}∪R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν} is the spider’s
legs, and R is the spider’s head. G obstructs M if and only if k = 0 or l = 0 or all of the following
conditions hold:

• G ∩ R obstructs M[1,1].

• G ∩ R obstructs M[k − ν, l − ν].

• If G is a fat spider graph and k ≥ ν, then G ∩ R obstructs M[0, l − ν + 1].

• If G is a slim spider graph and l ≥ ν, then G ∩ R obstructs M[k − ν + 1,0].

Proof. “⇒” Let G obstruct M, k > 0, and l > 0.

Assume G∩R does not obstruct M[1,1]. Then G∩R is partitioned into an independent set A and
a clique B. Obviously, A∪{s1, . . . , sν} ,B∪{c1, . . . , cν} is an M[1,1]-partition of G, so G would
admit the submatrix M[1,1] of M[k, l] = M, which is not possible since G is an M-obstruction.

Assume that G ∩ R does not obstruct M[k − ν, l − ν]. Let the sets A1, . . . ,Ak−ν,B1, . . . , Bl−ν
be an M [k − ν, l − ν]-partition of G ∩R. A1, . . . ,Ak−ν,{c1} , . . . ,{cν} ,B1, . . . , Bl−ν,{s1} , . . .{sν}
comprise an M[k, l]-partition of G. No partition condition is violated, as all independent sets
A1, . . . ,Ak−ν,{c1} , . . . ,{cν} are adjacent to each other and all cliques B1, . . . , Bl−ν,{s1} , . . .{sν}
are non-adjacent to each other. As this is a contradiction to G obstructing M, this proves that
G ∩ R obstructs M[k − ν, l − ν].

By complementing G and M if necessary, we may assume that G is a fat spider graph. Assume
k ≥ ν and that G ∩ R does not obstruct M[0, l − ν + 1], so there is an M[0, l − ν + 1]-partition
B1, . . . , Bl−ν+1 of R. We claim that {c1, s1} ,{c2}, . . . ,{cν},B1, . . . , Bl−ν+1,{s2} , . . . ,{sν} is an
M[ν, l]-partition of G, where {c1, s1} ,{c2}, . . . ,{cν} are ν independent sets and the other parts
B1, . . . , Bl−ν+1,{s2} , . . . ,{sν} are l − ν + 1 + (ν − 1) cliques. As G is a fat spider graph, c1 and
s1 are non-adjacent and therefore {c1, s1} really is an independent set. In a fat spider graph, s1
is adjacent to the vertices c2, . . . , cν, so the partition condition induced by a = 1 (all independent
sets must be adjacent to each other) is not violated. As the vertices s2, . . . , sν are non-adjacent
to each other as well as non-adjacent to the vertices in R, especially to the vertices in the other
cliques B1, . . . , Bl−ν+1, the partition condition following from b = 0 (all cliques must be non-
adjacent to each other) is also not violated. Therefore G admits M[ν, l] and since k ≥ ν, G would
also admit M[k, l].

“⇐” By complementing G and M if necessary, we may assume that G is a fat spider graph. Let
G admit M, so there is an M-partition A1, . . . ,Ak,B1, . . . , Bl of G. As a spider graph and because
a = 0 and b = 1, Corollary 9 implies that G obstructs M[k,0] and M[0, l], so we may assume
k > 0 and l > 0. We may also assume that R is not empty, as otherwise G ∩ R admits M[1,1].

Let n ∈ {0, . . . , ν} be the number of vertices in the spider’s legs that are in one of the independent
set parts, nB ∣{s1, . . . , sν}∩⋃k

i=1 Ai∣. Let these vertices without loss of generality be s1, . . . , sn ∈
⋃k

i=1 Ai and let the other ν− n vertices sn+1, . . . , sν ∈ ⋃l
j=1 B j be in clique parts. Because of a = 1,

a vertex in an independent set part must be adjacent to all vertices in different independent set
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parts. As s1, . . . , sn are non-adjacent to each other, these vertices must be elements of the same
independent set part, s1, . . . , sn ∈ A1 without loss of generality.

Case n > 1. The vertices c1, . . . , cn cannot be in one of the parts A1, . . . ,Ak: Each of these
vertices is adjacent to one of the vertices s1, . . . , sn ∈ A1 and so cannot be in the independent set
A1. Also, every vertex c1, . . . , cn is non-adjacent to one of the vertices s1, . . . , sn and therefore
cannot be placed in one of the other independent set parts A2, . . . ,Ak, as a = 1 requires vertices in
different independent set parts to be adjacent. As the vertices c1, . . . , cn are adjacent to each other
and as b = 0 implies that vertices in different clique parts are non-adjacent, all of the vertices
c1, . . . , cn are in the same clique part, c1, . . . , cn ∈ B1 without loss of generality. All vertices in
R ∩ A j with 2 ≤ j ≤ k must be adjacent to all vertices in A1, especially to s1. Because R does
not contain any vertices adjacent to s1, R ∩ A j is empty. Similarly, R ∩ B j is empty for 2 ≤ j ≤ l,
because R does not contain vertices non-adjacent to c1 ∈ B1. Because of R ⊂ A1 ∪ B1, the graph
G ∩ R admits M[1,1].

Case n = 1. We have s1 ∈ A1 and the other vertices in the spider’s leg s2, . . . , sν are elements
of clique parts. As s2, . . . , sν are non-adjacent to each other, these vertices are in ν − 1 different
parts, s j ∈ B j−1 (2 ≤ j ≤ ν) without loss of generality. Any vertex in A2, . . . ,Ak must be adjacent
to s1 ∈ A1, which is not the case for the vertices in R. Because the clique parts B1, . . . , Bν−1 all
contain one of the vertices s2, . . . , sν and each of those vertices are non-adjacent to the vertices
in R, we have R ⊂ A1 ∪ (⋃l

j=ν B j).

c1 ∈ ⋃k
i=2 Ai is not possible, as c1 is non-adjacent to s1 ∈ A1 and so a = 1 prevents c1 being an

element of any independent set part other than A1. If we have c1 ∈ A1, the vertices in R are
adjacent to c1 ∈ A1 and thus are not elements of the independent set A1. This implies that G ∩ R
admits M[0, l − ν + 1], so we may assume c1 ∈ ⋃l

j=1 B j. The vertex c1 is not an element of a
clique part different to B1, because c1 is adjacent to s2 ∈ B1 in spite of b = 0. Thus, c1 ∈ B1,
which implies R∩ B j = ∅ (2 ≤ j ≤ l) because c1 and the vertices in R are adjacent and vertices in
different clique parts must be non-adjacent since we have b = 0. This results in R ⊂ B1 ∪ A1 and
so G ∩ R admits M[1,1].

Case n = 0. Every vertex in the spider’s legs has its own clique part, s j ∈ B j (1 ≤ j ≤ ν) without
loss of generality. If in addition every vertex in the spider’s body has its own independent set
part, c j ∈ A j (1 ≤ j ≤ ν) without loss of generality, then no vertex in R can be an element of
one of the parts A1, . . . ,Aν,B1, . . . , Bν as R is adjacent to a vertex in each A j but non-adjacent to
a vertex in each B j (1 ≤ j ≤ ν). G ∩ R therefore admits M[k − ν, l − ν]. Thus, we may assume
c1 ∈ B j for some j ∈ {1, . . . , k}. j ≠ 2 is impossible since s2 ∈ B2 is adjacent to c1 and vertices in
different clique parts must be non-adjacent because b = 0. For ν > 2, s3 ∈ B3 is also adjacent to
c1 and j ≠ 3 is also impossible, so ν must be 2. c2 cannot be an element of a clique part B j with
j > 1 since s1 ∈ B1 and c2 are adjacent. On the other hand, c2 ∈ B1 is also impossible because
c1 ∈ B2 and c2 are adjacent. Therefore, c2 must be an element of an independent set part, c2 ∈ A1
without loss of generality. The vertices in R cannot be elements of A1 because c2 ∈ A1 and they
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cannot be elements of any B j (1 ≤ j ≤ l) because s2, c1 ∈ B2. This implies R ⊂ ⋃k
j=2 A j and

eventually that G ∩ R admits M[k − 1,0] = M[k − ν + 1,0].

Lemma 9. Let M be an (a,b, c)-block matrix with c = 0 and let G be a connected graph.

G admits M if and only if G admits M[k,0] or G admits M[0, l].

Proof. “⇒” Let G admit M. Because c = 0, if two vertices are adjacent, they must both be
elements of independent set parts or both must be elements of clique parts. Repeated usage
of this fact on all vertex pairs in a path between two connected vertices implies that connected
vertices must be both elements of independent set parts or both elements of clique parts. As G
has only one connected component, either all independent set parts are empty or all clique parts
of an M-partition are empty.

“⇐” Trivial.

All spider graphs are connected and their complemented graphs are also connected, so by pos-
sibly complementing M and G, the preceding lemma can be applied to an even greater number
of matrices if G is a spider graph:

Corollary 10. Let M be an (a,b, c)-block matrix with c ≠ ∗ and let G be a spider graph.

G admits M if and only if G admits M[k,0] or G admits M[0, l].

Lemma 10. Let M be an (a,b, c)-block matrix with c ≠ ∗ and let G be a spider graph with the
vertex set V = {c1, . . . , cν, s1, . . . , sν} ∪ R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν} is
the spider’s legs, and R is the spider’s head.

If G ∖ {s1} admits M[k,0] then G ∩ R admits M[k − ν,0].

Proof. Let G′ B G ∖ {s1} admit M[k,0], then there is an M[k,0]-partition A1, . . . ,Ak of G′.

The vertices c1, . . . , cν are adjacent to each other, so they must be in ν different parts, c1 ∈ A1, . . .,
cν ∈ Aν without loss of generality. Each vertex in R is adjacent to each of the vertices c1, . . . , cν,
so the vertices in R cannot be elements of the independent sets A1, . . . ,Aν. A1 ∩ R, . . . ,Ak ∩ R
is an M[k,0]-partition of G ∩ R and A j ∩ R = ∅ (1 ≤ j ≤ ν), so Aν+1, . . . ,Ak is an M[k − ν,0]-
partition.

Lemma 11. Let M be an (a,b, c)-block matrix with c ≠ ∗ and let G be a spider graph with the
vertex set V = {c1, . . . , cν, s1, . . . , sν} ∪ R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν} is
the spider’s legs, and R is the spider’s head.

G admits M[k,0] if and only if G ∩ R admits M[k − ν,0] and a = ∗.
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Proof. “⇒” This is an immediate result of Lemma 10 and Corollary 9.

“⇐” Let G ∩ R admit M[k − ν,0] and a = ∗. There is an M[k − ν,0]-partition Aν+1, . . . ,Ak of
G ∩ R. Let the parts A1, . . . ,Aν be defined as

A j B

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{s j, c j} if G is a fat spider,
{s j, c j+1} if G is a slim spider and j < ν,
{s j, c1} if G is a slim spider and j = ν.

Obviously, the parts A1, . . . ,Ak are independent sets. a = ∗ does not impose any restrictions on
the adjacency of vertices in different independent sets and there are no further partition condi-
tions as there are no clique parts. Thus, A1, . . . ,Ak are a M[k,0]-partition of G.

Complementing G and M in Lemmas 10, Lemma 11, and Corollary 9 yields the following
corollary:

Corollary 11. Let M be an (a,b, c)-block matrix with c ≠ ∗ and let G be a spider graph with
the vertex set V = {c1, . . . , cν, s1, . . . , sν} ∪R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν}
is the spider’s legs, and R is the spider’s head.

• G admits M[0, l] if and only if G ∩ R admits M[0, l − ν] and b = ∗.

• If G ∖ {c1} admits M[0, l] and b = ∗ then G admits M[0, l].

• If b = 0 then G ∖ {s1} obstructs M[0, l].

• If b = 0 and G ≠ P4, then G ∖ {s1, c1} or G ∖ {s2, c1} obstructs M[0, l].

Table 5.1 summarizes the results found in Lemmas 10 and 11 as well as in Corollaries 9 and 11.
In the table, assume c ≠ ∗ and that G are a spider graph. The first column contains the possible
combinations of a, b, and c while the second column contains statements that are equivalent to
"G obstructs M" and the third column contains statements that must be true if G obstructs M.
The abbreviation "obs." stands for "obstructs".

(a,b, c) The spider graph G obstructs M...
equivalent to precondition

(∗,∗,0) G ∩ R obs. M[k − ν,0] and M[0, l − ν] -
(∗,∗,1) G ∩ R obs. M[k − ν,0] and M[0, l − ν] -
(1,∗,0) G ∩ R obs. M[0, l − ν] G ∖ {c1} obs. M[k,0] and M[0, l]
(1,∗,1) G ∩ R obs. M[0, l − ν] G ∖ {c1} obs. M
(∗,0,0) G ∩ R obs. M[k − ν,0] G ∖ {s1} obs. M
(∗,0,1) G ∩ R obs. M[k − ν,0] G ∖ {s1} obs. M[k,0] and M[0, l]
(1,0,0) always -
(1,0,1) always -

Table 5.1.: Summarized results for spider graphs and c ≠ ∗
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Lemma 12. Let M be an (a,b, c)-block matrix with a = ∗,b ∈ {0,∗}, c ∈ {0,∗} and let G =
G1 ∪G2 be a disconnected graph. Then G obstructs M if and only if

∃ j ∈ {0, . . . , l + 1} such that G1 obstructs M[k, j − 1] and G2 obstructs M[k, l − j]

Proof. “⇒” Assume that G obstructs M. Let j−1 be the greatest number smaller than l+1 such
that G1 obstructs M[k, j − 1]. Such a number exists as obviously G1 obstructs M[k,−1]. If G1
admits M[k, j], then G2 obstructs M[k, l − j] by Lemma 5. If G1 does not admit M[k, j], then j
must be l + 1 and therefore G2 also obstructs M[k, l − j] = M[k, l − (l + 1)] = M[k,−1].

“⇐” Let j ∈ {0, . . . , l + 1} be such that G1 obstructs M[k, j−1] and G2 obstructs M[k, l− j]. For
every j′ ≤ j, G1 obstructs M[k, j′ − 1] because it is a submatrix of M[k, j − 1]. For every j′ ≥ j,
G2 obstructs M[k, l − j′] because it is a submatrix of M[k, j − 1].

Assume contrary to the original claim that G admits M. By Lemma 1, there exist sets of parts
P,Q ⊂ N∗

k+l such that G1 admits MP, G2 admits MQ, and MP,Q contains no 1. M contains 1s
only in the diagonal, so the last condition implies that P and Q do not share parts with 1 in the
diagonal. Therefore MP is a submatrix of M[k, j′ − 1] and MQ is a submatrix of M[k, l − j′]
with j′ ∈ {1, . . . , l}. As G1 admits the submatrix MP, it also admits M[k, j′ − 1] and, similarly,
MQ also admits M[k, l − j′]. This contradicts the fact that no j′ ∈ N with such a property exists.
Thus, G obstructs M.

Lemma 13. Let M be an (a,b, c)-block matrix with a = 1,b ∈ {0,∗}, c ∈ {0,∗} and let G = G1∪
G2 be a disconnected graph. Then G obstructs M if and only if there exist i, j, λ ∈ {0, . . . , l + 1}
such that the following holds

1. G1 obstructs M[k, i − 1] and G2 obstructs M[0, l − i],

2. G2 obstructs M[k, j − 1] and G1 obstructs M[0, l − j],

3. i + j < l + 2, and

4. if k > 0 then G1 obstructs M[1, λ − 1] and G2 obstructs M[1, l − λ].

Proof. “⇒” Assume that G = G1 ∪G2 obstructs M.

Let i be the smallest number in {0, . . . , l} such that G1 admits M[k, i] or i B l + 1 if no such
number exists. By definition, G1 obstructs M[k, i − 1]. For i = l + 1, G2 obviously obstructs
M[0, l − i], so assume i ≤ l. If G2 admits M[0, l − i], then there are an M[0, l − i]-partition
B1, . . . , Bl−i of G2 and an M[k, i]-partition A1, . . . ,Ak+i of G1. A1, . . . ,Ak+i,B1, . . . , Bl−i is an
M[k, l]-partition of G, a contradiction, so G2 obstructs M[0, l − i].

By exchanging G1 and G2 as well as replacing i with j in the proof above, the claim that G2
obstructs M[k, j − 1] and G1 obstructs M[0, l − j] is proved.

Hence, there exist i, j ∈ {0, . . . , l + 1} such that the first two conditions of the claim are satisfied.
Assume now that i, j ∈ {0, . . . , l + 1} are the lowest numbers such that the first two conditions are
satisfied. Then G1 obstructs M[k, i−1] and thus G1 also obstructs M[k, i−2]. So if G2 obstructs
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M[0, l− (i− 1)], then not only i but also i− 1 satisfies the first condition, in which case we have
i = 0. For i > 0, G2 admits M[0, l−(i−1)] and so i is the smallest number such that G2 obstructs
M[0, l− i]. G2 obstructs M[k, j− 1] and therefore G2 obstructs M[0, j− 1] and thus l− i ≥ j− 1,
for i = 0 as well as i > 0. Hence, we have l − i ≥ j − 1⇔ j + i < l + 2.

For the proof of the last of the four conditions, assume k > 0. Let λ be the smallest number in
{0, . . . , l} such that G1 admits M[1, λ] or λ B l + 1 if G1 obstructs M[1, x] for all x ∈ {0, . . . , l}.
For λ = l + 1, G2 obviously obstructs M[1,−1] = M[1, l − λ]. Assume λ ≤ l and assume G2
had an M[1, l − λ]-partition C,D1, . . . ,Dl−λ. Together with the M[1, λ]-partition A,B1, . . . , Bλ
of G1, there is an M[1, l]-partition A ∪ C,B1, . . . , Bλ,D1, . . . ,Dl−λ of G. Contradicting to the
first assumption of this proof, G admits M[1, l] and therefore also admits M[k, l]. Hence, the
assumption that G2 admits M[1, l − λ] must be wrong. By the definition of λ, G1 obstructs
M[1, λ − 1] which proves the fourth condition.

“⇐” Assume that G = G1 ∪G2 admits M. This proof will show that one of the four conditions
is violated. Let A1, . . . ,Ak,B1, . . . , Bl be an M[k, l]-partition of G. As B1, . . . , Bl are cliques,
each of them is a subset of V1 or a subset of V2. By reordering the parts, we may assume
(B1 ∪ . . . ∪ Bµ) ⊂ V1 and (Bµ+1 ∪ . . . ∪ Bl) ⊂ V2 with µ ∈ {0, . . . , l}. Depending on which of the
independent set parts are non-empty, two cases can be distinguished:

Case 1: There are at least two independent set parts that are non-empty. Without
loss of generality, there is a vertex v ∈ A1 and a vertex w ∈ A2. Because a = 1, vertices in
different independent set parts must be adjacent to each other and must therefore be in the same
induced subgraph, either G1 or G2. All vertices in A2, . . . ,Ak, especially w, must therefore be
in the same induced subgraph as v, and all vertices in A1 must be in the same induced subgraph
as w, which is the same induced subgraph as v. We may assume, without loss of generality,
⋃k

x=1 Ax ⊂ V1 with G1 = (V1,E1). Thus, G1 has an M[k, µ]-partition A1, . . . ,Ak,B1, . . . , Bµ and
G2 has an M[0, l − µ]-partition Bµ+1, . . . , Bl. For any i ∈ {0, . . . , µ}, G2 admits M[0, l − i], and
for i ∈ {µ + 1, . . . , l + 1}, G1 admits M[k, i − 1], which violates the first of the four conditions.

Case 2: At most one of the independent set parts is non-empty. Without loss of gen-
erality, Ax = ∅ (2 ≤ x ≤ k). A1,B1, . . . , Bµ is an M[1, µ]-partition of G1 and A1,Bµ+1, . . . , Bl

is an M[1, l − µ]-partition of G2. For any λ ∈ {0, . . . , µ}, G2 admits M[1, l − λ] and for any
λ ∈ {µ + 1, . . . , l + 1}, G1 admits M[1, λ − 1]. In any case, the fourth condition is violated.

With the results already found in this chapter, we can obtain an upper limit for the size of a mini-
mal M-obstruction, P4-sparse graph. In order to prove this upper limit, the limit will be shown to
be correct for so called staircase-like collections of matrices and then applied to the special case
of a single matrix M. Therefore, the definition of staircase-like matrix collections precedes the
proof that these collections adhere to the upper limit mentioned above. The following definition
is taken from [FHH06], Theorem 4.3.
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Definition 24. LetM= {M0, . . . ,Mr} be a collection of (a,b, c)-block matrices with r ∈ N and
let ki, li ∈ N be chosen such that Mi = M[ki, li] (0 ≤ i ≤ r). M is staircase-like if ki ≤ k j and
li ≥ l j for all i < j.

For any staircase-like collection of matrices M as defined above, we define k−1 B −1 and
lr+1 B −1.

Lemma 14. Let a ∈ {1,∗}, b ∈ {0,∗}, c ∈ {0,1,∗} be fixed and letM(a,b,c) be defined as the set
of all (a,b, c)-block matrices. Let the function f ∶⊂ P(M(a,b,c)) Ð→ N be defined for each finite,
non-empty, staircase-like collection of (a,b, c)-block matrices M = {M[k0, l0]; . . . ; M[kr, lr]}
as

f ∶ M z→
r

∑
i=0

(ki − ki−1)(li + 1) =
r

∑
i=0

(li − li+1)(ki + 1)

Then f is well defined and, for r > 0 and each j ∈ {0, . . . , r}, f (M) ≥ f (M∖ {M[k j, l j]}).

Proof. We will first show that f is well-defined and start by showing that the two sums are equal.

r

∑
i=0

(ki − ki−1)(li + 1) =kr(lr+1 + 1) − k−1(l0 + 1) +
r

∑
i=0

(ki(li + 1) − ki(li+1 + 1))

=l0 + 1 +
r

∑
i=0

ki(li − li+1) +
r

∑
i=0

(li − li+1) −
r

∑
i=0

(li − li+1)

=l0 + 1 +
r

∑
i=0

(ki + 1)(li − li+1) − l0 + lr+1

=
r

∑
i=0

(ki + 1)(li − li+1)

For r > 0 and j = r, the inequality f (M) = ∑r
i=0(ki − ki−1)(li + 1) ≥ ∑r−1

i=0 (ki − ki−1)(li + 1) =
f (M ∖ {M[kr, lr]}) follows immediately from the definition of f and kr − kr−1 ≥ 0, lr ≥ 0.
Now the inequality f (M) ≥ f (M ∖ {M[k j, l j]}) for j ∈ {0, . . . , r − 1} is shown. As M is
staircase-like, we have l j ≥ l j+1 and k j − k j−1 ≥ 0, so we see

f (M) =(k j − k j−1)(l j + 1) + (k j+1 − k j)(l j+1 + 1) + ∑
0≤i≤r

i∉{ j, j+1}

(ki − ki−1)(li + 1)

≥(k j − k j−1 + k j+1 − k j)(l j+1 + 1) + ∑
0≤i≤r

i∉{ j, j+1}

(ki − ki−1)(li + 1)

= f (M∖ {M[k j, l j]})

Theorem 7. Let a ∈ {1,∗}, b ∈ {0,∗}, c ∈ {0,1,∗} be fixed. LetM= {M[k0, l0]; . . . ; M[kr, lr]}
be a staircase-like collection of (a,b, c)-block matrices. Let G be a P4-sparse, minimal M-
obstruction graph. Then G has at most f (M) vertices.
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Proof. The proof will use induction over the size of the graph G. For the induction basis,
let G0 be a minimal M-obstruction, P4-sparse graph consisting of only one vertex. Because
(k0 − k−1) (l0 + 1) ≥ 1 and (ki − ki−1)(li + 1) ≥ 0 (1 ≤ i ≤ r), we have f (M) ≥ 1 = ∣G∣ and so the
proposition is correct for ∣G∣ = 1.

Assume all graphs G′ with a lower number of vertices than G have at most f (M′) vertices
if there is an (a,b, c)-block matrix set M′ such that G′ is a minimal M′-obstruction. As a
P4-sparse graph, G has a tree representation and its root node is either a spider node, in which
case G is a spider graph, or G has a node labeled ∪ or ∩, in which case G or its complement is
disconnected. Each of these two cases has subcases depending on the values of a, b, and c.

Case 1: G is a spider graph. In this case, G is a spider graph with the vertex set V =
{c1, . . . , cν, s1, . . . , sν} ∪ R where {c1, . . . , cν} is the spider’s body, {s1, . . . , sν} is the spider’s
legs, and R is the spider’s head.

Subcase 1a: (a,b, c) = (∗,∗,∗) For 0 = l0 ≥ li (0 ≤ i ≤ r), G is obviously a minimal M-
obstruction if and only if it is a minimal M[kr,0]-obstruction. By Corollary 7, G is a cograph
in this case and therefore cannot be a spider graph. Similarly, for 0 = kr ≥ ki (0 ≤ i ≤ r), G is
a minimal M[0, l0]-obstruction and therefore a cograph and not a spider graph. Hence, assume
l0 > 0 and kr > 0.

G ∩ R admits a matrix M[k j, l j] ∈ M because G ∩ R ≠ G is an induced subgraph of the
minimal M-obstruction G. Thus, there is an M[k j, l j]-partition A1, . . . ,Ak j ,B1, . . . , Bl j , where
A1, . . . ,Ak j are independent sets and B1, . . . , Bl j are cliques. The vertices s1, . . . , sν are non-
adjacent to the vertices in R and therefore A1 ∪ {s1, . . . , sν} is an independent set. The ver-
tices c1, . . . , cν are adjacent to the vertices in R and so B1 ∪ {c1, . . . , cν} is a clique. Thus,
A1 ∪ {s1, . . . , sν},A2, . . . ,Ak j ,B1 ∪ {c1, . . . , cν},B2, . . . , Bl j is an M[k j, l j]-partition of G, which
contradicts that G is anM-obstruction. This implies that in the subcase (a,b, c) = (∗,∗,∗), G
must not be a spider graph.

Subcase 1b: (a,b, c) ∈ {(1,∗,∗), (∗,0,∗)}. By Proposition 8, G cannot be a minimalM-
obstruction, so this subcase is impossible.

Subcase 1c: (a,b, c) = (1,0,∗). Assume G = P4, the smallest possible spider graph. We
have f (M) < 4 = ∣P4∣ only if

M⊂ {M[0,1]; M[0,2]; M[1,0]; M[2,0]} and {M[0,2]; M[2,0]} ⊄M.

The graph P3 is an induced subgraph of P4 and P3 obstructs {M[0,1]; M[0,2]; M[1,0]}. The
graph P3, the complement of P3, is also an induced subgraph of P4 and obstructs the matrix set
{M[0,1]; M[1,0]; M[2; 0]}. In all cases with f (M) < ∣P4∣, P4 is not a minimalM-obstruction,
because P4 has an M-obstruction as an induced subgraph. We may assume G ≠ P4 in the
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following. As a result, we may further assume M[k, l] ∈ M with k > 0 ∧ l > 0, as otherwise the
induced subgraph P4 of G would obstructM, which is a result of Lemma 8: Every spider graph
and especially P4 obstructs M[0, l] and M[k,0] for every k, l ∈ N. Because G obstructs a matrix
M[k, l] with k > 0 and l > 0, G ∩ R obstructs M[1,1] by Lemma 8.

By possibly complementing G and M, we may assume that G is a fat spider graph with 2ν
vertices in the spider’s body and legs.

The induced subgraph G′ B G ∖ {s1, c1} of G is a spider graph for ν > 2. As a result of Lemma
8, G′ obstructs M[ν − 2, x] and M[x, ν − 2] for all x ∈ N, as well as M[ν − 1, ν − 1], M[ν, ν − 1].
G is a minimalM-obstruction, so G′ does not obstructM and thereforeM contains a matrix
M[k j, l j] with j ∈ {0, . . . , r} that G′ admits. This obviously implies (k j > ν − 2) ∧ (l j > ν − 2) ∧
(l j = ν − 1⇒ k j > ν). Therefore, we may distinguish the following cases, of which at least one
occurs:

• ∃M[k j, l j] ∈ M such that k j > ν ∧ l j > ν

• ∃M[k j, l j] ∈ M such that k j > ν ∧ l j = ν

• ∃M[k j, l j] ∈ M such that k j = ν ∧ l j ≥ ν

• ν > 2 ∧ ∃M[k j, l j] ∈ M such that k j = ν − 1 ∧ l j ≥ ν

• ∃M[k j, l j] ∈ M such that k j > ν ∧ l j = ν − 1

• ν = 2 andM⊂ ({M[0, y] ∣ y ∈ N} ∪ {M[1, z] ∣ z ∈ N} ∪ {M[2,1]} ∪ {M[x,0] ∣ x ∈ N})

Assume that M contains a matrix M[k j, l j] with k j > ν ∧ l j ≥ ν. Let s B min{s′ ∣ ks′ ≥ ν},
t B min{t′ ∣ kt′ > ν}, and uB max{u′ ∣ lu′ ≥ ν}. Note that ls ≥ ν, lt ≥ ν, and ku > ν becauseM is
staircase-like. By Lemma 8, G ∩ R is a minimal M̃-obstruction with

M̃B
⎧⎪⎪⎨⎪⎪⎩

{M[0, ls − ν + 1],M[1,1],M[kt − ν, lt − ν], . . . ,M[ku − ν, lu − ν]} if lt = ν,
{M[0, ls − ν + 1],M[kt − ν, lt − ν], . . . ,M[ku − ν, lu − ν]} if lt > ν.

In both cases, M̃ is staircase-like so the inductive assumption can be applied to G ∩ R and M̃.
For lt > ν (⇔∃M[k j, l j] ∈ M.k j > ν ∧ l j > ν), this implies

∣G ∩ R∣ ≤ f (M̃)

=ls − ν + 1 − (lt − ν) +
u−1

∑
i=t

(li − ν − (li+1 − ν))(ki − ν + 1) + (lu − ν + 1)(ku − ν + 1)

=ls − lt + 1 +
u−1

∑
i=t

(li − li+1)(ki − ν + 1) − ν(lu + ku − ν + 2) + (lu + 1)(ku + 1)

=ls − lt +
u−1

∑
i=t

(li − li+1)(ki + 1) + (lu + 1)(ku + 1) − ν(lt − lu) − ν(lu + ku − ν + 2) + 1

≤
r

∑
i=0

(li − li+1)(ki + 1) − ν(lt + ku − ν + 2) + 1

= f (M) + 1 − ν(lt + ku − ν + 2)
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Remembering lt > ν ≥ 2 and ku > ν ≥ 2, we see ∣G ∩ R∣ ≤ f (M) − 2ν and therefore ∣G∣ =
∣G ∩ R∣ + 2ν ≤ f (M).

For lt = ν, we see

∣G ∩ R∣ ≤ f (M̃)
=ls − ν + 1 − 1 + (1 + 1) ⋅ (1 − (lt − ν))

+
u−1

∑
i=t

(li − ν − (li+1 − ν))(ki − ν + 1) + (ku − ν + 1)(lu − ν − (−1))

=ls − lt +
u−1

∑
i=t

(li − li+1)(ki + 1) − ν(lt − lu) + (ku + 1)(lu + 1) + 2

− ν(ku + lu − ν + 2)

≤
r

∑
i=0

(ki + 1)(li − li+1) + 2 − ν(ku + lt − ν + 2)

= f (M) + 2 − ν(ku + 1) < f (M) − 2ν

Thus, G has at most ∣G∣ = 2ν + ∣G ∩ R∣ ≤ f (M) vertices.

Now assume that the first two cases do not apply but that there is a matrix M[k j, l j] ∈ M with
k j = ν ∧ l j ≥ ν. Let s be the lowest number satisfying this condition, s B min{s′ ∣ ks′ = ν} (this
implies ls ≥ ν, asM is staircase-like). By Lemma 8, G ∩ R is a minimal M̃-obstruction with

M̃B {M[0, ls − ν + 1],M[1,1]}

M̃ obviously is staircase-like, so the inductive assumption applies:

∣G ∩ R∣ ≤ f (M̃) = ls − ν + 1 − 1 + (1 + 1)(1 − (−1))
= ls − ν + 2 ⋅ 2
= 2 ⋅ 2 + ls + ks − ks − ν
≤ ls ⋅ ks + ls + ks − 2ν

< (ls + 1)(ks + 1) − 2ν

≤
r

∑
i=0

(li − li+1)(ki + 1) − 2ν = f (M) − 2ν

Again we conclude ∣G∣ = ∣G ∩ R∣ + 2ν ≤ f (M).

If the first three cases do not apply, which implies ki < ν ∨ li < ν (0 ≤ i ≤ r), assume that we have
ν > 2 and that there is a matrix M[k j, l j] ∈ M with k j = ν − 1 ∧ l j ≥ ν. By Lemma 8 and for any
F ⊂ R, the induced subgraph G∖F of G would obstructM if G∩(R∖F) obstructed M[1,1]. G
is a minimalM-obstruction, so this is only true for F = ∅. Hence, G ∩ R is a minimal M[1,1]-
obstruction and so we have ∣R∣ ≤ f ({M[1,1]}) = 4 by the inductive assumption. Considering
ν > 2, the number of vertices of G is

∣G∣ ≤ 2ν + 4 ≤ (ν − 1)ν + ν − ν + 4 < ν2 + ν = ν ⋅ (ν + 1) ≤ (k j + 1)(l j + 1) ≤ f (M)
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Now assume li < ν (0 ≤ i ≤ r) and that there is a matrix M[k j, l j] ∈ M with k j > ν ∧ l j = ν − 1.
For the same reasons as in the previous case, G ∩ R is a minimal M[1,1]-obstruction, ∣R∣ ≤ 4,
and so we have

∣G∣ ≤ 2ν + 4 ≤ ν2 + 2ν = ν ⋅ (ν + 2) ≤ (l j + 1)(k j + 1) ≤ f (M)

As the last possibility in subcase (a,b, c) = (1,0,∗), we consider ν = 2 and

M⊂ ({M[0, y] ∣ y ∈ N} ∪ {M[1, z] ∣ z ∈ N} ∪ {M[2,1]} ∪ {M[x,0] ∣ x ∈ N})

As in the previous two cases, R is a minimal M[1,1]-obstruction because if G ∩ (R ∖ F) with
F ⊂ R and F ≠ ∅ obstructs M[1,1], then G ∖ F obstructs M because of Lemma 8. Thus,
we have ∣R∣ ≤ f ({M[1,1]}) = 4 and therefore ∣G∣ = 2ν + ∣R∣ ≤ 8. Hence, we may assume
{M[1, z] ∣ z ∈ N∧ z > 2} ∩M = ∅ as otherwise we would have f (M) ≥ f ({M[1,3]}) = 8 ≥ ∣G∣
by Lemma 14.

Assume the induced subgraph GS B G ∖ {c1, c2} of G had an M[x,1]-partition A1, . . . ,Ax,B1
with x ∈ N. Because G ∩ R ⊂ GS obstructs M[1,1], at least two of the independent set parts
contain vertices of R, let r1 ∈ R ∩ A1, r2 ∈ R ∩ A2 without loss of generality. Vertices in two
different independent set parts must be adjacent because a = 1. Since s1, s2 and r2 ∈ A2 are non-
adjacent, s1 as well as s2 can neither be in A1 nor in Ai (2 ≤ i ≤ x) as s1, s2 and r1 ∈ A1 are also
non-adjacent. This implies s1, s2 ∈ B1, which is also impossible since B1 is a clique although
s1 and s2 are non-adjacent. This disproves the assumption that GS admits M[x,1]. Assume
instead that GS has an M[0,2]-partition B1,B2. As G ∩ R obstructs M[1,1] and therefore also
M[0,1], there are two vertices r1 ∈ R ∩ B1 and r2 ∈ R ∩ B2. The vertex s1 is non-adjacent to
r1 and r2 and therefore cannot be in any of the cliques B1 and B2, which shows that GS has no
M[0,2]-partition. Taking the two results together, GS obstructs {M[0,2]; M[x,1]} for all x ∈ N.
Similarly, GC B G ∖ {s1, s2} obstructs {M[1, y]; M[2,0]} for all y ∈ N.

Because G is a minimalM-obstruction, every induced subgraph of G must admit some matrix
M ∈ M. IfM contains neither M[2,1] nor M[1,2], then GS or GC obstructsM, so this is not
possible. IfM contains only one of these two matrices, without loss of generality M[2,1] ∈ M,
there must be a matrix M[0, y] ∈ M with y > 2 as otherwise GS obstructs M. Let y be the
greatest number such that M[0, y] ∈ M. Then we have

f (M) ≥ f ({M[0, y]; M[2,1]}) = (0 − (−1))(y + 1) + (2 − 0)(1 + 1) = y + 5 ≥ 8 ≥ ∣G∣

Similarly, M[x,0],M[1,2] ∈ M with x > 2 also implies f (M) ≥ ∣G∣. For {M[1,2]; M[2,1]} ⊂
M, we see

f (M) ≥ f ({M[1,2]; M[2,1]}) = (1 − (−1))(2 + 1) + (2 − 1)(1 + 1) = 8 ≥ ∣G∣
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Subcase 1d: (a,b, c) ∈ {(∗,∗,0); (∗,∗,1)}. Assume first l0 > ν ∧ kr > ν. G is a minimal
M-obstruction, so we see in Table 5.1 that G ∩ R is a minimal M̃-obstruction with

M̃B {M[0, l0 − ν]; M[kr − ν,0]}

M̃ is staircase-like, so the inductive assumption limits the size of R to

∣G ∩ R∣ ≤ f (M̃)
=(0 − (−1))(l0 − ν + 1) + (kr − ν − 0)(0 + 1)
=l0 + kr + 1 − 2ν

≤ f (M) − 2ν

This proves the proposition: ∣G∣ = ∣R∣ + 2ν ≤ f (M) − 2ν + 2ν = f (M).

For l0 ≤ ν∨kr ≤ ν, note that G∖{s1} is a {M[k0,0]; . . . ; M[kr,0]}-obstruction by Lemma 11 and
Lemma 10. Corollary 11 implies that G∖{c1} is a {M[0, l0]; . . . ; M[0, lr]}-obstruction. Neither
G ∖ {s1} nor G ∖ {c1} are complete or empty, so both obstruct M[1,0] and M[0,1]. By Lemma
9, possibly with complemented G and M, if c = 0, G ∖ {s1} obstructs M[1,1] and, if c = 1,
G ∖ {c1} obstructs M[1,1]. This implies l0 > 0, kr > 0, and l0 > 1 ∨ kr > 1, so f (M) ≥ 4 and we
may assume G ≠ P4.

Now assume ν > 2. As shown in Table 5.1, G obstructs a matrix M[ki, li] ∈ M (0 ≤ i ≤ r)
if and only if G ∩ R obstructs M[ki − ν,0] as well as M[0, li − ν]. Similarly, the spider graph
G∖{s1, c1} obstructs M[k, l] if and only if (G∖{s1, c1})∩R obstructs M[k−(ν−1),0] as well
as M [0, l − (ν − 1)] (k, l ∈ N). Thus, G∖{s1, c1} obstructs {M[ki, li] ∣ ki < ν ∧ li < ν ∧ 0 ≤ i ≤ r}.
G ∖ {s1, c1} is an induced subgraph of both G ∖ {s1} and G ∖ {c1}, so G ∖ {s1} obstructs
{M[k0,0]; . . . ; M[kr,0]} ∪ {M[ki, li] ∣ ki < ν ∧ li < ν ∧ 0 ≤ i ≤ r} and G ∖ {c1} obstructs
{M[0, l0]; . . . ; M[0, lr]} ∪ {M[ki, li] ∣ ki < ν∧ li < ν∧ 0 ≤ i ≤ r}. Since G ∖ {c1} and G ∖ {s1} do
not obstructM, there must be matrices M[ks, ls],M[kt, lt] ∈ Mwith ks > 0∧(ls ≥ ν∨ks ≥ ν) and
kt > 0 ∧ (lt ≥ ν ∨ kt ≥ ν). As we have l0 ≤ ν ∨ kr ≤ ν, we may assume l0 ≥ ls ≥ ν ∧ 0 < ks ≤ kr ≤ ν
by possibly complementing G and M. As another result of Table 5.1, we see that G ∩ R is a
minimal {M[0, l0 − ν]}-obstruction and, by the inductive assumption, G ∩R therefore has a size
of at most f ({M[0, l0 − ν]}) = l0 − ν + 1, so the size of G is ∣G∣ = 2ν + ∣R∣ ≤ ν + l0 + 1.

k0 = 0 implies s ≠ 0 and then f (M) is

f (M) =
r

∑
i=0

(li + 1)(ki − ki−1) ≥ l0 + 1 + (ls + 1) ⋅ ks > l0 + 1 + ν ≥ ∣G∣

k0 > 0 on the other hand implies

f (M) =
r

∑
i=0

(li + 1)(ki − ki−1) ≥ (l0 + 1)(k0 + 1) ≥ 2l0 + 2 > l0 + ν + 1 ≥ ∣G∣

All cases except ν = 2∧l0 > 0∧kr > 0∧(l0 ≤ ν∨kr ≤ ν) have now been dealt with. If l0 ≤ ν∧kr ≤ ν
then G ∩ R obviously obstructs M[ki − ν,0] and M[0, li − ν], so G ∖ R obstructs M as shown
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in Table 5.1. This is only possible for G ∖ R = G since G is a minimalM-obstruction, which
shows R = ∅ although this is impossible since we have assumed G ≠ P4. Not both l0 and kr can
be lower or equal to ν and, by possibly complementing G andM, we may assume l0 > ν and
0 < kr ≤ ν⇔ kr ∈ {1,2}. In this case, G ∩ R is a minimal {M[0, l0 − ν]}-obstruction, as can be
seen in Table 5.1, and by the inductive assumption, G∩R has ∣G∩R∣ ≤ f ({M[0, l0−ν]}) = l0−1
vertices. If there is an index u ∈ {0, . . . , r} with ku = 1 ∧ lu > 0, the number of vertices in G is

∣G∣ = 2ν + ∣R∣ = l0 + 3 ≤ l0 + 1 + lu + 1 ≤
r

∑
i=0

(li + 1)(ki − ki−1) = f (M)

If there is no such index u but kr = 1, then G ∖ {c1} is an M-obstruction because G ∖ {c1}
obstructs {M[0, l0]; . . . ; M[0, lr]} and also obstructs M[1,0] as it is not an empty graph. We
may assume kr = 2 now, so the size of G is

∣G∣ = 2ν + ∣R∣ = l0 + 3 = l0 + kr + 1 ≤ f (M)

Subcase 1e: (a,b, c) ∈ {(1,∗,1); (∗,0,0)}. As shown in Table 5.1, one of the induced sub-
graphs G ∖{c1} or G ∖{s1} of G obstructsM and therefore G is not a minimalM-obstruction.
Thus, this subcase is not possible.

Subcase 1f: (a,b, c) ∈ {(1,∗,0); (∗,0,1)}. By complementing M and G if necessary, we
may assume (a,b, c) = (1,∗,0). Assume G = P4, the smallest possible spider graph. We
have f (M) < 4 = ∣P4∣ only if M ⊂ {M[0,1]; M[0,2]; M[1,0]; M[2,0]}. P4 admits M[0,2],
which implies M[0,2] ∉ M, and then the induced subgraph G ∖ {c1} of G obstructs M ⊂
{M[0,1]; M[1,0]; M[2,0]}. This contradicts the assumption that G is a minimalM-obstruction
and so we may assume G ≠ P4.

Case 1f.1: Assume ν = 2. By Corollary 9, G ∖R as a spider graph obstructs all matrices M[k,0].
Also, G∖R obstructs M[0,1] as it is not a complete graph. G∖R is connected and so by Lemma
9, G ∖R obstructs M[k,1] for all k ∈ N. This implies l0 ≥ 2 = ν, as otherwise G ∖R obstructsM
and, as G is a minimalM-obstruction, this implies R = ∅ and G = P4, which was assumed not
to be the case at the beginning of this proof.

As shown in Table 5.1, G∩R is a minimal {M[0, l0−ν], . . . ,M[0, lr −ν]}-obstruction and by the
inductive assumption, we see ∣G ∩ R∣ ≤ l0 − ν + 1.

G ∖ {c1} obstructs M[k,0] (k ∈ N) because of Corollary 9. Also, G ∖ {c1} obstructs M[0, l0]
by Corollary 11. As an induced subgraph of the minimalM-obstruction G, G ∖ {c1} does not
obstructM and therefore there must be a matrix M[ks, ls] with ks > 0 ∧ ls > 0. Now two cases
can be distinguished: We may have s = 0, in which case the size of G is

∣G∣ = 2ν + ∣R∣ ≤ l0 + ν + 1 ≤ 2l0 + 1 ≤ (k0 + 1)l0 + 1 ≤ f (M)
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For s ≠ 0, the size of G can be determined as

∣G∣ ≤ l0 + ν + 1 ≤ l0 + 1 + (ls + 1)ks ≤
r

∑
i=0

(li + 1)(ki − ki−1) = f (M)

Case 1f-2: Assume ν > 2. By Corollary 11 and because b = ∗, for all l ∈ N, the spider graph
G∖{s1, c1} (we have ν > 2) admits M[0, l] if and only if (G∖{s1, c1})∩R admits M[0, l−(ν−1)].
By the same corollary, G obstructs M[0, l] if and only if G ∩ R obstructs M[0, l − ν]. Because G
obstructs M[0, l0], G ∩ R obstructs M[0, l0 − ν] and so G ∖ {s1, c1} obstructs M[0, l0 − 1]. By
Corollary 9 and because ν > 2, G ∖ {s1, c1} is a spider graph and therefore obstructs M[k,0] for
all k ∈ N. By Corollary 10, G ∖ {s1, c1} also obstructs M[k, l0 − 1] for all k ∈ N. For l0 < ν,
G ∩ R obstructs M[0, l0 − (ν − 1)] and then G ∖ {s1, c1} obstructs even M[0, l0] and M[k, l0].
Then the induced subgraph G ∖ {s1, c1} of the minimalM-obstruction G obstructsM, which
is obviously not possible, so we may assume l0 ≥ ν. G ∖ {s1, c1} is an induced subgraph of
G ∖ {c1} and obstructs M[k, l0 − 1]. Hence, G ∖ {c1} also obstructs M[k, l0 − 1] for all k ∈ N.
Additionally, G∖{c1} obstructs M[0, l0] as can be seen in Table 5.1. G∖{c1} does not obstruct
M and therefore there must be a matrix M[ks, ls] ∈ M with ks > 0 and ls ≥ l0 ≥ ν.

Again, G ∩ R is a minimal {M[0, l0 − ν], . . . ,M[0, lr − ν]}-obstruction and, by the inductive
assumption, we see ∣G ∩ R∣ ≤ l0 − ν + 1. The size of G therefore is

∣G∣ = l0 + ν + 1 ≤ ls + ls + 1 ≤ ls(ks + 1) + 1 ≤ f (M)

Subcase 1g: (a,b, c) ∈ {(1,0,0); (1,0,1)}. As shown in Table 5.1, all spider graphs obstruct
M. Therefore, G must be the smallest possible spider graph, P4. As shown in Corollary 11,
G ∖ {s1} obstructs M[0, l] and, as shown in Corollary 9, G ∖ {c1} obstructs M[k,0] for all
k, l ∈ N. Since both graphs are neither empty nor complete, both obstruct M[1,0] and M[0,1] as
well. For c = 0, Lemma 9 implies that G ∖ {s1} obstructs M[1,1] and, for c = 1, Lemma 9 with
complemented M and G implies that G ∖ {c1} obstructs M[1,1]. Neither G ∖ {s1} nor G ∖ {c1}
obstructM as they are induced subgraphs of the minimalM-obstruction G. Thus,M contains
a matrix M[ks, ls] with ks > 0∧ ls > 0∧ (ks > 1∨ ls > 1) or two matrices M[kt, lt],M[ku, lu] with
kt = 0 ∧ lt > 1 and ku > 1 ∧ lu = 0. In the first case, we have f (M) ≥ (ks + 1)(ls + 1) ≥ 4 = ∣P4∣.
In the second case, we have f (M) ≥ (kt + 1)(lt + 1) + (ku − kt)(lu + 1) ≥ 4 = ∣P4∣.

Case 2: G or its complement is disconnected. By possibly complementing G and M, we
may assume that G = G1 ∪G2 is disconnected.

Subcase 2a: (a,b, c) ∈ {(∗,0,0); (∗,∗,0); (∗,0,∗); (∗,∗,∗)} By Lemma 12, there is a num-
ber ji ∈ {0, . . . , li + 1} for every index i ∈ {0, . . . , r} such that G1 is an M[ki, ji − 1]-obstruction
and G2 is an M[ki, li − ji]-obstruction. The values ji may be chosen such that ji ≥ ji+1 and
li − ji ≥ li+1 − ji+1:
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For ji < ji+1, M[ki, ji+1 − 1] is a submatrix of M[ki+1, ji+1 − 1] and so G1 also obstructs
M [ki, ji+1 − 1]. Additionally, M[ki, li − ji+1] is a submatrix of M[ki, li − ji] and so G2 also
obstructs M[ki, li − ji+1]. Thus, we may define ji B ji+1 instead of a ji lower than ji+1. For
ji = ji+1, the second inequality li− ji ≥ li+1− ji+1 is true because of li ≥ li+1. For li− ji < li+1− ji+1
(⇔ ji+1 + li − li+1 < ji), G1 obstructs M[ki, ( ji+1 + li − li+1) − 1] as a submatrix of M[ki, ji] and
G2 obstructs M[ki, li − ( ji+1 + li − li+1)] = M[ki, li+1 − ji+1] as a submatrix of M[ki+1, li+1 − ji+1].
Thus, we may define ji B ji+1 + li − li+1 ≥ ji+1 instead of a value with li − ji < li+1 − ji+1.

Obviously, G1 obstructs M1 B {M[k0, j0 − 1]; . . . ; M[kr, jr − 1]} and G2 obstructs M2 B

{M[k0, l0 − j0]; . . . ; M[kr, lr − jr]}. If G1 has an induced subgraph G′
1 ⊊ G1 that obstructs

M1, then (G′
1 ∪G2) ⊊ G obstructsM by Lemma 12. Hence, G1 is a minimalM1-obstruction.

Similarly, G2 is a minimalM2-obstruction. By the inductive assumption, the number of vertices
in G is

∣G∣ =∣G1∣ + ∣G2∣ ≤ f (M1) + f (M2)

=
r−1

∑
i=0

( ji − 1 − ( ji+1 − 1))(ki + 1) + ( jr − 1 + 1)(kr + 1)

+
r−1

∑
i=0

(li − ji − (li+1 − ji+1))(ki + 1) + (lr − jr + 1)(kr + 1)

=
r−1

∑
i=0

(ki + 1)( ji − ji+1 + li − ji − li+1 + ji+1) + (lr − jr + jr + 1)(kr + 1)

=
r

∑
i=0

(ki + 1)(li − li+1) = f (M)

Subcase 2b: (a,b, c) ∈ {(1,0,0); (1,∗,0); (1,0,∗); (1,∗,∗)} By Lemma 13, there are num-
bers ui, vi,wi ∈ {0, . . . , l + 1} for every i ∈ {0, . . . , r} such that

• G1 obstructs M[ki,ui − 1] and G2 obstructs M[0, li − ui],

• G2 obstructs M[ki, vi − 1] and G1 obstructs M[0, li − vi],

• ui + vi < li + 2, and

• if ki > 0 then G1 obstructs M[1,wi − 1] and G2 obstructs M[1, li −wi].

We may further assume ui ≥ ui+1 and vi ≥ vi+1 (0 ≤ i < r): Let x1, x2 ∈ N0 be the greatest
values such that G1 obstructs M[0, x1] and G2 obstructs M[0, x2]. Then we may assume ui B

max{0, li − x2} and vi B max{0, li − x1}; these are the lowest values such that G2 obstructs
M[0, li − ui] and G1 obstructs M[0, li − vi] and so the conditions that G2 obstructs M[0, li − ui],
G1 obstructs M[0, li−vi], and especially that G1 obstructs M[ki,ui−1], G2 obstructs M[ki, vi−1],
and ui + vi < li + 2 are satisfied by ui, vi as long as there are any values ui, vi at all that satisfy
them, which is ensured by Lemma 13. Let t ∈ {0, . . . , r} be the smallest number with kt > 0. For
i > t, we may assume wi B min{wt, li + 1} because G1 obstructs the submatrix M[1,wi − 1] of
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M[1,wt−1] and G2 obstructs the submatrix M[1, li−wi] of M[1, lt−wt]. This obviously implies
wi ≥ wi+1 and li −wi ≥ li+1 −wi+1 (0 ≤ i < r).

Thus, G1 is a minimalM1-obstruction and G2 is a minimalM2-obstruction with

M1 B

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M[0, l0 − v0],
M[k0,u0 − 1], . . . ,M[kt−1,ut−1 − 1],
M[1,wt − 1],
M[kt,ut − 1], . . . ,M[kr,ur − 1]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

M2 B

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M[0, l0 − u0],
M[k0, v0 − 1], . . . ,M[kt−1, vt−1 − 1],
M[1, lt −wt],
M[kt, vt − 1], . . . ,M[kr, vr − 1]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

A graph that obstructs M[1,d] for d ∈ N also obstructs M[0,d], so for 0 ≤ i < t, we see from the
definition of ui,wt, vi that li − vi ≥ lt − vt ≥ wt − 1 and li − ui ≥ lt − ut ≥ lt −wt, which immediately
implies wt − 1 ≥ ut − 1 and lt − wt ≥ vt − 1. M1 andM2 are staircase-like and so the inductive
assumption applies to G1 and G2.

For k0 ≥ 1, we have t = 0. By the inductive assumption, the size of G is

∣G∣ =∣G1∣ + ∣G2∣ ≤ f (M1) + f (M2)
=(0 − (−1))(l0 − v0 + 1) + (1 − 0)(w0 − 1 + 1) + (k0 − 1)(u0 − 1 + 1)

+
r

∑
i=1

(ki − ki−1)(ui − 1 + 1)

+ (0 − (−1))(l0 − u0 + 1) + (1 − 0)(l0 −w0 + 1) + (k0 − 1)(v0 − 1 + 1)

+
r

∑
i=1

(ki − ki−1)(vi − 1 + 1)

=3(l0 + 1) − v0 − u0 + (k0 − 1)(u0 + v0) +
r

∑
i=1

(ki − ki−1)(vi + ui)

=3(l0 + 1) + (k0 − 2)(u0 + v0) +
r

∑
i=1

(ki − ki−1)(vi + ui)

For k0 > 1, we have k0 − 2 ≥ 0 and u0 + v0 ≤ l0 + 1, so we may conclude further

∣G∣ ≤3(l0 + 1) + (k0 − 2)(l0 + 1) +
r

∑
i=1

(ki − ki−1)(vi + ui)

=(k0 + 1)(l0 + 1) +
r

∑
i=1

(ki − ki−1)(vi + ui) = f (M)

For k0 = 1, G1 obstructs M[1,w0 − 1] and therefore also obstructs M[0,w0 − 1]. G2 obstructs
M[1, l0 −w0] and thus G2 also obstructs M[0, l0 −w0]. Also, we have w0 ≥ u0 ≥ ui and l0 −w0 ≥
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v0 − 1 ≥ vi − 1 (0 ≤ i ≤ r), so we may assume u0 B w0 and v0 B l0 + 1 − w0 and all previous
assumptions are still true (without, of course, the original definitions of u0 and v0). This also
implies u0 + v0 = l0 + 1 and so we see

∣G∣ ≤3(l0 + 1) + (k0 − 2)(u0 + v0) +
r

∑
i=1

(ki − ki−1)(vi + ui)

=(k0 + 1)(l0 + 1) +
r

∑
i=1

(ki − ki−1)(vi + ui) = f (M)

For t > 0 (and therefore k0 = 0), the first three conditions for i = 0 state that G1 obstructs
M[0,ui − 1], G2 obstructs M[0, li − ui], G2 obstructs M[0, vi − 1], G1 obstructs M[0, li − vi], and
ui + vi ≤ li + 1. Obviously, we may increase ui to ui B li + 1 − vi while still preserving these
conditions and we still have ui ≥ ui+1. In this case, the inductive assumption yields

∣G∣ =∣G1∣ + ∣G2∣ ≤ f (M1) + f (M2)

=(k0 − (−1))(u0 − 1 + 1) +
t−1

∑
i=1

(ki − ki−1)(ui − 1 + 1) + (1 − 0)(wt − 1 + 1)

+ (kt − 1)(ut − 1 + 1) +
r

∑
i=t+1

(ki − ki−1)(ui − 1 + 1)

+ (k0 − (−1))(v0 − 1 + 1) +
t−1

∑
i=1

(ki − ki−1)(vi − 1 + 1) + (1 − 0)(lt −wt + 1)

+ (kt − 1)(vt − 1 + 1) +
r

∑
i=t+1

(ki − ki−1)(vi − 1 + 1)

=u0 + v0 + lt + 1 + (kt − 1)(ut + vt) +
r

∑
i=t+1

(ki − ki−1)(ui + vi)

≤u0 + v0 + lt + 1 + (kt − 1)(lt + 1) +
r

∑
i=t+1

(ki − ki−1)(li + 1)

=(l0 + 1) + kt(lt + 1) +
r

∑
i=t+1

(ki − ki−1)(li + 1) ≤ f (M)

Subcase 2c: c = 1 Before the main proof in this subcase, minimal M[k,0]- and M[0, l]-
obstructions (k, l ∈ N) are looked at more generally: For a = ∗, a graph G admits M[k,0] if and
only if it is k-colorable. A P4-sparse and therefore perfect graph is k-colorable if and only if the
size of its largest clique is at most k. Obviously, the only minimal M[k,0]-obstruction perfect
graph is the complete graph with k + 1 vertices Kk+1. Inversely, the only minimal M[0, l]-
obstruction perfect graph for b = ∗ is the empty graph with l + 1 vertices Kl+1. For a = 1, every
M[k,0]-partition A1, . . . ,Ak of a graph G = (V,E) splits the graphs vertices into k parts such that
two vertices are in different parts if and only if they are adjacent to each other. A graph G ≠ Kk+1
that is an M[k,0]-obstruction therefore contains two non-adjacent vertices and another vertex
that distinguishes between the former two, which is an induced subgraph P3. For k ≥ 2, P3 does
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not contain Kk+1 as an induced subgraph and thus is the only other minimal M[k,0]-obstruction.
Similarly, for l ≥ 2 and b = 0 the only minimal M[0, l]-obstruction other than Kl+1 is P3.

For l0 = 0, the graphs Kkr+1 and possibly P3 are the only minimal M[kr,0]-obstructions and
therefore also the only minimalM-obstructions, so we either have G = Kkr+1 or G = P3. Both
cases result in ∣G∣ ≤ kr+1 = (kr+1)(lr+1) ≤ f (M), so we may assume l0 > 0. Similarly, we may
assume kr > 0 as otherwise we had G = Kl0+1 or G = P3 and ∣G∣ ≤ l0+1 = (k0+1)(l0+1) ≤ f (M).

By complementing M and G in Lemma 9, we see that a disconnected graph obstructs a matrix
M[k, l] if and only if G obstructs M[k,0] as well as M[0, l]. M = {M[k0, l0]; . . . ; M[kr, lr]}
is staircase-like, so a disconnected graph obstructs M if and only if it obstructs M[kr,0] and
M[0, l0]. So if G as a disconnected graph and minimal M-obstruction has a disconnected in-
duced subgraph H that obstructs M[kr,0] and M[0, l0] then G and H must be identical. The
rest of this proof shows that G contains such an induced subgraph and that H has at most
kr + l0 + 1 ≤ f (M) vertices. Note that G as an M[kr,0]-obstruction and M[0, l0]-obstruction
contains induced subgraphs Gc and Gs such that Gc is a minimal M[kr,0]-obstruction and Gs is
a minimal M[0, l0]-obstruction.

First we assume Gc = Kkr+1 = (Vc,Ec) and Gs = Kl0+1 = (Vs,Es). If G ∩ (Vc ∪Vs) is connected,
there is a vertex x ∈ V ∖ (Vc ∪ Vs) that is non-adjacent to all vertices in Vc ∪ Vs, because G is
disconnected. In this case, we may exchange any vertex y ∈ Vs with x and (Gs∪{x})∖{y} is still
an empty induced subgraph of G with l0+1 vertices. Thus, we may assume that H B G∩(Vc∪Vs)
is disconnected. As a disconnected graph that obstructs M[kr,0] and M[0, l0], we see that H
obstructsM and must therefore be identical to G. If there is a vertex v ∈ Vc ∖ Vs that is non-
adjacent to all vertices in Vs, then, for any w ∈ Vs, the set Vs ∪ {v} ∖ {w} is an independent set
in G with l0 + 1 vertices. G ∖ {w} therefore obstructs M[0, l0] and of course M[kr,0], which
makes the disconnected graph G ∖ {w} an M-obstruction, contradicting G being a minimal
M-obstruction. We may therefore assume that Vc ∖ Vs does not contain vertices that are non-
adjacent to all vertices in Vs and, similarly, Vs ∖Vs does not contain vertices that are adjacent to
all vertices in Vc. Thus, Vc and Vs are the maximum clique and the maximum independent set in
G, respectively, and, as there are no other vertices in G, they are the only maximum clique and
the only maximum independent set. By Theorem 1, there is a maximum clique and a maximum
independent set in G that meet in exactly one vertex. As there is only one maximum clique and
only one maximum independent set in G, we see ∣Vc ∩ Vs∣ = 1 and therefore

∣G∣ = ∣G ∩ (Vc ∪ Vs)∣ = ∣Vc∣ + ∣Vs∣ − ∣Vc ∩ Vs∣ = kr + 1 + l0 + 1 − 1 ≤ f (M)

In the case Gc = Kkr+1 = (Vc,Ec) and Gs = P3 = ({p1, p2, p3},{p1 $ p2, p2 $ p3}), we may
assume l0 ≥ 2 and a = 1. Now assume that G ∩ (Vc ∪ {p1, p2, p3}) is connected and that pi for
some i ∈ {1,2,3} distinguishes between two vertices y, z ∈ Vc. Without loss of generality let i be
1. Then H B G∖{p2, p3} ≠ G is disconnected and contains Gc and P3 = G∩{p1, y, z} as induced
subgraphs and thus H obstructsM, which contradicts that G is a minimalM-obstruction. Thus,
every pi (1 ≤ i ≤ 3) is either adjacent to all vertices in Vc or non-adjacent to all vertices in
Vc, as otherwise G ∩ (Vc ∪ {p1, p2, p3}) would be connected and some pi would distinguish
between vertices in Vc. If there is a pi that is adjacent to all vertices in Vc then, for any y ∈ Vc,
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H B G ∖ {y} ≠ G is disconnected, contains P3 as an induced subgraph, and contains Kkr+1 =
G∩((Vc∖{y})∪{pi}) as an induced subgraph. H obstructsM, which is not possible, so we may
assume that all pi are non-adjacent to the vertices in Vc, which makes H B G∩(Vc∪{p1, p2, p3})
a disconnected graph. H obstructs M[kr,0] and M[0, l0], so we have H = G. For l0 > 2, the claim
∣G∣ = kr + 1 + 3 ≤ kr + 1 + l0 ≤ f (M) follows immediately, so we may assume l0 = 2. G ∖ {p2}
contains the empty graph with three vertices K3 = ({p1, p3, x},∅) (with x ∈ Vc) as an induced
subgraph as well as the complete graph Gc = Kkr+1 with kr+1 vertices. G∖{p2} is disconnected
and obstructs M[kr,0] and M[0,2] = M[0, l0], so it obstructs M, which is impossible for an
induced subgraph of G. Hence, the case l0 = 2 is not possible.

For Gc = P3 = ({n1,n2,n3},{n1 $ n3}) and Gs = Kl0+1 = (Vs,∅), we may assume kr ≥ 2 and
b = 0. If there is a vertex z1 ∈ V ∖ Vs that distinguishes between two vertices x1, y1 ∈ Vs, without
loss of generality z1$x1 ∈ E and z1$y1 ∉ E, then H B G∩(Vs∪{z1}) is disconnected, contains the
induced subgraphs Gs and P3 = ({x1, y1, z1},{z1$x1}), and therefore obstructsM as an induced
subgraph of G, which implies G = H. The size of G is then ∣H∣ = l0 + 1+ 1 ≤ l0 + kr + 1 ≤ f (M).
If there is a vertex x2 ∈ V ∖ Vs that is adjacent to all vertices in Vs, then the vertices in Vs and
x2 are obviously in the same connected component of G. As G is disconnected, there is another
connected component that contains a vertex y2. y2 is non-adjacent to x2 and non-adjacent to the
vertices in Vs, so H B G ∩ (Vs ∪ {x2, y2}) is disconnected, contains the induced subgraph Gs,
and contains an induced subgraph P3 = ({x2, y2, z2},{x2 $ z2}) (z2 ∈ Vs). Therefore H obstructs
M and is identical to G. This implies ∣G∣ = ∣H∣ = ∣Vs∣ + 2 = l0 + 3 ≤ l0 + kr + 1 ≤ f (M). As
the last case to look at, we assume that no vertex in V ∖ Vs is adjacent to a vertex in Vs, which
implies that {n1,n3} ∩ Vs = ∅. Then H B G ∖ {x3} (x3 ∈ Vs) is disconnected and contains the
induced subgraphs Kl0+1 = ((VS ∪ {n1}) ∖ {x3},∅) and Gc. Thus, H ≠ G obstructsM, which
contradicts that G is a minimalM-obstruction.

For Gc = P3 and Gs = P3 = ({p1, p2, p3},{p1 $ p2, p2 $ p3}), we assume l0 ≥ 2 and kr ≥ 2. Gs

is connected while G is not, so there is a vertex x ∈ V with x ∉ {p1, p2, p3} that is non-adjacent
to the vertices p1,p2, and p3. H B G ∩ {x, p1, p2, p3} is disconnected and has the induced
subgraphs P3 = ({x, p1, p2},{p1 $ p2}) and obviously P3. Thus, H obstructs M, and so we
have H = G and ∣G∣ = ∣H∣ = 4 ≤ l0 + kr < f (M).

The preceding theorem has the following important special case.

Corollary 12. If M is a constant matrix and G is a P4-sparse, minimal M-obstruction graph,
then G has at most (k + 1)(l + 1) vertices.
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6. Summary

Most of the properties that Feder et al. have proved for cographs [FHH06] have been proved for
P4-sparse graphs as well in this work.

When the matrix size is fixed, Feder et al. have shown how to determine whether a cograph
with lists obstructs a matrix in linear time ([FHH06], Corollary 2.4). This thesis shows the same
for P4-sparse graphs in Corollary 3. Theorem 3 shows that the condition of a fixed matrix size
cannot be omitted since otherwise the problem becomes NP-complete.

Feder et al. have shown that a minimal M-obstruction cograph with lists has at most amm! ver-
tices, where a = ln−1(3

2) ([FHH06], Theorem 2.3) and m is the size of the matrix. This is the
only property of cographs proved in the article of Feder et al. [FHH06] that this thesis does not
show to also apply to P4-sparse graphs. Instead, Theorem 4 only shows that P4-sparse minimal
M-obstructions with lists have less than 4m+1 ⋅ (m + 1)! vertices.

Let fcograph ∶ N Ð→ N be the function that maps m ∈ N to the size of the largest cograph
minimal M-obstruction of a matrix of size m. Feder et al. have proved that fcograph ∈ O(8m/√m)
([FHH06], Theorem 3.2). This thesis shows in Theorem 5 that the upper bound fP4-sparse ∈
O(16m) applies if fP4-sparse maps to the size of the largest, minimal M-obstruction, P4-sparse
graph instead of only a cograph.

For constant matrices, Feder et al. have shown that a minimal M-obstruction cograph has exactly
(k + 1)(l + 1) vertices if M is a (∗,∗,∗)-block matrix with k diagonal 0s and l diagonal 1s
([FHH06], Corollary 4.2). For other constant matrices, minimal M-obstruction cographs have
at most (k + 1)(l + 1) vertices ([FHH06], Corollary 4.4). In Chapter 5 of this thesis, these
results could be extendend to P4-sparse graphs. For (∗,∗,∗)-block matrices, Corollary 7 shows
that a minimal M-obstruction, P4-sparse graph has exactly (k + 1)(l + 1) vertices. For constant
matrices in general, Corollary 12 shows that a minimal M-obstruction, P4-sparse graph has at
most (k + 1)(l + 1) vertices.

These results show that P4-sparse graphs share many properties with cographs. This indicates
to have a closer look on P4-sparse graphs if a problem is easy to solve on the class of cographs
but difficult for graphs in general. As another research direction, maybe the results presented in
this thesis can be extended to an even larger class of graphs, for example the graphs with few
P4s that were introduced by Babel and Olariu [BO95]. Also, either an upper bound for the size
of P4-sparse minimal M-obstructions with lists exists that equals the upper bound already found
for cographs or, if this is not possible, a counterexample for such an upper bound must exist, a
P4-sparse minimal M-obstruction with lists whose size is greater than the upper bound amm!,
which Feder et al. have proved for cographs.
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